
19 November 2022

University of Parma Research Repository

Twinning Automata and Regular Expressions for String Static Analysis / Negrini, L.; Arceri, V.; Ferrara, P.;
Cortesi, A.. - 12597:(2021), pp. 267-290. ((Intervento presentato al convegno 22nd International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2021 tenutosi a dnk nel
2021 [10.1007/978-3-030-67067-2_13].

Original

Twinning Automata and Regular Expressions for String Static Analysis

Publisher:

Published
DOI:10.1007/978-3-030-67067-2_13

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2899272 since: 2021-12-16T11:33:53Z

Fritz Henglein, Sharon Shoham, Yakir Vizel

This is the peer reviewd version of the followng article:



Available

VMCAI
Evaluation
Artifact

VMCAI
Evaluation
Artifact

Functional

Twinning automata and regular expressions for
string static analysis

Luca Negrini1,2, Vincenzo Arceri1�, Pietro Ferrara1, and Agostino Cortesi1

1 Ca’ Foscari University of Venice, Venice, Italy
{vincenzo.arceri|pietro.ferrara|cortesi}@unive.it

2 JuliaSoft S.r.l., Verona, Italy
luca.negrini@unive.it

Abstract. In this paper we formalize Tarsis, a new abstract domain
based on the abstract interpretation theory that approximates string val-
ues through finite state automata. The main novelty of Tarsis is that it
works over an alphabet of strings instead of single characters. On the one
hand, such an approach requires a more complex and refined definition
of the widening operator, and the abstract semantics of string opera-
tors. On the other hand, it is in position to obtain strictly more precise
results than state-of-the-art approaches. We implemented a prototype
of Tarsis, and we applied it to some case studies taken from some of
the most popular Java libraries manipulating string values. The experi-
mental results confirm that Tarsis is in position to obtain strictly more
precise results than existing analyses.

Keywords: String analysis · Static analysis · Abstract interpretation.

1 Introduction

Strings play a key role in any programming language due to the many and dif-
ferent ways in which they are used, for instance to dynamically access object
properties, to hide the program code by using string-to-code statements and re-
flection, or to manipulate data-interchange formats, such as JSON, just to name
a few. Despite the great effort spent in reasoning about strings, static analysis
often failed to manage programs that heavily manipulate strings, mainly due
to the inaccuracy of the results and the prohibitive amount of resources (time,
space) required to retrieve useful information on strings. On the one hand, finite
height string abstractions [16] are computable in a reasonable time, but precision
is suddenly lost when using advanced string manipulations. On the other hand,
more sophisticated abstractions (e.g., the ones reported in [8, 14]) compute pre-
cise results but they require a huge, and sometimes unrealistic, computational
cost, making such code intractable for these abstractions. A good representation
of such abstractions is the finite state automata domain [8]. Over-approximating
strings into finite state automata has shown to increase string analysis accuracy
in many scenarios, but it does not scale up to real world programs dealing with
statically unknown inputs and long text manipulations.



2 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

In this paper we introduce Tarsis, a new abstract domain for string values
based on finite state automata (FSA). Standard FSA has been shown to provide
precise abstractions of string values when all the components of such strings are
known, but with high computational cost. Instead of considering standard finite
automata built over an alphabet of single characters, Tarsis considers automata
that are built over an alphabet of strings. The alphabet comprises a special
value to represent statically unknown strings. This avoids the creation of self-
loops with any possible character as input, which otherwise would significantly
degrade performance. We define the abstract semantics of mainstream string
operations, namely substring, length, indexOf, replace, concat and contains, either
defined directly on the automaton or on its equivalent regular expression.

Tarsis has been implemented into a prototypical static analyzer supporting a
subset of Java. By comparing Tarsis with other cutting-edge domains for string
analysis, results show that (i) when applied to simple code that causes a preci-
sion loss in simpler domains, Tarsis correctly approximates string values within
a comparable execution time, (ii) on code that makes the standard automata
domain unusable due to the complexity of the analysis, Tarsis is in position
to perform in a limited amount of time, making it a viable domain for complex
and real codebases, and (iii) Tarsis is able to precisely abstract complex string
operations that have not been addressed by state-of-the-art domains.

The rest of the paper is structured as follows. Sect. 2 introduces a motivating
example. Sect. 3 defines the mathematical notation used throughout the paper.
Sect. 4 formalizes Tarsis and its abstract semantics. Sect. 5 reports experimental
results and comparison with other domains, while Sect. 6 concludes.

