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Abstract
We investigate the existence of a holomorphic and isometric immersion in the complex pro-

jective space for the complete Ricci–flat Kähler metrics constructed by M. B. Stenzel in [15]
on the cotangent bundle of a compact, rank one, globally symmetric space.

1. Introduction

1. Introduction
The problem of classifying Ricci–flat projectively induced metrics is an interesting and

long lasting problem in Kähler geometry. A Kähler metric g on a complex manifold M
is projectively induced if (M, g) admits a holomorphic and isometric immersion into the
complex projective space CPN , of dimension N ≤ +∞, endowed with its Fubini–Study
metric gFS, i.e. if there exists a holomorphic map f : M → CPN such that f ∗gFS = g.

Observe that a Ricci-flat projectively induced metric is forced to be not compact, due
to a result of D. Hulin [6], stating that a projectively induced Kähler–Einstein metric on a
compact manifold must have positive scalar curvature. On the other hand, the flat metric
on Cn is well-known to be projectively induced in CP∞ (see e.g. [2, 11]). Since Ricci flat
metrics arise as solutions of a Monge-Ampere equation, one should expect that the flat case
is the only“ algebraic” (namely projectively induced) one. This conjecture was firstly
stated in [9] by A. Loi, F. Salis and F. Zuddas, where they verify it for metrics admitting a
radial Kähler potential. The first example of Ricci–flat (non-flat) Kähler metric constructed
on a non-compact manifold is the Taub–NUT metric described by C. LeBrun in [7]. This
is a 1–parameter family of complete Kähler metrics on C2 defined by the Kähler potential
Φm(u, v) = u2 + v2 + m(u4 + v4), where u and v are implicitly given by |z1| = em(u2+v2)u,
|z2| = em(v2−u2)v. One can prove (see [12]) that for m > 1

2 the Taub–NUT metric is not
projectively induced. Actually, with the same techniques used in [12], one can prove that it
is not also for smaller values of the parameter. Although, it is hard to prove it for values of
m approaching to 0, coherently with the fact that for m = 0 the Taub–NUT metric reduces to
be the flat metric on C2. In [13] the author of the present paper in collaboration with A. Loi
and F. Zuddas, proved that the Ricci flat Calabi’s metrics constructed in [3] on holomorphic
line bundles over compact Kähler–Einstein manifolds are not projectively induced. As a
byproduct they solve a conjecture addressed in [9] by proving that any positive multiple of
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the Eguchi-Hanson metric on the blow-up of C2 at the origin is not projectively induced.
Observe that rescaling a Ricci–flat Kähler metric g by a positive factor c, gives a Ricci-
flat Kähler metric cg which could in principle be projectively induced even when g is not.
For example, the Bergman metric on bounded symmetric domains of Cn is not projectively
induced when rescaled by small values of c, but it is for large values (see [10] for more
details).

In this paper we are interested in studying the complete Ricci–flat Kähler metrics con-
structed by Stenzel on the cotangent bundle of a compact, rank one, globally symmet-
ric space. These metrics arise in several constructions of Calabi–Yau manifolds (see e.g.
[5, 14]) and a generalization to rank two symmetric spaces appeared recently in [1]. An
explicit Kähler potential for (almost) all Stenzel metrics, needed in the proof of our result,
has been given by T.-C. Lee in [8]. In our context, these metrics are of particular interest be-
cause their Kähler potentials are not rotation invariant (i.e. depending only on the modules
of the variables) as those studied before. Further, they are constructed over homogeneous
manifolds, which are projectively induced when rescaled by a positive factor (see e.g. [11,
Ch. 3]). In this sense, it is emblematic the behaviour of Cartan–Hartogs domains, which
are nonhomogeneous Kähler–Einstein manifolds with negative scalar curvature constructed
over a bounded symmetric domain, that are projectively induced when rescaled by a large
enough factor (see [10]). Although, the Ricci–flat case appears to be less flexible, as for ex-
ample Calabi’s Ricci–flat Kähler metrics constructed over flag manifolds are not projectively
induced even when rescaled [13].

We prove the following theorem, where we give evidence of the above mentioned con-
jecture for Stenzel’s metrics constructed on the complexification of CPn and HPn (the rank
one globally symmetric space given by Sp(n + 1)/Sp(1) × Sp(n)):

Theorem 1. Stenzel’s Ricci–flat complete Kähler metrics on the complexification of CPn

and HPn are not projectively induced for any n > 1. The same result holds when the metrics
are rescaled by a constant 0 < c ≤ 1.

