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Abstract: Monitoring the State of Charge (SoC) in battery cells is necessary to avoid damage and to
extend battery life. Support Vector Machine (SVM) algorithms and Machine Learning techniques
in general can provide real-time SoC estimation without the need to design a cell model. In this
work, an SVM was trained by applying an Ant Colony Optimization method. The obtained trained
model was 10-fold cross-validated and then designed in Hardware Description Language to be run
on FPGA devices, enabling the design of low-cost and compact hardware. Thanks to the choice of a
linear SVM kernel, the implemented architecture resulted in low resource usage (about 1.4% of Xilinx
Artix7 XC7A100TFPGAG324C FPGA), allowing multiple instances of the SVM SoC estimator model
to monitor multiple battery cells or modules, if needed. The ability of the model to maintain its good
performance was further verified when applied to a dataset acquired from different driving cycles to
the cycle used in the training phase, achieving a Root Mean Square Error of about 1.4%.

Keywords: state-of-charge (SoC) estimation; battery management; FPGA; VHDL; ant colony
optimization (ACO)

1. Introduction

One of the most critical aspects of electric vehicles and modern automotive frame-
works is battery management. In recent years, researchers’ interest has been focused on
new techniques that allow increases in battery performance and extend their lifetime [1,2].

Currently, battery cells are commonly based on Lithium-Ion and Lithium-Polymer
chemistries [3]. These technologies are well established and allow both high energy and
high power density. Hence, improving their performance and developing new chemical
compositions is not a pressing task [3]. The study of new Battery Management Systems
(BMS) [3–6] could lead to an improvement in the battery lifecycle through the monitoring
of suitable battery cell indicators. Among these, the State of Charge (SoC) and the State of
Health (SoH) are particularly important [7]. The estimation of SoC is of utmost importance
in BMSs to make decisions about their management, and it can be an input for other
forms of processing, such as SoH estimation or cell balancing [8]. It is worth noting that
an advanced BMS should be able to monitor each cell of a battery pack to obtain an
accurate estimation of every single SoC and SoH [9]. Since SoC and SoH cannot be directly
measured and change continuously during the battery’s life [8], suitable models have to be
established, preferably operating in real-time.

The SoC can usually be evaluated according to two main approaches: model-based
and data-driven [8,10,11].

Energies 2021, 14, 7064. https://doi.org/10.3390/en14217064 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8067-9073
https://orcid.org/0000-0002-3035-7903
https://orcid.org/0000-0002-9872-1695
https://doi.org/10.3390/en14217064
https://doi.org/10.3390/en14217064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14217064
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14217064?type=check_update&version=1


Energies 2021, 14, 7064 2 of 12

Among model-based approaches, physical electrochemical models have been pre-
sented in research studies, but they are difficult to implement due to the huge amount of
unspecified variables that need to be defined [11]. Moreover, a deep knowledge of the
processes behind battery cell operation and its chemistry is required in order to construct a
model that best fits the cell. The most common model-based approach, which guarantees
higher accuracy and lower complexity, is the Equivalent Circuit Model (ECM) [12,13] where
the battery cell is described as an electrical circuit with resistors and capacitors. In some
implementations, SoC evaluation combines ECM and different methods, such as Kalman
Filters (KF) or Proportional-Integral (PI) Observer [14], to improve accuracy despite the
increase in computational demand [11]. Different implementations were presented in re-
search based on microcontroller systems [15–17], but complex models and algorithms also
led to solutions exploiting the intrinsic parallelism of FPGA devices [18–21]. For instance,
in [21], the model-based design of a Mixed Algorithm (MA) combining ECM and Coulomb
Counting (CC) for SoC estimation was proposed. The Simulink model was automatically
converted into VHDL code through the HDL Coder Tool. The synthesized code resulted an
area occupation of around 23%. Although the SoC was successfully evaluated with a Root
Mean Square Error (RMSE) of about 1.5%, the result was strongly dependent on a correct
battery parameters assessment, and it was subject to change, depending on the selected
estimation procedure (e.g., Hybrid Pulse Power Characterization (HPPC) [22] and KF [23]).
Typically, methods based on ECM and filtering allow maximum errors even below 1% [11],
but obtaining suitable cell parameters for a model is a time-consuming process [8] that
requires several experiments (e.g., to map the relationship of one parameter to another [8]).
Moreover, these algorithms can require significant computational power [11]. In general,
model-based techniques imply the identification of all the significant model parameters,
and these approaches are difficult to implement in all types of batteries [8].