1.1 Related work

The problem of statically analyzing strings has been already tackled in differ-
ent contexts in the literature [14, 8, 29, 13, 25, 2, 16]. The original finite state au-
tomata abstract domain was defined in [8] in the context of dynamic languages,
providing an automata-based abstract semantics for common ECMAScript string
operations. The same abstract domain has been integrated also for defining a
sound-by-construction analysis for string-to-code statements [7]. The authors
of [4] provided an automata abstraction merged with interval abstractions for
analyzing JavaScript arrays and objects. In [13], the authors proposed a static
analysis of Java strings based on the abstraction of the control-flow graph as a
context-free grammar. Regular strings [12] is an abstraction of the finite state
automata domain and approximates strings as a strict subset of regular expres-
sions. Even if it is does not tackle the problem of analyzing strings, in [28]
a lattice-based generalization of regular expressions was proposed, showing a
regular expressions-based domain parametric from a lattice of reference. An in-
teresting automata-based model is symbolic automata [21], that differs from the
standard one having an alphabet of predicates (that can potentially be infinite)
instead of single characters. Examples of applications of symbolic automata in
the context of static analysis are regex processing, sanitizer analysis [32] and
their usage as program model for mixing syntactic and semantic abstractions



Twinning automata and regular expressions for string static analysis 3

1 i n t countMatches ( S t r i n g s t r , S t r i n g sub ) {
2 i n t count = 0 ;
3 i n t l e n = sub . l e n g t h ( ) ;
4 wh i l e ( s t r . c o n t a i n s ( sub ) ) {
5 i n t i d x = s t r . i ndexOf ( sub ) ;
6 count = count + 1 ;
7 i n t s t a r t = i d x + l e n ;
8 i n t end = s t r . l e n g t h ( ) ;
9 s t r = s t r . s u b s t r i n g ( s t a r t , end ) ;

10 }
11 r e t u r n count ;
12 }

Fig. 1: A program that counts the occurrences of a string into another one

over the program [30]. Finally, orthogonally to static analysis of strings by ab-
stract interpretation, a big effort was spent in the context of string constraints
verification, focusing on the study of decidable fragments of the string constraint
formulas [3] or proposing new efficient decidable procedures or string constraints
representations [3, 11, 5] also based on automata, such as [33, 34], or involving
type conversion string constraints [1].

2 Motivating example

Consider the code of Fig. 1 that counts the occurrences of string sub into string
str. This code is (a simplification of) the Apache commons-lang library method
StringUtils.countMatches3, one of the most popular Java libraries providing extra
functionalities over the core classes of the Java lang package (that contains class
String as well). Proving properties about the value of count after the loop is
particularly challenging, since it requires to correctly model a set of string op-
erations (namely length, contains, indexOf, and substring) and their interaction.
State-of-the-art string analyses fail to precisely model most of such operations,
since their abstraction of string values is not rigorous enough to deal with such
situations. This loss of precision usually leads to failure in proving string-based
properties (also on non-string values) in real-world software, such as the numer-
ical bounds of the value returned by countMatches when applied to a string.

The goal of this paper is to provide an abstract interpretation-based static
analysis, in order to deal with complex and nested string manipulations similar
to the one reported in Fig. 1. As we will discuss in Sect. 5, Tarsis models (among
the others) all string operations used in countMatches, and it is precise enough
to infer, given the abstractions of str and sub, the precise range of values that
count might have at the end of the method.

3 Preliminaries

Mathematical notation. Given a set S, S∗ is the set of all finite sequences
of elements of S. If s = s0 . . . sn ∈ S∗, si is the i-th element of s, |s| = n + 1
is its length, and s[x/y] is the sequence obtained replacing all occurrences of x

3 https://commons.apache.org/proper/commons-lang/



4 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

in s with y. When s′ is a subsequence of s, we write s′ ys s. We denote by
sn, n ≥ 0 the n-times repetition of the string s. Given two sets S and T , ℘(S)
is the powerset of S, S r T is the set difference, S ⊂ T is the strict inclusion
relation between S and T , S ⊆ T is the inclusion relation between S and T , and
S × T is the Cartesian product between S and T .
Ordered structures. A set L with a partial ordering relation ≤⊆ L× L is a
poset, denoted by 〈L,≤〉. A poset 〈L,≤,∨,∧〉, where ∨ and ∧ are respectively
the least upper bound (lub) and greatest lower bound (glb) operators of L, is a
lattice if ∀x, y ∈ L . x ∨ y and x ∧ y belong to L. It is also complete if ∀X ⊆ L
we have that

