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Abstract: Information and communication technologies (ICT) are increasingly permeating our daily
life and we ever more commit our data to the cloud. Events like the COVID-19 pandemic put
an exceptional burden upon ICT. This involves increasing implementation and use of data centers,
which increased energy use and environmental impact. The scope of this work is to summarize the
present situation on data centers as to environmental impact and opportunities for improvement.
First, we introduce the topic, presenting estimated energy use and emissions. Then, we review
proposed strategies for energy efficiency and conservation in data centers. Energy uses pertain to
power distribution, ICT, and non-ICT equipment (e.g., cooling). Existing and prospected strategies
and initiatives in these sectors are identified. Among key elements are innovative cooling techniques,
natural resources, automation, low-power electronics, and equipment with extended thermal limits.
Research perspectives are identified and estimates of improvement opportunities are mentioned.
Finally, we present an overview on existing metrics, regulatory framework, and bodies concerned.

Keywords: data center; green data center; sustainability; energy efficiency; energy saving; ICT

1. Introduction

The digital economy is expanding and so is the demand for information and commu-
nication technology (ICT), driving the data center industry. Compared to the recent “age
of computing”, the present time is regarded as the “age of data” [1]. Drivers for the recent
massive expansion of ICT are the fifth-generation mobile networks (5G), modern computing
paradigms, internet of things (IoT) [2,3], cryptocurrencies, blockchain [4], big data science,
artificial intelligence (AI), and emergencies like the ongoing COVID-19 pandemic [5,6]. Key
estimates on 2018–2023 digital evolution by Cisco are reported in Table 1 [7].

The fifth-generation mobile network, known as 5G, is being implemented to meet
increasing service demand [8]. The related energy demand is under investigation [9,10].

Cryptocurrencies (Bitcoin being the first and most famous) are media of exchange,
which are digital, encrypted, and distributed. They are not issued by a central authority but
rather are based on a distributed ledger, typically blockchain. Mining is the release of new
units of cryptocurrencies [11,12]. The energy and environmental costs of cryptocurrency
mining is an emerging issue [13–17]. The estimated energy use related to Bitcoin is reported
in Figure 1. Sustainable alternatives are under investigation [18].

A blockchain is an open-source distributed database, based on state-of-the-art cryp-
tography, via a distributed ledger [19]. The first application of blockchains has been
to support bitcoin transactions; today, they are regarded as disruptive in many appli-
cations [20,21], including climate change [22], energy [23], and health [24]. A recent
application of blockchains is in smart mobility, supporting Internet-of-Vehicles [25]. The

Sustainability 2021, 13, 6114. https://doi.org/10.3390/su13116114 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9163-4513
https://orcid.org/0000-0001-7662-9815
https://orcid.org/0000-0001-8479-8686
https://www.mdpi.com/article/10.3390/su13116114?type=check_update&version=1
https://doi.org/10.3390/su13116114
https://doi.org/10.3390/su13116114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13116114
https://www.mdpi.com/journal/sustainability


Sustainability 2021, 13, 6114 2 of 25

energy and environmental impact of blockchains is investigated [17,26]. Other drivers are
modern computing paradigms—cloud computing, edge computing, fog computing, and
IoT [3].

Table 1. Forecast of digital evolution 2018–2023, elaborated from [7].

2018 2023 Variation

Internet users (billions) 3.9 5.3 +36%
Internet users (percent of world population) 51% 66% +29%
Average mobile networked devices and
connections per person 1.2 1.6 +33%

Average total networked devices and
connections per person 2.4 3.6 +50%

Average broadband speed (Mbps) 46 110 +139%
Average Wi-Fi speed (Mbps) 30 92 +207%
Average mobile speed (Mbps) 13 44 +238%

The COVID-19 pandemic changed the use of ICT. In March 2020, Microsoft Teams
use increased by 775% [27] and Facebook group calls increased tenfold in Italy [28]; Zoom
exceeded 200 million daily participants [29]. Changes in social media use following COVID-
19 are addressed e.g., by J.P. Morgan [30]; Amazon notably profited [31]. This can also lead
to beneficial results: Ong et al. [32,33] estimate the impact of videoconferencing, in terms
of energy and CO2 costs over the life cycle, compared to face-to-face meetings.

Information traders (e.g., Google/Alphabet, Amazon, Apple, Facebook, Microsoft) are
among top companies by market capitalization [34,35]. ICT electricity demand is expected
to accelerate 2020–2030, to 8% ÷ 21% (based on scenario) of total electricity demand [36].
Power usage of data centers can be as high as hundreds of megawatts [37]. Examples of
top data centers by power are presented in Table 2.
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Figure 1. Estimation of Bitcoin electricity consumption, via the Cambridge Bitcoin Electricity Consumption Index [38].

Data centers use ICT equipment (servers, storage drives, and network devices), which
are electrically powered. The operation of ICT requires non-ICT equipment, or data center
physical infrastructure (DCPI), e.g., cooling to remove ICT heat, lighting (Figure 2).

