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1 INTERPRETIVE SUMMARY

2 Breed of goat affects the prediction accuracy of milk coagulation properties using Fourier-

3 transform infrared spectroscopy. By Stocco et al., page 000. The aims of this study were to assess 

4 the feasibility in predicting goat milk coagulation traits via Fourier-transform infrared (FTIR) 

5 spectroscopy and to quantify the effect of four breeds on the predictions accuracy of these traits. Two 

6 validation procedures, Cross-Validation (CV) and Stratified CV (SCV) were adopted. Results from 

7 CV suggested the potential inclusion of the predicted coagulation traits in the routine acquisition of 

8 spectra from individual milk samples, as a useful alternative to instrumental testing. Conversely, the 

9 low prediction accuracies observed for the SCV suggested that, when using a multi-breed dataset, it 

10 is important to consider the differences among breeds.

11

12

13
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27 ABSTRACT

28 The prediction of traditional goat milk coagulation properties (MCP) and curd firmness over 

29 time (CFt) parameters via Fourier-transform infrared (FTIR) spectroscopy can be of significant 

30 economic interest to the dairy industry and can contribute to the breeding objectives for the genetic 

31 improvement of dairy goat breeds. Therefore, the aims of this study were to: i) explore the variability 

32 of milk FTIR spectra from four goat breeds (Camosciata delle Alpi, Murciano-Granadina, Maltese, 

33 and Sarda), and to assess the possible discriminant power of milk FTIR spectra among breeds, ii) 

34 assess the viability to predict coagulation traits by using milk FTIR spectra, and iii) quantify the effect 

35 of the breed on the prediction accuracy of MCP and CFt parameters. In total, 611 individual goat milk 

36 samples were used. Analysis of variance of measured MCP and CFt parameters was carried out using 

37 a mixed model including the farm and pendulum as random factors, and breed, parity and DIM as 

38 fixed factors. Milk spectra for each goat were collected over the spectral range from wavenumber 

39 5,011 to 925 × cm−1. Discriminant analysis of principal components (DAPC) was used to assess the 

40 ability of FTIR spectra to identify breed of origin. A Bayesian model was used to calibrate equations 

41 for each coagulation trait. The accuracy of the model and the prediction equation was assessed by 

42 Cross-Validation (CV; 80% training and 20% testing set) and Stratified CV (SCV; three breeds in the 

43 training set, one breed in the testing set) procedures. Prediction accuracy was assessed by using 

44 coefficient of determination of validation (R2
VAL), the root mean square error of validation 

45 (RMSEVAL), and the ratio performance deviation (RPD). Moreover, measured and FTIR predicted 

46 traits were compared in the SCV procedure, by assessing their least square means for the breed effect, 

47 Pearson’s correlations, and variance heteroscedasticity. Results evidenced the feasibility of using 

48 FTIR spectra and multivariate analyses to correctly assign milk samples to their breeds of origin. The 

49 R2
VAL values obtained with the CV procedure were moderate to high for the majority of coagulation 

50 traits, with RMSEVAL and RPD values increasing as the coagulation process progresses from rennet 

51 addition. Predictions accuracy obtained with the SCV were strongly influenced by the breed, 

52 presenting general low values restricting a practical application. In addition, the low Pearson’s 
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53 correlation coefficients of Sarda breed for all the traits analyzed, and the heteroscedastic variances of 

54 Camosciata delle Alpi, Murciano-Granadina, and Maltese breeds, further indicated that it is 

55 fundamental to consider the differences existing among breeds for the prediction of milk coagulation 

56 traits. 

57

58 Key words: goat, Fourier-transform infrared spectroscopy, coagulation, curd-firming

59
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60 INTRODUCTION

61 World milk production has been risen up by 1.6% in 2018 and is expected to grow at 1.7% 

62 each year by 2028. Although goat milk, together with sheep and camel, account of only ~4% of the 

63 global milk production, the expected increase in the organic farming might advantages small 

64 ruminants over the cows (OECD-FAO, 2019). Indeed, the global dairy goat industry is rapidly 

65 expanding and its potential is promising especially for low- and medium-income countries, although 

66 new investments are needed to integrate markets, research, and production facilities (Miller and Lu, 

67 2019). Goat dairy products around the world consist of yogurt, fermented milk, curd and cheese. 

68 Europe produces 34% of world goat cheese, although it counts 1.3% of the global goat population 

69 (FAOSTAT, 2018). Among a variety of dairy productions, cheese-making is a complex procedure, 

70 with many environmental and animal factors involved in the milk-to-cheese process. A brief 

71 indication of cheese-making is provided by the milk coagulation properties (MCP). Albeit the 

72 extensive research on MCP from cattle and sheep, a thorough knowledge on goat milk is restricted to 

73 recent scientific literature (Vacca et al., 2018a; Barłowska et al., 2020; Roy et al., 2020).

74  Milk coagulation properties can be measured in several methods (e.g., mechanical, 

75 vibrational, optical; Klandar et al., 2007), as well as different approaches are employed to model the 

76 coagulation process. For example, several studies have modeled the dynamics of milk curdling (e.g., 

77 prediction of storage modulus) and intensity of the process (e.g., acidification rate constant) as a 

78 function of time, using rheometers (Esteve et al., 2001; Gustavsson et al., 2014), while others 

79 exploited all the curd firmness values available from mechanical lactodynamographic instruments, to 

80 model the entire coagulation pattern, with the possibility to provide additional coagulation traits (i.e., 

81 speed of curd-firmness, syneresis rate) (Bittante et al., 2013; Cipolat-Gotet et al., 2018).

82 However, although MCP allow for a simultaneous evaluation of a considerable large number 

83 of milk samples in a daily routine, they are not suitable for studies intended at population level. Cost 

84 and logistics are the main restrictions for a wide-scale application. However, the moderate heritability 

85 of the traits (~0.15 - 0.27 in cattle) marks MCP as candidate traits for selection in the breeding 
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86 programs (Dadousis et al., 2016). A potential solution to overcome the aforementioned limits, and 

87 make available MCP data at population level, can be the prediction of MCP via Fourier-transform 

88 infrared (FTIR) spectroscopy in the range of near- and mid-infrared wavelengths. This technique is 

89 widely used in many laboratories for routine analysis of milk components (De Marchi et al., 2014; 

90 ICAR, 2020), and recently new focus has been given in its use in dairy cattle for several traits, from 

91 milk to animal health, and the environment (Tiplady et al., 2020). 

