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INTERPRETIVE SUMMARY 1 

Goat farm variability affects milk Fourier-transform infrared spectra used for predicting 2 

coagulation properties. By Dadousis et al. page 000. Fourier-transform infrared spectroscopy 3 

(FTIR) is widely used to predict milk protein and fat content in cattle and small ruminants, while its 4 

usefulness in various production, health and environmental traits is under continuous research. Driven 5 

by the large amount of goat milk destined for cheese production, in this study we investigated the 6 

potential of FTIR to predict milk coagulation and curd firmness (cheese related) traits in goats. Our 7 

results evidenced important farm variability that should be taken into account when developing FTIR 8 

prediction equations for milk coagulation traits in goats.  9 
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ABSTRACT 23 

Driven by the large amount of goat milk destined for cheese production, and to pioneer the 24 

goat cheese industry, the objective of this study was to assess the effect of farm in predicting goat 25 

milk coagulation and curd firmness traits via Fourier-transform infrared spectroscopy (FTIR). Spectra 26 

from 452 Sarda goats belonging to 14 farms in Central and South- East Sardinia (Italy) were collected. 27 

A Bayesian linear regression model was used, estimating all spectral wavelengths’ effects 28 

simultaneously. Three traditional milk coagulation properties [rennet coagulation time (RCT, min), 29 

time to curd firmness of 20 mm (k20, min) and curd firmness 30 min after rennet addition (a30, mm)] 30 

and three modeled over time curd firmness measures [(RCTeq: RCT estimated according to curd 31 

firmness change over time); kCF: instant curd firming rate constant and CFP: asymptotical curd 32 

firmness)] were considered. A stratified cross-validation (SCV) was assigned evaluating each farm 33 

separately (validation set; VAL) and keeping all the rest farms to train (calibration set; CAL) the 34 

statistical model. Moreover, a SCV where 20% of the goats, randomly taken (ten replicates per farm), 35 

from the VAL farm entered the CAL set, was also considered (SCV80). To assess model performance, 36 

coefficient of determination (R2
VAL) and the root mean squared error of validation were recorded. The 37 

R2
VAL varied between 0.14 to 0.45 (kCF and RCTeq, respectively), albeit the standard deviation was 38 

approximating half of the mean, for all the traits. Although, average results of the two SCV procedures 39 

were similar, in SCV80 the maximum R2
VAL increased at about 15% across traits, with the highest 40 

being observed for k20 (20%) and the lowest for RCTeq (6%). Further investigation evidenced 41 

important variability among farms, with R2
VAL for some of them being close to 0. Our work outlined 42 

the importance of taking into account the effect of farm when developing FTIR prediction equations 43 

for coagulation and curd firmness traits in goats.   44 

 45 

Key words: goat, coagulation, curd firmness, farm, infrared spectra  46 
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INTRODUCTION 47 

A large proportion of world goat milk is destined to cheese production, especially in those 48 

countries included in the Mediterranean basin (FAOSTAT, 2018). This region is characterized by 49 

adverse weather and environmental conditions, in which autochthonous goat breeds are well adapted 50 

and usually managed in extensive or semi-extensive management types (Di Trana et al., 2015; Stella 51 

et al., 2018). It has been shown that the farming system represents a very large source of variation 52 

(ranging between 16 to 70% of the total variability) in milk composition and milk processing 53 

characteristics, such as the coagulation properties (Pazzola et al., 2018b). These values are greater 54 

compared to those of bovine (between 9 to 16%; Bittante et al., 2015) and ovine (from 16 to 43%; 55 

Vacca et al., 2015) farming methods. Indeed, a great variability of goat farming has been reported 56 

(Usai et al., 2006). The importance of the type of farming system relates with the destination of the 57 

milk produced and the genetics of the animals (Pazzola et al., 2018b). For instance, harsh 58 

environments and extreme extensive management are more suitable for indigenous breeds (Di Trana 59 

et al., 2015), able to produce a milk characterized by better composition (e.g., high milk fat and 60 

protein), and technological characteristics than that from cosmopolitan breeds (Čermak et al., 2013; 61 

Paschino et al., 2020).  62 

Among the milk technological characteristics, traditional milk coagulation properties (MCP) 63 

are widely used to describe the complex process of cheese-making. Moreover, the extension of MCP 64 

through the calibration of the curd firmness as a function of time (CFt) provides a more complete 65 

overview of the coagulation process (Bittante, 2011). There is an extensive and well-documented 66 

literature on the importance and relevance of MCP, mainly in cattle (Bittante et al., 2012; Stocco et 67 

al., 2017; Nilsson et al., 2019), but also in sheep (Caballero-Villalobos et al., 2018; Cipolat-Gotet et 68 

al., 2018) and to a less extent in goats (Vacca et al., 2020). In addition, MCP show heritability 69 

estimates between 0.15 – 0.27 in cattle (Dadousis et al., 2016) and 0.09 – 0.19 in sheep (Bittante et 70 

al., 2017). Hence, directional selection on desirable MCP characteristics is applicable. This could be 71 

of particular interest in goats, especially for those breeds (e.g., Alpine, Toggenburg) characterized by 72 
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weak or non-expressing alleles (e.g., F, N allele) of αs1-casein, associated with unfavorable 73 

coagulation process (Maga et al., 2009; Devold et al., 2011). However, high MCP analysis costs and 74 

logistics pose restriction for their wide-scale application.  75 

Nowadays, a potential solution to overcome those limitations can be derived via Fourier-76 

transform infrared (FTIR) spectroscopy. Indeed, there is an increasing interest in the dairy sector on 77 

the usefulness of FTIR information for the prediction of a variety of phenotypes (Tiplady et al., 2019), 78 

either directly measurable in milk (e.g., fatty acids; Soyeurt et al., 2006) or related to the milk 79 

processing characteristics (e.g., cheese-making traits, MCP; Ferragina et al., 2013; Visentin et al., 80 

