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A B S T R A C T   

Three generations of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs) have been 
developed for treating advanced/metastatic non-small cell lung cancer (NSCLC) patients harboring EGFR-acti
vating mutations, while a fourth generation is undergoing preclinical assessment. Although initially effective, 
acquired resistance to EGFR-TKIs usually arises within a year due to the emergence of clones harboring multiple 
resistance mechanisms. Therefore, the combination of EGFR-TKIs with other therapeutic agents has emerged as a 
potential strategy to overcome resistance and improve clinical outcomes. However, results obtained so far are 
ambiguous and ideal therapies for patients who experience disease progression during treatment with EGFR-TKIs 
remain elusive. 

This review provides an updated landscape of EGFR-TKIs, along with a description of the mechanisms causing 
resistance to these drugs. Moreover, it discusses the current knowledge, limitations, and future perspective 
regarding the use of EGFR-TKIs in combination with other anticancer agents, supporting the need for bench-to- 
bedside approaches in selected populations.   

1. Background 

Lung cancer is the second most common form of cancer and the 
leading cause of cancer-related mortality, with a 5-year survival rate of 
18.6% for newly diagnosed patients [1]. Non-small cell lung cancer 
(NSCLC) represents roughly 85% of all lung cancer cases and, based on 
the World Health Organization (WHO) classification, can be categorized 
into three main subtypes: adenocarcinoma (40%), squamous cell carci
noma (30%), and large cell carcinoma (10%) [2,3]. Systemic treatment 
with platinum-based chemotherapy is still the standard treatment for 
NSCLC patients with advanced-stage disease. The typical median time to 
progression for patients treated with chemotherapy is around six 

months, with an average survival time of 10 - 12 months [4,5]. 
During the nineties and early 2000s, it became clear that several 

oncogenic mutations are involved in driving NSCLC development and 
progression. These include mutations affecting genes encoding for the 
Epidermal Growth Factor Receptor (EGFR), K-RAS, and the Anaplastic 
Lymphoma Kinase (ALK) [6]. The development of Epidermal Growth 
Factor Receptor – Tyrosine Kinase Inhibitors (EGFR-TKIs) represented a 
breakthrough in the treatment of NSCLC. Indeed, these small-molecule 
drugs replaced older platinum-based chemotherapy regimens for pa
tients harboring specific EGFR mutations leading to significant clinical 
responses and reduced treatment-related toxicities [7–9]. 
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1.1. The role of the epidermal growth factor receptor (EGFR) in non-small 
cell lung cancer 

EGFR (ErbB1/HER1) is a member of the ErbB receptor family and 
belongs to the super-family of structurally-related receptor tyrosine ki
nases (RTKs). The ErbB receptor family also includes the epidermal 
growth factor receptor 2 (ErbB2; HER2), as well as HER3 (ErbB3) and 
HER4 (ErbB4) [10]. 

EGFR signaling regulates the activation of several intracellular 
signaling pathways responsible for sustaining physiological cellular 
processes. These include the mitogen-activated protein kinases (MAPK)/ 
extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-ki
nase (PI3K)/Akt/mTOR, and the interleukin 6 (IL-6)/Janus kinase 
(JAK)/signal transducer and activator of transcription 3 (STAT3) 
pathway (Fig. 1) [11]. 

EGFR mutations, either resistance or activating mutations, are found 
in 15% of NSCLC patients (more commonly in non-smokers, women, and 
Asian populations) and correlate with poor clinical outcomes [12–14]. 
Typically, EGFR-activating mutations cluster in hotspots located be
tween exon 18 and 21 of the EGFR gene, encoding the tyrosine kinase 
domain of the receptor. These mutations promote a dysregulated, 
ligand-independent activation of EGFR signaling that sustains the pro
liferation, survival, metabolism, and migration of cancer cells (Fig. 2). 

In-frame exon 19 deletions and exon 21 L858R point mutations are 
the most common EGFR-activating mutations (detected in approxi
mately 50% and 40% of EGFR-positive NSCLC patients, respectively) 
[15]. Atypical EGFR mutations include G719X (~3%), L861Q (~1%), 
S768I (~1%) mutations, as well as exon 20 in-frame insertions (~6%) 
[15]. Mutations that confer resistance to EGFR-TKIs (e.g., EGFR-T790M 
and EGFR-C797S) are evaluated in detail later in this review. 

2. Epidermal Growth Factor Receptor - Tyrosine Kinase 
Inhibitors (EGFR-TKIs) 

EGFR-TKIs are drugs designed to inhibit the tyrosine kinase domain 
of the EGFR receptor, thereby interrupting its activation and the sub
sequent engagement of pro-tumorigenic signaling pathways [16]. 
Although initial studies failed to demonstrate an advantage of EGFR-TKI 
monotherapy over platinum chemotherapy, the subsequent 
re-evaluation of patient subgroups revealed that only patients carrying 
EGFR-activating mutations responded to treatment with EGFR inhibitors 
[17,18]. 

In NSCLC patients selected according to the presence of EGFR-acti
vating mutations (e.g., exon 19 deletions and exon 21 L858R mutation), 
the treatment with EGFR-TKI monotherapy has led to significant im
provements in progression-free survival (PFS) in comparison with pre
vious platinum-based chemotherapy regimens. Consequently, EGFR- 
TKIs have become the standard of care for the treatment of advanced/ 
metastatic NSCLC in the presence of actionable EGFR mutations [9]. 

As of 2021, three generations of EGFR-TKIs have been developed and 
are available in the clinic. The fourth generation of EGFR inhibitors is 
currently undergoing preclinical evaluation. A list of EGFR-TKIs 
approved for the treatment of EGFR-mutated NSCLC is provided in 
Table 1. 

3. First-generation EGFR-TKIs 

First-generation EGFR-TKIs are low molecular weight, reversible, 
oral EGFR inhibitors which exert their anticancer activity by inhibiting 
the intracellular phosphorylation of the EGFR receptor. Of note, the 
development of first-generation EGFR-TKIs started before the discovery 
of EGFR-sensitizing mutations [19]. Three first-generation EGFR-TKIs 
have received approval for the treatment of EGFR-mutant advan
ced/metastatic NSCLC: gefitinib, erlotinib, and icotinib (Table 2). 

Fig. 1. Schematic representation of EGFR activation and signaling. Upon interaction with its ligand, the EGFR receptor may either homo or heterodimerize with 
other members of the ErbB family, leading to receptor auto-phosphorylation and the initiation of an intracellular cascade of molecular events that regulates cell 
proliferation, metabolism, migration, and survival. Image created with BioRender.com 
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3.1. Gefitinib 

Gefitinib (Iressa™; AstraZeneca, London, United Kingdom) initially 
received approval by the U.S. Food and Drugs Administration (FDA) as 
second-line therapy for advanced-stage NSCLC patients who progressed 
after platinum-based chemotherapy [28]. The pivotal phase III IPASS 
trial (NCT00322452) demonstrated that first-line treatment with gefi
tinib improves PFS (9.5 months vs. 6.3 months; p < 0.001) compared to 
carboplatin-paclitaxel in a selected cohort of Asian patients with 
advanced NSCLC [20]. Similar findings were achieved in several phase 
III trials (NEJ002, WJTOG-3405, IFUM, first-SIGNAL), leading to gefi
tinib approval by the FDA and the European Medicine Agency (EMA) as 
first-line therapy for advanced/metastatic NSCLC patients harboring 
EGFR-activating mutations [21,22,29,30]. 

3.2. Erlotinib 

Erlotinib (Tarceva™; F. Hoffman-La Roche, Basel, Switzerland) was 
initially approved by the FDA for use in unselected advanced/metastatic 
NSCLC patients who progressed while receiving platinum chemotherapy 
[31]. Based on results obtained in several randomized phase III clinical 

trials (EURTAC, OPTIMAL, and ENSURE), the FDA and EMA later 
extended erlotinib approval to include its use as first-line therapy for 
EGFR-mutated advanced/metastatic NSCLC. These trials demonstrated 
erlotinib superiority over platinum-containing chemotherapy concern
ing PFS, along with a more favorable toxicity profile, in NSCLC patients 
with EGFR mutations [23–25]. 

3.3. Icotinib 

Icotinib (Conmana™; Zhejiang Beta Pharmaceutical Co Ltd, Hang
zhou, People’s Republic of China) is a first-generation EGFR-TKIs that 
received approval from the Chinese National Medical Products Admin
istration (CNMPA) for the second-line treatment of EGFR-mutant 
advanced/metastatic NSCLC. Approval was granted after the phase III 
ICOGEN trial (NCT01040780) established that icotinib is non-inferior to 
gefitinib in patients who progressed after at least one platinum-based 
chemotherapy regimen and that treatment with icotinib is associated 
with fewer adverse events [26]. Based on the positive results obtained in 
the phase III CONVINCE trial (NCT01719536), the CNMPA later 
extended icotinib approval to include its use as first-line treatment for 
EGFR-mutant advanced/metastatic NSCLC [27]. 

Fig. 2. Structure of the EGFR gene. Activating mutations and resistance mutation are clustered within exons 18 – 21 which encodes the tyrosine kinase domain of the 
EGFR receptor. Image created with BioRender.com 

Table 1 
EGFR-TKIs approved for the treatment of EGFR-mutant advanced/metastatic NSCLC.  

Drug Manufacturer Generation Bond Spectrum of activity Approval 

Gefitinib (Iressa®) AstraZeneca First Reversible Mutated and WT-EGFR FDA, EMA 
Erlotinib (Tarceva®) Roche First Reversible Mutated and WT-EGFR FDA, EMA 
Icotinib (Conmana®) Betta Pharmaceuticals First Reversible Mutated and WT-EGFR CNMPA 
Afatinib (Gilotrif®) Boehringer Ingelheim Second Irreversible Pan-ErbB inhibitor FDA, EMA 
Dacomitinib (Vizimpro®) Pfizer Second Irreversible Pan-ErbB inhibitor FDA, EMA 
Osimertinib (Tagrisso®) AstraZeneca Third Irreversible Common and T790 M mutations FDA, EMA 
Almonertinib (Amelie®) Hansoh Pharmaceutical Third Irreversible Common and T790 M mutations CNMPA 

Abbreviations: EGFR-TKI (EGFR-Tyrosine Kinase Inhibitors); NSCLC (Non-Small Cell Lung Cancer); WT (Wild-Type); FDA (U.S. Food and Drugs Administration), EMA 
(European Medicine Agency); CNMPA (China National Medical Product Administration). 

Table 2 
Phase III clinical trials of first-generation EGFR-TKIs for EGFR-mutant advanced/metastatic NSCLC.  