92 In brief, the FTIR spectroscopy is based on using different waves of the infrared region of the 

93 electromagnetic spectrum to excite molecules in milk in relation to their rotational and vibrational 

94 structure (Karoui et al., 2010). Therefore, the spectrum reflects the quantities of the various chemical 

95 bonds within the milk sample. However, although FTIR spectroscopy is effective for predicting traits 

96 directly measurable in milk (e.g., fat and protein %, fatty acids), when predicting indirect traits, such 

97 as milk processing characteristics (e.g., MCP, cheese-making traits), and to traits related to the animal 

98 condition (e.g., methane emissions, lameness), it must be taken into account that the nature of the 

99 prediction is primarily influenced by the relationship of these traits with the milk chemical 

100 components (e.g., relationship of the rennet coagulation time with milk protein). Among the indirect 

101 milk traits, MCP are of significant economic interest to the dairy industry due to their association 

102 with cheese production. Thus, their prediction via FTIR (MCPIR) has been widely studied in bovine 

103 milk (Dal Zotto et al., 2008; De Marchi et al., 2013; Bonfatti et al., 2016). Less studies have 

104 considered MCPIR in buffalo (Manuelian et al., 2017) and sheep (Ferragina et al., 2017; Cellesi et al., 

105 2019), but none is available in the literature for the caprine species. 

106 For the prediction of indirect milk traits, various aspects creating variation and influencing 

107 final inferences should be considered. To name some of them, the periodicity of instrument 

108 calibration with known-concentrations-milk samples, the dataset size to develop the calibration 

109 equation, the pre-processing and standardization of the spectra, the chemometric procedures and the 

110 quality of the calibration set and validation strategies adopted (Karoui et al., 2010; Tiplady et al., 

111 2019; Tiplady et al., 2020). As regards to this last aspect, the cross-validation (CV) is a common 
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112 statistical procedure used to evaluate the performance of prediction equations of both direct (Rutten 

113 et al., 2009) and indirect milk measures referred to the milk characteristics (McParland et al., 2011) 

114 and animal condition (Bittante and Cipolat-Gotet, 2018). However, some authors have showed that 

115 this approach tends to overestimate the accuracy of predictions (Qin et al., 2016; Roberts et al., 2017; 

116 Wang and Bovenhuis, 2019), principally because the validation set could be partly dependent on the 

117 calibration set (e.g., spectra from milk samples collected from: i) same animals in different times, ii) 

118 different animals from the same farm and iii) same farm in different seasons; used in both calibration 

119 and validation set). Moreover, the use of CV cannot detect any presence of a specific subpopulation 

120 in the data (e.g., spectra collected from different farming systems, breeds, seasons, FTIR instruments). 

121 For their application at an industrial level, breed effect is one of the most important aspects 

122 to consider while building calibrations from individual samples. It is acknowledged that breed is the 

123 second most important genetic feature, after species of ruminants, influencing milk composition and 

124 coagulation properties (Bittante et al., 2012; Stocco et al., 2017; Vacca et al., 2018a). As a 

125 consequence, the degree of absorption bands related to the milk components varies among species 

126 (Nicolaou et al., 2010) and among breeds within species (Zaalberg et al., 2019), resulting in different 

127 milk spectra. Nevertheless, scientific support on the contribution of the breed on the prediction 

128 accuracy of indirect milk traits by using FTIR spectra is still limited. Few studies investigated the 

129 FTIR prediction accuracies across breeds and those were related to milk fatty acids (Soyeurt et al., 

130 2011; Maurice-Van Eijndhoven et al., 2012). However, those authors did not study the effect of the 

131 breed on the prediction accuracy of the tested traits.

132 As regards to caprine species, no studies have investigated the MCPIR variability, the 

133 prediction of curd firmness over time (CFt) parameters via FTIR (CFtIR), and neither assessed the 

134 prediction accuracies of these phenotypes at the breed level. Therefore, the aims of this study were 

135 to: i) explore the variability of four goat breeds milk FTIR spectra, and to assess the potential 

136 discrimination of breed on the basis of FTIR, ii) assess the predictive performance of goat milk FTIR 
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137 spectra on coagulation traits by using milk FTIR spectra, and iii) quantify the effect of the breed on 

138 the prediction accuracy of MCPIR and CFtIR parameters using individual goat milk samples.

139

140 MATERIALS AND METHODS

141 Animals, Milk Sampling, Composition and Coagulation Properties

142 The study involved 611 goats from four breeds, two cosmopolitan (Camosciata delle Alpi, 

143 which is the Italian Alpine Chamois, N = 204; Murciano-Granadina, N = 142) and two local from 

144 Italy (Maltese, N = 121; Sarda, N = 144). A detailed description of these breeds and their 

145 characteristics are reported in Vacca et al. (2018a). Goats were reared in 19 farms distributed over 

146 the whole island of Sardinia (Italy). Farms were selected among those officially registered in the flock 

147 books and recording system of provincial associations of goat breeders, with an average flock size of 

148 32 ± 10 goats. Farms were characterized by three different management systems: traditional or 

149 extensive (with free grazing of natural pastures, seasonal milk production, family operated, N = 5), 

150 intermediate or semi-extensive (with cultivated grasslands, control of estrus and kidding season, N = 

151 8), and modern or semi-intensive system (with modern buildings and facilities, common use of TMR, 

152 out-of-season kidding and continuous milk production, N = 6). Individual milk samples (200 

153 mL/goat) were collected during the afternoon milking (one sampling day for each farm), stored at 

154 4°C and analyzed within 24 h after collection. Daily milk yield was recorded as the total yield of 

155 morning plus evening milking of the same day of sampling.

156 The MilkoScan FT6000 (Foss, Hillerød, Denmark) was used to analyze the percentage of fat 

157 and protein for each individual milk sample (ISO-IDF), over the spectral range from wavenumber 

158 5,011 to 925 × cm−1. As water represents the major constituent of milk, and the transmittance 

159 spectrum of milk (T) is very similar to that of water (Kaylegian et al., 2009), water transmittance can 

160 cover T. Usually T is lower than that of water because of the presence of other components, thus T is 

161 <1. However, T can also be >1 for the wavelengths not much affected by other components because 

162 the quantity of water in milk is less than 100%. As the concentration of a given substance in milk is 
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163 proportional to the radiation absorbance (A), this is calculated from zeroed transmittance as A = 

164 log(1/T), when the transmittance of milk is equal to that of water, and thereby T = 1, and A = 0; when 

165 T <1, then A is positive; when T >1, then A is negative. The obtained absorbance spectra of milk 

166 samples corrected for water are automatically standardized by the instrument to correct the 

167 modifications in wavelength and/or absorbance scale. Two spectral acquisitions were carried out for 

168 each sample, and the results were averaged before data analysis. Somatic cell count (SCC) was 

169 measured by using a Fossomatic 5000 (Foss Electric A/S, Hillerod, Denmark), then log-transformed 

170 to somatic cell score [SCS = log2(SCC × 10-5) + 3; (Ali and Shook, 1980)]; total bacterial count was 

171 analyzed by a BactoScan FC150 analyzer (Foss Electric A/S, Hillerod, Denmark) and log-

172 transformed [LBC = log10 (total bacterial count/1,000)]. 