2017) and the animal condition (e.g., energy efficiency, lameness; McParland and Berry, 2016; 81 

Bonfatti et al., 2020). In dairy cattle, recent advanced research made applicable MCP predictions via 82 

FTIR spectroscopy in the milk payment system of some Protected Designation of Origin (PDO) 83 

cheese consortia to reward or penalize dairy farmers (e.g., Trentigrana PDO cheese; Benedet et al., 84 

2018). In the case of small ruminants, the practical use of the FTIR predictions along the dairy chain 85 

is still lacking. Although there is ongoing research in sheep on the use of FTIR spectroscopy for the 86 

prediction of MCP and CFt parameters (Correddu et al., 2016; Ferragina et al., 2017), up to present, 87 

there are no data available in goats.  88 

An important factor to consider when developing prediction equations via milk FTIR spectra 89 

is the structure of the data, especially for traits not directly measurable in milk (e.g., technological 90 

traits, animal health, environment). In bovine milk, it has been shown that a random cross-validation 91 

(CV) might overestimate the prediction accuracy of methane emission traits (Wang and Bovenhuis, 92 

2019). Rather, a stratified CV, where for example each farm is evaluated separately, might provide a 93 

more realistic model assessment (Wang and Bovenhuis, 2019). In previous studies, great variability 94 

was observed in different goat farming systems (Usai et al., 2006) and in MCP and CFt parameters 95 

among individual farms (Pazzola et al., 2018; Vacca et al., 2018). Hence, the type of goat farm is a 96 

factor that should be assessed and its effect quantified on FTIR prediction models for MCP and CFt 97 

parameters.  98 
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Altogether, the economic importance of MCP and CFt parameters in the dairy sector justifies 99 

for further investigation on the practical application at a wide-scale of milk FTIR spectroscopy to 100 

predict MCP and CFt parameters, that could pioneer the entire goat cheese industry, at a farm, 101 

breeding and dairy plant levels. To this purpose, our objective was to i) investigate the potential of 102 

milk FTIR spectroscopy for the prediction of MCP and CFt parameters in goats, and ii) quantify the 103 

effect of the farm variability on the prediction accuracy of MCP and CFt parameters using individual 104 

Sarda goat milk samples. 105 

 106 

MATERIALS AND METHODS 107 

Farm Characteristics, Milk Sampling and Analyses 108 

The study involved 452 Sarda goats reared in 14 farms (F01 to F14), distributed across the 109 

island of Sardinia (Italy). Sampled farms were officially registered in the flock book and recording 110 

system of provincial associations of goat breeders. Farms characteristics are summarized in Table 1. 111 

In brief, the extensive system consisted of family-managed farms, pasture feeding, natural mating, 112 

and milking on the return of goats from pasture; while the semi-extensive system was characterized 113 

by cultivated grasslands, control of estrus and kidding season. 114 

Individual milk samples (100 mL/goat) were collected during the afternoon milking (one 115 

sampling day for each farm). Milk was sampled from the recorder jar under each stall in mechanical 116 

milking systems, and from the stainless steel graduated pails in the hand-milked systems, over the 117 

entire milking of each goat. Milk samples were then stored at 4°C and analyzed within 24 h after 118 

collection. For each individual milk sample, two measurements of MCP were performed using a 119 

lactodynamograph (Formagraph; Foss Electric A/S, Hillerod, Denmark) during a 30 min test analysis, 120 

following the procedure reported by Pazzola et al. (2018b). In brief, 10 mL of milk (in double) for 121 

each sample were heated to 35°C for 15 min, and then mixed with 200 µL of the rennet solution 122 

[Hansen Naturen Plus 215 (Pacovis Amrein AG, Bern, Switzerland), with 80±5% chymosin and 123 

20±5% pepsin; 215 international milk clotting units/mL; diluted to 1.2% (wt/vol) in distilled water to 124 
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reach the final value of 0.0513 international milk clotting units/mL of milk]. Coagulation process 125 

occurred at 35°C. The MCP recorded were: rennet coagulation time (RCT, min), time to curd 126 

firmness of 20 mm (k20, min) and curd firmness 30 min after rennet addition (a30, mm).  127 

During lactodynamographic analysis, the Formagraph instrument records every 15 s the width 128 

(mm) of the oscillatory graph designed by the pendula immerged in the milk samples after rennet 129 

addition. Consequently, 120 curd firmness (CF) observations are recorded for each individual milk 130 

sample. The 30 min test analysis allowed to use the following 3-parameter model (Bittante, 2011): 131 

𝐶𝐹𝑡 = 𝐶𝐹𝑃  × (1 − 𝑒−𝑘𝐶𝐹(𝑡−𝑅𝐶𝑇𝑒𝑞)) 132 

where CFt is curd firmness at time t (mm); CFP is the asymptotical potential value of CF at an 133 

infinite time in absence of syneresis (mm); kCF is the curd-firming instant rate constant (%/min); and 134 

RCTeq is RCT estimated by CFt equation on the basis of all data points (min). Values of the 135 

aforementioned traits out from the interval of the mean ±3 standard deviations (SD) were considered 136 

outliers and excluded from further analysis.  137 

For each milk sample, a FTIR spectrophotometer (MilkoScan FT6000; Foss, Hillerød, 138 

Denmark) was used to assess milk composition (fat and protein; ISO-IDF 2013), and to collect the 139 

spectrum over the range from wavenumber 5,011 to 925 × cm−1. Spectra were stored as absorbance 140 

(A) using the transformation A = log(1/T), where T is the transmission. Two spectral acquisitions 141 

were performed for each sample, and the results were averaged before data analysis.  142 

Somatic cell count (SCC) was determined by Fossomatic 5000 (Foss Electric A/S, Hillerod, 143 