Study name EGFR-TKI Comparator arm ORR (%) PFS (months) OS (months) Reference 

IPASS Gefitinib Carboplatin + Paclitaxel 67% vs. 41% 9.5 vs. 6.3; p<0.001 21.6 vs. 21.9; ns [20] 
WJTOG-3405 Gefitinib Cisplatin + Docetaxel 62% vs. 32% 9.2 vs. 6.3; p<0.0001 34.8 vs. 37.3; ns [21] 
NEJ002 Gefitinib Carboplatin + Paclitaxel 74% vs. 31% 10.8 vs. 5.4; p<0.0001 30.5 vs. 23.6; ns [22] 
EURTAC Erlotinib Platinum + Docetaxel or Gemcitabine 64% vs. 18% 9.7 vs. 5.2; p<0.0001 22.9 vs. 19.6; ns [23] 
OPTIMAL Erlotinib Carboplatin + Gemcitabine 83% vs. 36% 13.1 vs. 4.6; p<0.0001 22.8 vs. 27.2; ns [24] 
ENSURE Erlotinib Cisplatin + Gemcitabine 63% vs. 34% 11.0 vs. 5.6; p<0.0001 21.6 vs. 21.9; ns [25] 
ICOGEN Icotinib Gefitinib 27.6% vs. 27.2% 4.6 vs. 3.4; ns 13.3 vs. 13.9; ns [26] 
CONVINCE Icotinib Cisplatin + Pemetrexed N/A 11.2 vs. 7.9; p=0.006 30.5 vs. 32.1; ns [27] 

Abbreviations: EGFR-TKI (EGFR-Tyrosine Kinase Inhibitor); NSCLC (Non-Small Cell Lung Cancer); PFS (Progression-Free Survival); OS (Overall Survival); ORR 
(Objective Response Rate); ns (not significant); N/A (Not Available). 
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3.4. Comparison between first-generation EGFR-TKIs 

Several clinical trials evaluating the three available first-generation 
EGFR-TKIs yielded similar results in terms of clinical efficacy. It was 
therefore presumed that these drugs could be interchangeable when 
treating NSCLC patients harboring EGFR mutations. Nevertheless, while 
first-generation EGFR-TKIs share a similar mechanism of action, they 
possess different chemical structures, resulting in different target affin
ity, metabolism, and toxicity [32]. A summary of the pharmacokinetic 
profiles of first-generation EGFR-TKIs is provided in Table 3. 

Erlotinib is 3-fold less lipophilic than gefitinib, possibly explaining, 
at least in part, some of the dissimilarities observed in the pharmaco
kinetic and pharmacodynamic profiles of these two EGFR-TKIs [32]. 
Remarkably, the bioavailability of erlotinib increases from 60 to 100% 
when taken with food. Analogously, food absorption increases the 
bioavailability of icotinib, whereas it does not affect gefitinib bioavail
ability [32–34]. 

After oral administration, first-generation EGFR-TKIs undergo 
extensive hepatic metabolism mediated by enzymes belonging to the 
cytochrome P450 family and are primarily excreted in feces, with minor 
contributions in urine [35,36]. Tobacco smoking increases the meta
bolic clearance of erlotinib due to the induction of enzymes responsible 
for its metabolism, resulting in decreased therapeutic exposure [37]. 
Furthermore, a recent study reported that the treatment of PC9 and 
HCC827 NSCLC cell lines with serum obtained from smokers induced 
resistance to erlotinib. This observation suggests that nicotine is 
involved in promoting erlotinib resistance in smokers [38]. 

The meta-analysis published by Liang et al. was the first study to 
provide an indirect comparison of gefitinib, erlotinib, and icotinib for 
the treatment of advanced/metastatic NSCLC patients with EGFR mu
tations based on information obtained from several phase III random
ized controlled trials. The authors reported that first-generation EGFR- 
TKIs share comparable efficacy but presented different efficacy-toxicity 
patterns [39]. Liu et al. later obtained similar results in their 
meta-analysis that compared the effectiveness and the rate of adverse 
events in NSCLC patients treated with first-generation EGFR-TKIs. The 
authors concluded that these drugs exhibit similar efficacy, although 
treatment with erlotinib was associated with a higher frequency of 
adverse events as compared with gefitinib and icotinib [40]. 

4. Second-generation EGFR-TKIs 

Despite the remarkable clinical responses observed in EGFR-mutant 
advanced/metastatic NSCLC patients treated with first-generation 
EGFR-TKIs, acquired resistance to these compounds inevitably de
velops after a median period of 10 – 14 months, principally due to the 
selection of resistant clones harboring the secondary EGFR-T790M 
mutation [41]. Consequently, a second-generation of EGFR-TKIs was 
developed to address the issue of acquired resistance to first-generation 
EGFR-TKIs (Fig. 3). 

Second-generation EGFR-TKIs are irreversible pan-ErbB inhibitors 
[42]. Pros of this generation of EGFR inhibitors include a broader 
inhibitory profile on the ErbB receptor family and a more robust inhi
bition of downstream signaling [43]. Second-generation EGFR-TKIs 
approved for the treatment of EGFR-mutant advanced/metastatic 
NSCLC include afatinib and dacomitinib (Table 4) [44]. 

4.1. Afatinib 

Afatinib (Gilotrif™; Boehringer Ingelheim, Ingelheim, Germany) is 
the first irreversible second-generation EGFR-TKI approved for the 
treatment of EGFR-mutant advanced/metastatic NSCLC [45]. 

The efficacy and safety of afatinib as first-line therapy for EGFR- 
mutated advanced/metastatic NSCLC was explored in the phase III LUX- 
Lung 3 (NCT00949650) and LUX-Lung 6 (NCT01121393) trials in 
comparison with cisplatin-pemetrexed chemotherapy and cisplatin- 
gemcitabine chemotherapy, respectively [46,47]. In both trials, pa
tients who received afatinib achieved a significantly longer PFS than 
patients treated with platinum-based chemotherapy, although without 
substantial improvements in OS [48]. A later subgroup analysis revealed 
that afatinib-treated patients harboring atypical EGFR mutations 
(L861Q, G719X, or S768I) had a longer OS than chemotherapy-treated 
patients. This finding led to the extension of afatinib approval to 
include patients expressing atypical EGFR mutations [49,50]. 

The phase IIb LUX-Lung 7 study (NCT01466660) was the first direct 
comparison between a first- and a second-generation EGFR-TKI for the 
treatment of EGFR-mutant advanced/metastatic NSCLC in the first-line 
setting [51]. Clinical results demonstrated that afatinib treatment 
significantly improves PFS and ORR and has a longer median duration of 
response (DoR) than gefitinib, although without significant differences 
in OS between the two treatment arms [52,53]. 

4.2. Dacomitinib 

Dacomitinib (Vizimpro™; Pfizer Inc, New York, USA) is a second- 
generation EGFR-TKI approved by EMA and FDA for the first-line 
treatment of patients with EGFR-mutant advanced/metastatic NSCLC 
[44,54]. Dacomitinib was initially investigated as salvage therapy in the 
phase II/III ARCHER 1028 (NCT00769067) and ARCHER 1009 
(NCT01360554) studies in unselected NSCLC patients who progressed 
while on platinum-based chemotherapy. Results failed to demonstrate 
the superiority of dacomitinib over erlotinib concerning PFS and OS. 
However, a subsequent analysis of patient subgroups revealed that 
dacomitinib has efficacy comparable to that of erlotinib in patients 
harboring EGFR-activating mutations [55–57]. 

Dacomitinib as first-line treatment was assessed in the phase III 
ARCHER 1050 trial (NCT01774721) in a selected population of NSCLC 
patients harboring EGFR-activating mutations. Dacomitinib showed 
benefits over gefitinib concerning both PFS and OS, although with a 
higher incidence of treatment-related adverse events [58–60]. Since the 
ARCHER 1050 trial excluded patients with brain metastases, evidence 
regarding the efficacy of dacomitinib in treating CNS lesions is lacking. 
Clinical studies performed in China and Japan suggest that dacomitinib 
might be more active against brain metastases than first-generation 
EGFR-TKIs. Nevertheless, given the small sample size of these studies, 
the efficacy of dacomitinib for the treatment of CNS lesions remains 
unclear [61–63]. 

5. Third-generation EGFR-TKIs 

Afatinib and dacomitinib showed partial efficacy against NSCLC cell 
lines expressing the EGFR-T790M mutation. Nevertheless, these second- 
generation EGFR-TKIs ultimately failed to overcome resistance in 

Table 3 
Pharmacokinetic profiles of first-generation EGFR-TKIs approved for treating EGFR-mutant NSCLC.  

Drug Dosage Metabolism CYP enzymes Tmax T1/2 BA Excretion 

Gefitinib (Iressa®) 250 mg/die Hepatic CYP3A4, CYP2D6, CYP1A1 3 – 7 h ~ 40 h ~ 60% ~ 86% feces, ~ 4% urine 
Erlotinib (Tarceva®) 150 mg/die Hepatic CYP3A4, CYP3A5, CYP1A1/2 3 – 4 h ~ 36 h ~ 60% ~ 83% feces, ~ 9% urine 
Icotinib (Conmana®) 125 mg thrice/die Hepatic CYP3A4, CYP3A5, CYP1A2 1 – 3 h ~ 6 h ~ 60% >90% feces, ~ 9% urine 

Abbreviations: EGFR-TKIs (EGFR – Tyrosine Kinase Inhibitors); NSCLC (Non-Small Cell Lung Cancer); CYP (Cytochrome P450 isoenzymes), Tmax (Time to Maximum 
Plasma Concentration); T1/2 (Half-Life); BA (Bioavailability). 
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patients since the dosage required to achieve the complete inhibition of 
T790M-mutant tumors is associated with unacceptable toxicity in pa
tients [64,65]. 

Third-generation EGFR-TKIs have been specifically designed to 

overcome the EGFR-T790M-mediated resistance by forming an irre
versible bond with the C797 residue in the receptor kinase domain, 
thereby preventing receptor autophosphorylation and engagement of 
downstream signaling pathways [66]. Two third-generation EGFR-TKIs 

Fig. 3. Overview of the chemical structures of EGFR-TKIs. Three generations of EGFR-TKIs are currently available in the clinic for the treatment of EGFR-mutant 
advanced/metastatic NSCLC. The fourth generation of allosteric EGFR-TKIs is currently under preclinical evaluation. MarvinSketch™ (ChemAxon) was used for 
drawing chemical structures. Image created with Biorender.com. 

Table 4 
Selected clinical trials of second-generation EGFR-TKIs for EGFR-mutant advanced/metastatic NSCLC.  

Study Trial design EGFR-TKI Comparison ORR (%) PFS (months) OS (months) 

LUX-Lung 3 Phase III first-line Afatinib Cisplatin + Pemetrexed 56% vs. 23%; 11.1 vs. 6.9; Ex19del: 33.3 vs. 21.1; p = 0.0015 
(NCT00949650)    p = 0.001 p = 0.001 L858R: 27.6 vs. 40.3; ns 
LUX-Lung 6 Phase III Afatinib Cisplatin + Gemcitabine 67% vs. 23%; 11.0 vs. 5.6; Ex19del: 31.4 vs. 18.4; p = 0.023 
(NCT01121393) first-line   p<0.0001 p<0.0001 L858R: 19.6 vs. 24.3; ns 
LUX-Lung 7 Phase IIb Afatinib Gefitinib 70% vs. 56%; p=0.0083 11.0 vs. 10.9; p = 0.017 Exon19del: 30.7 vs. 26.4; ns 
(NCT01466660) first-line     L858R: 25.0 vs. 21.2; ns 
ARCHER 1009 Phase III Dacomitinib Erlotinib 11% vs. 8%; 14.6 vs. 9.6; 26.6 vs. 23.2; ns 
(NCT01360554) second-line   ns ns  
ARCHER 1028 Phase II Dacomitinib Erlotinib 17% vs. 5.3%; 2.8 vs. 1.9; 9.53 vs. 7.44; ns 
(NCT00769067) second-line   p=0.011 p<0.012  
ARCHER 1050 Phase III Dacomitinib Gefitinib 75% vs. 72%; ns 14.7 vs. 9.2; 34.1 vs. 27.0; p = 0.0438 
(NCT01774721) first-line    p<0.001  

Abbreviations: EGFR-TKIs (EGFR – Tyrosine Kinase Inhibitors); NSCLC (Non-Small Cell Lung Cancer); PFS (Progression-Free Survival); OS (Overall Survival); ORR 
(Objective Response Rate); ns (not significant). 

Table 5 
Selected clinical trials of third-generation EGFR-TKIs for EGFR-mutant advanced/metastatic NSCLC.  