173 Analysis of MCP (60 min test) was performed using the Formagraph instrument (Foss Electric 

174 A/S, Hillerod, Denmark). Rennet (Hansen Naturen Plus 215, Pacovis Amrein AG, Bern, Switzerland) 

175 was diluted in distilled water to obtain a solution at 1.2% (wt/vol), with final value of international 

176 milk clotting units (IMCU) of 0.0513 IMCU/milk mL. The recorded MCP were: rennet coagulation 

177 time (RCT, min), defined as the time interval between rennet addition and gelation; curd-firming 

178 time (k20, min), as the time between gelation and the attainment of curd firmness (CF) of 20 mm; CF 

179 at 30, 45 and 60 min after rennet addition (a30, a45, and a60, mm). 

180 During testing, the instrument records the width (mm) of the oscillatory graph of the pendula 

181 every 15 seconds. Consequently, 240 individual values of CF were recorded for each milk sample in 

182 a 60 min analysis. The differences in each CFt pattern of the individual samples were measured by 

183 the following 4-parameters model (Bittante et al., 2013):

184 CFt = CFP × [1 − e−k
CF × (t − RCTeq)] × e-k

SR × (t − RCTeq),

185 where CFt is curd firmness at time t (mm); CFP is the asymptotical potential value of CF at 

186 an infinite time in absence of syneresis (mm); kCF is the curd-firming instant rate constant (%/min); 

187 kSR is the syneresis instant rate constant (%/min); and RCTeq is RCT estimated by CFt equation on 

188 the basis of all data points (min). By using all the individual CF values, it is possible to derive other 
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189 two traits: the maximum CF (CFmax, mm) achieved after a given time interval (tmax, min). Values of 

190 the coagulation traits outside the interval of the mean ±3 standard deviations (SD) were excluded as 

191 outliers. 

192 Milk yield, composition and coagulation traits (mean ± SD) for each breed have been provided 

193 as supplemental material (Supplemental Table S1).

194

195 FTIR Spectra and Statistical Analysis

196 Mixed Model 

197 All the MCP and CFt parameters were analyzed using a MIXED procedure (SAS Institute 

198 Inc., Cary, NC), according to the following model:

199 ymnopqr = μ + Farmm + Breedn + Parityo + DIMp + Pendulumq+ emnopqr

200 where ymnopqr is the observed trait (RCT, k20, a30, a45, and a60; RCTeq, kCF, kSR, CFP, CFmax, and tmax); 

201 μ is the overall population mean; Farmm is the random effect of the mth farm (m = 1 to 19); Breedn is 

202 the fixed effect of the nth breed (n = Camosciata delle Alpi, Maltese, Murciano-Granadina, and Sarda); 

203 Parityo is the fixed effect of the oth parity [o = 1 to 3; class 1: 1st and 2nd (209 samples); class 2: 3rd 

204 and 4th (194 samples); class 3: ≥5th (208 samples)]; DIMp is the fixed effect of the pth class of days in 

205 milk [p = 1 to 4; class 1: < 80 days (167 samples); class 2: 80-120 d (173 samples); class 3: 121-160 

206 d (180 samples); class 4: >161 d (91 samples)]; Pendulumq is the random effect of the qth measuring 

207 unit of the Formagraph instrument  (q = 1 to 10); emnopqr is the random residual ~ N (0, ).𝜎2
𝑒

208 Spectra Editing 

209 Prior to spectra analysis, each single wavenumber of the spectra was standardized to a null 

210 mean and a unit sample variance. Mahalanobis distances were calculated by means of the 

211 Mahalanobis function of the R software, the inverse of the spectral covariance matrix and the “center” 

212 statement as a vector of 0. No outliers were recorded because all the spectra presented a distance 

213 value lower than the mean±3 standard deviations. Except the aforementioned standardization, the 

214 entire spectrum has been used and the spectra were not subjected to any mathematical pretreatment.
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215 Breed traceability on the basis of FTIR spectra

216 Discriminant analysis of principal components (DAPC) was used to assess the ability of FTIR 

217 spectra (N = 611) to identify breed of origin by minimizing within breed variation, while optimizing 

218 the variance between breeds (Jombart et al., 2010). DAPC was performed using the adegenet R 

219 package (Jombart, 2008). Following this procedure, the 20 first PC were retained and they were used 

220 for the DAPC. The number of PC to be included in DAPC was inspected manually and a threshold 

221 of 95% of the original variability captured by PC was used.

222 Bayesian Model

223 Separate prediction models were fitted for all the MCP and CFt traits. A Bayesian model (BayesB) 

224 was adopted as implemented in the BGLR R package (de los Campos and Perez Rodriguez, 2015). 

225 Details of this procedure are listed in Ferragina et al. (2015). Briefly, each MCP and CFt trait was 

226 regressed on standardized spectra covariates using the following linear model:

227  ,yi = β0 + ∑1,060
j = 1 xijβj + εi

228 where yi is the measured phenotype of the ith sample,  is an intercept,  are standardized FTIR β0 {xij}

229 wavelength data ,  are the effects of each of the wavelengths, and are model (𝑗 = 1,…,1,060) βj εi 

230 residuals assumed to be iid (independent and identically distributed) with normal distribution 

231 centered at zero with variance . Given the above assumption, the conditional distribution of the 𝜎2
𝜀

232 data, given the effects and variance parameters, is: 

233 ,𝑃(𝐲|𝛉) = ∏𝑛
𝑖 = 1𝑁(𝜇𝑖, 𝜎2

𝜀)

234 where  represents the collection of model parameters ,  is a normal 𝛉 𝛉 = {β0,𝛃, 𝜎2
𝜀} 𝑁(𝜇𝑖, 𝜎2

𝜀)

235 distribution centered at   and with variance , and  is a vector containing 𝜇𝑖 = β0 + ∑1,060
𝑗 = 1 xijβj 𝜎2

𝜀 𝛃 = {βj}

236 the effects of the individual spectra-derived wavelengths. Specification of the Bayesian model is 

237 completed by assigning prior distribution to the unknowns, . The default values of the built-in BGLR 𝛉

238 rules were used for all the model’s hyper-parameters, and the inferences were based on 30,000 

239 iterations with a burn-in of 10,000.
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240 Cross-Validation and Stratified Cross-Validation Procedures

241 For each trait, the accuracy of the model and the prediction equation were assessed by Cross-

242 Validation (CV) and Stratified CV (SCV) procedures using the sample set with 611 single records.

243 In the CV procedure, data were split into a training set (80% of the total records), that was 

244 used to build the equation, and a testing set (20% of the total records), used as validation. The training-

245 testing procedure was repeated 10 times for each trait, changing the training and testing set samples 

246 each time. The samples in the training and testing sets were randomly assigned, but, for each replicate, 

247 the testing set was composed by 25% of each of the four breeds.  