Denmark) according to ISO-IDF standard (2006), and later transformed into the logarithmic somatic 144 

cell score [SCS = log2(SCC × 10-5) + 3; (Ali and Shook, 1980)]. Total bacterial count was determined 145 

using a BactoScan FC150 analyzer (Foss Electric A/S, Hillerod, Denmark) according to ISO-IDF 146 

standard (2004), and transformed into the logarithmic bacterial count [LBC = log10 (total bacterial 147 

count/1,000)].  148 

 149 

Statistical Analysis and FTIR Spectra 150 
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Modeling and Repeatability of Coagulation Traits 151 

Files containing the 120 CF values for each milk sample were processed fitting a curvilinear 152 

regression with the PROC NLIN procedure (SAS Institute Inc., Cary, NC). The parameters of each 153 

individual equation were estimated employing the Marquardt iterative method (350 iterations and 154 

10−5 level of convergence).  155 

To estimate the coefficient of repeatability (%), MCP and CFt parameters (2 replicates per 156 

goat), were analyzed using a MIXED procedure (SAS Institute Inc., Cary, NC) that included the 157 

random effects of farm, animal, pendulum (measuring unit of the Formagraph instrument) and the 158 

residual. The coefficient of repeatability (REP, %) for MCP and CFt parameters was then calculated 159 

as the ratio of the sum of the variances of the random effects of farm, animal and pendulum to the 160 

total variance. 161 

Spectra Editing and Chemometric Model 162 

Prior to spectra analysis, the absorbance values of every wavelength in the FTIR spectra of 163 

the milk samples, were centered and standardized to a null mean and a unit sample variance. To detect 164 

outliers, Mahalanobis distances were calculated by means of the Mahalanobis function implemented 165 

in the R software (R Core Team, 2013). No samples were discarded because all the spectra presented 166 

a distance value lower than the mean±3 standard deviations. The spectra were not subjected to any 167 

other mathematical pretreatment. 168 

 A Bayesian linear regression was used to predict the RCT, k20, a30, RCTeq, kCF and CFP. All 169 

phenotypes were regressed to 1,060 spectra under the following model: 𝑦 = 𝜇 + ∑ 𝑥𝑖𝑗𝛽𝑗
1,060
𝑗=1 + 𝑒𝑖, 170 

where μ is the overall mean, 𝑥𝑖𝑗 are the FTIR wavelengths, 𝛽𝑗 are the regression coefficients and 𝑒𝑖 171 

the residual with 𝑖𝑖𝑑 ~𝑁(0, 𝜎𝑒
2). The BayesB model implemented in the BGLR R package was 172 

adopted (de los Campos and Perez-Rodriguez, 2014) as described in Ferragina et al. (2017).  173 

Stratified Cross-Validation Procedures 174 



9 
 

A stratified external cross-validation (SCV) scheme was used to assess model’s predictive 175 

ability, where one farm at a time consisted of the validation set (VAL). Goats from the remaining 176 

farms were consisted of the calibration (CAL) set. The procedure was repeated 14 times, such that 177 

all farms were evaluated. In addition, to assess the importance of shared variability between CAL and 178 

VAL, a SCV where 20% of the goats from one farm to be validated was included in CAL, and the 179 

VAL set consisted of the remaining 80% of the goats from the evaluated farm, was considered 180 

(referred to as SCV80 hereafter). To account for individual sampling variability, the 20% of the goats 181 

was sampled at random and the procedure was repeated 10 times per farm. Results from SCV were 182 

averaged across the 14 farms and, in the SCV80, over the ten replicates per farm. For all calibrations, 183 

model performance was measured using the coefficient of determination (R2), the root mean squared 184 

error (RMSE), and the SD of both CAL and VAL sets.  185 

 186 

RESULTS AND DISCUSSION 187 

Prediction Accuracy of Goat Milk Coagulation Traits  188 

Descriptive statistics and prediction results of the SCV are presented in Table 2. Mean values 189 

were consistent with those reported in the Sarda goat milk literature (Pazzola et al., 2018a). 190 

Repeatability of coagulation traits ranged from 98% (for RCT and RCTeq) to 84% (for kCF and CFP). 191 

The CF measurements (a30 and CFP traits) are generally characterized by a reduced instrumental 192 

repeatability and reproducibility in later time after rennet addition, which is more profound after 193 

gelation (Ferragina et al., 2017). Compared to other species, repeatability values of goat RCT, RCTeq 194 

and CFP traits were similar to that of bovine (Stocco et al., 2017) and ovine (Ferragina et al., 2017). 195 

Goat milk is generally characterized by slower increase of curd firmness, weaker casein network 196 

forming after gelation, and earlier syneresis compared to bovine and ovine milk (Inglingstad et al., 197 

2014; Pazzola et al., 2018b; Roy et al., 2020). Because of these characteristics of the goat coagulation 198 

process and, because the traditional lactodynamograph set up for analysis of bovine milk was 199 

designed to explore primarily the coagulation and the first part of curd-firming process, not syneresis, 200 
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a slight decrease of repeatability of CF measurements after RCT is expected. For this reason REP is 201 

commonly very high for the first traits measured (e.g., RCT and RCTeq) and tends to decrease over 202 

time both in the case of traditional and modeled coagulation traits (Stocco et al., 2015). This 203 

phenomenon is explained by the fact that, during the test, the variation related to the curd-firming and 204 

syneresis tends to accumulate over time. In the present study, only a30 showed higher REP value than 205 

those reported for bovine (Stocco et al., 2017) and ovine milk (Ferragina et al., 2017). This could be 206 

due to the fact that milk from Sarda goats of the present study is characterized by very good milk 207 

quality (e.g., high fat and protein contents; Table 1) and coagulative aptitude, faster gelation and curd-208 

firming, and firmer coagulum than other dairy goat breeds (e.g., Alpine, Saanen; Vacca et al., 2018). 209 