The top items of energy consumptions are cooling and servers, estimated as 43% each,
followed by storage drives and network devices (11% and 3%, respectively) [39]. Other
estimations are roughly 52% ICT, 38% cooling system, and 10% other equipment [40].
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The main actions on energy use and operational carbon of data centers are high-per-
formance computing (software); energy conservation of computer rooms (hardware); 
low-power servers (hardware); and renewable energy application (hardware) [47] (Figure 
6). In this work, we focus on energy conservation strategies at physical level (ICT and 
DCPI), as outlined in Figure 7—energy conservation at the software level falls outside the 
scope. 
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Power flows in a typical data center are illustrated in Figure 3. Electricity use esti-
mations 2010–2030 for ICT and data centers are presented in Figure 4. Global greenhouse
gases (GHG) emissions by ICT are presented in Figure 5.
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Figure 4. (a) Global ICT annual electricity use; (b) global ICT annual electricty share; (c) global data center annual electricity
use; (d) global data center annual electricity share; elaborated from [36].

On these grounds, energy and environmental sustainability of data centers is a priority
in the ICT industry. European strategies push for data center to be carbon-neutral by
2030 [43].

Table 2. Examples of top data centers [37,44–46].

Owner Location Power * (MW)

Facebook IA, USA 138
Digital Realty IL, USA 100

Yotta India 250
Google OK, USA 100

* Approximate.
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The main actions on energy use and operational carbon of data centers are high-
performance computing (software); energy conservation of computer rooms (hardware);
low-power servers (hardware); and renewable energy application (hardware) [47] (Figure 6).
In this work, we focus on energy conservation strategies at physical level (ICT and DCPI),
as outlined in Figure 7—energy conservation at the software level falls outside the scope.
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Figure 5. (a) Global ICT annual GHG emission; (b) global ICT annual GHG emission share; elaborated
from [36,48].
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2. Power Supply and Continuity

Electrical power supply plays a key role in the proper and efficient operation of a
data center. The loads of a data center can be classified in two main levels according to
the type of service requested. DCPI require a preferential service, by emergency generator
sets (EGS)—a downtime of seconds is tolerable, given system inertia. ICT and critical
equipment require a vital service with stringent continuity of supply, by Uninterruptible
Power Systems (UPS)—they are vulnerable even to very short (milliseconds) voltage
dips. Standard ISO 8528-1:2018 defines application, ratings, and performance of EGS [49].
Ratings are outlined in Table 3.
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Table 3. EGS rating definitions, elaborated from [50].

Load Max Run Time Application

Emergency standby power (ESP) Variable * 200 h/a Safety, critical loads

Prime rated power (PRP) Variable * Unlimited Local generation, peak
shaving

Limited time prime power (LTP) Constant 500 h/a Base loading, rate
curtailment

Continuous operating power (COP) Constant Unlimited Parallel to utility
Data center power (DCP) Constant, variable Unlimited

* Average power output not exceeding 70% of rating.

Only COP rating is sufficient for data center Tier III or IV certification (see 2.1) but
implies an oversized EGS. DCP is not sufficient as it implies a reliable utility. The additional
“data center continuous power” (DCC) rating is defined, as the maximum power that the
generator can continuously deliver to a constant or varying load for unlimited time in a
data center application [50,51].

Open-source ICT systems are redefining how power is distributed in IT racks, by
replacing internal server power supply units (PSU) with a centralized rack-level PSU.
Servers use a variety of dc voltage levels, ranging from 12 to 1 Vdc. These are generated
from mains ac voltage in several steps via transformers, rectifiers, and converters. PSU
can be divided in single-cord or dual-cord supply. Dual-corded equipment is normally fed
from separate sources by two PSU below 50% capacity, so that either PSU can feed total
load whenever necessary. Conventional internal server PSU architectures and centralized
rack-level PSU architectures (12 Vdc and 48 Vdc) are the most used architectures in IT
rack data centers. With best-in-class components, the consolidated 12 Vdc rack-level
PSU architecture provides a small incremental energy efficiency improvement over the
conventional architecture. Consolidating at 48 Vdc provides another small incremental
energy efficiency improvement over 12 Vdc. Conventional and open-source PSU are
illustrated in Figure 8.
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2.1. Tier Classification

Service continuity is of paramount importance for data centers. The Tier classification
by The Uptime Institute [53] is the international standard on data center performance.
Tiers are assigned based on data center reliability. They consequently define criteria on
maintenance, power supply, cooling, and fault capabilities. A summary of Tier classification
is reported in Table 4. The Uptime Institute illustrates characteristics of Tiers and features
and actions on ICT equipment, electrical infrastructure, mechanical infrastructure, and
facility operations for reliability, availability, and serviceability [53]. Examples of power
distribution based on Tier are given in Figure 9. Following Tier classification, ratings are
defined by standard ANSI/TIA 942-B-2017 [54], as:

• Rated-1: Basic site infrastructure;
• Rated-2: Redundant capacity component site infrastructure;
• Rated-3: Concurrently maintainable site infrastructure;
• Rated-4: Fault tolerant site infrastructure.

Table 4. Tier classification and requirements summary, elaborated from [53,55].