248 In the SCV procedure, the training set was composed by records from 3 breeds, and the testing 

249 set was composed by the remaining breed.

250 Assessment of Prediction Accuracy

251 In the CV and SCV procedures, predictions accuracy was measured using coefficient of 

252 determination of validation (R2
VAL) and the root mean square error of validation (RMSEVAL). The 

253 ratio performance deviation (RPD), calculated as the ratio between SD and the RMSEVAL, was used 

254 to compare our results with those from a previous study on sheep milk that used the same 

255 methodology (Ferragina et al., 2017), and to assess predictions accuracies among goat breeds in the 

256 SCV procedure. Coagulation traits with R2
VAL < 0.40 in CV were not further presented as results in 

257 the SCV.

258 Moreover, in the SCV procedure, measured and FTIR predicted traits were compared 

259 assessing their: i) mean values (LSMeans for breed effect testing the aforementioned mixed model); 

260 ii) correlation (Pearson’s correlations); iii) variance heteroscedasticity (Levene’s test). 

261

262 RESULTS AND DISCUSSION

263 Variability of Goat Milk Spectra

264 Descriptive statistics of milk yield, composition, traditional MCP and CFt parameters are 

265 summarized in Table 1. These traits presented quite large variability (Coefficient of Variation from 
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266 15% to 86%, respectively for protein and kSR), especially due to the different goat breeds sampled, as 

267 proved the results per each breed reported in Supplemental Table S1. 

268 In Figure 1 is reported the number of clusters (4 breeds) of the population dataset from the 

269 milk FTIR spectra, with an average of concordance assignment of about 80%. The four breeds had a 

270 correct percentage of population assignment of 78.3, 76.2, 78.1 and 86.1%, respectively for 

271 Camosciata delle Alpi, Maltese, Murciano-Granadina and Sarda. The highest percentage of correct 

272 population assignment of Sarda goats was in part expected, as the diversity of this breed was 

273 previously evidenced not only for the greater fat and protein contents in milk (Vacca et al., 2018a), 

274 but also for the efficient milk coagulation, curd firming, syneresis (Pazzola et al., 2018) and overall 

275 cheese-making process, leading to lower fat and protein losses in the whey (Vacca et al., 2018b). 

276 Hence, the results from DAPC on FTIR spectra reflected the differences in milk composition among 

277 breeds (fat, protein and lactose), which were in part expected, since FTIR spectroscopy measures the 

278 vibrations of chemical bonds within functional groups, thus generating a spectrum. The characteristic 

279 absorption bands are associated with specific milk components. For example, C=O, C-N (the amide 

280 I; ∼1,653 × cm-1), N-H and C-N signals (amide II; ∼1,567 × cm-1) have been used for the estimation 

281 of protein; the C-O (triglyceride ester; ∼1,175 × cm-1), C=O group (∼1,750 × cm-1) and C-H (acyl 

282 chain; 3,000-2,800 × cm-1) frequencies are commonly used to determine fat; the C-O and C-H stretch 

283 (1,100 and 1,000 × cm-1) have been associated with lactose (Karoui et al., 2010).

284 Few studies investigated the feasibility of using FTIR spectra and multivariate analyses to 

285 correctly classify milk samples by their breeds of origin (Valenti et al., 2013; Salleh et al., 2019). In 

286 the study of Valenti et al. (2013), milk samples from three cattle breeds (Montbéliarde, Normande, 

287 and Holstein; in total 676 bulk milk samples) were analyzed using FTIR and NIR (near infrared) 

288 technology, obtaining a better discrimination of milk samples between Normande and Holstein breeds 

289 with FTIR spectra. Salleh et al. (2019) provided with clear discrimination among three goat breeds 

290 (Saanen, Jamnapari and Toggenburg), albeit at a limited sample size (N = 18 individual milk samples) 

291 to represent the variability of the population. The results obtained in our study suggest that the 
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292 discriminant analysis applied on FTIR spectra could be useful to differentiate milk of local breeds 

293 (e.g., Sarda) destined to dairy products from that of commercial breeds (e.g., Camosciata delle Alpi). 

294 It is generally acknowledged the high value of dairy products from local breeds usually associated 

295 with the superior milk quality (Damián et al., 2008; Paschino et al., 2020). Moreover, several other 

296 characteristics, such as human cultural heritage, environment, climate adaptation, vegetable and 

297 animal biodiversity result in an added value of the dairy products derived from local breeds (Sepe 

298 and Argüello, 2019). Hence, a fast, cheap and accurate method (such as FTIR) to detect breed or 

299 origin of milk samples might protect both producers and consumers from fraud. Indeed, Nicolaou et 

300 al. (2010) suggested the potential use of the FTIR spectroscopy and multivariate analysis for the 

301 detection of different milk species (bovine, caprine, and ovine) and quantification of the adulteration 

302 of caprine or ovine milk with bovine’s in different mixtures.

303 Coagulation traits are strongly influenced by milk composition, being largely affected by milk 

304 fat and protein concentrations (Stocco et al., 2018), milk udder health indicators such as somatic cells 

305 and bacterial count (Leitner et al., 2016; Stocco et al., 2019). Among genetic factors (Damián et al., 

306 2008; Devold et al., 2011), coagulation patterns greatly vary also among breeds (Stocco et al., 2017). 

307 The patterns of coagulation of the four goat breeds are reported in Figure 2. Clear differences were 

308 observed among breeds in terms of k20 and all CF traits, excluding the two similar patterns of 

309 Camosciata delle Alpi and Murciano-Granadina goats, in agreement with a previous study on the 

310 modeling of coagulation of these breeds (Pazzola et al., 2018). Curd-firming time varied, 

311 approximately, between 3 (Sarda) and 5 min (Camosciata delle Alpi). This trait represents the first 

312 step of the curd dehydration, by which milk components are recovered and concentrated in the cheese 

313 curd. In goat milk, k20 in a range between 2 and 4 min was defined as optimal for maximizing 

314 percentage cheese yield and the recovery of nutrients in the curd (Vacca et al., 2020). Thirty min after 

315 rennet addition, even larger differences were observed among breeds, with the lowest a30 values 

316 recorded for Maltese (35 mm) and the highest for Sarda breed (50 mm). The CFmax was achieved 
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317 almost at the same time (tmax between 32 and 41 min), but varied among breeds (from 38.7 mm for 