Among the factors influencing the reliability of the FTIR predictions, the goodness (repeatability and 210 

accuracy) of the reference values is very important (Caredda et al., 2016). Indeed, it is interesting to 211 

notice that the prediction accuracy decreased with progressed coagulation (e.g., higher for RCT and 212 

lower for a30), along with decreasing REP values (Table 2). 213 

Regarding SCV predictions (Table 2), RCT and RCTeq showed the highest R2
CAL (0.64 and 214 

0.61, respectively), followed by CFP (R2
CAL = 0.50). The remaining traits had R2

CAL < 0.50, while the 215 

lowest was observed for kCF (0.37). In general, results in the CAL set were comparable to those 216 

reported in ovine milk (Ferragina et al., 2017), in particular for the traits directly related to curd 217 

firmness (a30 and CFP). In the VAL set, the R2
VAL was lower and the RMSE was higher, albeit with 218 

much higher SD for both parameters compared to CAL, while the ranking among traits was analogous 219 

to the CAL. Since this was the first study investigating the effect of farm on the prediction accuracy 220 

of MCP and CFt parameters in goat milk via FTIR spectroscopy, comparison with literature was 221 

restricted. However, a recent study (unpublished data) assessing the goat breed (four breeds 222 

considered) effect on the prediction of MCP and CFt parameters via FTIR spectroscopy, by using a 223 

random 5-fold CV procedure, reported R2
VAL from 0.42 to 0.68 for MCP (RCT and a60, respectively) 224 

and from 0.14 to 0.60 for CFt parameters (syneresis rate and CFP, respectively). The study also 225 

confirmed decreased prediction accuracies in a SCV scenario (using three breeds as CAL, and the 226 
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remaining breed as VAL set), suggesting the importance of considering the breed of goats while 227 

developing FTIR calibrations. Similar to those results, our study showed the importance of 228 

considering the differences among farms on the prediction accuracy of MCP and CFt parameters. This 229 

variability was evident observing the high SD of both R2
VAL and RMSEVAL (Table 2), higher 230 

compared with a previous study on the same traits and statistical methodology in sheep (Ferragina et 231 

al., 2017).  232 

 233 

Effect of Farm Variability on the Prediction Accuracy of Coagulation Traits   234 

 By including 20% of the VAL farm in the TRN set (SCV80), our expectation was to increase 235 

R2
VAL, since important variation was included in the model training, and also because, by using this 236 

approach, CAL and VAL dataset are not completely independent (Figure 1). On average, R2
VAL 237 

remained the same as the SCV procedure, and was of 0.45, 0.32, 0.29, 0.44, 0.17 and 0.33 for RCT, 238 

k20, a30, RCTeq, kCF and CFP, respectively, with also similar SD to the SCV (data not shown). 239 

However, although the minimum R2
VAL was again close to 0, the maximum obtained R2

VAL values 240 

were increased (0.87, 0.73, 0.73, 0.85, 0.65 and 0.79 for RCT, k20, a30, RCTeq, kCF and CFP, 241 

respectively); representing an increase of ~20% for k20, ~16% for RCT, a30 and kCF, ~14% for CFP, 242 

with the minimum (~0.06%) for the RCTeq. On average, R2
VAL results for each coagulation trait 243 

among farms presented in Figure 1 were analogous to the SCV, albeit with no repetitions per farm in 244 

that case. A considerable R2
VAL variation among farms was observed (Figure 1). Interaction between 245 

farm and trait was also present. More precisely, across the traits, we observed: i) farms with either 246 

low or high variability of prediction model performance (e.g., F02 and F11 for RCT, respectively), 247 

ii) consistent high or low R2
VAL values, relative to the remaining farms across the traits (e.g., F02 vs. 248 

F12), iii) different R2
VAL patterns, showing either high or low R2

VAL (e.g., F01 and F10 comparing 249 

kCF to all the rest of the traits), iv) general low predictability of kCF trait with three farms (F01, F04 250 

and F08) showing R2
VAL close to 0, v) similar variation patterns across farms of RCT and RCTeq 251 

traits, and interestingly, vi) farm F12 showed R2
VAL close to 0 across all traits. Obviously, the overall 252 
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model performance presented in Table 2 and Figure 1 was improved (data not shown) when excluding 253 

this specific farm (F12). It is important to consider that the region where milk samples were collected 254 

has been characterized for decades by extensive and semi-extensive goat farming management, highly 255 

variable among areas of the island (Usai et al., 2006). As aforementioned, the variability of farms 256 

affects both composition and coagulation ability of goat milk (Vacca et al., 2018; Pazzola et al., 257 

2018b). Hence, variability of R2
VAL among farms was, up to an extent, expected. In particular, two of 258 

the farms (F11, F12) are located in a high altitude and adverse-environmental-conditions area. Those 259 

factors, together with the lower hygienic control practiced by the farmers over the goats (the flocks 260 

are let free to graze without supervision in extensive farms), represent a source of milk quality 261 

variation (Pazzola et al., 2018b), that further influences the processing characteristics. For example, 262 

changes occurring at milk composition and coagulation level often caused by bacterial or somatic cell 263 

counts are well documented in goats (Barrón-Bravo et al., 2013; Stocco et al., 2019). In addition, the 264 

high genetic variability characterizing the Sarda breed (Dettori et al., 2015; Pazzola et al., 2018a), 265 

and other non-genetic factors (e.g., parity, days in milk), might have caused the large differences in 266 

the R2
VAL values among farms. It is important to consider that, usually, the CV cross-validation 267 

procedure is used to evaluate the performance of prediction equations, where data are split randomly 268 

into a CAL and a VAL set. However, it has been demonstrated that, when there are dependence 269 

structures in the data, CV may overestimate prediction accuracies (Roberts et al., 2017). In particular, 270 

Qin et al. (2016) indicated that random CV underestimates the error of the prediction equation when 271 

traits to be predicted are analyzed in batches, in which there are systematic differences among them. 272 