The results are obtained by applying Calabi’s criterion, which we describe in the next
section. It is worth pointing out that the problem of verifying through Calabi’s techniques
that a metric g is not projectively induced when rescaled by a positive constant c, becomes
harder as c grows. In Remark 4 we describe the general problem for the metric on the
complexification of CPn, giving an idea of the computational complexity.

The paper is organized as follows. In the next section we set the notations and summarize
Calabi’s criterion [2] for Kähler immersions into the complex projective space. The third
and last section is devoted to a description of Stenzel’s metrics on the complexification of
CPn and HPn, and to proving our result.

2. Calabi’s criterion

2. Calabi’s criterion
We refer the reader to [11] and references therein for a more detailed overview on the

subject.
We denote by CPN the complex projective space of dimension N ≤ ∞, endowed with its

Fubini-Study metric gFS. Consider homogeneous coordinates [Z0, . . . , ZN] and define in the
usual way affine coordinates z1, . . . , zN on U0 = {Z0 � 0} by z j = Zj/Z0. A Kähler potential
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for the Fubini–Study metric on U0 is given by:

ϕFS(z) = log

⎛⎜⎜⎜⎜⎜⎜⎝1 +
N∑

j=1

|z j|2
⎞⎟⎟⎟⎟⎟⎟⎠ .

Let (M, g) be a real analytic Kähler manifold of dimension n and fix a coordinates system
(z1, . . . , zn) in a neighborhood U of a point p ∈ M. Let also ϕ : U → R be a Kähler potential
for g on U, i.e.:

g jk̄(z) =
∂2ϕ(z)
∂z j∂z̄k

.

Observe that it is not restrictive in our context to assume that g is real analytic, since the
pull–back through a holomorphic map of the real analytic Fubini–Study metric is forced to
be real analytic itself. Denote by ϕ̃ : W → R, ϕ̃(z, z̄) = ϕ(z), the analytic extension of ϕ on a
neighborhood W of the diagonal in U × Ū. The diastasis function D(z, w) is defined by:

(1) D(z, w) := ϕ̃(z, z̄) + ϕ̃(w, w̄) − ϕ̃(z, w̄) − ϕ̃(w, z̄).

Observe that it follows easily from the definition that once one of its two entries is fixed,
the diastasis is a Kähler potential for g. In particular, we denote D0(z) := D(z, 0). The local
Calabi’s criterion for Kähler immersions into CPN can be expressed as follows:

Theorem 2 (Calabi’s criterion [2]). Let (M, g) be a Kähler manifold. A neighborhood
of a point p ∈ M admits a Kähler immersion into CPN if and only if the ∞ × ∞ hermitian
matrix of coefficients (a jk) defined by:

(2) eD0(z) − 1 =
∞∑

j,k=0

a jkzmj z̄mk ,

is positive semidefinite of rank at most N.

Here we are using a multi-index notation zmj := zmj,1

1 · · · zmj,n
n , where the n-tuples mj =

(mj,1, . . . ,mj,n) satisfies j < k when |mj| < |mk|, and those with the same module follow a
lexicographic order.

Remark 3. Let (M, g) be a Kähler manifold, (z1, . . . , zn) be local coordinates in a neigh-
borhood of a point p ∈ M and let ϕ be a Kähler potential centered at p. Observe that:

∂2keD0(z)

∂zk
1∂z̄

k
1

|0 < 0, k ≥ 1,

are (up to multiplication by a positive constant) elements on the diagonal of the matrix (a jk)
in (2), thus if one of them is negative, g is not projectively induced.

3. Proof of Theorem 1

3. Proof of Theorem 1
We consider the explicit formulas given by T.-C. Lee in [8] for the complete Ricci–flat

Kähler metrics on the complexification of CPn and HPn. We refer the reader to [15] for the
general construction and the proof of their completeness.
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3.1. Complete Ricci–flat Kähler metric on the complexification of CPn.
3.1. Complete Ricci–flat Kähler metric on the complexification of CPn. Take homo-

geneous coordinates (z, w) = (z0, . . . , zn, w0, . . . , wn) on CPn × CPn and consider the com-
plexification of CPn:

M2n
II := CPn × CPn \ Q∞,

where Q∞ := {(z, w) ∈ CPn × CPn| ∑n
j=0 z jw j = 0}. Fix affine coordinates (1, z1, . . . , zn, 1,

w1 . . . , wn) and consider the Kähler metric gII on M2n
II defined by the Kähler potential f ( ),

where:

(3)  :=

(
1 +

∑n
j=1 |z j|2

) (
1 +

∑n
j=1 |w j|2

)
|1 +∑n

j=1 z jw j|2 ,

and f is a solution to:

(4)
(
2 − 1

)
 n−1 (

f ′
)2n
+ 2

(
 − 1

)
 n (

f ′
)2n−1 f ′′ = 1.