Tier II Tier II Tier III Tier IV

Site availability (%) 99.671 99.749 99.982 99.995
Site ICT downtime (h/a) 28.8 22.7 1.6 0.4

Distribution paths 1 1 1 active,
1 alternate 2 active

Critical power distribution 1 1 2 active 2 active

Component redundancy N N + 1 N + 1 N after any
failure

Concurrently maintainable No No No Yes
Fault tolerant No No No Yes
Compartmentalization No No No Yes
Continuous cooling No No No Yes

Redundancy (multiplication of components) is a pursued strategy to reduce prob-
ability of failure and improve reliability (ability to perform under stated conditions for
a given time) and availability (degree to which a system is operational when required
for use) [41,56,57]. Topology and power distribution for reliability is discussed e.g., by
Wiboonrat [58]. It should be remarked that redundancy increases costs and decreases
energy efficiency [41]. Therefore, sustainability should be assessed also based on reliability.
This is also reflected in multidimensional metrics.
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Figure 9. Diagrams of power distribution systems based on Tier: (a) Tier I; (b) Tier II; (c) Tier III; (d) Tier IV; elaborated from [59]. Figure 9. Diagrams of power distribution systems based on Tier: (a) Tier I; (b) Tier II; (c) Tier III; (d) Tier IV; elaborated from [59].



Sustainability 2021, 13, 6114 9 of 25

2.2. Power Losses

Multiple causes of energy loss exist in a data center, as discussed e.g., by Ras-
mussen [42]. Ideally, all power should be delivered to IT equipment; in reality, energy is
obviously also consumed by non-IT equipment/DCPI. Part of the DCPI is in series with
and powers IT while the other is in parallel as it supports IT operation. DCPI efficiency
is pursued via more efficient devices, accurate sizing, and innovative techniques. A more
accurate sizing matching IT load is regarded as the most immediate opportunity.

Losses in DCPI components are usually divided among no-load losses, proportional
losses, and square-law losses; typical values as a fraction of full load rating are reported [42].
An energy model of data centers is also available, illustrating various items of energy loss
(Figure 10) [42]. Data center modeling in the literature is discussed by Ahmed et al. and a
model of the electrical energy consumption of data center subsystems, considering their
interactions and highlighting power losses, is presented [60].

2.3. UPS

Data centers are mission-critical, and reliability is expected; hence, UPS are key. Even
if they operate in emergency conditions, they are part of the infrastructure and taken
into account in efficiency measurements. UPS losses can be grouped into no-load losses,
proportional losses, and square-law losses (Figure 11a), as follows [61]:

• No-load losses: Caused by no-load losses in transformers, capacitors, and auxiliaries;
• Proportional losses: Due to switching losses in transistors and conduction losses in

semiconductors and rectifiers;
• Square-law losses: Joule losses.

UPS efficiency can be pursued via technology, topology, and modularity. Efficiency
typically decreases with reduced load in common UPS, while it is maintained in efficient
UPS (Figure 11b). UPS efficiency is discussed e.g., by Milad and Darwish [62].

UPS efficiency values are usually given at 100% load under the most favorable con-
ditions, leading to nearly identical values for different UPS. UPS efficiency depends on
the load—increasing redundancy means adding extra spare capacity, hence redundancy
can have a deep impact on efficiency. Efficiency at 30% load is proposed to better specify a
UPS [61]. An example can be given as follows. Assuming 800 kW load, so that a 1000 kW
UPS operates at 80% load (typical threshold set by operators), the effect of UPS alternative
configurations is as per Table 5. The same load represents a different relative load based
on UPS configuration. Above 80% load, the energy cost of UPS losses is regarded as small
with respect to IT load. Offline UPS provide the load with a bypass mains power supply
without conditioning and ensure maximum efficiency (99%) compared to online UPS.
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Table 5. Example on comparison of loading of different UPS configurations.

Configuration Modules Capacity Percent Load Losses

Internally modular 4 × 250 kW 1000 kW 80% Small
Internally modular

redundant 5 × 250 kW 1250 kW 64% High

Parallel redundant 3 × 500 kW 1500 kW 53% High

Standard IEC 62040-3 [64] applies to electronic UPS that deliver single/three-phase
fixed frequency ac output voltage not exceeding 1000 V and that incorporate an energy
storage system, generally connected via a dc link. The standard specifies performance and
test requirements for a complete UPS system (not of individual UPS functional units) and
introduces a code of identification of UPS service.

3. Energy Conservation of Computer Rooms

Rong et al. [47] review technologies for optimizing energy use in data centers as
of 2016, including energy conservation in computer rooms. Nadjahi et al. [40] discuss
thermal loads, active cooling (air conditioning), and passive cooling (free cooling, liquid
cooling, two-phase cooling, building envelope), as of 2018. Ebrahimi et al. [65] discuss
configuration of data centers, thermal loads, and thermal management (cooling systems);
they also provide discussion on technologies for waste heat recovery. Energy conservation
of computer rooms may rely on:

• New architecture and control of the cooling system [40];
• Possible control of lighting system [66].

3.1. Improvement of the Cooling System

As one of major items of energy use in data centers, improvements of cooling systems
are investigated. The main strategies are presented in the following.

3.1.1. Location of Data Centers

Choosing the most appropriate location for a data center is essential. One common
driver in this choice is the risk associated with the site itself [67]. Here, “risk” has a
general meaning, pertaining not only to natural adverse events, but also to utility costs and
relationship with other services and facilities.

On the other hand, electric air conditioning is found to aggravate urban microclimate
(heat island effect), in turn exacerbating the need for cooling [47,68], in a vicious circle.
Nonetheless, location choice based on environmental conditions can improve the efficiency
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of the cooling system [69,70]. For example, locations with abundant water or cold climate
are considered for natural cooling: BMW has a data center in Iceland [71,72], Facebook
has and is investing in data centers in Sweden [73–75], and Google has a data center
in Finland [76]. Microsoft deployed an underwater data center off Scotland’s Orkney
Islands [77]. In some of those locations, inexpensive, renewable energy is also available.