Instead, data-driven approaches mainly rely on Machine Learning (ML) algorithms
working on empirical observations. Generated ML models provide relationships between
on-field measurements of battery features (e.g., voltage, current, and temperature) and
their SoC. In [24], different methods are presented with their specific advantages and
disadvantages: adaptive methods, to which ML algorithms belong, generally provide
higher accuracy but also require higher computational power for complex calculation [24].
Moreover, data-driven algorithms can prevent the use of battery models and added filters
exploited in the model-based approaches, relying on self-learning parameters [8,24]. Fur-
thermore, data-driven approaches allow greater flexibility: in fact, it is possible to train the
algorithm with measurements from different kinds of batteries (e.g., different producers,
models, and chemistries), and then apply the trained model to different cases (i.e., those
considered in the training phase). On the other hand, data-driven algorithms usually re-
quire a huge amount of data. Some battery-related datasets have been provided in relevant
studies [25–27], and they can help to overcome this drawback. Different ML algorithms
have been employed for SoC estimation [28], such as Neural Networks (NN) [29–32] and
Deep Learning (DL) [33,34]. Support Vector Machines (SVMs) have also been explored
in the Support Vector Regression (SVR) version [35,36]. These algorithms have typically
been tested on PC-based platforms [28,30,31,33,34,37]. In some works, implementations on
microcontrollers are presented [32,35]. In [35], an RSME of about 2.5% was achieved. In
general, in microcontroller implementations, a fixed data size can be exploited, limiting the
model’s flexibility. FPGA platforms offer some advantages, since performing real-time esti-
mations through ML algorithms requires a large amount of computational power, which an
FPGA can easily provide [38,39]. Moreover, the hardware flexibility and reconfigurability
provided by FPGAs allow the implementation of multiple instances of the same algorithm
in parallel. In fact, in the case of a battery pack, each cell module is usually monitored by a
slave board belonging to a master BMS board [40]. Exploiting FPGA, slave boards could be
implemented in the same FPGA platform equipped with multiple monitoring algorithms
acting in parallel on each cell, reducing the hardware employed.
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In the relevant research studies, there are examples of SVR [41,42] implementations on
FPGA in many applications, but, to the best of our knowledge, not in the SoC estimation
field. In [43], an NN model for SoC estimation was implemented on FPGA. However,
the model resulted in high area occupancy (i.e., 40% of block arithmetic/DSP48E1 were
exploited). Moreover, the need for DPS blocks limits the possibility of exporting the model
on simple and low-cost FPGAs.

The main goal of our work is to implement a data-driven approach for SoC estimation
on an FPGA platform, achieving comparable accuracy to PC-based implementations and
improving performance in comparison with other ECM-embedded solutions, limiting
the area occupation to allow, in the future, the parallelization of multiple instances of
the developed algorithm on a single FPGA. Therefore, an SVR algorithm was selected
and optimized through an Ant Colony Optimization (ACO) approach [44]. Other studies
applied ACO optimization to SVR [45–47], but the SoC assessment field was not considered.
The SVR obtained model was implemented on a Xilinx Artix 7 [48] XC7A100T-1CSG324C
FPGA. Resources utilization was analyzed and timing simulations are reported. An RMSE
of the proposed solution was evaluated on the implemented circuit through datasets
including measured data.

The paper is organized as follows. In Section 2, the designed architecture is introduced,
while in Section 3 the simulation results are discussed. Then, in Section 4, conclusions
are drawn.