Study name Design EGFR-TKI Comparator arm ORR (%) PFS (months) OS (months) 

AURA3 
(NCT02151981) 

Phase III (second- 
line) 

Osimertinib Cisplatin/ 
Carboplatin + Pemetrexed 

71% vs. 31%; 
p<0.001 

10.1 vs. 4.4; 
p<0.001 

26.8 vs. 22.5; ns 

FLAURA 
(NCT02296125) 

Phase III (first-line) Osimertinib Gefitinib 80% vs. 76%; ns 18.9 vs. 10.2; 
p<0.001 

38.6 vs. 31.8; 
p = 0.046 

APOLLO 
(NCT02981108) 

Phase I/II (second- 
line) 

Almonertinib No 68.9% 12.3 N/A 

Abbreviations: EGFR-TKIs (EGFR – Tyrosine Kinase Inhibitors); NSCLC (Non-Small Cell Lung Cancer); PFS (Progression-Free Survival); OS (Overall Survival); ORR 
(Objective Response Rate); ns (not significant); N/A (Not Available). 
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received approval for clinical use in NSCLC patients harboring classical 
EGFR or EGFR-T790M mutations: osimertinib and almonertinib 
(Table 5). 

5.1. Osimertinib 

Osimertinib (Tagrisso™; AstraZeneca, Cambridge, United Kingdom) 
is an orally administered and irreversible third-generation EGFR-TKI 
targeting common EGFR-activating mutations, as well as the EGFR- 
T790M mutation [66]. In preclinical studies, osimertinib demonstrated 
remarkable inhibitory activity against NSCLC cell lines harboring the 
EGFR-T790M mutation. This inhibition translated into profound and 
sustained tumor regression in EGFR-mutant tumor xenograft and 
transgenic models without significant off-target effects due to a lower 
affinity for the wild-type EGFR receptor [66]. 

The efficacy and safety of osimertinib as salvage therapy for NSCLC 
patients who progressed during treatment with first- or second- 
generation EGFR-TKIs due to the emergence of the EGFR-T790M mu
tation was initially documented in the phase I/II AURA trial and later 
confirmed in the phase III AURA3 trial (NCT02151981) [67]. In the 
AURA3 trial, patients treated with osimertinib exhibited longer PFS 
(10.1 months vs. 4.4 months; HR = 0.30; 95% CI 0.23 to 0.41; p < 0.001) 
and higher ORR (71% vs. 31%) than patients treated with 
platinum-doublet chemotherapy (cisplatin/carboplatin plus peme
trexed). There were no significant differences in OS among the two 
treatment arms [67,68]. 

The phase III FLAURA trial (NCT02296125) explored the efficacy of 
safety of osimertinib as first-line therapy for EGFR-mutant advanced/ 
metastatic NSCLC [69,70]. First-line treatment with osimertinib was 
associated with a significantly longer PFS (18.9 months vs. 10.2 months; 
HR = 0.46; 95% CI 0.37–0.57; p < 0.001) and OS (38.6 months vs 31.8 
months; 95% CI 26.6–36.0; HR = 0.80; 95% CI 0.64–1.00; p = 0.046), 
although without significant differences in ORR as compared with 
first-generation EGFR-TKIs [70,71]. Despite a longer duration of expo
sure, patients treated with osimertinib had lower rates of serious adverse 
effects than patients who received first-generation EGFR-TKIs (34% vs. 
45%) [70]. As a result, osimertinib received approval by EMA and FDA 
as first-line therapy and as second-line therapy for patients who pro
gressed during treatment with EGFR-TKIs due to the acquisition of the 
EGFR-T790M mutation [9]. 

Insights obtained from the AURA3 trial highlighted that osimertinib 
possesses remarkable activity against brain metastases in EGFR-T790M- 
positive patients who progressed during treatment with first-generation 
EGFR-TKIs [72]. Patients with brain metastases who received osi
mertinib achieved a longer median CNS PFS than patients treated with 
platinum-pemetrexed chemotherapy (11.7 vs. 5.6 months; 95% CI 
0.15–0.69; p = 0.004), irrespective of prior brain radiotherapy [72]. 

The FLAURA study further established the CNS activity of osimerti
nib. In this study, the risk of CNS progression in osimertinib-treated 
patients was consistently lower as compared with patients treated 
with first-generation EGFR-TKIs (20% vs. 39%), as well as the onset of 
new brain metastases (12% vs. 30%), hence supporting the protective 
role of osimertinib in the development of CNS lesions [73]. Besides, 
osimertinib treatment has demonstrated higher ORR and survival ben
efits in EGFR-T790M-positive NSCLC patients harboring brain metasta
ses and leptomeningeal metastases who progressed on prior therapy 
with EGFR-TKIs [74]. 

5.2. Almonertinib 

Almonertinib (Amelie™, Hansoh Pharmaceutical Group, Jiangsu, 
People’s Republic of China) is a novel orally-available, pyrimidine- 
based, third-generation EGFR-TKI with high selectivity and potent 
inhibitory activity against both EGFR-sensitizing and EGFR-T790M 
mutations [75]. 

The efficacy and safety of almonertinib for NSCLC patients with 

EGFR mutations who had previously received treatment with first- or 
second-generation EGFR-TKIs was explored in the phase I/II APOLLO 
trial (NCT02981108) [75]. Results demonstrated that almonertinib is 
safe and well-tolerated in patients. Median PFS in almonertinib-treated 
patients was 11.8 months, and ORR was 68.9% [76]. Consequently, the 
CNMPA approved almonertinib for the second-line treatment of 
EGFR-mutant advanced/metastatic NSCLC in patients harboring the 
EGFR-T790M mutation [77]. 

Almonertinib as first-line treatment for EGFR-mutant advanced/ 
metastatic NSCLC is currently under investigation in the AENEAS phase 
III study (NCT03849768). Preliminary results showed that almonertinib 
significantly prolonged median PFS (19.3 vs. 9.9 months; HR = 0.46; 
p < 0.0001) and DoR (18.1 vs. 8.3 months; HR = 0.38; p < 0.0001) over 
gefitinib treatment. Despite an overall longer treatment duration, 
almonertinib was well-tolerated in patients and exhibited a favorable 
safety profile [78]. 

The APOLLO study yielded insights concerning the efficacy of 
almonertinib in treating patients with CNS metastases. Median PFS in 
patients with CNS lesions was 10.8 months, with a median DoR of 11.3 
months. CNS disease control rate (DCR) and CNS ORR were 91.3% and 
60.9%, respectively [76]. High-dose almonertinib as first-line therapy 
for EGFR-mutant NSCLC patients with CNS metastases will be further 
investigated in the phase II ACHIEVE trial (NCT04808752). 

6. Fourth-generation EGFR-TKIs 

Despite the impressive clinical responses observed in patients treated 
with the third-generation of EGFR inhibitors, either as first-line therapy 
or as second-line treatment for patients who progressed while on 
treatment with first- or second-generation EGFR-TKIs, the selection of 
resistant clones expressing additional mutations in the tyrosine kinase 
domain of the EGFR receptor limits the efficacy of EGFR-T790M-selec
tive EGFR-TKIs. Treatment failure and disease progression after treat
ment with third-generation EGFR-TKIs usually occur within a year, 
mainly due to the emergence of tertiary EGFR-C797S mutation [79]. 

A novel class of allosteric, mutant-selective, fourth-generation EGFR 
inhibitors has been developed with the intent to overcome acquired 
resistance to third-generation EGFR-TKIs [80–82]. Allosteric EGFR in
hibitors target the allosteric site of the EGFR receptor, which is situated 
away from the ATP binding site commonly targeted by classical EGFR 
inhibitors. Remarkably, the EGFR-T790M and EGFR-C797S mutations 
do not affect the allosteric site of the EGFR receptor. Therefore, these 
mutations do not influence the efficacy of allosteric EGFR-TKIs [83]. 

EAI045 is the first allosteric EGFR inhibitor designed to target drug- 
resistant EGFR-T790M and EGFR-C797S mutants [84]. EAI045 exhibited 
potent inhibitory activity in L858R/T790M-mutant NSCLC H1975 cell 
line, although it failed to block EGFR autophosphorylation. Further
more, EAI045 did not show activity in a keratinocyte cell line expressing 
wild-type EGFR, suggesting that this drug is selective for mutant EGFR 
only [85]. Since EGFR dimerization is a mandatory step for activating 
EGFR signaling, investigators hypothesized that EAI045 was inactive for 
asymmetric dimers between wild-type and mutant EGFR. These 
confirmed that EAI045 is active and selective for EGFR mutants in a 
monomer state and dimerization-defective EGFR mutants [85]. 

Remarkable synergy was observed in vitro between EAI045 and 
cetuximab (an anti-EGFR monoclonal antibody that blocks EGFR 
dimerization by physically binding the receptor) in NSCLC cell lines 
bearing the double L858R/T790 M mutation. Furthermore, EAI045 
combined with cetuximab potently inhibited Ba/F3 cells harboring the 
triple L858R/T790 M/C797S mutation [85]. In vivo, treatment with 
EAI045 in combination with cetuximab led to significant tumor 
shrinkage in a genetically engineered mouse model of double 
L858R/T790 M and triple L858R/T790 M/C797S mutants, while mice 
treated with EAI045 alone failed to respond to treatment [85]. These 
results indicate that EAI045, combined with cetuximab, is active against 
lung cancers resistant to all EGFR-targeted therapies. 
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JBJ-04-125-02 is another allosteric EGFR-TKI reported to be more 
potent than EAI045 in inhibiting the proliferation of NSCLC cells 
harboring L858R/T790 M/C797S mutations [86]. Dual EGFR targeting 
with the combination of JBJ-04-125-02 and osimertinib enhanced 
apoptosis and delayed the onset of drug resistance compared to either 
single agent alone, both in vitro and in vivo [86]. 

While it is unlikely that allosteric EGFR inhibitors will be effective as 
single-agent treatment as they do not abrogate mutated EGFR signal 
transduction due to receptor dimerization, preclinical data suggest that 
the combination of a traditional EGFR-TKI with an allosteric EGFR in
hibitor could enhance the overall antitumor response and possibly 
prevent the emergence of acquired resistance [85,86]. Still, more 
research is required to validate the use of allosteric EGFR inhibitors for 
the treatment of EGFR-mutant advanced/metastatic NSCLC. 

7. Resistance to EGFR-TKIs 

Several mechanisms responsible for driving acquired resistance to 
EGFR-TKIs have been identified. These can be categorized into either 
EGFR-dependent or EGFR-independent resistance mechanisms (Fig. 4) 
[87]. 

Mutations conferring resistance to EGFR-TKIs usually arise due to the 
treatment-dependent selective pressure exerted on cancer cells, leading 
to the selection of resistant clones harboring additional mutations which 
confer a survival advantage. However, these molecular aberrations have 
also been detected in EGFR-TKI-naïve patients. Furthermore, some of 
these mechanisms may overlap in resistant clones, depending on 
whether the EGFR-TKI treatment is administered as first or second-line 
therapy [88–91]. 

8. EGFR-dependent resistance 

8.1. Primary EGFR mutations – intrinsic resistance to first- and second- 
generation EGFR-TKIs 

Approximately 20-30% of patients with EGFR mutations treated with 
first-generation EGFR-TKIs fail to respond or respond only for a short 
time due to intrinsic resistance to EGFR inhibitors [92]. 

In-frame exon 20 insertions account for 5-10% of all EGFR mutations 
detected in NSCLC patients and are associated with intrinsic resistance 
to first-generation EGFR-TKIs [91]. Interestingly, patients harboring 
exon 20 insertions do not respond to first-generation EGFR-TKIs but 
have a similar OS to patients with common EGFR-activating mutations 
[93]. Exon 20 insertions have also been associated with reduced 
response to third-generation EGFR-TKIs such as osimertinib [94]. 