In our case, because of the differences among farms within farming systems (Table 1), we chose to 273 

build calibration equations directly at a farm level, in order to take into account the differences in 274 

milk coagulation traits (and therefore in the milk spectra) arising from the differences among farms. 275 

Wang and Bovenhuis (2019) investigated the feasibility of bovine milk IR spectra to predict methane 276 

emissions by comparing random and block CV (using farms as blocks) procedures. They showed 277 

R2
VAL values of 0.49 and 0.01, respectively for random and block CV. They suggested that the 278 
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difference in the prediction accuracy between the two procedures could have been due to the 279 

confounding effect of farm and date of milk IR collection, and especially to the breath sensors used 280 

to measure methane emissions, which largely differed among farms. 281 

 282 

CONCLUSIONS 283 

Overall, our work evidenced the feasibility of using FTIR spectroscopy to predict MCP and 284 

CFt parameters in goat milk. Despite this, a great variability was observed among farms and traits. 285 

The generally low R2
VAL do not justify for practical application, at present, of the predicted 286 

coagulation traits. However, among traits, RCT and RCTeq showed the highest accuracies, while kCF 287 

was on the opposite line. Moreover, our results demonstrated the importance of farm variability in 288 

relation to coagulation traits, that should be considered while developing FTIR calibrations, in order 289 

to not incur in misleading accuracies. Future studies with other farming systems, statistical models, 290 

and with increased sample size are expected to show improvements in the model performance. A 291 

further investigation on the predictive performance of FTIR on individual cheese yield traits would 292 

be interesting.  293 



14 
 

ACKNOWLEDGMENTS 294 

This research was supported by the “Fondo di Ateneo per la Ricerca 2019” (Finanziamento 295 

straordinario una tantum per la ricerca, one-time extraordinary research grant) University of Sassari 296 

(Sassari, Italy). The authors thank the farmers for giving access to their flocks; the Provincial Farmers 297 

Associations (Associazioni Interprovinciali e Provinciali degli Allevatori, A.I.P.A./A.P.A.) of 298 

Cagliari, Nuoro, Sassari and Oristano (Italy) for their support in sample collection; and the Regional 299 

Farmer Association of Sardinia (Associazione Regionale degli Allevatori, A.R.A. Sardegna, Cagliari, 300 

Italy) for support in milk analysis. The authors have not stated any conflicts of interest.  301 

 302 

REFERENCES 303 

Barrón-Bravo, O. G., A. J. Gutiérrez-Chávez, C. A. Ángel-Sahagún, H. H. Montaldo, L. Shepard, and 304 

M. Valencia-Posadas. 2013. Losses in milk yield, fat and protein contents according to 305 

different levels of somatic cell count in dairy goats. Small Rumin. Res. 113:421-431. 306 

Benedet, A., C. L. Manuelian, M. Penasa, M. Cassandro, F. Righi, M. Sternieri, P. Galimberti, A.V. 307 

Zambrini, and M. De Marchi. 2018. Factors associated with herd bulk milk composition and 308 

technological traits in the Italian dairy industry J. Dairy Sci. 101:934-943. 309 

Bittante, G. 2011. Modeling rennet coagulation time and curd firmness of milk. J. Dairy Sci. 94:5821-310 

5832. 311 

Bittante, G., C. Cipolat-Gotet, F. Malchiodi, E. Sturaro, F. Tagliapietra, S. Schiavon, and A. 312 

Cecchinato. 2015. Effect of dairy farming system, herd, season, parity and days in milk on 313 

modeling of the coagulation, curd firming and syneresis of bovine milk. J. Dairy Sci. 98:2759-314 

2774. 315 

Bittante, G., C. Cipolat-Gotet, M. Pazzola, M. L. Dettori, G. M. Vacca, and A. Cecchinato. 2017. 316 

Genetic analysis of coagulation properties, curd firming modeling, milk yield, composition 317 

and acidity in Sarda dairy sheep. J. Dairy Sci. 100:385-394.  318 



15 
 

Bittante, G., M. Penasa, and A. Cecchinato. 2012. Invited review: Genetics and modeling of milk 319 

coagulation properties. J. Dairy Sci. 95:6843-6870. 320 

Bonfatti, V., P. N. Ho, and J. E. Pryce. 2020. Usefulness of milk mid-infrared spectroscopy for 321 

predicting lameness score in dairy cows. J. Dairy Sci. 103:2534-2544. 322 

Caballero-Villalobos, J., A. Figueroa, K. Xibrraku, E. Angón, J.M. Perea, and A. Garzón. 2018. 323 

Multivariate analysis of the milk coagulation process in ovine breeds from Spain. J. Dairy Sci. 324 

101:10733-10742. 325 

Caredda, M., M. Addis, I. Ibba, R. Leardi, M. F. Scintu, G. Piredda, and G. Sanna. 2016. Prediction 326 

of fatty acid in sheep milk by midinfrared spectrometry with a selection of wavelengths by 327 

genetic algorithms. LWT Food Sci. Technol. 65:503-510. 328 

Čermak, B., V. Kral, J. Frelich, L. Bohačova, B. Vondraškova, J. Špička, E. Samkova, M. 329 

Podsedniček, A. Węglarz, J. Makulska, and P. Zapletal. 2013. Quality of goat pasture in less-330 

favoured areas (LFA) of the Czech Republic and its effect on fatty acid content of goat milk 331 

and cheese. Anim. Sci. Pap. Rep. 31:331-346. 332 

Cipolat-Gotet, C., M. Pazzola, A. Ferragina, A. Cecchinato, M.L. Dettori, and G.M. Vacca. 2018. 333 

Technical note: Improving modeling of coagulation, curd firming, and syneresis of sheep 334 

milk. J. Dairy Sci. 101:5832-5837.  335 

Correddu, F., M. Cellesi, J. Serdino, M. G. Manca, M. Contu, M. C. Dimauro, I. Ibba, and N. P. P. 336 