2. Materials and Methods

The SVMs were originally developed by V. Vapnik in 1995 for binary classification [49].
However, they can also be applied to regression problems (SVR) [50,51]. Given a set of
N data samples xi ∈ Rn, and their corresponding known outputs yi ∈ R, it is possible to
construct a regression function by solving the SVR quadratic programming problem [51].
The resulting SVR estimation function for a new input vector x is

f (x) = ∑NSV
i=1 (αi − αi

∗)K(x, xi) + b (1)

where αi and αi* are the Lagrange multipliers. The NSV samples associated with nonzero
Lagrange multipliers are called Support Vectors (SV). K(x,xi) is a kernel function that
maps the input space Rn to a so-called high dimensional feature space Rnk, where linear
regression is performed, and b is a bias term.

Some possible choices [52] for kernel functions in SoC estimation are:

• Linear: K(x,xi) = x · xi;
• Polynomial: K(x,xi) = ((x · xi) + p)d;
• Gaussian Radial Basis Function (RBF): K(x,xi) = exp(−‖x − xi‖2/2σ2).

In this study, the MATLAB design suite was used for the training of the SVR model.
A large collection of data acquired on a Panasonic 18650 Li-Ion battery cell, which is
publicly available [25], was used. In [25], the current profiles and the related measurements
were collected from real batteries applying some of the most popular drive cycles. In
this study, the “Neural Network (NN) driving cycle” was used because it was specifically
designed to be used with ML training processes [25].

The design of the SVR model was performed using the MATLAB fitrsvm function [53]
and the set of training data mentioned above. Different features and kernels were tested
during the training process to select the best compromise between high accuracy (i.e., low
RMSE) and low implementation complexity. To test the possibility of also applying the
trained model to datasets not included in the training, the different kernel solutions were
validated on a dataset based on the US06 [54], one of the most aggressive highway driving
cycles [55].
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Therefore, a linear kernel was selected. The trained SVR linear kernel results in a
model that can be used for successive inferences, starting from new input vectors, using
the following estimation function:

f (x) = αT ∗
(

x
KS
∗ SVT

KS

)T

+ b (2)

where KS is the Kernel Scale, a positive scalar by which the software divides all input
data before applying kernel computation, α is the vector of stored values representing the
differences between the two Lagrange multipliers for each SV, b is the scalar parameter
in (1), and T is the transpose operator.

Next, to optimize the SVM model and achieve higher accuracy in SoC estimation,
an Ant Colony Optimization (ACO) iterative algorithm was applied to tune the model
parameters. This algorithm takes inspiration from ant foraging behavior [44]. When an
ant finds food, i.e., a set of parameters of SVM, it deposits a given quantity of pheromones
on the path, depending on the quality of food source, i.e., the quality of the model with
the associated parameters (e.g., lower RMSE, higher quality). Other ants in the colony
then move towards the point with the most quantity of pheromones, searching for a set
of parameters near to the best one found up to that point. The process ends when a
selected number of iterations is reached or the changes to the parameters are smaller than
a given threshold.

The kernel scale KS, the approximation accuracy ε, and the box constraint C were
selected for inclusion in the optimization process of the SVR model, since they are the same
parameters considered by the built-in MATLAB optimization algorithms [53]. This offers
a benchmark with which to evaluate the effectiveness of ACO. A detailed mathematical
explanation of ε and C is beyond the scope of this paper, and it can be found in [50].

Once the ACO-optimized model was trained, a 10-fold cross validation was performed
to evaluate the accuracy in terms of the maximum achieved error between the estimated
and the expected SoC. For this purpose, the NN driving-cycle-based dataset was used for
both the training and the test phases.

The model Equation (2) can be greatly simplified, considering the parameter β com-
puted as:

β = αT ∗ SV
KS

(3)

Furthermore, it is possible to compute a βscaled parameter from β as

βscaled =
β

KS
(4)

Applying β and βscaled, it is possible to transform Equation (2) in

f (x) = 〈βscaled, x〉+ b (5)

Hence, the necessary hardware architecture to be implemented on an FPGA device
to elaborate new input samples and perform a new SoC estimation results in a scalar
product and sum of the b parameter, avoiding divider use, which is highly complex when
implemented in hardware on an FPGA.

The hardware-implemented, ACO-optimized linear SVM model was finally evaluated
against the US06-based dataset.