8.2. Secondary EGFR mutations – acquired resistance to first- and 
second-generation EGFR-TKIs 

The secondary EGFR-T790M mutation is detected in approximately 
50-60% of patients treated with first- or second-generation EGFR-TKIs at 
progression [41]. This mutation causes a threonine-to-methionine sub
stitution at position 790 in exon 20 of the EGFR gene, determining a 
conformational change in the ATP-binding pocket of the kinase domain 
that sterically hinders the binding of first- and second-generation 
EGFR-TKIs. EGFR-T790M mutation also enhances the catalytic activity 
of the EGFR receptor by increasing its affinity for ATP, thus conferring a 
survival advantage to mutant cells [95]. Other less common EGFR mu
tations associated with secondary resistance to EGFR inhibitors include 
L747S, D761Y, and T854A [96]. 

Loss of EGFR-T790M is present in roughly half of the patients treated 
with second-line osimertinib at the time of progression. EGFR-T790M 
loss has been linked with early resistance to second-line osimertinib 
(usually associated with the emergence of EGFR-independent resistance 
mechanisms such as MET/HER2 amplification, KRAS mutations, small- 
cell transformation, and gene fusions) [79,97,98]. In contrast, patients 
who develop late resistance to third-generation EGFR-TKIs are more 
likely to have conserved the EGFR-T790M mutation and acquired 
additional EGFR mutations (e.g., tertiary EGFR-C797S mutation) or 
EGFR amplification [98]. 

8.3. Tertiary EGFR mutations - resistance to third-generation EGFR-TKIs 

EGFR-C797S mutation is the most common tertiary EGFR mutation, 
causing resistance to third-generation EGFR-TKIs [79]. This mutation 
replaces the cysteine in position 797 with a serine, resulting in the loss of 

Fig. 4. Schematic representation of molecular mechanisms involved in resistance to EGFR-TKIs. Acquired resistance to EGFR-TKIs may be divided either into EGFR- 
dependent (e.g., EGFR amplification or mutations) or EGFR-independent (e.g., additional gene amplifications and mutations, oncogenic fusions, bypass pathway 
activation of RAS-MAPK and PI3K/Akt/mTOR, mutations affecting cell-cycle genes, oncogene fusions, activation of the epithelial-to-mesenchymal (EMT) transition, 
and histologic transformation) [79]. Image created with BioRender.com. 
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the covalent bond between the mutant receptor and third-generation 
EGFR-TKIs. EGFR-C797S mutation accounts for 10-25% of cases of 
resistance to second-line osimertinib and approximately 7% of cases 
resistance to first-line osimertinib [79]. Additional tertiary EGFR mu
tations associated with resistance to third-generation EGFR-TKIs include 
G796X, L729X, L718Q, G719X, G724S, and S768I mutations [99]. 

The allelic context in which the EGFR-C797S mutation arises has 
consequences for treatment with EGFR-TKIs. In this regard, the rare 
emergence of the C797S mutation in trans with T790 M mutation confers 
susceptibility to EGFR-TKIs, making it possible to hit both C797S and 
T790 M alleles using first- and third-generation EGFR-TKIs, respectively. 
In contrast, the development of the EGFR-C797S mutation in cis with the 
EGFR-T790M mutation confers resistance to all available EGFR in
hibitors [100–102]. 

9. EGFR-independent mechanisms 

EGFR-independent mechanisms resistance to EGFR-TKIs may 
include the activation of alternative bypass pathways due to the emer
gence of mutations downstream of EGFR, oncogenic gene fusions, gene 
amplification, mutations affecting genes encoding for cell-cycle pro
teins, activation of the epithelial-to-mesenchymal transition (EMT), as 
well as the NSCLC to SCLC histologic transformation [91]. 

Multiple competing EGFR-independent resistance mechanisms may 
co-exist within the same tumor, reflecting the peculiar complexity and 
heterogeneity of NSCLC in response to treatment with EGFR-TKIs [103, 
104]. 

9.1. MET and HER2 amplification 

MET gene amplification is the most common cause of bypass 
pathway activation involved in acquired resistance to EGFR-TKIs since it 
provokes the EGFR-independent phosphorylation of the ErbB3 receptor, 
resulting in the subsequent bypass activation of the PI3K/Akt/mTOR 
pathway [105,106]. MET amplification is detected in approximately 
5-22% of NSCLC patients who progress on first-line treatment with first- 
or second-generation EGFR-TKIs and is associated with poor prognosis 
[105]. Recent data from the AURA3 and FLAURA studies revealed that 
MET amplification is present in roughly 15% of patients treated with 
first-line osimertinib at the time of progression [97,107]. 

HER2 gene amplification is another EGFR-independent mechanism 
causing acquired resistance to EGFR-TKIs. This alteration has been 
detected in approximately 2% of patients who acquired resistance after 
treatment with first-line osimertinib and in 5% of patients treated with 
second-line osimertinib [97,107]. In a small number of cases, HER2 
amplification was found to co-exist with 
EGFR-L792X + C797X + PIK3CA amplification (in 1% of cases), 
EGFR-G796S +MET amplification (1%), and PIK3CA amplification 
(1%) [97]. Recently, HER2 amplification has been reported in a patient 
who experienced intrinsic resistance to osimertinib [108]. 

9.2. Bypass activation – RAS-MAPK and PI3K/Akt/mTOR pathways 

Aberrations involving the RAS-MAPK pathway are known to confer 
resistance to third-generation EGFR-TKIs in patients with EGFR-mutant 
NSCLC. Accordingly, several KRAS mutations (G12S, G12D, G13D, 
Q61R, and Q61 K) have been associated with the emergence of acquired 
resistance to osimertinib, both in the first- and second-line settings [79]. 
BRAF V600E is another mutation that affects the activation of the 
RAS-MAPK pathway. This aberration has been detected in 3% of patients 
at the time of progression with first- or second-line osimertinib [107, 
109,110]. 

Bypass activation of the PI3K/Akt/mTOR pathway may occur either 
through PI3KCA mutations or amplification but also as a result of PTEN 
deletion [111]. In NSCLC, PI3KCA mutations are often present in 
concomitance with mutations affecting other oncogenic driver genes (e. 

g., EGFR and KRAS mutations) and represent a poor prognostic factor 
[112]. Several PI3KCA mutations are associated with resistance to 
second-line osimertinib. These include the E545 K, E542 K, R88Q, 
N345 K, and E418 K mutations, which occur at a frequency of 4–11% 
[79]. 

9.3. Cell-cycle gene alterations and gene fusions 

Aberrations affecting genes encoding for cell-cycle proteins such as 
cyclin D1, cyclin D2, cyclin E1, cyclin-dependent kinase (CDK) 4 and 
CDK6, and the CDK inhibitor 2A have been detected in approximately 
10-12% of patients treated with first- or second-line osimertinib at the 
time of progression, and associate with poor clinical outcomes [79]. 

Oncogenic gene fusions have been identified in 3-10% of cases of 
acquired resistance to second-line osimertinib and can co-exist with 
EGFR-C797S, BRAF mutations, and MET amplification [79]. Examples of 
these molecular aberrations include GFR3–TACC3 and RET–ERC1 [97]. 
Furthermore, several other oncogenic gene fusions (e.g., CCDC6–RET, 
NTRK1–TPM3, NCOA4–RET, GOPC-ROS1, AGK–BRAF, and ESYT2–
BRAF) are potentially involved in acquired resistance to second-line 
osimertinib [79]. 

The SPTBN1-ALK fusion has been reported in a patient who devel
oped resistance after treatment with first-line osimertinib, but not in 
patients treated with osimertinib as second-line therapy [97,107]. The 
oncogenic EML4-ALK gene fusion is associated with resistance to 
second-line osimertinib [113]. Lastly, another study reported the novel 
oncogenic PLEKHA7-ALK gene fusion as a determinant of resistance 
following treatment with second-line osimertinib [114]. 

9.4. Histologic and phenotypic transformation 

The histologic transformation from NSCLC to SCLC (small-cell lung 
cancer) is a known mechanism of resistance to first-generation EGFR- 
TKIs that arises in approximately 4-15% of patients treated with EGFR- 
TKIs [79,115]. This transformation dramatically impacts patients’ 
prognosis and has also been reported to confer resistance to osimertinib 
[116]. Although a comprehensive understanding of the underlying 
mechanisms responsible for histologic transformation is missing, Lee 
et al. found that the complete inactivation of tumor suppressor genes 
such as TP53 and RB1 represent a predisposing factor for histologic 
transformation [117]. 

Resistance to osimertinib is associated with the expression of EMT 
transcription factor TWIST-1 in NSCLC cells harboring EGFR-activating 
mutations [118]. In accordance, cells samples obtained from advan
ced/metastatic NSCLC patients who acquired resistance to first- and 
third-generation EGFR-TKIs exhibit EMT features without the presence 
of additional EGFR mutations. EMT features include a reduction in the 
expression of epithelial cell junction proteins (e.g., E-cadherin) and a 
concomitant increase expression of mesenchymal markers (e.g., 
vimentin) [119]. 

9.5. Other EGFR-independent resistance mechanisms 

Additional EGFR-independent resistance mechanisms may include 
fibroblast growth factor 2 (FGF2) amplification, AXL overexpression, as 
well as amplification of SRC family kinases (SFKs) and focal adhesion 
kinase (FAK) [111,120]. 

10. What’s next? - EGFR-TKIs combination therapies 

Acquired resistance to EGFR-TKIs poses a significant challenge in 
long-term clinical responses given the scarcity of effective pharmaco
logical interventions for patients who progress after the failure of 
treatment with third-generation EGFR-TKIs. Therefore, effective thera
pies for patients who experience disease progression due to the emer
gence of resistance continue to remain elusive. 
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The combination of EGFR-TKIs with other anticancer agents (e.g., 
chemotherapy, radiotherapy, and targeted therapies) has recently 
emerged as a strategy to avoid, or at least delay, the emergence of ac
quired resistance to EGFR-TKIs with the intent to improve clinical out
comes in lung adenocarcinoma patients whose tumors express EGFR- 
activating mutations (Fig. 5). 

11. EGFR-TKIs in combination with chemotherapy 

Several double-blind, randomized, phase III studies (INTACT-1, 
INTACT-2, TALENT, and TRIBUTE) evaluated the efficacy of EGFR-TKIs 
(gefitinib or erlotinib) with concomitant cytotoxic platinum-based 
chemotherapy as first-line therapy for patients with advanced/meta
static NSCLC. However, results obtained were disappointing as these 
trials failed to demonstrate clinical benefits in patients treated with this 
combination [121–124]. 

Two hypotheses have been proposed to explain the failure of these 
trials: lack of adequate patient selection based on the EGFR status and 
the administration schedule of chemotherapeutic agents [125,126]. 
Unfortunately, no proper optimization of scheduling was performed 
before the initiation of these randomized studies. 

The hypothesis that patient selection based on EGFR status influences 
clinical outcomes is supported by subgroup analyses of several phase III 
studies. These reported improvements in PFS and OS for the combina
tion treatment over chemotherapy alone in patients with adenocarci
noma histology and never-smokers (characteristics usually associated 
with EGFR-activating mutations) [122–124]. 

11.1. Preclinical studies 

Pemetrexed is a multitargeted antifolate drug commonly used in 
NSCLC treatment, either as a single agent or in combination with other 
chemotherapeutics, in the first-line, second-line, or maintenance set
tings [127,128]. Pemetrexed and EGFR-TKIs have different mechanisms 
of action and minimal overlapping toxicity profiles. Therefore, the 
combined treatment with these two drugs with proper scheduling is 
expected to exert a synergistic anticancer effect with minimal additional 
toxicity. 