318 Maltese, to 52.2 mm for Sarda breed). 

319

320 Prediction Accuracy of Coagulation Traits in Goat Milk 

321 In this study, the entire spectrum was used to predict coagulation traits. As depicted in the 

322 Supplemental Figure S1, five wavelength infrared regions can be observed: i) the transition area 

323 between the short-wavelength infrared (SWIR) and ii) mid-wavelength infrared (MWIR) portions 

324 of the electromagnetic spectrum (SWIR-MWIR region); iii) another very short region in the MWIR 

325 part, named MWIR-2 region, and iv) the MWIR-1 (3,048 to 1,701 × cm−1); finally, the mid-long 

326 wavelength infrared (MWIR-LWIR; 1,582 to 930 × cm−1) regions of the spectrum. It is a common 

327 practice to remove spectral bands (e.g., water absorption area) prior to main analysis. However, as 

328 previously demonstrated (Bittante and Cecchinato, 2013; Wang et al., 2016; Ferragina et al., 2017) 

329 the spectral areas typical of the water absorption bands contain significant chemical and genetic 

330 information, especially when individual samples are used. The inclusion of the water regions of the 

331 spectrum in the prediction models could be considered as a limitation of this study. However, the 

332 regression coefficients for the wavelengths in the water regions were always close to zero, in 

333 agreement with the results found by Ferragina et al. (2017) for sheep milk. 

334 As aforementioned, when FTIR spectra are used to predict indirect measures referred to milk 

335 processing (e.g., MCP, cheese-making traits) or animal condition (e.g., pregnancy, lameness), the 

336 accuracy of the prediction is strongly influenced by their correlation with milk components (e.g., fat, 

337 protein and lactose). In fact, milk composition influences its coagulation properties, but modifications 

338 in composition must be relevant for changes in milk coagulation traits, as FTIR spectroscopy is not 

339 expected to detect differences in renneting patterns. However, the suitability of the predictions 

340 depends not only on their accuracy, but also on their applications (e.g., breeding vs. monitoring 

341 purposes). In Table 2 are reported the prediction statistics for the CV procedure for goat milk MCPIR 

342 and CFtIR parameters. To compare data of the present study with the ovine species, results from 
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343 Ferragina et al. (2017) are also presented. The study by Ferragina et al. (2017) allows for a direct 

344 comparison of our results, as i) ewes were sampled in the same environment (farms located in 

345 Sardinia region), ii) MCP and CFt parameters were measured in the same way (e.g., instrument, type 

346 of rennet, IMCU), iii) similar prediction model was applied, and iv) the same CV procedure was 

347 followed. The R2
VAL for goat milk traits ranged from 0.42 to 0.68 within MCPIR, and from 0.14 to 

348 0.60 within CFtIR parameters. It is worth noting that in goat the prediction accuracy increases as the 

349 coagulation process progresses from rennet addition (R2
VAL from 0.42 for RCT to 0.68 for a60). This 

350 trend probably derives from the particular features distinguishing goat milk coagulation respect to the 

351 other species. Coagulation in goat milk is characterized by a long-lasting gel formation, and weak gel 

352 structure forming after rennet addition (e.g., dispersion of coarse particles rather than a continuous 

353 firming network), resulting in soft curd, that needs long time to strengthen and to entrap the other 

354 milk constituents (Ould Eleya et al., 1995; Zhao et al., 2014; Roy et al., 2020). It is important to 

355 consider that we used a standardized concentration of rennet for each goat milk sample, normally 

356 used for bovine milk (Bittante et al., 2012), in order to make fair comparisons with several previous 

357 studies. Because of the features characterizing goat coagulation process (e.g., long-lasting gel 

358 formation, and weak gel structure), it is expected to have higher accurate measurement of CF traits, 

359 that led to a high accuracy of their FTIR predictions (Caredda et al., 2016). The possibility to predict 

360 coagulation traits in goat milk, especially those describing the second part of the coagulation pattern 

361 (e.g., a45, a60, CFmax, CFP), could be of particular interest for the goat dairy industry. As it has been 

362 proposed, the slow speed in curd-firming, soft curd and low CFP values directly impair percentage 

363 cheese yield and the recovery of nutrients in the curd (Vacca et al., 2020).

364 Comparing these results with those from sheep (Table 2, study by Ferragina et al., 2017), the 

365 R2
VAL ranged from 0.28 to 0.69 within MCPIR, and from 0.18 to 0.67 within CFtIR parameters. In 

366 sheep, the prediction accuracy tended to decrease as the coagulation progresses (R2
VAL from 0.69 for 

367 RCT to 0.28 for a60), as opposed to goat. This derives from the low repeatability of the traits 

368 describing the second part of the coagulation pattern. Moreover, the coagulation in sheep is much 
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369 faster than in goat, and often CFmax is achieved within 30 min. After reaching CFmax, the coagulation 

370 curve is characterized by high syneresis value (kSR = 0.9 %/min; Ferragina et al., 2017). In general, 

371 the kSR is a low-repeatable coagulation trait both in cattle and sheep (Stocco et al., 2017; Ferragina et 

372 al., 2017), describing the expulsion of the whey from the contracting coagulum (descending part of 

373 the CFt pattern). During the lactodynamographic analysis, when the whey is expelled inside the small 

374 vat used for the test, the coagulum floats in the whey and the pendulum records a minor resistance. 

375 As a result, a lower curd firmness value is registered. However, it could be that the actual curd 

376 firmness continues to increase, even if the instrument records decreasing resistance. 

377 In the case of bovine milk, a study by Ferragina et al. (2015) using the same FTIR prediction 

378 model and CV approach as in our study, showed R2
VAL and RMSEVAL for RCT of 0.63 and 3.6, 

379 respectively. Although RCT was the only MPC analyzed in that study, it is generally recognized that 

380 bovine MCP are characterized by high variability (Cipolat-Gotet et al., 2012) and low repeatability 

381 in the second part of the CFt pattern (from 57% for tmax to 71% for a60), mainly because of the high 

382 incidence of late-coagulating (RCT > 30 min) milk samples (Stocco et al., 2017). This assumption is 

383 in agreement with the decreasing R2
VAL and RPD values for MCPIR reported in Holstein-Friesian 

384 cattle, with decreasing R2
VAL from 0.76 (RCT) to 0.40 (a60), and RPD from 2.03 to 1.26 (for RCT and 

385 a60, respectively; De Marchi et al., 2013); in Italian Simmental cattle breed R2
VAL of 0.69 and 0.21 

386 and RPD of 1.81 to 1.14, for RCT and a60, respectively (Bonfatti et al., 2016); and mixed-breed MCP 

387 (Holstein-Friesian, Jersey, Norwegian Red and crossbred), with R2
VAL of 0.61 for RCT and 0.26 for 

388 a60, and RPD from 1.59 to 1.16, respectively (Visentin et al., 2019). The same decreasing trend in the 