∨
X,
∧
X ∈ L. A complete lattice L, with ordering ≤, lub ∨, glb

∧, top element >, and bottom element ⊥ is denoted by 〈L,≤,∨,∧,>,⊥〉.
Abstract interpretation. Abstract interpretation [17, 18] is a theoretical
framework for sound reasoning about semantic properties of a program, estab-
lishing a correspondence between the concrete semantics of a program and an
approximation of it, called abstract semantics. Let C and A be complete lat-
tices, a pair of monotone functions α : C → A and γ : A → C forms a Galois
Connection (GC) between C and A if ∀x ∈ C, ∀y ∈ A : α(x) ≤A y ⇔ x ≤C γ(y).

We denote a GC as C −−−→←−−−α
γ

A. Given C −−−→←−−−α
γ

A, a concrete function f : C → C

is, in general, not computable. Hence, a function f ] : A → A that must cor-
rectly approximate the function f is needed. If so, we say that the function f ]

is sound. Given C −−−→←−−−α
γ

A and a concrete function f : C → C, an abstract

function f ] : A→ A is sound w.r.t. f if ∀c ∈ C. α(f(c)) ≤A f ](α(c)). Complete-
ness [24] can be obtained by enforcing the equality of the soundness condition

and it is called backward completeness. Given C −−−→←−−−α
γ

A, a concrete function

f : C → C and an abstract function f ] : A→ A, f ] is backward complete w.r.t.
f if ∀c ∈ C. α(f(c)) = f ](α(c)).
Finite state automata and regular expression notation. We follow the
notation reported in [8] for introducing finite state automata. A finite state
automaton (FA) is a tuple A = 〈Q,Σ, δ, q0, F 〉, where Q is a finite set of states,
q0 ∈ Q is the initial state, Σ is a finite alphabet of symbols, δ ⊆ Q × Σ × Q is
the transition relation and F ⊆ Q is the set of final states. If δ : Q×Σ → Q is a
function then A is called deterministic finite state automaton. The set of all the
FAs is Fa. If L ⊆ Σ∗ is recognized by a FA, we say that L is a regular language.
Given A ∈ Fa, L (A) is the language accepted by A. From the Myhill-Nerode
theorem, for each regular language uniquely exists a minimum FA (w.r.t. the
number of states) recognizing the language. Given a regular language L , Min(A)
is the minimum FA A s.t. L = L (A). Abusing notation, given a regular language
L , Min(L ) is the minimal FA recognizing L . We denote as paths(A) ∈ ℘(δ∗)
the set of sequences of transitions corresponding to all the possible paths from
the initial state q0 to a final state qn ∈ F . When A is cycle-free, the set paths(A)
is finite and computable. Given π ∈ paths(A), |π| is its length, meaning the sum
of the lengths of the symbols that appear on the transitions composing the path.
Furthermore, |minPath(A)| ∈ N denotes the (unique) length of a minimum path.
If A is a cycle-free automaton, |maxPath(A)| ∈ N denotes the (unique) length of
a maximum path. Given π = t0 . . . tn ∈ paths(A), σπi

is the symbol read by the



Twinning automata and regular expressions for string static analysis 5

a ∈ ae ::= x ∈ Id | n ∈ Z | a + a | a - a | a * a | a / a
| length(s) | indexOf(s,s)

b ∈ be ::= x ∈ Id | true | false | b && b | b || b | ! b
| e < e | e == e | contains(s1,s2)

s ∈ se ::= x ∈ Id | ”σ” | substr(s,a,a)
| concat(s,s) | replace(s,s,s) (σ ∈ Σ∗)

e ∈ e ::= a | b | s

st ∈ stmt ::= st ; st | skip | x = e | if (b) { st } else { st }
| while (b) { st }

P ∈ Imp ::= st ;

Fig. 2: Imp syntax

transition ti, i ∈ [0, n], and σπ = σπ0
. . . σπn

is the string recognized by such
path. Predicate cyclic(A) holds if and only if the given automaton contains a
cycle. Throughout the paper, it could be more convenient to refer to a finite
state automaton by its regular expression (regex for short), being equivalent.
Given two regexes r1 and r2, r1 || r2 is the disjunction between r1 and r2, r1r2
is the concatenation of r1 with r2, (r1)∗ is the Kleene-closure of r1.