The sequence of administration of erlotinib and pemetrexed in
fluences the cytotoxicity of this combination. A rational explanation for 
the antagonistic effect is the erlotinib-dependent induction of cell cycle 
arrest in the G1 phase that confers protection against the cytotoxic ac
tivity of pemetrexed [129–131]. The synergistic interaction between 
EGFR-TKIs and pemetrexed was postulated to be related to the modu
lation of EGFR and Akt phosphorylation and the inhibition of thymi
dylate synthase (TS) expression and activity [132–134]. 

Paclitaxel is another well-established anticancer drug used for 
treating a variety of solid tumors, including NSCLC [135]. Similar to the 
experience on the combination of pemetrexed with EGFR-TKIs, the 
sequential administration of paclitaxel followed by gefitinib exhibits a 
synergistic effect in lung adenocarcinoma cell lines expressing mutant 
EGFR receptor [136]. In contrast, the reverse sequence (gefitinib fol
lowed by paclitaxel) resulted in an antagonist effect as the exposure of 
cancer cells to gefitinib induces cell cycle arrest in the G1 phase and 
therefore protects cells from subsequent paclitaxel-mediated cytotox
icity. Moreover, the sequential combination of paclitaxel plus gefitinib 
determines an increase in the levels of phospho-EGFR that makes cancer 
cells more susceptible to treatment with EGFR inhibitors [136]. 

11.2. EGFR-TKIs plus chemotherapy in unselected NSCLC patients 

The phase II/III FASTACT-1 and FASTACT-2 (NCT00883779) trials 
explored the efficacy of the sequential combination of EGFR-TKIs with 
platinum-based doublet chemotherapy (gemcitabine plus carboplatin or 
cisplatin) in an unselected population of chemotherapy-naïve 
advanced/metastatic NSCLC patients [137]. In FASTACT-1, patients 
who received the combination exhibited a significantly longer PFS, and 
this benefit was consistent across all clinical subgroups. There were no 
differences between the two treatment arms concerning OS [137]. 

These results were later confirmed in the FASTACT-2 study. Patients 
treated with the combination had a significantly longer PFS (7.6 months 
vs. 6.0 months, HR = 0.57; 95% CI 0.47–0.69; p < 0.0001) and OS (18.3 
months vs. 15.2 months; HR = 0.79; 95% CI 0.64–0.99; p = 0.0420) than 
patients receiving chemotherapy plus placebo [138]. A later biomarker 
analysis confirmed that only patients harboring EGFR mutations 
benefited from the combination treatment concerning PFS (16.8 months 

Fig. 5. Overview of possible combination therapies for the treatment of EGFR-mutant advanced/metastatic NSCLC. Several clinical trials are exploring the feasibility 
of these combination strategies for treating advanced/metastatic NSCLC patients whose tumors express EGFR-activating mutations. Image created with Bio
Render.com 
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vs. 6.9 months; HR = 0.25; 95% CI 0.16–0.39; p < 0.0001) and OS (31.4 
months vs. 20.6 months; HR = 0.48; 95% CI 0.27–0.84; p = 0.0092) 
[139]. 

Several clinical trials reported promising results concerning the ef
ficacy and safety of EGFR-TKIs in combination with platinum/peme
trexed chemotherapy as first-line therapy for EGFR-mutant advanced/ 
metastatic NSCLC (Table 6) [140–146]. 

A recent meta-analysis by Wu et al. reviewed the results obtained in 
eight randomized clinical trials (involving 1349 patients with EGFR- 
mutant NSCLC) exploring the efficacy of first-generation EGFR-TKIs 
combined with platinum-doublet chemotherapy (carboplatin or 
cisplatin plus pemetrexed) versus EGFR-TKI monotherapy as first-line 
therapy [147]. Combination treatment was associated with better PFS 
and OS than EGFR-TKI monotherapy (pooled HR of PFS and OS for the 
combination therapy was 0.56; 95% CI 0.50–0.64; p < 0.00001, and 
0.70 (95% CI 0.54–0.90; p = 0.005, respectively). ORR in the combi
nation group was significantly higher than in the EGFR-TKI mono
therapy group (RR 1.18; 95% CI 1.10–1.26). Although clinically 
manageable, the addition of chemotherapy to EGFR-TKI monotherapy 
was associated with a higher incidence of chemotherapy-induced 
toxicity [147]. 

11.3. Third-generation EGFR-TKIs plus chemotherapy 

To date, very little preclinical data is available about the efficacy and 
safety of the combination of third-generation EGFR-TKIs (e.g., osi
mertinib and almonertinib) with chemotherapy. Recently, La Monica 
et al. showed that the combination of osimertinib with cisplatin- 
pemetrexed chemotherapy inhibits cell proliferation and induces cell 
death in EGFR-T790M-positive PC9 and HCC827 NSCLC cell lines and 
NSCLC EGFR-T790M PC9 nude mice xenografts. Moreover, combination 
treatment delayed the emergence of acquired resistance to EGFR-TKIs 
[148]. 

EGFR-TKIs, have been reported to interact with ABC transporters, 
either as substrates or inhibitors [149–152]. ABC transporters are 
responsible for the efflux of chemotherapeutic agents and the emergence 
of multidrug-resistant (MDR) phenotypes. In this regard, Wu et al. re
ported that almonertinib reverses the MDR mediated by the ABCB1 
(P-glycoprotein) drug transporter by inhibiting the transporter at sub
micromolar concentrations, hence re-sensitizing ABCB1-overexpressing 
cells to conventional cytotoxic agents [153]. This finding is in line with a 
previous report by Hsiao et al. that found that osimertinib inhibits the 
ABCB1 transporter without affecting its expression levels, enhances 
drug-induced apoptosis, and reverses the MDR phenotype in 
ABCB1-overexpressing cancer cells [154]. 

Overall, these findings have implications for the choice of chemo
therapy as the expression of drug transporters might be able to predict 
synergism between EGFR-TKIs and cytotoxic drugs. 

Recently, Okamoto et al. reported the results of the first randomized 
phase II study comparing the efficacy and safety of the combination of 
osimertinib with carboplatin-pemetrexed as second-line therapy for 

patients who progressed after developing acquired resistance to EGFR- 
TKIs due to the emergence of the secondary EGFR-T790M mutation 
[155]. The combination of osimertinib and carboplatin-pemetrexed 
failed to significantly prolong PFS (HR = 1.09; 95% CI 0.51–2.32; 
p = 0.83). Median PFS was 15.8 months (95% CI 7.6–25.9 months) for 
patients in the osimertinib group and 14.6 months (95% CI 12.9–26.4 
months) in the combination group. Analysis of OS and ORR did not yield 
results supporting the combination treatment. Despite an expected 
higher frequency of adverse events, the combination of osimertinib with 
chemotherapy was generally tolerable [155]. 

The combination of osimertinib with platinum-based chemotherapy 
holds the promise to represent a realistic strategy to delay the emergence 
of resistance and achieve long-term clinical responses, especially for 
patients harboring CNS metastases given the higher CNS activity of 
third-generation EGFR-TKIs. However, available clinical data concern
ing the combination of osimertinib plus chemotherapy is limited and 
mostly refers to anecdotal case reports, emphasizing the necessity of 
additional evaluation in randomized phase III clinical trials [156–160]. 

12. EGFR-TKIs combined with radiotherapy (RT) 

Brain metastases (BMs) are a common life-threatening complication 
of NSCLC, causing neurological symptoms and severely impacting both 
the quality of life and survival of patients. Up to 70% of patients whose 
tumors harbor EGFR-activating mutations develop BMs [161–163]. 
Radiotherapy (RT) is a treatment commonly used in NSCLC therapy 
[164]. NSCLC patients with multiple BMs are treated with whole-brain 
radiation therapy (WRBT) to reduce neurological symptoms, whereas 
patients with few BMs may be eligible to receive ablative treatment with 
either stereotactic radiosurgery (SRS) or surgery [165]. 

Treating and preventing the development of BMs represents a chal
lenge since most traditional cytotoxic agents and novel tyrosine kinase 
inhibitors do not pass the blood-brain barrier (BBB) and do not accu
mulate within the brain due to increased efflux. First- and second- 
generation EGFR-TKIs have limited activity against BMs due to poor 
drug diffusion within the CNS. Interestingly, the BBB permeability of 
first-generation EGFR-TKIs is increased during brain RT due to 
radiation-induced disruption of the barrier, leading to higher drug 
concentration in the brain [166]. Third-generation EGFR-TKIs (e.g., 
osimertinib and almonertinib) have demonstrated noticeable activity 
against BMs in NSCLC patients with EGFR mutations due to their higher 
diffusion within the brain [167]. 

Since the combination of EGFR-TKIs with RT might exert a syner
gistic antitumor effect, this strategy is receiving increasing attention for 
the treatment of EGFR-mutant NSCLC patients with BMs. 

12.1. Preclinical studies of EGFR-TKI plus radiotherapy 

Several preclinical studies indicated that EGFR-TKIs possess radio- 
sensitizing effects on cancer cells [168–172]. Wang et al. recently re
ported that osimertinib, in combination with radiotherapy, significantly 

Table 6 
Trials involving first-line treatment with EGFR-TKIs plus chemotherapy in EGFR-mutant advanced/metastatic NSCLC.  

Study Phase Treatment Combination Comparison ORR PFS (months) OS (months) 

CALGB 30406 II Paclitaxel/Carboplatin + Erlotinib Concurrent Erlotinib 73% vs. 70% 17.2 vs. 14.1 38.1 vs. 31.3 
Han et al II Pemetrexed/Carboplatin + Gefitinib Sequential Gefitinib 82.5% vs. 65.9% 17.5 vs. 11.9 32.6 vs. 25.8 
Xu et al. II Pemetrexed/Carboplatin + Icotinib Sequential Icotinib 77.8% vs. 64.0% 16.0 vs. 10.0 36.0 vs. 34.0 
An et al II Pemetrexed + Gefitinib Sequential Gefitinib 80.0% vs. 73.3% 18 vs. 14 34 vs. 32 
Cheng et al. II Pemetrexed + Gefitinib Concurrent Gefitinib 80.2% vs. 73.8% 15.8 vs. 10.9 43.4 vs. 36.8 
NEJ009 III Pemetrexed/Carboplatin + Gefitinib Concurrent Gefitinib 84% vs. 67% 20.9 vs. 11.9 50.9 vs. 38.8 
Noronha III Pemetrexed/Carboplatin + Gefitinib Concurrent Gefitinib 75.3% vs. 62.5% 16.0 vs. 8.0 NR vs. 17.0 
Yang et al. III Pemetrexed/Cisplatin + Gefitinib Sequential Gefitinib 65.4% vs. 70.8% 12.9 vs. 16.6 32.4 vs. 45.7 

Abbreviations: EGFR-TKIs (EGFR – Tyrosine Kinase Inhibitors); NSCLC (Non-Small Cell Lung Cancer); PFS (Progression-Free Survival); OS (Overall Survival); ORR 
(Objective Response Rate); NR (Not Reached). 
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decreased the proliferation of NSCLC cells harboring the T790 M/L858R 
EGFR mutations, reduced G2/M phase cell cycle arrest, and blocked the 
irradiation-induced DNA double-strand breaks (DSBs) repair, both in 
vitro and in vivo [172]. 

Baumann et al. reviewed and summarized the principal mechanisms 
behind the synergistic interaction between EGFR-TKIs and RT. These 
include the direct killing of cancer stem cells (CSCs), cellular radio
sensitization via impaired signal transduction, suppression of DSBs 
repair, reduced repopulation, and improved reoxygenation during 
fractionated radiotherapy [173]. 