389 prediction accuracy of traditional MCPIR was evidenced also in sheep by Cellesi et al. (2019), and in 

390 buffalo species by Manuelian et al. (2017) (lower R2
VAL and higher RMSEVAL moving from RCT to 

391 a30 in both studies). It is important to mention that, although the methods for the MCP measurement 

392 and chemometrics procedures employed in those studies differ from our analysis, the results are still 

393 comparable, suggesting that goat MCPIR and CFtIR parameters could be used as a useful alternative 

394 to instrumental testing. 
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395

396 Prediction Accuracy of Milk Coagulation Traits Across Breeds 

397 In Table 3 are summarized the prediction statistics of MCPIR and CFtIR parameters across goat 

398 breeds by using the SCV. Qin et al. (2016) stated that random CV underestimates the error of the 

399 prediction equation when there are systematic differences between groups. However, although the 

400 CV is a procedure routinely adopted, SCV would allow to evaluate model performance across breeds, 

401 representing a more realistic picture of the model performance for a routine application, as it prevents 

402 records from the same breed to end up in both the training and validation sets, and because its 

403 performance is evaluated taking into account variation of coagulation traits across breeds. In the 

404 present study, differences between groups of breeds were clearly evidenced, therefore the use of CV 

405 could have led to misleading accuracies if we consider the variability among breeds observed in 

406 Figure 1. Indeed, although the differences, in terms of RPD and RMSEVAL values, among Camosciata 

407 delle Alpi, Maltese and Murciano-Granadina breeds were small, Sarda breed greatly differed, 

408 showing the scantiest prediction accuracies (e.g., RMSEVAL from 1.2 to 28.7, for k20 and a60, 

409 respectively). Comparing these results with those obtained with the CV (Table 2), it is clear that in 

410 the SCV, the R2
VAL was sharply decreased (  0.50 among breeds and traits). One explanation of this ≤

411 decrease is the lower variability of the validation set (now made by only one breed) compared with 

412 the calibration set (made by three breeds). In particular, in comparison with predictions derived from 

413 CV, Sarda breed showed the greatest differences, with RPD value more than halved and RMSEVAL 

414 more than doubled in the case of a60. 

415 As previously mentioned, the negative effects of a slow curd-firming, weak gel structure, and 

416 soft curd on cheese yield and recovery of nutrients in the curd (Vacca et al., 2020) suggests more 

417 focus to be given to CF traits more than RCT, as the coagulation occurs longer after gelation in goat 

418 milk. The possibility to implement MCPIR and CFtIR parameters rapidly and at individual level in the 

419 routine milk recording system is of particular interest for the dairy goat cheese industry and breeding 

420 associations. This could be particularly useful for those breeds with an important incidence of 
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421 intermediate (e.g., allele E; Alpine, Saanen, Toggenburg, Oberhasli, and LaMancha breeds), weak 

422 (e.g., allele F; Alpine, Saanen, Toggenburg, Oberhasli, LaMancha, and Nigerian Dwarf breeds), or 

423 non-expressing (e.g., allele N; Toggenburg and Nubian breeds) alleles of αs1-casein, that have been 

424 associated with poor coagulation process (Maga et al., 2009; Devold et al., 2011). 

425 Our results depicted the importance of the breed effect in MCPIR and CFtIR, that should be 

426 taken into account in future studies when predicting milk technological traits to avoid or correct 

427 misleading accuracies. The low prediction accuracies yielded for Sarda, compared to the rest of the 

428 breeds, is hypothesized to be a result of its different milk composition, and the very low variability 

429 of its coagulation traits (the smallest SD; Supplemental Table S1). These results are consistent with 

430 the DAPC findings, were Sarda had the highest correct breed assignment, as a results of different 

431 milk FTIR characteristics. Moreover, a narrow range in the variability of the reference values is 

432 known to negatively affect the predictability of the traits studied (Manley, 2014). Therefore, when 

433 building calibrations with samples from the three breeds validated on Sarda set, the result was the 

434 low accuracy of prediction for the latter. It is reasonable to state that the presence of Sarda goats in 

435 the calibration set could have affected the prediction accuracies for the other three breeds, even if to 

436 a lesser extent. A previous study attempting to predict milk fatty acids across four cattle breeds 

437 reported very high R2
VAL for the majority of fatty acids examined (between 0.60 and 0.80; Maurice-

438 Van Eijndhoven et al., 2012). Those authors developed calibrations from a multi-breed dataset (N = 

439 1,236), validated on a multi breed external dataset (N = 190), without taking into account a single 

440 breed per validation procedure.

441  Effective phenotyping using FTIR based data is indeed dependent on the magnitude of the 

442 phenotypic correlations between the predicted vs. measured traits (Tiplady et al., 2020). The Pearson 

443 correlation coefficients for Sarda breed presented in Table 4 were low (< 0.4) for all traits analyzed; 

444 and although the correlation coefficients for Camosciata delle Alpi (from 0.49 to 0.69 for a60 and CFP, 

445 respectively), Maltese (from 0.47 to 0.63 for a60 and k20 - CFP, respectively), and Murciano-Granadina 

446 breeds (from 0.49 to 0.71 for a60 and CFP, respectively) were higher, the heteroscedastic variances of 
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447 these three cosmopolite breeds assessed by Levene’s test further indicated that the breed affected the 

448 prediction accuracy (Table 4). Again, this could be attributable to the lower variability of Sarda breed 

449 compared to the others. In fact, the narrow variability range of the traits from Sarda is comprised 

450 within the large variability range of the calibration set composed by the other three breeds, resulting 

451 in homoscedastic variance (non-significant Levene’s test; excluding k20 and a60). On the contrary, the 

452 inclusion of Sarda in the calibration set reduced the overall variability, leading to heteroscedastic 

453 variances in the other three breeds (except for a60 in Camosciata and Maltese breeds; Table 4). 

454 Regarding the CFtFTIR parameters, less differences among breeds in the CFt patterns were 

455 observed (Figure 3), with the four CFt curves converging closer compared to the measured CFt 

456 (Figure 2). The narrow variability (after the introduction of the Sarda breed in the calibration set) led 

457 the small differences to become significant (data not shown), in terms of speed of curd-firming and 

458 syneresis rates. In fact, the shape of the curves in CFtIR patterns of Camosciata and Murciano-

459 Granadina breeds are steeper (described by kCF trait) and more inclined (described by kSR trait) 

460 (Figure 3), compared to the measured ones (Figure 2). 