In Figure 1, an overview of the architecture of the proposed system is shown. For
testing purposes, along with the SVR estimation model, a UART interface was implemented
on the FPGA board. This communication port was conceived to feed the system with an
input vector x at each time step. Once the proposed model has estimated the current SoC
sample, the result is sent back to the PC to evaluate the corresponding error.
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Figure 1. System architecture overview.

In Table 1, the datasets exploited at each training/test step are summarized.

Table 1. Summary of datasets used in each evaluation step, for training and test.

Phase Train Set Test Set

Evaluation of different Kernel functions NN drive cycle US06 drive cycle
Comparison between different MATLAB

optimization strategies with ACO NN drive cycle US06 drive cycle

ACO-optimized Linear SVM cross-fold
validation evaluation NN drive cycle NN drive cycle

FPGA-implemented ACO-optimized Linear
SVM evaluation Not performed US06 drive cycle

3. Results and Discussion

The SVR model was trained by using the fitrsvm function and the “NN drive cycle”
train dataset [25]. Simulations on MATLAB resulted in a better RMSE when the following
four features were adopted:

• Current flowing through the cell (I)
• Cell voltage (V)
• Cell temperature (T)
• Estimation of SoC at the previous time step (prevSOC) [56]

The four selected features were used to evaluate the best kernel candidate for the
system. Linear, Quadratic, Cubic, and Radial Basis Function (RBF) kernels were tested.
For test purposes, the US06 drive cycle data [54] were exploited. The calculated RMSE,
reported in Table 2, demonstrates that the best results were obtained with a linear kernel,
which is also the kernel with the expected lower resource demand [57,58].

Table 2. RMSE results for four main types of SVM kernels on the “NN drive cycle” training dataset
tested on the US06 drive cycle data.

Kernel RMSE (%)

Linear 8.7
Quadratic 16.7

Cubic 35.9
Sigmoid 30.2

RBF 35.5

Once the linear kernel model was selected, the ACO algorithm was applied for the
model optimization. In this study, the ant colony population M was set to 30 and each
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ant performed 30 moves (i.e., iterations) during the search process, starting from random
positions. This choice resulted in the best compromise between model accuracy and
processing time [59]. Each ant performed the fitrsvm function for the specified number of
iterations, leading to a model with a specific combination of the KS, ε, and C parameters
described above. The selected model was the one with the lowest RMSE. To assess the
performance of the developed algorithm, it was compared with three built-in MATLAB
optimization algorithms for SVR: “Bayesian”, “Grid Search” and “Random Search”. It is
worth noting that the optimization result can change over different trials [53]. Therefore,
each algorithm was run fifteen times and the mean RMSE value was evaluated on the US06
dataset. Results are shown in Table 3.

Table 3. RMSE and MAE results for a set of 15 simulations of different optimization algorithms.

Algorithm RMSE (%) MAE (%)

Min Mean Max Min Mean Max

Bayesian 1.9 9.6 25.3 1.6 8.4 21.8
Grid Search 1.6 7.2 18.8 1.3 6.1 15.0

Random Search 1.4 6.8 53.6 1.2 5.9 46.5
ACO 1.4 3.9 7.2 1.2 3.2 5.8

The lowest RMSE was obtained with “Random Search” and ACO. Nevertheless, the
mean RMSE for the first three algorithms was found to be worse than with the ACO. The
same considerations can be applied to the MAE.

Next, the best ACO-optimized SVR model architecture was 10-fold cross-validated
and the results were compared with a recent PC-based implementation of an SVM algo-
rithm with Particle Swarm Optimization (PSO) [36]. K-fold cross-validation is a common
approach to evaluating the effectiveness of a trained ML model in other studies [36]. In [36],
a maximum error of 2.5% was obtained. The proposed approach offers a good performance,
with a maximum error of 1.2%.

Hence, the trained model was translated into VHDL code to be programmed into a
Xilinx Artix 7 [48] XC7A100T-1CSG324C FPGA. Equation (5) was coded in VHDL using a
DSP-free architecture. This allows the evaluation of system feasibility on different types of
FPGA boards, even on those that are not equipped with DSP slices, allowing the user to also
choose cheaper boards if the resource usage is suitable. All the operations are performed
with fixed-point precision, which can lead to a simpler hardware architecture. Signed 32-bit
word length data with 23 fractional bits were chosen. This format can represent data in a
range from −256 to 255.999 and a precision of 1.2 × 10−7: these values are compliant with
the most common battery cells and modules [60,61]. It is worth noting that this data format
is suitable for modules with up to about 60 cells in series and it can also correctly represent
SVM model parameters.