The finite state automata abstract domain. Here, we report the neces-
sary notions about the finite state automata abstract domain presented in [8],
over-approximating string properties as the minimum deterministic finite state
automaton recognizing them. Given an alphabet Σ, the finite state automata
domain is defined as 〈Fa/≡,vFa,tFa,uFa,Min(∅),Min(Σ∗)〉, where Fa/≡ is the
quotient set of Fa w.r.t. the equivalence relation induced by language equality,
vFa is the partial order induced by language inclusion, tFa and uFa are the lub
and the glb, respectively. The minimum is Min(∅), that is, the automaton recog-
nizing the empty language, and the maximum is Min(Σ∗), that is, the automaton
recognizing any possible string over Σ. We abuse notation by representing equiv-
alence classes in Fa/≡ by one of its automaton (usually the minimum), i.e., when
we write A ∈ Fa/≡ we mean [A]≡. Since Fa/≡ does not satisfy the Ascending
Chain Condition (ACC), i.e., it contains infinite ascending chains, it is equipped
with the parametric widening ∇nFa. The latter is defined in terms of a state equiv-
alence relation merging states that recognize the same language, up to a fixed
length n ∈ N, a parameter used for tuning the widening precision [10, 23]. For
instance, let us consider the automata A, A′ ∈ Fa/≡ recognizing the languages
L = {ε, a} and L ′ = {ε, a, aa}, respectively. The result of the application of
the widening ∇nFa, with n = 1, is A∇nFa A′ = A′′ s.t. L (A′′) = { an | n ∈ N }.
Core language and semantics. We introduce a minimal core language Imp,
whose syntax is reported in Fig. 2. Such language supports the main operators
over strings. In particular, Imp supports arithmetic expressions (ae), Boolean
expressions (be) and string expressions (se). Primitives values are Val = Z ∪
Σ∗ ∪{true, false}, namely integers, strings and booleans. Programs states M :
Id → Val map identifiers to primitives values, ranged over the meta-variable
m. The concrete semantics of Imp statements is captured by the function J st K :



6 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

J substr(s, a, a′) Km = σi . . . σj if i ≤ j < |σ|, i = J s Km, j = J s′ Km
J length(s) Km = |σ|

J indexOf(s, s′) Km =

{
min{ i | σi . . . σj = σ′ } if ∃i, j ∈ N . σi . . . σj = σ′

−1 otherwise

J replace(s, s′, s′′) Km =

{
σ[σ′/σ′′] if σ′ ys σ

σ otherwise

J concat(s, s′) Km = σ · σ′

J contains(s, s′) Km =

{
true if ∃i, j ∈ N . σi . . . σj = σ′

false otherwise

where σ = J s Km, σ′ = J s′ Km, σ′′ = J s′′ Km

Fig. 3: Concrete semantics of Imp string expressions

M → M. The semantics is defined in a standard way and for this reason has
been omitted. Such semantics relies on the one of expressions, that we capture,
abusing notation, as J e K : M→ Val. While the semantics concerning arithmetic
and Boolean expressions is straightforward (and not of interest of this paper),
we define the part concerning strings in Fig. 3.

4 The Tarsis abstract domain

In this section, we recast the original finite state abstract domain working over an
alphabet of characters Σ, reported in Sect. 3, to an augmented abstract domain
based on finite state automata over an alphabet of strings.

4.1 Abstract domain and widening

The key idea of Tarsis is to adopt the same abstract domain, changing the
alphabet on which finite state automata are defined to a set of strings, namely
Σ∗. Clearly, the main concern here is that Σ∗ is infinite and this would not
permit us to adopt the finite state automata model, that requires the alphabet
to be finite. Thus, in order to solve this problem, we make this abstract domain
parametric to the program we aim to analyze and in particular to its strings.
Given an Imp program P, we denote by Σ∗P any substring of strings appearing
in P, 4 delimiting the space of string properties we aim to check only on P.

At this point, we can instantiate the automata-based framework proposed
in [8] with the new alphabet as

〈T Fa/≡,vT ,tT ,uT ,Min(∅),Min(A∗P)〉
4 The set Σ∗P can be easily computed collecting the constant strings in P by visiting

its abstract syntax tree and then computing their substrings.