12.2. EGFR-TKIs plus radiotherapy in the clinical practice 

Insights gathered in preclinical studies suggest that the addition of 
RT to EGFR-TKI treatment might potentiate the antitumor activity of 
EGFR-TKIs in advanced/metastatic NSCLC patients with EGFR muta
tions, hence providing a rationale for employing this combination in the 
clinical setting. Initial retrospective study of EGFR-TKIs plus brain RT 
found no survival benefit over EGFR-TKI monotherapy in EGFR-mutant 
NSCLC patients with BMs [174,175]. Nonetheless, several later studies 
indicated that first-generation EGFR-TKIs in combination with brain RT 
might indeed be more effective than EGFR-TKI monotherapy for treating 
NSCLC patients with BMs [176–179]. 

Dong et al. reviewed the efficacy of this combination as first-line 
therapy in a meta-analysis that analyzed the results obtained in 12 
retrospective studies performed in 1533 EGFR-mutant NSCLC patients 
with BMs who received either EGFR-TKIs plus brain RT (mainly WBRT) 
or EGFR-TKI monotherapy [180]. Combination treatment was associ
ated with statistically significant improvements in OS (HR = 0.64, 95% 
CI 0.52–0.78; p < 0.001) and iPFS (HR = 0.62, 95% CI 0.50–0.78; 
p < 0.001) as compared to EGFR-TKI monotherapy [180]. Although 
promising, these findings need to be interpreted with caution as they are 
not based on randomized controlled trials and have several limitations, 
including insufficient subgroup analysis, bias towards Asian pop
ulations, and lack of assessment of treatment-related adverse events. 
Therefore, additional randomized clinical trials are needed to clarify the 
feasibility of this strategy. 

Yang et al. recently published the results of a randomized phase III 
clinical trial (NCT01887795), assessing the efficacy and safety of erlo
tinib with concurrent WBRT as first-line treatment in NSCLC patients 
harboring BMs and expressing either EGFR-mutant or EGFR-wt receptor. 
Results failed to demonstrate clinical benefits in patients treated the 
combination over patients treated with erlotinib alone [181]. In com
parison with the WBRT-alone group, median PFS and OS in the combi
nation group were 5.3 vs. 4.0 months (p = 0.825) and 12.9 vs. 10.0 
months (p = 0.545), respectively. Median iPFS for WBRT concurrent 
erlotinib was 11.2 months vs 9.2 months for WBRT-alone (p = 0.601). In 
EGFR-mutant patients, iPFS (14.6 vs. 12.8 months; p = 0.164), PFS (8.8 
vs. 6.4 months; p = 0.702), and OS (17.5 vs. 16.9 months; p = 0.221) 
[181]. 

12.3. Third-generation EGFR-TKIs plus radiotherapy 

Third-generation EGFR-TKIs are more effective in treating BMs due 
to higher penetration and activity within the CNS. Results obtained in 
the AURA3 and FLAURA studies demonstrate that osimertinib prolongs 
the median CNS PFS compared with platinum-based chemotherapy, 
regardless of prior brain radiotherapy [72,73,182]. Since osimertinib 
has radio-sensitizing effects on EGFR-mutant NSCLC cell lines, 
combining RT with osimertinib might be a feasible strategy to improve 
the efficacy of this combination [172]. Nevertheless, clinical data con
cerning this combination is limited, emphasizing the need for large 
randomized controlled trials in selected populations of metastatic 
NSCLC patients harboring EGFR-activating mutations. 

Several clinical trials will evaluate the efficacy and safety of third- 
generation EGFR-TKIs plus brain RT. Examples include the 

randomized phase II NORTHSTAR study (NCT03410043), which will 
investigate the efficacy and safety of osimertinib plus brain RT, and the 
randomized phase II OUTRUN trial (NCT03497767), which will explore 
the combination of osimertinib with or without SRS in both first-line and 
second-line settings for EGFR-mutant NSCLC. Moreover, two phase II 
trials will be conducted in China to explore the efficacy and safety of 
almonertinib in combination with thoracic RT as first-line therapy in 
EGFR-mutant locally advanced NSCLC patients (NCT04636593) and to 
evaluate the combination of SRS with sequential almonertinib in EGFR- 
TKI-naïve NSCLC patients harboring BMs (NCT04643847). 

13. EGFR-TKIs combined with anti-angiogenic agents 

The VEGF signaling pathway plays a pivotal role in regulating 
angiogenesis and is associated with increased proliferation and meta
static dissemination in many human cancers, including NSCLC [183]. 
Consequently, several compounds were developed to disrupt the acti
vation of the VEGF pathway. Examples include monoclonal antibodies 
directed against VEGF-A (e.g., bevacizumab) and VEGF-R (e.g., ramu
cirumab), and small-molecule TKIs with activity against VEGF receptor 
(e.g., vandetanib, axitinib, nintedanib, sunitinib, and sorafenib) [184]. 

13.1. Preclinical assessment of combined VEGF-EGFR in NSCLC 

NSCLC cells harboring EGFR mutations express higher levels of VEGF 
compared to cells expressing wild-type EGFR, as the activation of EGFR 
signaling up-regulates the expression of HIF-1α in a hypoxia- 
independent manner, leading to increased tumor angiogenesis 
[185–187]. The activation of VEGF signaling supports tumor growth 
through the engagement of PI3K/Akt/mTOR and MAPK pathways 
[188]. In a xenograft mouse model, VEGF expression increased after the 
development of resistance to erlotinib. Moreover, despite the 
erlotinib-mediated suppression of EGFR signaling, phosphorylated ERK 
and Akt were up-regulated as compared with the erlotinib-sensitive 
phase, suggesting that VEGF is directly involved in acquired resistance 
to EGFR-TKIs [189,190]. 

Evidence obtained from preclinical studies suggests that the EGFR 
and VEGF pathways are linked and may replace each other to sustain the 
growth and proliferation of cancer cells. Furthermore, anti-angiogenic 
drugs may increase the delivery of EGFR-TKIs within the tumor tissue 
by normalizing tumor vasculature, hence resulting in increased anti
cancer effect [191]. As a result, the dual inhibition of EGFR-VEGF 
pathways may represent a viable strategy to suppress tumor growth 
and delay the emergence of drug resistance, potentially supporting its 
translation into clinical practice [190]. 

13.2. Combined VEGF-EGFR inhibition in the clinic 

Initial evidence supporting the efficacy of dual VEGF-EGFR inhibi
tion in patients with EGFR-mutant advanced NSCLC was provided by 
retrospective group analyses from the BeTa and ATLAS clinical trials 
[188]. A recent meta-analysis by Chen et al. concluded that 
first-generation EGFR-TKIs, combined with anti-angiogenic drugs such 
as bevacizumab or ramucirumab, are more effective than EGFR-TKI 
monotherapy in the first-line setting for EGFR-mutant advanced/meta
static NSCLC, although with an increase in the number of 
treatment-related adverse events [192]. 

Conforti et al. analyzed the results of several randomized controlled 
trials combining EGFR-TKIs with anti-angiogenic drugs [193]. PFS was 
significantly longer in patients treated with EGFR-TKIs combined with 
an anti-angiogenic drug (e.g., bevacizumab or ramucirumab) than in 
patients who received EGFR-TKI monotherapy, with a pooled median 
PFS of 17.8 months (95% CI 16.5–19.3) for the combination versus 11.7 
months (95% CI 11.1–12.7) for EGFR-TKI as monotherapy. There were 
no substantial differences in OS and ORR between the two treatment 
arms [193]. 
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The randomized, multicenter, phase III CTONG-1509 trial 
(NCT02759614) investigated the efficacy and safety of bevacizumab 
with or without erlotinib in a cohort of Chinese patients with EGFR- 
mutant advanced/metastatic NSCLC. Results demonstrate that the 
combination of erlotinib and bevacizumab has superior efficacy to 
erlotinib monotherapy with minimal additional toxicity [194]. Median 
PFS was 18.0 months (95% CI 15.2–20.7) in the combination group and 
11.2 months (95% CI 9.7–12.5) in patients treated with erlotinib mon
otherapy (HR = 0.57; 95% CI 0.44–0.75; p < 0.001). ORR was 86.3% 
and 84.7% for the combination and erlotinib monotherapy groups, 
respectively (p = 0.741). 

EMA approved the combination of erlotinib plus bevacizumab as 
first-line treatment for EGFR-mutant advanced/metastatic NSCLC based 
on the positive results obtained in the pivotal phase II JO25567 trial. In 
this study, patients treated with erlotinib plus bevacizumab achieved a 
longer median PFS (16.0 months; 95% CI 13.9–18.1) as compared with 
patients treated with erlotinib alone (9.7 months; 95% CI 5.7–11.1) for 
erlotinib alone (HR = 0.54; 95% CI 0.36–0.79; p = 0.0015) [195]. The 
median OS was 47.0 months for the combination group and 47.4 months 
for the erlotinib monotherapy group (HR = 0.81; 95% CI 0.53–1.23; 
p = 0.3267) [196]. The combination of erlotinib plus bevacizumab was 
well tolerated in patients [197]. 

The efficacy and safety of erlotinib plus ramucirumab were investi
gated in the phase III RELAY trial (NCT02411448) in NSCLC patients 
expressing EGFR-mutant tumors. Patients in the combination arm had a 
longer median PFS (19.4 vs. 12.4 months; HR = 0.59; p < 0.0001) and 
DoR (18.0 vs. 11.1 months, p = 0.0003) than patients treated with 
erlotinib plus placebo [198]. Based on the results obtained in the RELAY 
study, both EMA and FDA approved ramucirumab plus erlotinib as 
first-line treatment for EGFR-mutant advanced or metastatic NSCLC. 

13.3. Third-generation EGFR-TKIs in combination with angiogenesis 
inhibitors 

Very little data is available concerning the efficacy of osimertinib in 
combination with angiogenesis inhibitors. The open-label, multicentre 
phase I study (NCT02789345) investigated the safety of osimertinib in 
combination with necitumumab (a human IgG1 anti-EGFR antibody) or 
ramucirumab in patients with advanced EGFR-T790M-positive NSCLC 
who had progressed following treatment with first- or second-generation 
EGFR-TKIs [199]. Median PFS was 11.0 months (90% CI 5.5–19.3), and 
the median DoR was 13.4 months (90% CI 9.6–21.2). Remarkably, ef
ficacy was observed both in patients with and without CNS metastasis 
(ORR 60% and 87%; median PFS 10.9 and 14.7 months, respectively) 
[199]. 

Part of the patients with EGFR-mutant advanced/metastatic NSCLC 
enrolled in the NEJ026 trial received osimertinib plus bevacizumab after 
disease progression while on therapy with erlotinib plus bevacizumab 
[200]. Median PFS between enrollment and progressive disease of 
second-line treatment was 28.6 months (95% CI 22.1–35.9) in the group 
that previously received the combination of erlotinib plus bevacizumab 
and 24.3 months (95% CI 20.4–29.1) in the erlotinib monotherapy 
group (HR = 0.80; 95% CI 0.59–1.10). In both arms, median OS of pa
tients with osimertinib second-line treatment was longer than other 
second-line chemotherapy groups [50.7 months (95% CI, 38.0–50.7) 
versus 40.1 months (95% CI, 29.5 to not reached), (HR = 0.645; 95% CI, 
0.40–1.03)], respectively [200]. 