Lei et al. [78] recently investigated achievable Power Usage Effectiveness (PUE, see
Section 5.1.1), i.e., practical minimum PUE with given climate conditions and state-of-the-
art technologies, based on locations of 17 Facebook and Google hyperscale data centers, via
a simulation model of free cooling with different sources. It is found that this can impact
up to twice as much. The impact on different items of consumption is also noted. Other
studies on quantification of the impact of the location were by Depoorter et al. [79] and
by Shehabi et al. [80]. Considerations on the location of data centers are addressed by
Atkins [81]. An illustration of the distribution of data centers is given in Figure 12.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 24 
 

via a simulation model of free cooling with different sources. It is found that this can im-
pact up to twice as much. The impact on different items of consumption is also noted. 
Other studies on quantification of the impact of the location were by Depoorter et al. [79] 
and by Shehabi et al. [80]. Considerations on the location of data centers are addressed by 
Atkins [81]. An illustration of the distribution of data centers is given in Figure 12. 

 
Figure 12. Distribution of data centers among top countries by numerosity, elaborated from [82]. 

3.1.2. Room Configuration 
The configuration of computer rooms impacts on airflow; parameters can be e.g., 

room ceiling or configuration of floor openings in raised-floor data centers [83–85]. The 
cost for a proper design of room layout and ventilation system in large data centers is 
estimated as 8%–10% of total cost and it is usually compensated by energy saving in two 
to three years [47]. 

3.1.3. Room Temperature 
Room temperature and humidity values are recommended, for equipment life. How-

ever, as better equipment is being released, thermal limits are relaxing accordingly, to cut 
cooling costs. ASHARE thermal guidelines recommended 20–25 °C dry-bulb air temper-
ature in 2004 and 18–27 °C in 2008; in 2011, equipment classes were defined, allowing a 
range as wide as 5–45 °C. Dell presented servers able to withstand 45 °C air [86]. Google 
raised room temperature to 26.7 °C [87]. 

3.1.4. Airflow Pattern and Active Cooling 
Unified rack arrangement is now obsolete, implying mixing of hot and cold air; face-

to-face or back-to-back (hot aisle/cold aisle) arrangement is now common [40,47,88]. 
Bedekar et al. [89] investigated the optimal computer room air conditioning (CRAC) loca-
tion via computational fluid dynamics. 

Air distribution in computer rooms is discussed in the literature [40,47,90,91]. Air 
distribution can be divided as upward or downward. Floor design can be hard floor or 
overhead. Air pattern can be open, local pipeline, or full pipeline [47]. Air can be conveyed 
between CRAC and rack via flooded supply/return, locally ducted supply/return, or fully 
ducted supply/return [91]. To avoid mixing of hot and cold air in hot aisle/cold aisle ar-
rangement, cold aisle containment or hot aisle containment are implemented [40]. The 
latter is found to be the best of the two [90]. 

The CRAC unit maintains temperature, airflow, and humidity in the computer room. 
It typically uses the compression refrigeration cooling. Other than energy consumption, 
the downsides of active cooling are noise and reliability [40]. To address energy consump-
tion, passive cooling has been investigated. 

USA UK Germany France Netherlands Australia Canada Japan Russia Italy
0

100

200

300

400

5000

500

1000

1500

2000

2500

N
um

be
r o

f d
at

a 
ce

te
rs

Figure 12. Distribution of data centers among top countries by numerosity, elaborated from [82].

3.1.2. Room Configuration

The configuration of computer rooms impacts on airflow; parameters can be e.g., room
ceiling or configuration of floor openings in raised-floor data centers [83–85]. The cost for
a proper design of room layout and ventilation system in large data centers is estimated
as 8%–10% of total cost and it is usually compensated by energy saving in two to three
years [47].

3.1.3. Room Temperature

Room temperature and humidity values are recommended, for equipment life. How-
ever, as better equipment is being released, thermal limits are relaxing accordingly, to cut
cooling costs. ASHARE thermal guidelines recommended 20–25 ◦C dry-bulb air temper-
ature in 2004 and 18–27 ◦C in 2008; in 2011, equipment classes were defined, allowing a
range as wide as 5–45 ◦C. Dell presented servers able to withstand 45 ◦C air [86]. Google
raised room temperature to 26.7 ◦C [87].

3.1.4. Airflow Pattern and Active Cooling

Unified rack arrangement is now obsolete, implying mixing of hot and cold air;
face-to-face or back-to-back (hot aisle/cold aisle) arrangement is now common [40,47,88].
Bedekar et al. [89] investigated the optimal computer room air conditioning (CRAC)
location via computational fluid dynamics.

Air distribution in computer rooms is discussed in the literature [40,47,90,91]. Air
distribution can be divided as upward or downward. Floor design can be hard floor or
overhead. Air pattern can be open, local pipeline, or full pipeline [47]. Air can be conveyed
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between CRAC and rack via flooded supply/return, locally ducted supply/return, or fully
ducted supply/return [91]. To avoid mixing of hot and cold air in hot aisle/cold aisle
arrangement, cold aisle containment or hot aisle containment are implemented [40]. The
latter is found to be the best of the two [90].

The CRAC unit maintains temperature, airflow, and humidity in the computer room.
It typically uses the compression refrigeration cooling. Other than energy consumption, the
downsides of active cooling are noise and reliability [40]. To address energy consumption,
passive cooling has been investigated.