Using (4), we get f ′( ) = −1/2 (see [8, p.321]), from which follows that:

(5) f ′(1) = 1, f ′′(1) = −1
2
, f ′′′(1) =

3
4
, f iv(1) = −15

8
.

We can now prove the first part of Theorem 1.

Proof of Theorem 1 for M2n
II . Let f ( ) be defined by (3) and (5). By Remark 3, it is

enough to prove that for 0 < c ≤ 1:

∂8ecD0(z)

∂z4
1∂z̄

4
1

|0 < 0,

where by definition (1):

D0(z, w) = f ( ) + f (1) − f
⎛⎜⎜⎜⎜⎝ 1

1 +
∑n

j=1 z jw j

⎞⎟⎟⎟⎟⎠ − f
⎛⎜⎜⎜⎜⎝ 1

1 +
∑n

j=1 z̄ jw̄ j

⎞⎟⎟⎟⎟⎠ .
Since the derivative is evaluated at the origin and we are deriving only with respect to z1,
z̄1, let us restrict ourselves to z2 = · · · = zn = 0, w1 = · · · = wn = 0, i.e. D0(z, w) =
f (1 + |z1|2) − f (1). Compute:

∂ecD0

∂z1
= cecD0 f ′(1 + |z1|2)z̄1;

∂2ecD0

∂z2
1

= cecD0 (c( f ′(1 + |z1|2))2 + f ′′(1 + |z1|2))z̄2
1,

∂3ecD0

∂z3
1

= cecD0 (c2( f ′(1 + |z1|2))3 + 3c f ′(1 + |z1|2) f ′′(1 + |z1|2) + f ′′′(1 + |z1|2))z̄3
1,

∂4ecD0

∂z4
1

= cecD0
(
c3( f ′(1 + |z1|2))4 + 6c2( f ′(1 + |z1|2))2 f ′′(1 + |z1|2)+(6)

+3c( f ′′(1 + |z1|2))2 + 4c f ′(1 + |z1|2) f ′′′(1 + |z1|2) + f iv(1 + |z1|2)
)

z̄4
1.
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Plugging (5) into (6) we get:

∂8ecD0

∂z4
1∂z̄

4
1

|0 = 4!c(c3 f ′(1)4 + 6c2 f ′(1)2 f ′′(1) + 3c f ′′(1)2 + 4c f ′(1) f ′′′(1) + f iv(1))

= 3c(8c3 − 24c2 + 30c − 15),

which is less than 0 for any 0 < c < a, with a = (4+4
√

5)1/3

4 − 1
(4+4
√

5)1/3 + 1 > 1. �

Remark 4. We believe that
(
M2n

II , cgII

)
is not projectively induced also for any value of

c > 1. Let D0(x) = f (1 + x) − f (1) =
∑∞

j=1 a j
(−1) j

j! . Accordingly with (3) a1 = 1, and for
j ≥ 2 a direct computation gives:

a j =
d j

d j
f ( )|=1 =

(−1) j−1 ∏ j−1
s=1(2s − 1)

2 j−1 .

Thus:

D0(x) =
∞∑
j=1

(−1) j−1 ∏ j−1
s=1(2s − 1)

2 j−1

( − 1) j

j!
,

which implies:

exp (D0(x)) − 1 =
∞∑

n=1

n∑
k=1

Bn,k(a1, . . . , an−k+1)
( − 1)k

k!
,

where Bn,k(a1, . . . , an−k+1) are the exponential Bell polynomials (see [4, p.133]). Comparing
with Qi and Guo [16, p.8], one gets that a sufficient condition for cgII to be not projectively
induced is that for any c > 0, there exists a big enough n such that:

n∑
k=1

Bn,k(ca1, . . . , can−k+1) =
1
2n

n∑
k=1

(−2c)k

k!

k∑
l=0

(−1)l
(

k
l

) n−1∏
q=0

(l − 2q) < 0.