461

462 Opportunities and Possible Applications of Milk FTIR Spectra in Goats 

463 Conventional goat breeding schemes are often hampered by the cost of measuring phenotypes 

464 and maintaining accurate data recording. Fourier-transform infrared spectroscopy has great potential 

465 for the future incorporation of traits that are hard or costly to measure in milk, as coagulation traits 

466 are, into breeding programs. However, except of prediction accuracy, the ability to successfully 

467 incorporate FTIR based coagulation properties into breeding programs is dependent on the 

468 heritability of the FTIR predicted traits, and on the genetic correlation between the predicted trait and 

469 the trait as measured by the standard reference method (Cecchinato et al., 2009). Those authors 

470 showed that MCPIR could be used for genetic purposes even when the prediction accuracy values are 

471 moderate, as these traits are heritable and exhibit genetic correlations much higher than the 

472 phenotypic correlations with the corresponding measured traits. The results offered in the present 
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473 study are of absolute novelty for the goat dairy sector, and open new interest for improving our 

474 understanding of the genetics underlying the expression of FTIR predicted traits. Further, 

475 identification of genomic regions, for example via genome wide association studies, could provide 

476 with more insights on the biological basis of the traits (Gregersen et al., 2015; Dadousis et al., 2016; 

477 Dadousis et al., 2017). Establishing causal links between the genome and observed phenotypes may 

478 be assisted by employing the individual FTIR wavenumbers (Wang and Bovenhuis, 2018). 

479 Consolidating research towards these approaches would enable the future enhancement of goat dairy 

480 industry and breeders’ associations.

481

482 CONCLUSIONS

483 Our results support the use of FTIR spectra to identify breed of origin of goat milk samples, 

484 a particularly important aspect for traditional dairy products and local breeds. Correct assignment is 

485 expected to increase by larger datasets than the one used in the present study.

486 Prediction accuracy values obtained with CV procedure were moderate to high for the 

487 majority of coagulation traits, suggesting their potential implementation in the routine acquisition of 

488 spectra from individual milk samples, as a useful alternative to instrumental testing. However, the 

489 negligible prediction accuracy based on SCV procedure confirmed that the accuracy of FTIR 

490 predictions was strongly influenced by how well the variation in the prediction population was 

491 represented in the calibration population. Ad hoc calibrations for the prediction of coagulation traits 

492 should be used for Sarda, as a result of different variability on milk components and coagulation 

493 compared to the rest of the breeds analyzed.  When a multi-breed dataset is used, it is important to 

494 consider the differences existing among breeds. In this regard, different strategies in splitting the 

495 dataset for calibration and validation procedures should be tested that better reflect realistic scenarios 

496 applicable in the goat dairy industry. Further research should focus on the actual individual cheese 

497 yield, instead of the cheese-related MCP and CFt. 

498
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697 TABLES AND FIGURES

698 Table 1. Descriptive statistics of milk yield, composition, traditional milk coagulation properties 

699 (MCP) and curd firmness over time (CFt) parameters of the 611 goat milk samples

Trait Mean SD Min Max CoeffV1, %
Milk Yield, kg/d 2.00 1.13 0.10 5.11 57
Milk composition
Fat, % 4.39 1.31 1.93 8.38 30
Protein, % 3.55 0.53 2.36 5.25 15
SCS2 5.76 2.07 0.44               11.2 36
LBC3 1.71 0.82 0.30 4.23 49

Traditional MCP4

RCT, min           12.4 4.31 4.00               29.3 35
k20, min 4.02 1.87 1.45               14.5 47
a30, mm           38.8               11.3 2.86               67.0 29
a45, mm           39.3               11.9 8.30               66.7 30
a60, mm           24.1               20.0 1.16               67.0 83

CFt parameters5

RCTeq, min           13.1 4.27 4.24               30.0 33
kCF, %/min           18.1 8.40 6.71               54.7 47
kSR, %/min 0.58 0.50 0.15 2.91 86
CFp, mm           47.8               11.2          13.7               75.3 23
CFmax, mm           42.3 9.91          12.1               66.7 23
tmax, min           38.3               11.8          12.8               60.0 31

700 1CoeffV = Coefficient of Variation; 2SCS = log2(SCC × 10−5) + 3; 3Logarithmic bacterial count (LBC) 
701 = log10(total bacterial count/1,000); 4RCT = measured rennet gelation time; k20 = time interval 
702 between gelation and attainment of curd firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 
703 (45, 60) min from rennet addition; 5RCTeq = rennet coagulation time estimated by CFt modeling; kCF 
704 = curd firming instant rate constant; CFP = asymptotic potential curd firmness; kSR = syneresis instant 
705 rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement 
706 of CFmax.
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707 Figure 1. Discriminant analysis of principal components (DAPC) obtained from milk FTIR spectra 

708 for the four goat breeds

709
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710 Figure 2. Patterns of the measured curd firmness over time (CFt) parameters of milk samples for the 

711 four goat breeds. The intersection of the horizontal black dashed line and of the vertical black dashed 

712 line at 30, 45 and 60 min with firmness curves represents k20 (the time from coagulation to a curd 

713 firmness of 20 mm), a30 (curd firmness 30 min after rennet addition), a45 (curd firmness 45 min after 

714 rennet addition) and a60 (curd firmness 60 min after rennet addition) of milk samples, respectively

715
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717 Table 2. Prediction statistics1 obtained with the Cross-Validation (CV) procedure for FTIR predicted 

718 traditional milk coagulation properties (MCPIR) and curd firmness over time (CFtIR) parameters 

719 obtained for goat milk in the present study, and for sheep milk in the study by Ferragina et al. (2017)

Goat (N = 611)
(present study)

Sheep (N = 1,089)
(Ferragina et al., 2017)

R2
VAL RMSEVAL RPD R2

VAL RMSEVAL RPD

Traditional MCPIR
2

RCT, min 0.42 3.3 1.3 0.69 2.3 1.7

k20, min 0.47 1.3 1.4 0.45 0.4 1.3

a30, mm 0.48 8.4 1.4 0.48 9.0 1.2

a45, mm 0.42 9.4 1.4 0.34 11.9 1.2

a60, mm 0.68 11.5 1.8 0.28 13.8 1.2

CFtIR parameters3

RCTeq, min 0.46 3.1 1.3 0.67 2.4 1.7

kCF, %/min 0.15 8.0 1.1 0.23 10.4 1.1

kSR, %/min 0.14 0.5 1.1 0.18 0.6 1.1

CFp, mm 0.60 7.5 1.6 0.48 7.3 1.4

CFmax, mm 0.59 6.7 1.5 0.48 6.5 1.4

tmax, min 0.19 10.5 1.1 0.28 8.1 1.2
720 1R2

VAL = coefficient of correlation of validation; RMSEVAL = root mean square error of validation; 
721 RPD = ratio performance deviation; 2RCT = measured rennet gelation time; k20 = time interval 
722 between gelation and attainment of curd firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 
723 (45, 60) min from rennet addition; 3RCTeq = rennet coagulation time estimated by CFt modeling; kCF 
724 = curd firming instant rate constant; CFP = asymptotic potential curd firmness; kSR = syneresis instant 
725 rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement 
726 of CFmax.
727