3.1.5. Innovative Cooling Systems

Innovative cooling systems [92–94] can be based on natural air, chilled water, liquid
immersion, evaporative cooling, geothermal cooling, passive cooling, pumped two-phase
cooling, as well as with the contribution of smart monitoring and IoT.

3.1.6. Use of Natural Cold Source

The use of a natural cold source can be a direct use or an indirect use. In direct use,
outdoor air is directly introduced; humidity control and filtration are required. In indirect
use, heat exchange equipment is used. The crucial point in using a natural cold source is
the efficiency of the heat exchange between indoor and outdoor air [47].

3.1.7. Free Cooling

In free cooling, natural fluids are used, without mechanical active components [40].
This increases energy efficiency, savings, and reliability. Free cooling exploits airside or
waterside economization. In airside economization, cold air is used, which must be at
least 5 ◦C colder than indoor air. In waterside economization, water is used, from a nearby
water source. In both cases, free cooling can be direct or indirect. In addition, the heat
pipe concept can be combined with free cooling. Free cooling technologies are discussed
by Zhang et al. [95] and by Daraghmeh et al. [96]. Techniques are reported in Table 6.
Reviewed studies present PUE in the range 1.10–1.16 and energy savings 30%-40%; certain
studies declare a coefficient of performance up to 9–12, or energy savings up to 47%–49%.

Table 6. Free cooling techniques.

Airside Waterside Heat Pipe

Direct airside Direct water-cooled Independent
Indirect airside Air-cooled systems Integrated

Multistage evaporative Cooling tower systems Cold storage
Integrated dry cooler-chiller

(water-to-air dry cooler) Pulsating heat pipe

3.1.8. Liquid Cooling

In high power density data centers, technologies other than air cooling are recom-
mended, e.g., liquid cooling. This has a higher heat transfer capacity per unit mass [97],
allowing for a lower temperature difference between equipment and coolant, potentially
allowing for passive cooling and also for heat reuse. Liquid cooling systems are discussed
e.g., by Capozzoli et al. [98].

Liquid cooling systems can be implemented via micro-channels flow and cold-plate
heat exchangers in contact with components. Studies are e.g., by Zimmermann et al. [99,100]
(hot water-cooled electronics and heat reuse; energy performance of Aquasar, the first hot
water-cooled prototype), Coles et al. [101] (direct liquid cooling), and Iyengar et al. [102,103]
(experimental on IBM chiller-less test facility). Commercial systems are proposed e.g., by
Asetek [104].

Another emerging technique is the fully immersed direct liquid cooling [90]. Com-
mercial systems are proposed e.g., by Iceotope [105]. Chi et al. [97] compare an air-cooled
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and a fully immersed liquid-cooled system. Temperatures for liquid-cooling systems are
discussed in the literature [97,99,101,106].

3.2. Improvement of Lighting System

Energy saving in lighting is pursued reducing power losses via efficient equip-
ment (passive measures) and regulating power use via control systems (active mea-
sures) [107]. The motivation of lighting control is to provide lighting when, where, and in
the amount needed.

3.2.1. Lighting Control

Many data centers implement a “lights-out” practice, in which light fixtures are
switched manually across a (large) space. The drawbacks are that the illuminated area is
large compared to the accessed spot, and that lights can then be left on unnecessarily [66].

A proposed approach is the “follow-me” lighting (implemented e.g., in Facebook’s
Oregon and North Carolina data centers) in which lighting is operated as a spotlight
following the technician. Motion detectors are implemented in each light fixture and
connected to a central application, which controls the on/off state and intensity (dimming)
of each fixture [66].

3.2.2. Light Sources

The common, inexpensive technology for data center lighting is fluorescent lighting.
Drawbacks are as follows: Life is shortened by number of starts and by dimming; mainte-
nance is required, which is aggravated by shorter life, multitude of lamps, and disposal;
dimming, as a cause of aging, is seldom implemented. LED lighting has surpassed fluores-
cent lighting in energy efficiency and light quality, and it is recommended on the grounds
of lower electricity use, lower heat release (impacting on HVAC), and dimming capability.
The higher price of LED fixtures is dropping and is compensated by longer life. To further
reduce heat release in the data center, LED fixtures are available, which do not implement
drivers and are powered via a central supply, providing power conversion and control [66].

3.2.3. Other Strategies for Lighting Improvement

Although black is the most common finish, white racking could reduce the number of
luminaires and lighting energy use by as much as 37% each [108].

4. Electronics and Other Strategies
4.1. Low-Power Servers

The server is regarded as the basic unit of power and heat flow path [109]. In low-
power servers, energy usage is reduced via components configuration. Approaches are
illustrated by Rong et al. [47], including features, energy efficiency, and constraint of
selected technologies. Recent advancements are presented by Jin et al. [109], who compare
existing server power consumption models and identify future research trends. It is found
that it is possible to handle a heavier workload without increasing energy use. While
accurate power consumption models of servers result in accurate cooling load calculation
and avoid excessive redundancy, energy- and thermal-aware managements based on
the model results in the best overall energy-savings. Meisner et al. [110] investigated
high-power versus low-power server design.