Twinning automata and regular expressions for string static analysis 7

The alphabet on which finite state automata are defined is AP , Σ∗P ∪ {T},
where T is a special symbol that we intend as ”any possible string”. Let T Fa
be the set of any deterministic finite state automaton over the alphabet AP.
Since we can have more automata recognizing a language, T Fa/≡ is the quo-
tient set of T Fa w.r.t. the equivalence relation induced by language equality,
that is, the elements of domain are equivalence classes. For simplicity, when we
write A ∈ T Fa/≡, we intend the equivalence class of A. vT is the partial order
induced by language inclusion, tT and uT are the lub and the glb over elements
of T Fa/≡, computing the equivalence class of the union and the intersection of
the two automata representing the corresponding classes, respectively. The bot-
tom element is Min(∅), corresponding to the automaton recognizing the empty
language, and the maximum is Min(A∗P), namely the automaton recognizing any
string over AP.

Like in the standard finite state automata domain Fa/≡, also T Fa/≡ is not
a complete lattice and, consequently, it does not form a Galois Connection with
the string concrete domain ℘(Σ∗). This comes from the non-existence, in general,
of the best abstraction of a string set in T Fa/≡ (e.g., a context-free language
has no best abstract element in T Fa/≡ approximating it). Nevertheless, this is
not a concern since weaker forms of abstract interpretation are still possible [19]
still guaranteeing soundness relations between concrete and abstract elements
(e.g., polyhedra [20]). In particular, we can still ensure soundness comparing the
concretizations of our abstract elements (cf. Sect. 8 of [19]). Hence, we define
the concretization function γT : T Fa/≡ → ℘(Σ∗) as γT (A) ,

⋃
σ∈L (A) Flat(σ),

where Flat converts a string over AP into a set of strings over Σ∗. For instance,
Flat(a TT bb c) = { aσbbc | σ ∈ Σ∗ }. Note that, the language of strings (over the
alphabet Σ) recognized by A corresponds to the concretization function reported
above, namely L (A) = γT (A).

Widening. Similarly to the standard automata domain Fa/≡, also T Fa/≡ does
not satisfy ACC, meaning that fix-point computations over T Fa/≡ may not
converge in a finite time. Hence, we need to equip T Fa/≡ with a widening oper-
ator to ensure the convergence of the analysis. We define the widening operator
∇nT : T Fa/≡ × T Fa/≡ → T Fa/≡, parametric in n ∈ N, taking two automata as
input and returning an over-approximation of the least upper bounds between
them, as required by widening definition. We rely on the standard automata
widening reported in Sect. 3, that, informally speaking, can be seen as a subset
construction algorithm [22] up to languages of strings of length n. In order to
explain the widening ∇nT , consider the following function manipulating strings.5

1 f u n c t i o n f ( v ) {
2 r e s = ”” ;
3 wh i l e (?)
4 r e s = r e s + ” i d = ” + v ;
5 r e t u r n r e s ;
6 }

5 For the sake of readability, in the program examples presented in this paper the plus
operation between strings corresponds to the string concatenation.



8 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

q0 q1 q2
id = T

(a) res (A) before 2nd loop iteration

q0 q1 q2 q3 q4
id = T id = T

(b) res (A′) after 2nd loop iteration

q0, q4 q1 q2 q3
id = T id =

T

(c) The result of A∇2
T A
′

q0 q1
id =

T

(d) Minimized version of A∇2
T A
′

Fig. 4: Example of widening application

The function f takes as input parameter v and returns variable res. Let us
suppose that v is a statically unknown string, corresponding to the automaton
recognizing T (i.e., Min({T})). The result of the function f is a string of the form
id =T, repeated zero or more times. Since the while guard is unknown, the num-
ber of iterations is statically unknown, and in turn, also the number of performed
concatenations inside the loop body. The goal here is to over-approximate the
value returned by the function f, i.e., the value of res at the end of the function.

Let A, reported in Fig. 4a, be the automaton abstracting the value of res
before starting the second iteration of the loop, and let A′, reported in Fig. 4b be
the automaton abstracting the value of res at the end of the second iteration.
At this point, we want to apply the widening operator ∇nT , between A and A′,
working as follows. We first compute A tT A′ (corresponding to the automaton
reported in Fig. 4b except that also q0 and q2 are final states). On this automaton,
we merge any state that recognizes the same AP-strings of length n, with n ∈ N.
In our example, let n be 2. The resulting automaton is reported in Fig. 4c, where
q0 and q4 are put together, the other states are left as singletons since they cannot
be merged with no other state. Fig. 4d depicts the minimized version of Fig. 4c.