728

729

730
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731 Table 3. Prediction statistics1 across the four breeds obtained with the Stratified Cross-Validation (SCV) procedure for FTIR predicted traditional 

732 milk coagulation properties (MCPIR) and curd firmness over time (CFtIR) parameters

Camosciata delle Alpi Maltese Murciano-Granadina Sarda

R2
VAL RMSEVAL RPD R2

VAL RMSEVAL RPD R2
VAL RMSEVAL RPD R2

VAL RMSEVAL RPD

Traditional MCPIR
2

RCT, min 0.27 4.1 1.1 0.25 3.8 1.1 0.32 4.1 1.1 0.13 3.7 0.9

k20, min 0.34 1.9 1.1 0.39 1.3 1.3 0.34 1.4 1.2 0.03 1.2 0.7

a60, mm 0.22 15.6 1.1 0.35 12.4 1.0 0.25 15.4 1.2 0.01 28.7 0.4

CFtIR parameters3

RCTeq, min 0.29 4.0 1.1 0.28 3.6 1.2 0.38 4.1 1.1 0.10 4.9 0.7

CFp, mm 0.47 7.8 1.2 0.39 8.0 1.3 0.50 7.2 1.4 0.33 8.0 1.0
733 1R2

VAL = coefficient of correlation of validation; RMSEVAL = root mean square error of validation; RPD = ratio performance deviation; 2RCT = 
734 measured rennet gelation time; k20 = time interval between gelation and attainment of curd firmness of 20 mm; a60 = curd firmness after 60 min from 
735 rennet addition; 3RCTeq = rennet coagulation time estimated by CFt modeling; CFP = asymptotic potential curd firmness.

Page 34 of 38

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

35

736 Table 4. Pearson’s correlations (r value and significance) and Levene’s test between measured and 

737 FTIR predicted coagulation traits

Camosciata Maltese Murciano-Granadina Sarda

r Levene r Levene r Levene r Levene

Traditional MCP1

RCT, min 0.53*** *** 0.50*** ** 0.57*** *** 0.35***

k20, min 0.56*** *** 0.63*** ** 0.59*** * 0.33*** **

a60, mm 0.49*** 0.47*** 0.49*** ** 0.04 **

CFt parameters2

RCTeq, min 0.54*** *** 0.53*** ** 0.62*** *** 0.43***

CFP, mm 0.69*** *** 0.63*** *** 0.71*** ** 0.57***
738 1RCT = measured rennet gelation time; k20 = time interval between gelation and attainment of curd 
739 firmness of 20 mm; a60 = curd firmness after 60 min from rennet addition; 2RCTeq = rennet 
740 coagulation time estimated by CFt modeling; CFP = asymptotic potential curd firmness;
741 *** = P < 0.001; ** = P < 0.01; * = P < 0.05

742

743
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744 Figure 3. Patterns of the FTIR predicted curd firmness over time (CFtIR) parameters of milk samples 

745 for the four goat breeds. The intersection of the horizontal black dashed line and of the vertical black 

746 dashed line at 30, 45 and 60 min with firmness curves represents k20 (the time from coagulation to a 

747 curd firmness of 20 mm), a30 (curd firmness 30 min after rennet addition), a45 (curd firmness 45 min 

748 after rennet addition) and a60 (curd firmness 60 min after rennet addition) of milk samples, 

749 respectively

750

751

Page 36 of 38

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

37

752 SUPPLEMENTAL MATERIAL

753 Supplemental Table S1. Descriptive statistics (mean±SD) of milk yield, composition, traditional 

754 milk coagulation properties (MCP), and curd firmness over time (CFt) parameters for each breed of 

755 goat.

Camosciata
(n = 204)

Maltese
(n = 121)

Murciano-Granadina
(n = 142)

Sarda
(n = 144)

Mean SD Mean SD Mean SD Mean SD
Milk Yield, kg/d 2.80 1.01 1.54 1.02 2.33 0.85 0.94 0.33
Milk composition
Fat, % 3.77 0.81 4.10 0.77 4.39 1.21 5.59 1.58
Protein, % 3.33 0.49 3.38 0.39 3.48 0.39 4.09 0.42
SCS1 5.22 2.22 6.53 1.93 5.56 1.92 6.07 1.89
LBC2 1.81 0.80 1.12 0.70 2.20 0.83 1.60 0.60

Traditional MCP3

RCT, min 12.8 4.5 11.1 4.3 13.6 4.5 11.7 3.0
k20, min 4.8 1.7 3.9 1.6 4.1 1.7 2.7 0.9
a30, mm 35.7 7.8 35.6 10.1 37.4 9.5 49.5 8.0
a45, mm 35.9 10.4 35 12.2 37.9 10.4 49.0 9.3
a60, mm 17.6 17.1 10.4 12.5 22 17.8 46.1 11.1

CFt parameters3

RCTeq, min 13.4 4.4 11.8 4.2 14.3 4.5 12.5 3.0
kCF, %/min 14.7 5.4 21.0 11.3 17.4 7.1 19.6 6.8
kSR, %/min 0.5 0.5 0.7 0.7 0.6 0.4 0.5 0.3
CFp, mm 43.6 9.7 44.4 10.1 46.0 10.2 58.2 8.0
CFmax, mm 38.6 8.6 39.3 9.0 40.7 9.1 51.5 7.1
tmax, min 41.5 12.6 34.5 12.1 40.0 10.9 35.5 9.3

756 1SCS = log2(SCC × 10−5) + 3; 2Logarithmic bacterial count (LBC) = log10(total bacterial count/1,000); 
757 3RCT = measured rennet gelation time; k20 = time interval between gelation and attainment of curd 
758 firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 (45, 60) min from rennet addition; 4RCTeq 
759 = rennet coagulation time estimated by CFt modeling; kCF = curd firming instant rate constant; CFP = 
760 asymptotic potential curd firmness; kSR = syneresis instant rate constant; CFmax = maximum curd 
761 firmness achieved within 45 min; tmax = time at achievement of CFmax.

762
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763 Supplemental Figure S1. Mean (solid line) ± SD (dotted line) of milk Fourier Transform infrared 

764 (FTIR) goat milk spectra (range from 5,011 to 925 × cm-1), and related spectral regions [short-

765 wavelength infrared (SWIR); short and mid-wavelength infrared (SWIR-MWIR); MWIR-1 and 

766 MWIR-2; mid and long-wavelength infrared (MWIR-LWIR)]. 

767

Page 38 of 38

ScholarOne support: (434) 964 4100

Journal of Dairy Science