4.2. The Little Box Challenge

Shrinking magnetics, capacitance, and heat extraction are the main challenges in the
design of high-power density converters [111]. The Little Box Challenge (LBC) was a
competition, sponsored by Google and the IEEE Power Electronics Society [112,113], to
build a prototype of a power inverter with the given specifications (e.g., size approximately
1/10 of that of contemporary state of the art, efficiency above 95%, fitting in a 40 in3

casing) [114]. Improving Google’s data center efficiency was among the scopes [112].
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Main design challenges are discussed by Neumayr et al. [115]. The outcomes ignited
attention from the consumer electronics community and technology advancements. Design
challenges and proposed solutions are examined [111,116] (Table 7).

Table 7. Main features of LBC finalists [111,116].

Team Efficiency
(%)

Power Density
(W/cm3) Dimensions (cm) Topology FOM i

CE+T RED n/a 8.8 6.4 × 4.1 × 8.7 Parallel full-bridge n/a
ETH !verter 95.1 a 8.2 n/a Parallel full-bridge 128
Schneider Electric n/a 6.1 n/a Full-bridge n/a
Texas A&M 98 3.4 13.5 × 13.2 × 3.3 Full bridge 90
Taiwan Tech 96.5 a 5.6 15.2 × 9.4 × 2.5 Full-bridge 117
UIUC 97a 13.2 10.2 × 6.2 × 2.4 FCMLI c 316
Univ. Tennessee 96.9 b 6.2 11.1 × 8.8 × 3.3 Full-bridge 143
Virgina Tech FEEC 98.6 b 3.7 n/a HERIC d 123

Team Ratings
(V × A)

Switching
Frequency (kHz) Switches Power Decoupling

CE+T RED n/a 35–240 GaN Active synchronous buck to buffer
ETH !verter 600 × n/a 200–1000 GaN Active synchronous buck to buffer
Schneider Electric n/a 45 SiC Active ripple filter full bridge to buffer
Texas A&M 650 × 30 100 GaN Active half-bridge like three-phase
Taiwan Tech 650 × 60 25–800 e, 200–680 f GaN Active synchronous buck to buffer
UIUC 150 × 48 120 g, 720 h GaN Active series-stacked buffer
Univ. Tennessee 650 × 30 100 GaN Passive notch filter
Virginia Tech FEEC n/a 60 e, 400 f GaN Active interleaved buck 1st power stage

a Via CEC method; b peak; c seven-level flying capacitor multilevel inverter; d highly efficient and reliable inverter concept; e dc/ac; f dc/dc;
g operated; h obtained; i figure of merit, based on efficiency and power density (approximated data).

Approaches to heat management are discussed by Kim et al. [116] (Table 8). Wide-
bandgap switches cause lower switching losses than silicon switches. They are decisive
in high-power density converters and were widely used in LBC prototypes. It is deduced
that all teams relied on forced air cooling via fans. The winners (Red Electrical Devils by
CE+T) paid much attention to thermal design [117].

Table 8. Thermal management of LBC finalists [116].

Team Thermal Management

CE+T RED Copper enclosure, with gap-pad

ETH !verter Forced air cooling by utilizing high fin-number heat sinks and six
ultra-flat blowers

Schneider Electric Heat sink over power switches with small fan, two air inlets on case
Texas A&M Unspecified cooling system with heat sink
Taiwan Tech Six fans, heat sink connected to aluminum case
UIUC Copper enclosure, 2 mm tall heat sink fins, 6 radial fans
Univ. Tennessee Heat sink over power switches, two small fans, air inlets on top and side
Virginia Tech FEEC Copper enclosure, 10 micro-fans on side wall

4.3. Direct-Current Power Supply

The diffusion of dc grids and power supply systems is envisaged in the evolution of
the power system and ICT [118,119]. Wong et al. [118] simulate a modular dc power supply
unit for servers. Pueschel [119] investigates a 380 Vdc microgrid, serving an office building
and the data center of a German company, as an approach to energy efficiency and safety.

4.4. Semiconductors

Until recently, the best efficiency in UPS power stages (96%) was achieved via insulated-
gate bipolar transistors (IGBT) with three-level switching topologies. Recently, silicon car-
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bide (SiC) transistors were able to exceed 98% efficiency, nearly independent of percentage
load. This is possible via the properties of wide-bandgap (WBG) semiconductors. SiC
devices are proposed by ROHM Semiconductor, Wolfspeed, and ON Semiconductor [120].
As an example, the efficiency of a Mitsubishi SiC-based UPS is reported above 98% for any
load above 30% [63].

4.5. Automation, Monitoring, and Robotization

The integration of robotics in data centers is envisaged for their management and
maintenance. While robots cannot completely replace human operators, they can be used
to automate repetitive tasks, relieving operators and increasing productivity. Robotic
maintenance can enable the implementation of “lights out” data centers and of a vertical
configuration of the space. Challenges and possible benefits are discussed [121]. An
unmanned data center has been launched by AOL [122]. In addition, robotics can be used
for diagnosis of data centers and energy management [123–125]. Emerging applications of
automation, monitoring, and robotization are presented by Levy and Subburaj [126].

4.6. Modular Data Centers

Modular data centers are mobile data centers, designed for rapid deployment, e.g., for
disaster recovery. They feature high energy efficiency and density, and they can be easily
scaled. As an example, HP manufactures the Performance Optimized Datacenter (POD).
Model 240a, nicknamed “EcoPOD”, has a declared PUE of 1.05 to 1.30.