The widening ∇nT has been proved to meet the widening requirements (i.e.,
over-approximation of the least upper bounds and convergence on infinite as-
cending chains) in [23]. The parameter n, tuning the widening precision, is ar-
bitrary and can be chosen by the user. As highlighted in [8], the higher n is, the
more the corresponding widening operator is precise in over-approximating lubs
of infinite ascending chains (i.e., in fix-point computations).

A classical improvement on widening-based fix-point computations is to inte-
grate a threshold [15], namely widening is applied to over-approximate lubs when
a certain threshold (usually over some property of abstract values) is overcome.
In fix-point computations, we decide to apply the previously defined widening
∇nT only when the number of the states of the lubbed automata overcomes the
threshold τ ∈ N. This permits us to postpone the widening application, getting
more precise abstractions when the automata sizes do not overcome the thresh-
old. At the moment, the threshold τ is not automatically inferred, since it surely
requires further investigations.



Twinning automata and regular expressions for string static analysis 9

4.2 String abstract semantics of Imp

In this section, we define the abstract semantics of the string operators defined
in Sect. 3 over the new string domain T Fa/≡. Since Imp supports strings, inte-
gers and Booleans values, we need a way to merge the corresponding abstract
domains. In particular, we abstract integers with the well-known interval ab-
stract domain [17] defined as Intv , { [a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤
b } ∪ {⊥Intv} and Booleans with Bool , ℘({true, false}). As usual, we denote
by tIntv and tBool the lubs between intervals and Booleans, respectively. In par-
ticular, we merge such abstract domains in Val] by the coalesced sum abstract
domain [6] as

Val] , T Fa/≡ ⊕ Intv ⊕ Bool

Informally, the coalesced sum abstract domain introduces a new bottom and top
element, and it coalesces the bottom elements of the involved domains.

The program state is represented through abstract program memories M] :
Id→ Val] from identifiers to abstract values. The abstract semantics is captured
by the function HstI : M] → M], relying on the abstract semantics of expres-
sions defined by, abusing notation, HeI : M] → Val]. We focus on the abstract
semantics of string operations6, while the semantics of the other expressions is
standard and does not involve strings.

In order to define the abstract semantics of Imp over Tarsis, it is worth to
highlight that one can think to reuse the one adopted in the standard finite state
automata abstract domain [8]: unfortunately, this is not possible since the one
reported in [8] only deals with automata over alphabet of single characters (not
strings), and does not handle the character T used in Tarsis alphabet, that
must be treated, as we will see soon, as a special symbol.
Length. Given A ∈ T Fa/≡, the abstract semantics of length returns an
interval [c1, c2] such that ∀σ ∈ L (A) . c1 ≤ |σ| ≤ c2. We recast the original idea
of the abstract semantics of length over standard finite state automata. Let
s ∈ se, supposing that HsIm] = A ∈ T Fa/≡. The length abstract semantics is:

Hlength(s)Im] ,

{
[|minPath(A)|,+∞] if cyclic(A) ∨ readsTop(A)

[|minPath(A)|, |maxPath(A)|] otherwise

where readsTop(A) ⇔ ∃q, q′ ∈ Q . (q,T, q′) ∈ δ. Note that, when evaluating
the length of the minimum path, T is considered to have a length of 0. For
instance, consider the automaton A reported in Fig. 5a. The minimum path of A
is (q0, aa, q1), (q1,T, q2), (q2, bb, q4) and its length is 4. Since a transition labeled
with T is in A (and its length cannot be statically determined), the abstract
length of A is [4,+∞]. Consider the automaton A′ reported in Fig. 5b. In this
case, A′ has no cycles and has no transitions labeled with T and the length of
any string recognized by A′ can be determined. The length of the minimum path
of A′ is 3 (below path of A′), the length of the maximum path of A′ is 7 (above
path of A′) and consequently the abstract length of A′ is [3, 7].

6 The abstract semantics of concat does not add any further important technical
detail to the paper hence it is not reported.