Moreover, results obtained in a randomized phase II study performed 
in Japan, exploring the combination of osimertinib plus bevacizumab 
against osimertinib monotherapy in NSCLC patients previously treated 
with EGFR-TKIs, failed to show benefit concerning PFS (9.4 months vs. 
13.5 months; HR = 1.44; 80% CI 1.00–2.08; p = 0.2) and OS (not 
reached vs. 22.1 months; p = 0.96) in patients treated with the combi
nation versus patients treated with osimertinib monotherapy [201]. 
Since the results obtained from the previously mentioned studies failed 
to show a clear benefit in PFS and OS with the combination of 

osimertinib and bevacizumab, the use of this combination for the 
treatment of EGFR-mutant NSCLC patients who progressed while on 
therapy with first-generation EGFR-TKIs is not recommended. 

Overall, clinical data concerning the efficacy of third-generation 
EGFR-TKIs plus angiogenesis inhibitors as first-line therapy for EGFR- 
mutated NSCLC is lacking. Additional insights will be provided by two 
studies currently ongoing: the phase II FLAIR trial, which will explore 
the efficacy of the combination of osimertinib plus bevacizumab for the 
first-line treatment of advanced/metastatic NSCLC patients harboring 
EGFR exon 21 L858R substitution, and by the phase II RAMOSE study 
(NCT03909334), which is exploring the efficacy and safety of the 
combination of osimertinib and ramucirumab for treatment-naïve EGFR- 
mutant NSCLC patients [202,203]. 

14. EGFR-TKI combined with MET inhibitors 

The mesenchymal-epithelial transition receptor (c-MET) is a trans
membrane tyrosine kinase receptor encoded by the MET proto-oncogene 
located on human chromosome 7 (7q21-31) [204]. c-MET, through the 
interaction with its ligand - the hepatocyte growth factor (HGF) - plays a 
pivotal role in regulating several physiological processes, including 
embryogenesis, liver regeneration, and wound healing through the 
engagement of pathways such as RAS-MAPK, PI3K/Akt/mTOR, JAK/
STAT, and Wnt/β-catenin pathways [204]. 

Several molecular aberrations (e.g., MET amplification, MET point 
mutations, and exon 14 skipping mutations) cause a dysregulated acti
vation of c-MET signaling and play a crucial role in the development and 
progression of several human cancers, including NSCLC [205]. As a 
result, various HGF/c-MET-targeted therapies have been developed. 
Examples of drugs able to disrupt c-MET signaling include small mole
cule inhibitors (e.g., crizotinib, tivantinib, savolitinib, tepotinib, cabo
zantinib, and foretinib), monoclonal antibodies directed against c-MET 
(e.g., onartuzumab), and antibodies against HGF (e.g., ficlatuzumab and 
rilotumumab) [206]. In this regard, Moosavi et al. recently provided a 
comprehensive review regarding HGF/MET-targeting agents in associ
ation with other therapeutic strategies for cancer treatment [207]. 

In EGFR-mutated NSCLC, MET amplification emerged as a critical 
resistance mechanism to EGFR-TKIs due to bypass activation of the 
PI3K/Akt/mTOR pathway [105,106]. Patients who develop 
MET-mediated resistance after treatment with osimertinib show inferior 
PFS and OS than those without MET amplification [208]. Therefore, the 
combination of small-molecule inhibitors, able to simultaneously target 
EGFR and c-MET, has been suggested as a potential strategy to achieve a 
more robust inhibition of pro-tumorigenic signaling and avoid the 
emergence of acquired resistance in patients treated with EGFR-TKIs 
[207]. 

14.1. Preclinical studies involving combined EGFR-MET inhibition 

Engelman et al. firstly reported that EGFR-mutant NSCLC cell line 
HCC827 developed resistance when exposed to increasing concentra
tions of gefitinib due to emergence of the MET amplification and that the 
combined EGFR-MET inhibition abrogates PI3K/Akt/mTOR and ERK 
signaling, effectively restoring sensitivity to EGFR-TKIs, both in vitro 
and in vivo [106]. Tang et al. later confirmed the efficacy of dual 
EGFR-MET inhibition in inducing the regression of H1975 
erlotinib-resistant tumor xenografts treated with a combination of 
erlotinib plus the small-molecule MET inhibitor SU11274 [209]. Van der 
Steen et al. reported that the interaction between erlotinib and crizotinib 
could depend on lysosomal redistribution of the drugs and inhibition of 
phosphor-PRAS40 [210,211]. 

Furthermore, Shi and collaborators recently demonstrated that MET 
amplification and c-MET hyperactivation confer resistance to both first 
and third-generation EGFR-TKIs in the lung adenocarcinoma HCC827 
cell line [212]. Besides, c-MET inhibition, obtained either with a 
small-molecule c-MET inhibitor or gene knockdown, effectively restores 
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sensitivity to osimertinib, both in vitro and in vivo [212]. The complete 
suppression of ErbB3 phosphorylation – obtained through the combined 
EGFR-MET inhibition - is essential to restore sensitivity to osimertinib in 
cell lines that acquired resistance to third-generation EGFR-TKI through 
MET amplification [212]. 

14.2. Combined EGFR-MET inhibition in the clinic 

Preclinical results obtained by several authors seem to confirm the 
efficacy of combined MET-EGFR inhibition in overcoming resistance to 
EGFR-TKIs [213–215]. Therefore, the combined inhibition of EGFR and 
c-MET signaling emerged as a potential treatment strategy for 
EGFR-mutant advanced/metastatic NSCLC patients who experience 
tumor progression after the failure of first- or second-line EGFR-TKI 
treatment due to acquisition of MET aberrations [216]. Nevertheless, 
results obtained in several phase III trials, which combined c-MET in
hibitors with first-generation EGFR-TKIs, have shown conflicting results 
[217]. However, most of these studies were performed in unselected 
cohorts of patients, further emphasizing the need to select patients based 
on EGFR and MET status. 

Several case reports suggested that combined inhibition of EGFR and 
c-MET signaling could help overcome MET-induced resistance in pa
tients experiencing progression after treatment with third-generation 
EGFR-TKIs. In this regard, osimertinib, in combination with the c-MET 
inhibitor crizotinib, was tested in two patients who developed resistance 
to osimertinib due to MET amplification (detected through NGS-based 
ctDNA profiling) with positive results [208]. In another case report, a 
patient who developed MET-mediated resistance after treatment with 
erlotinib was treated with a combination of osimertinib and crizotinib 
and achieved partial response [218]. 

In their retrospective analysis, Wang et al. provided further confir
mation regarding the feasibility of the EGFR-TKIs/crizotinib combina
tion for targeting MET-amplified, EGFR-mutant NSCLC. Nine out of 
eleven patients with MET amplification (acquired during therapy with 
first- or third-generation EGFR-TKIs) and treated with a combination of 
either first- or third-generation EGFR-TKIs plus crizotinib achieved 
partial response, with an ORR of 81.8% and a median PFS of 5.8 months 
[219]. Interestingly, patients treated with this combination experienced 
the loss of MET amplification at disease progression [219]. 

Updated results from the phase I CHRYSALIS study (NCT02609776), 
which explored the safety and efficacy of the combination of ami
vantamab with lazertinib (a third-generation EGFR-TKI), in both 
chemotherapy-naïve and osimertinib-relapsed patients with EGFR- 
mutated NSCLC were presented at the American Society of Clinical 
Oncology (ASCO) 2021 [220]. Combination treatment with amivanta
mab and lazertinib yielded responses in 36% of chemotherapy-naïve 
patients who progressed while on osimertinib. NGS-based ctDNA 
biomarker analyses identified a subgroup of patients harboring both 
EGFR and MET alterations more likely to respond to combination 
treatment. In this regard, median PFS for biomarker-positive and 
negative patients was 6.7 months (CI 95%, 3.4–NR) and 4.1 months (CI 
95%, 1.4–9.5), respectively [220]. 

The efficacy and safety of the combination of amivantamab (an 
EGFR-MET bispecific antibody) and lazertinib will be investigated in the 
phase III MARIPOSA study (NCT04487080) as first-line treatment for 
EGFR-mutant advanced/metastatic NSCLC patients harboring EGFR 
exon19del or exon 21 L858R substitution [221]. Another phase Ib/II 
trial (NCT02335944) evaluated the efficacy of third-generation 
EGFR-TKI nazartinib in combination with the MET inhibitor capmati
nib [222]. Results do not support the use of this combination over 
EGFR-TKI monotherapy in unselected MET patients. Nevertheless, cap
matinib plus nazartinib demonstrated clinical efficacy in MET-positive 
patients, confirming the role of MET-related aberrations in driving 
resistance to EGFR-TKIs. The combination treatment was well tolerated, 
with a similar safety profile across the groups [222]. 

The multi-arm, open-label, multicentre phase Ib TATTON study 

(NCT02143466) assessed the safety and tolerability of osimertinib in 
combination with other targeted therapies such as selumetinib (MEK1/2 
inhibitor), savolitinib (MET-TKI), or durvalumab [anti-programmed cell 
death ligand 1 (anti-PD-L1) monoclonal antibody] for the treatment of 
MET-amplified, EGFR-mutant advanced/metastatic NSCLC patients who 
had progressed during treatment with third-generation EGFR-TKIs 
[223]. Clinical results demonstrated the safety of combining osimertinib 
with selumetinib or savolitinib, whereas the combination of osimertinib 
plus durvalumab was deemed not feasible due to increased reports of 
interstitial lung disease [223]. 

In the TATTON study, two expansion cohorts were considered: parts 
B and D. Part B included three cohorts of patients: patients who had 
previously received a third-generation EGFR-TKI (B1) and EGFR-TKI- 
naïve patients who were either EGFR-T790M-positive (B2) or negative 
(B3). In contrast, part D enrolled patients who had not previously 
received third-generation EGFR-TKIs and were EGFR-T790M-negative. 
Final data for the two expansion cohorts (parts B and D) were presented 
at the World Conference on Lung Cancer (WCLC) 2020 [224]. The pri
mary endpoint was safety tolerability, and secondary endpoints 
included ORR, PFS, and pharmacokinetics. Median PFS was 5.5 months 
(95% CI 4.1–7.7), 9.1 months (95% CI 5.5–12.8), 11.1 months (95% CI 
4.1–22.1), and 9.0 months (95% CI 5.6–12.7) for cohorts B1, B2, B3, and 
D, respectively. ORR was 33%, 65%, 67%, and 62% for cohorts B1, B2, 
B3, and D, respectively [224]. 

Overall, results from the TATTON study demonstrate that the com
bination of osimertinib and savolitinib has promising antitumor activity 
in MET-amplified, EGFR-mutant advanced/metastatic NSCLC who had 
progressed on previous treatment with third-generation EGFR-TKIs, 
warranting further investigation in randomized phase III trials [225]. 

15. EGFR-TKIs combined with MEK inhibitors 

MEK is a key downstream component of the RAS/RAF/MEK/ERK 
signaling pathway, a tightly regulated intracellular pathway involved in 
cell proliferation, differentiation, and apoptosis [226]. Since MEK is a 
convergence point for many signaling cascades, it represents a relevant 
molecular target for therapies aimed at preventing the activation of 
signaling pathways responsible for sustaining cancer cell proliferation 
and survival [227]. Several small-molecule MEK1/2 inhibitors have 
received approval from the FDA. Examples of these drugs include tra
metinib, binimetinib, selumetinib, and cobimetinib [228]. 

16. Preclinical evaluation of dual EGFR-MEK inhibition 

Preclinical studies highlighted that combined EGFR-MEK inhibition 
might be a feasible strategy to postpone the emergence of acquired 
resistance to EGFR-TKIs and improve treatment outcomes in EGFR- 
mutant advanced/metastatic NSCLC [229–231]. The concomitant 
ERK1/2 - EGFR inhibition by trametinib and the third-generation 
EGFR-TKI WZ4002 prevents the reactivation of ERK1/ERK2 and en
hances the antitumor activity of EGFR inhibitors [230]. Intriguingly, 
combined EGFR-MEK inhibition prevented the emergence of both 
T790M-dependent and independent drug resistance in several NSCLC 
models, both in vitro and in vivo [230]. 