Macciotta. 2019. Genetic parameters of milk fatty acid profile in sheep: Comparison between 337 

gas chromatographic measurements and Fourier-transform IR spectroscopy predictions. 338 

Animal 13:469-476. 339 

Dadousis, C., S. Biffani, C. Cipolat-Gotet, E. L. Nicolazzi, A. Rossoni, E. Santus, G. Bittante, and A. 340 

Cecchinato. 2016. Genome-wide association of coagulation properties, curd firmness 341 

modeling, protein percentage, and acidity in milk from Brown Swiss cows. J. Dairy Sci. 342 

99:3654-3666. 343 



16 
 

de los Campos, G., and P. Perez Rodriguez. 2015. BGLR: Bayesian Generalized Linear Regression. 344 

R package version 1.0.4. Accessed May 25, 2019. http://CRAN.R-345 

project.org/package=BGLR.  346 

Dettori, M. L., M. Pazzola, P. Paschino, M. G. Pira, and G. M. Vacca. 2015. Variability of the caprine 347 

whey protein genes and their association with milk yield, composition and renneting 348 

properties in the Sarda breed. 1. The LALBA gene. J. Dairy Res. 82:434-441. 349 

Devold, T. G., R. Nordbø, T. Langsrud, C. Svenning, M. J. Brovold, E. S. Sørensen, B. Christensen, 350 

T. Ådnøy, and G. E. Vegarud. 2011. Extreme frequencies of the αs1-casein “null” variant in 351 

milk from Norwegian dairy goats - Implications for milk composition, micellar size and 352 

renneting properties.  Dairy Sci. Technol. 91:39-51. 353 

Di Trana, A., L. Sepe, P. Di Gregorio, M. A. Di Napoli, D. Giorgio, A. R. Caputa, and S. Claps. 2015. 354 

The role of local sheep and goat breeds and their products as a tool for sustainability and 355 

safeguard of the Mediterranean environment. Pages 77-112 in The Sustainability of Agro-356 

Food and Natural Resources Systems in the Mediterranean Basin. Springer International 357 

Publishing AG, Cham, Switzerland. 358 

FAOSTAT (Food and Agriculture Organization of the United Nations Statistics Division). 2018. 359 

Statistical Database of the Food and Agriculture Organization of the United Nations. Accessed 360 

July 20, 2018. http://www.fao.org/faostat/en/#data/QL.  361 

Ferragina, A., C. Cipolat-Gotet, A. Cecchinato, and G. Bittante. 2013. The use of Fourier-transform 362 

infrared spectroscopy to predict cheese yield and nutrient recovery or whey loss traits from 363 

unprocessed bovine milk samples. J. Dairy Sci. 96:7980-7990. 364 

Ferragina, A., C. Cipolat-Gotet, A. Cecchinato, M. Pazzola, M. L. Dettori, G. M. Vacca, and G. 365 

Bittante. 2017. Prediction and repeatability of milk coagulation properties and curd-firming 366 

modeling parameters of ovine milk using Fourier-transform infrared spectroscopy and 367 

Bayesian models. J. Dairy Sci. 100:3526-3538. 368 

http://cran.r-project.org/package=BGLR
http://cran.r-project.org/package=BGLR
http://www.fao.org/faostat/en/#data/QL


17 
 

Inglingstad, R. A., H. Steinshamn, B. S. Dagnachew, B. Valenti, A. Criscione, E. O. Rukke, T. G. 369 

Devold, S. B. Skeie, and G. E.Vegarud. 2014. Grazing season and forage type influence goat 370 

milk composition and rennet coagulation properties. J. Dairy Sci. 97:3800-3814. 371 

ISO-IDF 2004. International Organization for Standardization and International Dairy Federation. 372 

Milk: Quantitative determination of bacteriological quality - Guidance for establishing and 373 

verifying a conversion relationship between routine method results and anchor method results. 374 

International Standard ISO 21187 and IDF 196:2004. 2004. ISO, Geneva, Switzerland, and 375 

IDF, Brussels, Belgium. 376 

ISO-IDF 2006. International Organization for Standardization and International Dairy Federation. 377 

Milk: Enumeration of somatic cells - Part 2: Guidance on the operation of fluoro-opto-378 

electronic counters. International Standard ISO 13366-2 and IDF IDF 148-2:2006. 2006. ISO, 379 

Geneva, Switzerland, and IDF, Brussels, Belgium. 380 

ISO-IDF 2013. International Organization for Standardization and International Dairy Federation. 381 

Milk and liquid milk products: Determination of fat, protein, casein, lactose and pH content. 382 

International Standard ISO 9622 and IDF 141:2013. 2013. ISO, Geneva, Switzerland, and 383 

IDF, Brussels, Belgium. 384 

Maga, E. A., P. Daftari, D. Kültz, and M. C. T. Penedo. 2009. Prevalence of αs1-casein genotypes in 385 

American dairy goats. J. Anim. Sci. 87:3464-3469. 386 

McParland, S., and D. P. Berry. 2016. The potential of Fourier transform infrared spectroscopy of 387 

milk samples to predict energy intake and efficiency in dairy cows. J. Dairy Sci. 99:4056-388 

4070.  389 

Nilsson, K., H. Stålhammar, M. Stenholdt Hansen, H. Lindmark-Månsson, S. Duchemin, F. Fikse, 390 

D.J. de Koning, M. Paulsson, and M. Glantz. 2019. Characterisation of non-coagulating milk 391 

and effects of milk composition and physical properties on rennet-induced coagulation in 392 

Swedish Red Dairy Cattle. Int. Dairy J. 95:50-57.  393 



18 
 

Paschino, P., G. Stocco, M. L. Dettori, M. Pazzola, M. L. Marongiu, C. E. Pilo, C. Cipolat-Gotet, and 394 

G. M. Vacca. 2020. Characterization of milk composition, coagulation properties and cheese-395 

making ability of goats reared in extensive farms. J. Dairy Sci. 103:5830-5843. 396 