5. Regulatory Environment Governing Data Centers

To support advancements in data center sustainability, a regulatory environment is
important, providing standardized requirements and evaluation methods.

5.1. Metrics
5.1.1. Indicators

Given the increasing impact of data centers on society under many aspects (energy,
security, sustainability), the need for comparing different solutions calls for reliable metrics
and figures of merit. That is the reason behind the introduction of the “multidimensional
approach” by Levy and Raviv [41,127], who formalized more specific previous attempts,
such as [128]. That approach was then specialized on “green” [129,130] and sustainability
metrics [131,132].

Concerning data center efficiency, common metrics are the power usage effectiveness
(PUE) and the carbon usage effectiveness (CUE). PUE is defined as the ratio of total facility
power to ICT power, quantifying extra power required per unit ICT power. The best PUE
is ideally 1 and in practice it ranges from 1.2 (very efficient) to 3 (very inefficient). The data
center infrastructure efficiency (DCIE) is sometimes used, equivalent to the inverse of PUE.
CUE is defined as the ratio of total CO2 emission to ICT power. Alternatively, it can be
defined as the product of CO2 emission factor (CEF) and PUE [133].

Other performance indicators are reported [47,133,134]. Specific indicators are pro-
posed, to quantify effectiveness of on-site renewable generation (on-site energy fraction,
OEF, and on-site energy matching, OEM), energy reuse (energy reuse factor, ERF), and
water usage (water usage effectiveness, WUE) [133]. Concerning data center sustainability,
specific environmental metrics beyond renewable energy and efficiency can be introduced,
such as those related to lifecycle assessment, decommissioning costs, the use of recycled
materials, and the possibility of second-life reuse of some parts [135,136]. Moreover, in-
dicators exist to correlate energy to processed information, e.g., joules per bit [137]. Levy
and Raviv present a discussion on metrics and sub-metrics and propose a new metric
approach, the “data center multidimensional scorecard”, illustrated in Figure 13 [41]. In
addition, Lykou et al. discuss existing metrics and propose a new, sustainability-oriented
methodology [138]. A comprehensive taxonomy on data center metrics is presented by
Reddy et al. [139].



Sustainability 2021, 13, 6114 17 of 25
Sustainability 2021, 13, x FOR PEER REVIEW 16 of 24 
 

 
Figure 13. Illustration of the data center multidimensional scorecard metric, elaborated from [41]. 

5.1.2. Trends 
A global survey by the Uptime Institute reported average annual PUE to have de-

creased 2007–2013 and then stalled (Figure 14). Improvements are due to major steps in 
energy efficiency (hot/cold air separation, increased thermal limits, enhanced control, free 
cooling). Speculations on the recent stall include exceptional outdoor temperatures, shift 
of workloads to public cloud services—resulting in data centers operating inefficiently—
or diffusion of the high power density data center. 

 
Figure 14. Evolution of industry-average PUE, elaborated from [140]. 

5.2. Regulations 
The main requirements of data centers [141] are on: Temperature and humidity con-

trol—see ASHRAE specifications [142], static electricity monitoring; fire suppression; 
physical security; continuity and quality of supply, availability, physical protection, infor-
mation security (protection of personal and financial data), etc. The regulatory framework 
concerning data centers is constantly evolving; the main institutions that have contributed 
are listed by Levy and Raviv [41]. An overview on the matter is reported in Table 9. 

5.3. Certifications and Initiatives 
Data centers fall within certifications or initiatives on sustainable ICT or buildings. 
In the United States, possible certifications for green data centers are the Leadership 

in Energy and Environmental Design (LEED) by the U.S. Green Building Council [143] 
and the U.S. National Data Center Energy Efficiency Information Program within the EN-
ERGY STAR program [144]. Other than advanced cooling and reduced energy use, fea-
tures of an LEED compliant data center are a clean backup system, the use of renewable 
energy, green construction, and intelligent design [145]. 

A number of companies and other stakeholders of data center efficiency are part of 
The Green Grid consortium [146]. The Green500 list biannually ranks supercomputers, in 
the TOP500 list, for energy efficiency—the NVIDIA DGX SuperPOD (2.356 Pflops) ranked 
first in November 2020 with 26.195 Gflops/W [147]. Other pertaining initiatives in the 
U.S.A. are the Energy Efficiency Improvement Act of 2014 (H.R. 2126), the Data Center 
Optimization Initiative, and the Federal Data Center Consolidation Initiative [41]. 

2.5

1.98
1.65 1.58 1.67

1.0

2.0

3.0

2006 2008 2010 2012 2014 2016 2018 2020

PU
E

Figure 13. Illustration of the data center multidimensional scorecard metric, elaborated from [41].

5.1.2. Trends

A global survey by the Uptime Institute reported average annual PUE to have de-
creased 2007–2013 and then stalled (Figure 14). Improvements are due to major steps in
energy efficiency (hot/cold air separation, increased thermal limits, enhanced control, free
cooling). Speculations on the recent stall include exceptional outdoor temperatures, shift of
workloads to public cloud services—resulting in data centers operating inefficiently—or
diffusion of the high power density data center.
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5.2. Regulations

The main requirements of data centers [141] are on: Temperature and humidity
control—see ASHRAE specifications [142], static electricity monitoring; fire suppression;
physical security; continuity and quality of supply, availability, physical protection, infor-
mation security (protection of personal and financial data), etc. The regulatory framework
concerning data centers is constantly evolving; the main institutions that have contributed
are listed by Levy and Raviv [41]. An overview on the matter is reported in Table 9.