Dual MEK-EGFR inhibition provides a higher inhibition of pro- 
tumorigenic signaling pathways, potentially delaying the onset of 
resistant clones [230]. However, resistance to combined MEK-EGFR 
inhibition ultimately arises due to the compensatory activation of the 
PI3K/AKT/mTOR pathway [230]. The combined inhibition of the MEK 
and the PI3K/AKT/mTOR pathway with trametinib plus taselisib is 
effective in overcoming acquired resistance and restoring sensitivity to 
EGFR-TKIs in both in vitro and in vivo NSCLC models, in particular in 
cases where resistance to EGFR inhibitors was due to the activation of 
the c-MET pathway, activation of EMT, or acquisition of the secondary 
EGFR-T790M mutation [232]. 

Recently, Qu et al. reported that the dual targeting of MEK and PI3K 
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efficiently inhibited the cell proliferation, induced apoptosis and the 
G0/G1 cell cycle arrest in EGFR-TKI-resistant NSCLC cell lines [233]. 
These results provide a rationale for translating the dual targeting of 
MEK/PI3K signaling in the clinical setting as a potential strategy to 
overcome resistance to EGFR-TKIs, especially in NSCLC patients 
harboring KRAS and PI3KCA mutations. 

Furthermore, the combined inhibition of the Fibroblast Growth 
Factor Receptor (FGFR) and Akt pathway has recently emerged as a 
strategy to disrupt resistance to EGFR-TKIs mediated by the activation of 
signaling pathways downstream of Akt. In this regard, Terp et al. pro
vided compelling evidence that the dual FGFR/Akt inhibition could be 
exploited to overcome resistance to EGFR-TKIs, both in vitro and in vivo 
[234]. Although still preliminary, these results provide a rationale for 
future clinical trials. 

16.1. Combined EGFR-MEK inhibition in the clinic 

The phase Ib TATTON study (NCT02143466) assessed the safety and 
tolerability of osimertinib in combination with selumetinib (MEK1/2 
inhibitor) for the treatment of EGFR-mutant advanced/metastatic 
NSCLC patients who progressed during treatment with third-generation 
EGFR-TKIs [223]. Primary endpoints included safety, tolerability, and 
preliminary efficacy (ORR, DoR, and pharmacokinetics). The combina
tion of osimertinib plus selumetinib exhibited an acceptable safety 
profile and demonstrated antitumor activity in patients, warranting 
further investigation [235]. 

17. Discussion 

First- and second-generation EGFR-TKIs demonstrated their superi
ority over first-line platinum-based chemotherapy in NSCLC patients 
harboring EGFR-activating mutations, especially regarding PFS and ORR 
[43]. However, their efficacy is reduced by the emergence of acquired 
resistance. The vast majority of patients treated with EGFR-TKIs expe
rience disease progression within 9 - 15 months due to the selection of 
drug-resistant clones harboring the secondary EGFR-T790M mutation 
[99]. Third-generation EGFR-TKIs have been designed to address the 
issue of acquired resistance to first- and second-generation EGFR-TKIs. 
Nevertheless, patients still develop resistance, wither due to the selec
tion of clones harboring the tertiary EGFR-C797S mutation or through 
EGFR-independent mechanisms [87]. Fourth-generation allosteric 
EGFR-TKIs have shown promising anticancer activity in resistant tumor 
models, both in vitro and in vivo. However, results obtained so far are 
preliminary and require further confirmation [236]. 

Acquired resistance to EGFR-TKIs represents a significant hurdle in 
achieving long-term clinical response, also given the scarcity of effective 
pharmacological interventions for patients who progress after the failure 
of EGFR-TKI treatment. NGS data played an important role in unraveling 
the resistance mechanisms responsible for resistance to EGFR-TKIs. 
Furthermore, NGS data and provided a broader picture concerning the 
molecular events responsible for disease progression after treatment 
failure [237,238]. Resistance to EGFR-TKIs may arise either through 
EGFR-dependent mechanisms or EGFR-independent mechanisms [79]. 
Though several resistance mechanisms have been identified, there is still 
much to learn about how resistant cells evade the inhibition of EGFR 
signaling mediated by EGFR-TKIs. 

In this regard, the clinical implementation of more comprehensive 
and sensitive molecular techniques is paramount to monitor clinical 
response to EGFR-TKIs and clarify the mechanisms of clonal selection 
and evolution of resistant cells [239,240]. In particular, liquid biopsies 
might represent a feasible and reliable alternative to standard biopsy 
sampling, which can be potentially biased and misleading given the high 
NSCLC intertumoral and intratumoral heterogeneity [237,238]. The 
TATIN trial (NCT04148066) will explore the feasibility of ctDNA liquid 
biopsy to guide treatment in EGFR-mutant advanced or metastatic 
NSCLC patients treated with EGFR-TKIs. Hopefully, this approach will 

help identify resistance mechanisms and devise tailored treatment ap
proaches based on the mutational profile of patients. 

For years, cytotoxic platinum-based chemotherapy has been the only 
treatment option for NSCLC patients who progressed while on therapy 
with EGFR-TKIs. EGFR-TKIs combined with chemotherapy may poten
tially prevent, or at least postpone, the emergence of acquired resis
tance. However, first-line treatment with EGFR-TKI plus chemotherapy 
has not been widely used in the clinical setting mainly due to a lack of 
demonstrated survival advantage, controversial results between clinical 
trials, meta-analyses, systematic reviews, and concerns about potential 
toxicity [241]. Recent clinical trials performed in selected patients 
populations have shown promising results, albeit without establishing a 
clear and definitive role for this combination in the clinical practice 
[242]. 

At present, there is a lack of definitive data concerning the efficacy of 
third-generation EGFR-TKIs in combination with platinum-based 
chemotherapy. The phase II OPAL trial was the first study to evaluate 
the safety and feasibility of osimertinib in combination with cisplatin/ 
carboplatin plus pemetrexed in treatment-naïve EGFR-mutated 
advanced/metastatic NSCLC patients [243]. Two phase III clinical trials 
have been initiated to determine the efficacy and safety of this combi
nation: the FLAURA2 study (NCT04035486), which is assessing osi
mertinib in combination with cisplatin/carboplatin plus pemetrexed; 
and the ACROSS 1 trial (NCT04500704), which is evaluating the com
bination of almonertinib plus platinum chemotherapy (carboplatin-pe
metrexed) [244]. 

Since EGFR-TKIs have demonstrated radiosensitizing effects when 
combined with radiotherapy, this combination has emerged as a strat
egy for treating EGFR-mutant NSCLC patients with brain metastases. 
However, the efficacy of first-generation EGFR-TKIs in treating BMs is 
limited due to poor drug diffusion within the CNS and although some 
promising results have been obtained, the evidence available thus far 
concerning the use of this combination is controversial and insufficient 
to support its broad use in the clinic. The combination of third- 
generation EGFR-TKIs plus brain RT might represent a rational strat
egy to improve response to treatment, especially considering the higher 
CNS activity of third-generation EGFR-TKIs. To fill the gap between 
preclinical studies and their clinical translation, several clinical trials 
such as the phase II NORTHSTAR and OUTRUN studies have been 
initiated and will evaluate the efficacy and safety of this combination, 
both as first-line or second-line therapy for NSCLC patients with brain 
metastases. 

The inhibition of EGFR signaling alone is likely insufficient to ach
ieve long-term responses in patients due to the emergence of additional 
EGFR mutations and activation of alternative resistance mechanisms. 
Therefore, the combined inhibition of multiple pathways involved in 
sustaining pro-tumorigenic signaling has been proposed as a strategy to 
overcome resistance to EGFR-TKIs [245]. Recently, Fernandes Neto 
et al. suggested that inhibition of an oncogenic pathway at multiple 
nodes could represent an effective strategy to prevent the development 
of acquired resistance to EGFR-TKIs [246]. Treatment with multiple-low 
dose (MLD) therapy, using four drugs inhibiting a different node in the 
MAPK pathway, prevented the development of resistance with minimal 
toxicity and was shown to be effective in PDX models harboring a range 
of resistance mechanisms to EGFR-TKI [246]. Although promising, 
additional studies are required before this approach can be translated 
into the clinic. 

Dual EGFR-VEGF inhibition already represents an established strat
egy for treating advanced/metastatic NSCLC patients with EGFR muta
tions. Still, there is little evidence regarding the efficacy and safety of 
third-generation EGFR-TKIs in combination with anti-angiogenic 
agents. Since third-generation EGFR-TKIs have shown higher anti
tumor activity in EGFR-mutated NSCLC patients, it might be reasonable 
to expect that the dual EGFR-VEGF inhibition, obtained combining 
osimertinib or almonertinib with anti-angiogenic drugs, would translate 
into a more robust antitumor effect. However, the combination of 
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osimertinib with bevacizumab as second-line therapy failed to show 
significant improvements in PFS and OS in a selected population of 
EGFR-mutant advanced/metastatic NSCLC patients. The efficacy and 
safety of osimertinib in combination with either bevacizumab or 
ramucirumab for the first-line treatment of NSCLC patients harboring 
EGFR mutations is currently under assessment in two phase II clinical 
trials (FLAIR and RAMOSE). Hopefully, these trials will provide 
compelling evidence regarding the efficacy and safety of this combina
tion in the first-line setting. 

MET amplification is an important mechanism involved in acquired 
resistance to EGFR-TKIs. Therefore, the combined EGFR-MET inhibition 
has emerged as a promising strategy to overcome resistance in NSCLC 
patients harboring these genetic aberrations [247]. Initial trials 
involving this combination in unselected patient populations failed to 
demonstrate improvements in treated patients. Nevertheless, recent 
data seem to support a positive role of third-generation EGFR-TKIs in 
association with c-MET inhibitors in selected NSCLC populations 
harboring MET and EGFR aberrations [221,222,225]. 

Still, no consensus exists on the optimal combination of EGFR-TKIs 
and MET-TKIs to overcome the MET-mediated resistance to EGFR in
hibitors. Moreover, the resistance mechanisms responsible for the fail
ure of combined EGFR-MET-TKI therapy have not been fully clarified. 
Preliminary results from the TATTON study suggest that osimertinib 
plus savolitinib may be effective in overcoming MET-induced resistance 
to EGFR-TKIs in patients with EGFR-mutant NSCLC whose disease has 
progressed on prior treatment with third-generation EGFR-TKIs [223]. 
Further investigation of this combination is ongoing in the SAVANNAH 
(NCT03778229) and ORCHARD (NCT03944772) phase II studies [248]. 

In conclusion, results obtained so far in preclinical and clinical 
studies indicate that the combination of EGFR-TKIs with other thera
peutic agents (e.g., chemotherapy, radiotherapy, and targeted therapies) 
has the potential to avoid, or at least delay, the emergence of acquired 
resistance to EGFR inhibitors. Nonetheless, available data is either 
immature or insufficient to conclusively support the use of these com
binations in the clinical setting. In particular, there is a need to perform 
more research in randomized controlled trials enrolling patients based 
on the availability of targetable molecular alterations. Several clinical 
trials are currently exploring the efficacy and safety of the combination 
of third-generation EGFR-TKIs with other anticancer therapeutics. 
Hopefully, these studies will provide more information regarding the 
feasibility of these combinations for the treatment of advanced/meta
static NSCLC patients harboring EGFR-activating mutations. 
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