To validate the implemented module, the US06 test dataset was used. Using, in
the validation phase, a dataset different from that used in the training phase also allows
evaluation of the generalization capability of the approach.

A first behavioral simulation was performed in Xilinx Vivado Design Suite to evaluate
the fixed-point quantization error. SoC estimation data are exported into MATLAB and
compared with the US06 SoC data, computing an Absolute Error (AE) as

AE = abs(SOCUS06 − SOCestimated) (6)

The AE of the HDL-coded SVM was compared with that achieved with a MATLAB
SVM simulation performed in double precision. The results are shown in Figure 2, where a
maximum error of 3.1% can be inferred. From the figure, MATLAB and Vivado (behavioral
simulation) SoC estimations cannot be easily distinguished from each other. For this reason,
an enlargement is reported: an error of approximately 10−5 between the two approaches
was observed.
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Figure 2. SoC estimation AE in MATLAB floating point-based simulations and Vivado fixed-point-based behavioral simulations.

Next, area occupation and timing performance were evaluated through post-
implementation simulations. In Table 4, the occupied area is reported.

Table 4. Area occupation comparison with other studies.

FPGA Slice LUTs Utilization (%) Slice Registers (%) DSP Slices (%)

Proposed Artix 7 880/63,400
(1.39%)

300/126,800
(0.24%)

0/240
(0%)

[20] Artix 7 14,427/63,400
(22.76%)

196/126,800
(0.15%)

8/240
(3.33%)

[41] Virtex 7 1123/303,600
(1%)

751/607,200
(1%)

1125/2800
(40%)

Compared with other FPGA implementations of NN-based SOC estimations [43],
very limited resources are required. Hence, the presented approach allows the placing
of multiple instances of the proposed algorithm on the same FPGA. This can be useful
when several cells have to be monitored in parallel (e.g., in a battery pack case). For
example, the aforementioned case of 60 cells in series could be easily managed by this
solution. By comparison, the ECM model presented in [21] occupied 23% of the whole
FPGA, preventing more than four instances from being programmed on the same platform.
Moreover, unlike in [43], no DSP slices were used, allowing the use of smaller and low-cost
devices as well.

Considering a clock frequency of 100 MHz, the post-implementation timing perfor-
mance resulted in Worst Negative Slack = 0.188 ns, Worst Hold Slack = 0.054 ns, and Worst
Pulse Width Slack = 4.5 ns.

Finally, the whole system was tested after programming the FPGA device. Thanks
to the VHDL-coded UART module, the FPGA communicates with the MATLAB suite
and receives the US06 drive cycle test data. Next, the FPGA processes the input data and
estimates the SoC, sending back the results to MATLAB. Finally, the on-board processed
output is compared with the expected one, as shown in Figure 3.
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Figure 3. Comparison of expected SoC with SoC processed data on the FPGA board.

It can be seen that FPGA computations (red line) can track changes in the expected
battery SoC (blue line), achieving an RMSE of 1.4% and an MAE of 1.2%. Moreover, a
determination coefficient [37] R2 of 99.7% and a maximum error of 3.1% are computed.
Compared to the behavioral simulation, the estimation in the final implementation did not
worsen; hence, these SoC evaluations completely overlapped.

The accuracy estimation of the proposed ACO-optimized SVR model was compared
with the cell model-based approach [21] in Table 5. In this case, two different imple-
mentations were considered. In the first implementation, a constant parameters solution
was analyzed, i.e., mean values of extracted ECM parameters were assumed. Next, a
variable parameters approach was used, i.e., each ECM parameter value was stored in a
Look-Up-Table indexed by the current estimated SoC [21].

Table 5. Comparison of performance in SoC estimation through SVR approach, model-based ap-
proach [21] with constant parameters, and the same approach [21] with SoC-varying parameters.