Table 9. Main best practices, guidelines, and standards on data centers.

Body Document Scope Level

AICPA SAS 70 Assurance controls U.S.A.
AICPA SSAE 16 Assurance controls U.S.A.
AMS-IX AMS-IX Data center business continuity standard International

ANSI/BICSI ANSI/BICSI 002 Data center design and implementation U.S.A.
ANSI/ASHRAE ANSI/ASHRAE 90.4 Data center energy standard U.S.A.

ASHRAE TC 9.9 guidelines Data center equipment—thermohygrometric limits U.S.A.
BICSI BICSI-009 Data center operations and maintenance best practices U.S.A.

CENELEC EN 50541-1 Power supply—distribution transformers Europe
CENELEC EN 50160 Power supply—voltage of distribution system Europe
CENELEC EN 50173 Information technology—cabling Europe
CENELEC EN 50174 Information technology—cabling Europe
CENELEC EN 50600 Information technology—data center certification Europe

IAASB ISAE 3402 Assurance controls International
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Table 9. Cont.

Body Document Scope Level

IEC IEC 62040 Power supply—UPS International
IEC IEC 60076 Power supply—power transformers International
IEC IEC 60831-1 and 2 Power supply—capacitors International
IEC IEC 61439 Power supply—low voltage switchgear International
ISO ISO 14000 Environmental management system International
ISO ISO 27000 Information security International
ISO ISO 30134 Data centers—key performance indicators International
ISO ISO 45001 Occupational health and safety management systems International
ISO ISO 9001 Quality management system International

ISO/IEC ISO/IEC 11801 Information technology—cabling International
ISO/IEC ISO/IEC 27001 Information technology—information security International
ISO/IEC ISO/IEC 22237 Data centers—facilities and infrastructures International
PCI SSC PCI DSS Payment card industry data security standard International

Singapore Standard SS 564 Green data centers Singapore
TIA ANSI/TIA-568 Information technology—cabling U.S.A.
TIA ANSI/TIA-942-B Information technology—data center certification U.S.A.

Uptime Institute Tier classification Information technology—data center certification International

5.3. Certifications and Initiatives

Data centers fall within certifications or initiatives on sustainable ICT or buildings.
In the United States, possible certifications for green data centers are the Leadership

in Energy and Environmental Design (LEED) by the U.S. Green Building Council [143] and
the U.S. National Data Center Energy Efficiency Information Program within the ENERGY
STAR program [144]. Other than advanced cooling and reduced energy use, features of an
LEED compliant data center are a clean backup system, the use of renewable energy, green
construction, and intelligent design [145].

A number of companies and other stakeholders of data center efficiency are part of
The Green Grid consortium [146]. The Green500 list biannually ranks supercomputers, in
the TOP500 list, for energy efficiency—the NVIDIA DGX SuperPOD (2.356 Pflops) ranked
first in November 2020 with 26.195 Gflops/W [147]. Other pertaining initiatives in the
U.S.A. are the Energy Efficiency Improvement Act of 2014 (H.R. 2126), the Data Center
Optimization Initiative, and the Federal Data Center Consolidation Initiative [41].

6. Net Zero Energy Data Center

The concept of Net Zero Energy Data Center (NZEDC) can be taken to recap the main
strategies for data center sustainability. NZEDC are defined, as per Deliverable 4.5 of project
RenewIT [148], as data centers that «consume net zero non-renewable primary energy
from power grid and district energy networks during their lifetime, while generating as
much energy (both electric and thermal) as they use during a year». A road map towards
NZEDC is presented in Table 10. Many technical concepts are investigated in the mentioned
deliverable, as presented in Figure 15, and the results on energy flows are discussed.

Table 10. Road map to net zero energy data center, elaborated from [148].

I—Load Reduction II—Renewable Energy Integration

1. Efficient building envelope
2. Efficient ICT equipment
3. Efficient power distribution
4. Efficient cooling distribution
5. Reuse of ICT waste heat

6. Renewable-based cooling
7. Renewable-based power supply
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7. Conclusions

Energy use for ICT is ever more increasing and so are concerns on the sustainabil-
ity of data centers. In this paper, we review approaches to reduce energy consumption
and resource depletion caused by the operation of data centers, highlighting promising
strategies and future research directions. The main actions are on software (HPC) and
hardware (energy conservation of computer rooms—cooling and lighting, energy conserva-
tion in electronic equipment, integration of renewable energy). Metrics and the regulatory
environment are a useful framework to support actions. Several indicators have been
introduced to assess the state of the art and future targets of single aspects of efficiency
(energy efficiency, carbon impact, use of resources). As a general concept, the definition of
NZEDC was proposed in the literature and it can be regarded as a useful benchmark. To
reduce cooling load, several concepts have been proposed, taking advantage of favorable
environmental conditions (location), natural cold sources, and passive cooling. Further-
more, electronics are evolving to reduce IT load, via energy-aware IT management and
new architectures. Additionally, a balance must be achieved between energy conservation
and performances (continuity and quality). The extension of efficiency initiatives to data
centers and the investigation of new technologies are desirable. As our life ever more relies
on data and thus on the data center industry, in light of the ongoing digital evolution and
rising environmental concerns, the sustainability of data centers must be pursued.
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