Pazzola, M., M. L. Dettori, and G. M. Vacca. 2018a. The Sarda goat, A resource for the extensive 397 

exploitation in the Mediterranean environment. In Sustainable Goat Production in Adverse 398 

Environments: Volume II. J. Simoes and C. Gutierrez, ed. Springer, Cham, Switzerland. 399 

Pazzola, M., G. Stocco, P. Paschino, M. L. Dettori, C. Cipolat-Gotet, G. Bittante, and G.M. Vacca. 400 

2018b. Modeling of coagulation, curd firming, and syneresis of goat milk from 6 breeds. J. 401 

Dairy Sci. 101:7027-7039. 402 

Qin, L. X., H. C. Huang, and C. B. Begg. 2016. Cautionary note on using cross-validation for 403 

molecular classification. J. Clin. Oncol. 34:3931-3938. 404 

R Core Team. 2013. R: A language and environment for statistical computing. http://www.R-405 

project.org/.  406 

Roberts, D. R., V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J. J. 407 

Lahoz-Monfort, B. Schröder, W. Thuiller, D. I. Warton, B. A. Wintle, F. Hartig, and C. F. 408 

Dormann. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or 409 

phylogenetic structure. Ecography. 40:913-929. 410 

Roy, D., A. Ye, P. J. Moughan, and H. Singh. 2020. Gelation of milks of different species (dairy 411 

cattle, goat, sheep, red deer, and water buffalo) using glucono-δ-lactone and pepsin. J. Dairy 412 

Sci. 103:5844-5862. 413 

Soyeurt, H., P. Dardenne, F. Dehareng, G. Lognay, D. Veselko, M. Marlier, C. Bertozzi, P. Mayeres, 414 

and N. Gengler. 2006. Estimating fatty acid content in cow milk using mid-infrared 415 

spectrometry. J. Dairy Sci. 89:3690-3695 416 

Stella, A., E. L. Nicolazzi, C. P. Van Tassell, M. F. Rothschild, L. Colli, B.D. Rosen, T.S. Sonstegard, 417 

P. Crepaldi, G. Tosser-Klopp, S. Joost, M. Amills, P. Ajmone-Marsan, F. Bertolini, P. 418 

Boettcher, R. Boyle Onzima, D. Bradley, D. Buja, M.E. Cano Pereira, A. Carta, G. Catillo, L. 419 

http://www.r-project.org/
http://www.r-project.org/


19 
 

Colli, P. Crepaldi, A. Crisà, M. Del Corvo, K. Daly, C. Droegemueller, S. Duruz, A. Elbeltagi, 420 

A. Esmailizadeh, O. Faco, T. Figueiredo Cardoso, C. Flury, J.F. Garcia, B. Guldbrandtsen, A. 421 

Haile, J. Hallsteinn Hallsson, M. Heaton, V. Hunnicke Nielsen, H. Huson, S. Joost, J. Kijas, 422 

J.A. Lenstra, G. Marras, M. Milanesi, C. Minhui, M. Moaeen-ud-Din, R. Morry O’Donnell, 423 

O. Moses Danlami, J. Mwacharo, E.L. Nicolazzi, I. Palhière, F. Pilla, M. Poli, J. Reecy, B.A. 424 

Rischkowsky, E. Rochat, B. Rosen, M. Rothschild, R. Rupp, B. Sayre, B. Servin, K. Silva, T. 425 

Sonstegard, G. Spangler, A. Stella, R. Steri, A. Talenti, F. Tortereau, G. Tosser-Klopp, E. 426 

Vajana, C.P. Van Tassell, W. Zhang, and the AdaptMap Consortium. 2018. AdaptMap: 427 

exploring goat diversity and adaptation. Genet. Sel. Evol. 50:61. 428 

Stocco, G., C. Cipolat-Gotet, T. Bobbo, A. Cecchinato, and G. Bittante. 2017. Breed of cow and herd 429 

productivity affect milk composition and modeling of coagulation, curd firming, and 430 

syneresis. J. Dairy Sci. 100:129-145. 431 

Stocco, G., C. Cipolat-Gotet, A. Cecchinato, L. Calamari, and G. Bittante. 2015. Milk skimming, 432 

heating, acidification, lysozyme, and rennet affect the pattern, repeatability, and predictability 433 

of milk coagulation properties and of curd-firming model parameters: A case study of Grana 434 

Padano. J. Dairy Sci. 98:5052-5067. 435 

Stocco, G., M. Pazzola, M. L. Dettori, C. Cipolat-Gotet, A. Summer, and G. M. Vacca. 2019. The 436 

effect of udder health indicators on composition and coagulation traits of goat milk. Int. Dairy 437 

J. 98:9-16. 438 

Tiplady, K.M., R.G. Sherlock, M.D. Littlejohn, J.E. Pryce, S.R. Davis, D.J. Garrick, R.J. Spelman, 439 

and B.L. Harris. 2019. Strategies for noise reduction and standardization of milk mid-infrared 440 

spectra from dairy cattle. J. Dairy Sci. 102:6357-6372. 441 

Usai, M. G., S. Casu, G. Molle, M. Decandia, S. Ligios, and A. Carta. 2006. Using cluster analysis 442 

to characterize the goat farming system in Sardinia. Livest. Sci. 104:63-76. 443 



20 
 

Vacca, G. M., M. Pazzola, M. L. Dettori, E. Pira, F. Malchiodi, C. Cipolat-Gotet, A. Cecchinato, and 444 

G. Bittante. 2015. Modeling of coagulation, curd firming and syneresis of milk from Sarda. J. 445 

Dairy Sci. 98:2245-2259. 446 

Vacca, G. M., G. Stocco, M. L. Dettori, E. Pira, G. Bittante, and M. Pazzola. 2018. Milk yield, quality 447 

and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. 448 

Dairy Sci. 101:7236-7247. 449 

Vacca, G. M., G. Stocco, M. L. Dettori, G. Bittante, and M. Pazzola. 2020. Goat cheese yield and 450 

recovery of fat, protein, and total solids in curd are affected by milk coagulation properties. J. 451 