Approach RMSE (%) Max Error (%) MAE (%)

ACO-SVR 1.4 3.1 1.2
[21] const. par. 1.5 4.3 1.1
[21] var. par. 2.5 5.4 2.2

The ACO-SVR model outperforms both cell model-based approaches in terms of
estimation accuracy. Even if the MAE is slightly better, when using constant parameters [21],
the SVR results in better RMSE and a lower maximum percentage error on each estimation.
This may be due to the loss of accuracy in parameter estimation when the battery cell is
almost fully charged or discharged. Thus, the data-driven approach overcomes the offline
parameter estimation problem, even providing a good SoC assessment.

Furthermore, the FPGA’s circuit performance was compared with other studies. No-
tably, using a test set that is different from the training set can produce a general worsening
in the error metrics. Nevertheless, the performances were good, as shown in Table 6.
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Table 6. Comparison of error between estimated and expected SoC (proposed model implemented
on FPGA vs. other studies).

Approach Kernel RMSE
(%)

Max Error
(%)

MAE
(%)

R2

(%)

ACO-SVR Linear 1.4 3.1 1.2 99
[35] Quadratic 2.5 13 - -
[37] RBF - - - 97
[36] RBF - 1.5 1.2 -

In particular, since, to the best of our knowledge no FPGA implementations of SVR
applied to SoC are reported in other studies, a microcontroller-based implementation [35]
was considered. In our model, the performance greatly improved. In addition, with the
proposed implementation, it is possible to exploit the advantages due to the intrinsic paral-
lelism of the FPGA, as discussed previously. In [37], a Labview-based SVM implementation
was reported and validated with new data not used for the training. In [36], the same MAE
was achieved with a lower maximum error, in a PC-based implementation. However, the
ACO-SVR results were obtained on different datasets, based on measured battery data,
and by performing an estimation using FPGA hardware. This indicates the feasibility
of the approach in real environments, where PCs might not be available. Moreover, the
results were achieved with a lower-complexity kernel, which allows an easier hardware
implementation and lower resource utilization.

4. Conclusions

In this paper, the use of SVM as a regression method to estimate a battery cell SoC is
presented. A lo- complexity linear kernel combined with an ACO algorithm allowed the
training of a simple but accurate SVR model. This proposed solution allows the estimation
of SoC without the need to model the particular cell, making it a more general approach,
suitable for different battery cells and requiring a shorter development time. The design
of the SVR model requires a huge amount of measured data, both for the model training
and the test phase. In this study, we referred to some large real battery measurement
datasets that have been provided in other studies [25–27]. The obtained SVR model was
implemented on a Xilinx Artix 7 FPGA, demonstrating low area occupation with respect
to other solutions reported in relevant published research. This creates the possibility of
implementing multiple instances of the same algorithm working in parallel to manage
multiple cells, for example, in a battery pack framework.

To train the ACO-optimized SVR model, a large dataset [25] for Panasonic 18650 Li-
Ion battery cells was used. The developed model was coded in Hardware Description
Language and then programmed into the selected FPGA device by avoiding the use of
DSP slices, to improve portability on different FPGAs. The fixed-point architecture was
designed on a signed 32-bit word length data size with 23 fractional bits. The designed
SVR model was then 10-fold cross-validated and also tested over a US06 driving cycle
dataset [25] to prove its generalization capability when working on real environment data.

The proposed solution was compared with a model-based circuit also implemented
on the same FPGA [21]. The error metrics and area occupation of our data-driven approach
outperformed the ECM solution. Furthermore, our solution was compared with those
of other studies, demonstrating similar performance to PC-based solutions. Moreover,
considering embedded approaches, our work was compared with a microcontroller-based
implementation, resulting in an improved overall system performance.

It can be concluded that the proposed approach combines acceptable errors with
a good performance in terms of area occupation. In the future, even though Li-Ion is
one of the most widely used and promising technologies, the same algorithm could be
easily applied in battery cells based on different chemistries (e.g., LiCoO2-, LiFePO4- or
Nickel-based batteries), since none of the required inputs is technology-dependent. Finally,
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the management of many battery cells in parallel, exploiting the lower area occupation,
flexibility, and intrinsic parallelism of the FPGA device, should be investigated.
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