3.2. Complete Ricci–flat Kähler metric on the complexification of HPn.
3.2. Complete Ricci–flat Kähler metric on the complexification of HPn. Consider:

M4n
III = Gr(2, 2n + 2,C) \ H∞,

where Gr(2, 2n + 2,C) defines the complex Grassmanian of 2–planes through the origin
and, in homogeneous coordinates (z, w) = (z1, . . . , z2n+2, w1, . . . , w2n+2), H∞ :={
(z, w)

∣∣∣∣ ∑n+1
j=1

(
z2 jw2 j−1 − z2 j−1w2 j

)
= 0

}
. Set inhomogeneous coordinates (z1, . . . , z2n, 1, 0,

w1, . . . , w2n, 0, 1) and denote z = (z1, . . . , z2n), w = (w1, . . . , w2n). Let:

(7)  :=
(1 + ||z||2)(1 + ||w||2) −∑2n

j,k=1 z jw̄ jz̄kwk

|∑n
j=1

(
z2 jw2 j−1 − z2 j−1w2 j

)
− 1|2

,

and f ( ) be a solution to:

(8) (2 − 1) 2n−2( f ′)4n + 2( − 1) 2n−1( f ′)4n−1 f ′′ = 1.

We can assume without loss of generality that f (1) = 0. We have:
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f ′(1) = 1, f ′′(1) = − n
2n + 1

, f ′′′(1) =
6n2 + 2n + 1
2(2n + 1)2 ,(9)

f iv(1) = −30n3 + 22n2 + 15n + 2
2(2n + 1)3 .

Observe that by (1), (7) and since f (1) = 0, we have:

D0(z) = f ( ) − f

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 −∑n
j=1

(
z2 jw2 j−1 − z2 j−1w2 j

)
⎞⎟⎟⎟⎟⎟⎟⎠ − f

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 −∑n
j=1

(
z̄2 jw̄2 j−1 − z̄2 j−1w̄2 j

)
⎞⎟⎟⎟⎟⎟⎟⎠ .

We are now in the position of concluding the proof of Theorem 1.

Proof of Theorem 1 for M4n
III . We proceed as in the first part of the proof of Theorem 1:

we restrict ourselves to z2 = · · · = z2n = 0, w2 = · · · = w2n = 0, getting D0(z) = f ( ) =
f (1 + |z1|2). Thus, by (6) we have:

∂8ecD0

∂z4
1∂z̄

4
1

|0 = 4!c(c3 f ′(1)4 + 6c2 f ′(1)2 f ′′(1) + 3c f ′′(1)2 + 4c f ′(1) f ′′′(1) + f iv(1)),

and as before, it is enough to prove that this quantity is negative for 0 < c ≤ 1 and n ≥ 2. By
(9) we then obtain:

∂8ecD0

∂z4
1∂z̄

4
1

|0 =12c
(
2c3 − 12n

2n + 1
c2 +

2(15n2 + 4n + 2)
(2n + 1)2 c − 30n3 + 22n2 + 15n + 2

(2n + 1)3

)
,(10)

which is negative for any n ≥ 2, 0 < c ≤ 1. In fact, for n = 2 it is equal to 24
25 c

(
25c3 − 60c2 +

70c − 36
)
, which is less than 0 for 0 < c < a with:

a =
(378 + 6

√
11955)1/3

15
− 22

5(378 + 6
√

11955)1/3
+

4
5
> 1.

Further, the RHS of (10) is decreasing in n, since its derivative with respect to n gives:

24
(
(−24c2 + 44c − 23)n2 + (−24c2 + 14c + 8)n − 6c2 − 4c − 3

2

)
(2n + 1)4 ,

which, again, is negative since its numerator is negative and equal to 5
2 (−60c2 + 80c − 31)

when n = 2, with derivative with respect to n equal to

−24(2n + 1)c2 + 2(44n + 7)c − 2(23n + 4),

and thus negative for any c and any n ≥ 2. �

Remark 5. For the case of the Stenzel’s Ricci–flat Kähler metric g on the cotangent bun-
dle of Sn, identified with the affine quadric:

Qn :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩(z0, z1, . . . , zn) ∈ Cn+1

∣∣∣∣∣∣∣∣
n∑

j=0

z2
j = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
and with  defined as the restriction of

∑n
j=0 |z j|2 to Qn, a Kähler potential is given by f ( ),

where f is a solution to:
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(11) ( f ′)n−1
(
 f ′ + ( 2 − 1) f ′′

)
= 1.

When n = 2, g is the Eguchi–Hanson metric, which has been proved in [13] to be not
projectively induced even when rescaled by a positive factor.

For n > 2, with the same approach used in the proof of Theorem 1, from (11) and (6)
one gets that cg is not projectively induced for any c < 1

n+2 . Although, the result can not be
easily improved with similar techniques.
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