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The pre-pro-hormone brain natriuretic peptide (BNP) is synthe-
sized in the myocytes and is the precursor of two forms of poly-
peptides: the inactive N-terminal pro-B-type natriuretic peptide 
(NT-proBNP) and the bioactive peptide BNP.

The changes in NT-proBNP observed with strenuous endur-
ance exercise (e.g., ultramarathon events) are directly linked to 
an increased cardiac workload. Further mechanisms, such as 
vasodilatation, diuresis, sodium excretion, inhibition of renin 
secretion, and suppression of aldosterone synthesis, are also 
associated with NT-proBNP release. It has been recently dem-
onstrated that there is a substantial increase in NT-proBNP lev-
els up to 24 hours after a 100 km ultramarathon event.1 Other 
remarkable responses to such events can be attributed to signifi-
cant loss in body weight (−2.6% ± 1.6% immediately following 
the race and −1.1% ± 2.0% 24 hours after the race) and subse-
quent renin-angiotensin-aldosterone system (RAAS) activation, 
with a significant increase in serum renin and aldosterone con-
centrations. These changes lead to the identification of a linkage 
between the cardiac and renal systems, which actively cooperate 
during exercise in order to maintain hemodynamic stability and 
perfect perfusion in essential organs. The importance of this link-
age has been particularly highlighted in consideration of the high 
cardiovascular risk in patients with minor renal dysfunction.2 
Indeed, patients with diabetes have been initially identified for 
having impairment in heart-kidney interaction.3 However, stren-
uous endurance exercise could also represent a risk for health, 
due to high physiological demands, and induce electrolyte imbal-
ance, rhabdomyolysis, acute kidney injury, and cardiac arrest.

In this regard, an essential strategy to counteract the acute 
responses to strenuous endurance exercise is rehydration, as it 
can decrease the level of NT-proBNP during the recovery phase. 
Sufficient volume of fluid, with addition of electrolytes (in 

particular sodium), carbohydrate, and milk protein, should be 
ingested after exercise to efficiently promote recovery and avoid 
negative effects on subsequent exercises.4

Therefore, the comprehension of changes in NT-proBNP is 
of great value for the understanding of the interaction between 
the cardiac and renal systems and the related alterations in 
hydration status, neurohormonal and inflammatory pathways, 
activation of the sympathetic nervous system and RAAS fol-
lowing strenuous endurance exercise. However, further sys-
temic interactions exist in the human body via BNP action. In 
fact, the heart-gut-brain axis can regulate appetite through the 
anorexigenic properties of BNP. It has been found that BNP 
can reduce circulating ghrelin concentration, especially acyl 
ghrelin, hence decreasing hunger and increasing the feeling of 
satiety in healthy people.5 Several members play an important 
role on those mechanisms. BNP, with its hormonal properties, 
can induce natriuresis, diuresis, and vasodilatation.6 Thus, a 
relation between heart dysfunction and appetite regulation 
may exist on the so called “heart-gut axis.” Moreover, the brain 
contains numerous BNP receptors, hence the potential direct 
effects of BNP on appetite regulating centers can be expected. 
Ghrelin is a gut-derived hormone involved in the modulation 
of appetite6–8 in the short-term, on energy balance9–11 in the 
long-term, and in the stimulation of left ventricular function, 
vasodilatation, and anti-inflammatory effects. These mecha-
nisms are considered relevant in patients with heart failure.12 
Conversely, no evidence is available to fully explain the mecha-
nisms of the heart-gut-brain axis and the central role played 
by the BNP during strenuous endurance exercise. Therefore, 
the understanding of all the properties of the BNP still requires 
further investigations.
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