Dairy Sci. 103:1352-1365. 452 

Visentin, G., A. McDermott, S. McParland, D. P. Berry, O. A. Kenny, A. Brodkorb, M. A. Fenelon, 453 

and M. De Marchi. 2015. Prediction of bovine milk technological traits from mid-infrared 454 

spectroscopy analysis in dairy cows. J. Dairy Sci. 98:6620-6629. 455 

Wang, Q., and H. Bovenhuis. 2019. Validation strategy can result in an overoptimistic view of the 456 

ability of milk infrared spectra to predict methane emission of dairy cattle. J. Dairy Sci. 457 

102:6288-6295. 458 

 459 



21 
 

TABLES AND FIGURES  460 

Table 1. Characteristics of sampled farms (N = 14). 461 

 Management system1 

 Extensive Semi-extensive 

Farms, no. 6 8 

Goats, no. 183 269 

Flock size, no. of farms:   

Small (< 100 goats) 1 1 

Medium (100-200 goats) 3 5 

Large (> 200 goats) 2 2 

Altitude, no. of farms:   

Plain (< 200 m asl2) 3 2 

Hill (200-500 m asl) 2 4 

Mountain (> 500 m asl) 1 2 

Milking, no. of farms:   

Mechanical 3 4 

Hand-milked 3 4 

Milk quality, mean ±SD:   

Fat, % 5.01±0.98 5.33±1.32 

Protein, % 3.97±0.52 3.87±0.51 

SCS2 6.58±1.64 6.75±1.68 

LBC3 1.80±0.91 1.71±0.86 

1Management system: extensive: family-managed farms, feeding at pasture, natural mating, milking 462 
when goats are back from pasture; semi-extensive system: cultivated grasslands, control of estrus and 463 

kidding season; 2asl = above sea level. 464 
2SCS = log2 (SCC × 10−5) + 3. 465 
3LBC = logarithmic total bacterial count = log10 (total bacterial count/1,000). 466 

 467 
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Table 2. Descriptive statistics and repeatability (REP) of traditional milk coagulation properties (MCP) and curd firmness over time (CFt) model 468 

parameters and results from Stratified Cross-Validation (SCV) calibrations using mid-infrared spectra of individual goat milk samples. 469 

Item1 
Descriptive Statistics2 

Prediction Statistics3 

Calibration  Validation 

N Mean SD REP  N SDCAL R2
CAL RMSECAL  SDVAL R2

VAL R2
interval RMSEVAL RMSEVAL

interval 

Traditional MCP                

RCT, min 892 12.9 4.42 97.7  416 4.49±0.18 0.64±0.04 2.69±0.16  3.95±0.92 0.42±0.21 0.00-0.75 3.69±1.24 2.23-6.29 

k20, min 839 3.5 1.12 85.6  397 1.12±0.01 0.49±0.05 0.80±0.04  0.99±0.26 0.29±0.21 0.00-0.61 0.91±0.16  0.72-1.27 

a30, mm 901 37.5 11.0 87.2  422 11.0±0.34 0.47±0.03 8.07±0.33  10.2±3.27 0.27±0.17 0.02-0.63 9.63±3.49   6.47-17.83 

CFt parameters                

RCTeq, min 892 13.6 4.06 97.7  415 4.06±0.14 0.61±0.05 2.55±0.15  3.65±0.80 0.45±0.20 0.00-0.80 3.30±1.04 2.10-5.32 

kCF, %/min 867 22.9 8.46 84.2  408 8.21±0.17 0.37±0.07 6.60±0.37  7.91±2.00 0.14±0.16 0.00-0.56 8.28±2.16 5.01-12.69 

CFp, mm 873 42.7 9.31 83.9  409 8.91±0.15 0.50±0.01 6.31±0.14  7.98±1.68 0.32±0.19 0.00-0.69 7.19±1.84 4.90-11.04 

1Traditional milk coagulation properties: RCT = rennet coagulation time; k20 = curd firming time; a30 = curd firmness 30 min after rennet addition. 470 

CFt model parameters according to 3-parameter model: RCTeq = RCT estimated according to curd firm change over time modeling; kCF = instant curd 471 
firming rate constant; CFp = asymptotical curd firmness; 472 

2Repeatability (REP), % = 
𝜎𝐹𝑎𝑟𝑚

2  + 𝜎𝐴𝑛𝑖𝑚𝑎𝑙
2  +  𝜎𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚

2  

𝜎𝐹𝑎𝑟𝑚
2  + 𝜎𝐴𝑛𝑖𝑚𝑎𝑙

2 + 𝜎𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚
2 + 𝜎𝑒

2  × 100; 473 

3 Average ± SD from the SCV calibrations. For R2
VAL and RMSE2

VAL also intervals of validations were included. Results were averaged over the 14 474 

runs (one per farm).475 
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Figure 1. Coefficient of determination of validation (R2
VAL) results per farm (F01 to F14; purple boxes refer to extensive farms; yellow boxes refer 476 

to semi-extensive farms) of traditional milk coagulation properties (MCP) and curd firmness over time (CFt) model parameters1 using mid-infrared 477 

spectra of individual goat milk samples in the second stratified cross-validation scenario (SCV80)
2.  478 

 
1Traditional MCP: RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition. CFt model parameters 

according to 3-parameter model: RCTeq = RCT estimated according to curd firm change over time modeling; kCF = instant curd firming rate constant; 

CFp = asymptotical curd firmness; 
2Each farm was evaluated separately with 20% of the farm included in the calibration set. The procedure was repeated ten times per farm (black 

dots); 

Vertical lines within each boxplot represent the median, and red rhombus is the mean of the ten replicates per farm; 

Blue numbers on top refer to the number of goats in validation per farm. 
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