10 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

q0

q1 q2

q3 q4

aa

T

bb

bbb bbb

(a)

q0 q1 q2

q4 q3

q5
aa bbb cc

a b c

(b)

Fig. 5: (a) A s.t. L (A) = {bbb bbb, aa T bb}, (b) A′ s.t. L (A′) = {a b c, aa bbb cc}

Contains. Given A, A′ ∈ T Fa/≡, the abstract semantics of contains should
return true if any string of A′ is surely contained into some string of A, false if
no string of A′ is contained in some string of A and {true, false} in the other
cases. For instance, consider the automaton A depicted in Fig. 6a and suppose
we check if it contains the automaton A′ recognizing the language {aa, a}. The
automaton A′ is a single-path automaton [9], meaning that any string of A′ is a
prefix of its longest string. In this case, the containment of the longest string
(on each automaton path) implies the containment of the others, such as in our
example, namely it is enough to check that the longest string of A′ is contained
into A. Note that, a single-path automaton cannot read the symbol T. We rely
on the predicate singlePath(A) when A is a non-cyclic single-path automaton and
we denote by σsp its longest string. Let s, s′ ∈ se, supposing that HsIm] = A ∈
T Fa/≡, Hs′Im] = A′ ∈ T Fa/≡. The contains abstract semantics is:

Hcontains(s, s′)Im] ,


false if A′ uT FA(A) = Min(∅)

true if singlePath(A′)

∧∀π ∈ paths(Aac) . σsp ys σπ

{true, false} otherwise

In the first case, we denote by FA(A) the factor automaton of A, i.e., the
automaton recognizing any substring of A. In particular, if A does not share
any substring of A′, the abstract semantics safely returns false (checking the
emptiness of the greatest lower bound between FA(A) and A′). Then, if A′ is a
single path automaton, the abstract semantics returns true if any path of Aac

reads the longest string of A′, with Aac being a copy of A where all the cycles
have been removed. Here, we abuse notation denoting with σsp ys σπ the fact
that σsp is a substring of each string in Flat(σπ). Otherwise, {true, false} is
returned.

IndexOf. Given A, A′ ∈ T Fa/≡, the indexOf abstract semantics returns an
interval of the first indexes of the strings of L (A′) inside strings of L (A), recalling
that when there exists a string of L (A′) that is not a substring of at least one
string of L (A′), the resulting interval must take into account -1 as well. Let
s, s′ ∈ se and suppose HsIm] = A and Hs′Im] = A′. The abstract semantics of



Twinning automata and regular expressions for string static analysis 11

indexOf is defined as:

HindexOf(s, s′)Im] ,


[−1,+∞] if cyclic(A) ∨ cyclic(A′) ∨ readsTop(A′)

[−1,−1] if ∀σ′ ∈ L (A′) @σ ∈ L (A) . σ′ ys σ
Intv⊔

σ∈L (A′)
IO(A, σ) otherwise

If one of the automata has cycles or the automaton abstracting strings we aim
to search for (A′) has a T-transition, we return [−1,+∞]. Moreover, if none of
the strings recognized by A′ is contained in a string recognized by A, we can
safely return the precise interval [−1,−1] since any string recognized by A′ is
never a substring of a string recognized by A.7 If none of the aforementioned
conditions is met, we rely on the auxiliary function IO : T Fa/≡×Σ∗ → Intv, that,
given an automaton A and a string σ ∈ Σ∗, returns an interval corresponding
to the possible first positions of σ in strings recognized by A. Since A′ surely
recognizes a finite language (i.e., has no cycles), the idea is to apply IO(A, σ)
to each σ ∈ L (A′) and to return the upper bound of the resulting intervals. In
particular, the function IO(A, σ) returns an interval [i, j] ∈ Intv where, i and j
are computed as follows.

i =


−1 if ∃π ∈ paths(A) . σ 6ys σπ

min
π∈paths(A)

{
i

∣∣∣∣∣σf ∈ Flat(σπ)

∧σfi . . . σfi+n = σ

}
otherwise

j =



−1 if ∀π ∈ paths(A) . σ 6ys σπ

+∞ if ∃π ∈ paths(A) . σ ys σπ

∧π reads T before σ

max
π∈paths(A)

i
∣∣∣∣∣∣∣
σf ∈ Flat(σπ)

∧σfi . . . σfi+n
= σ

∧σ 6ys σf0 . . . σfi+n−1

 otherwise

As for the abstract semantics of contains, we abuse notation denoting with
σ ys σπ the fact that σ is a substring of each string in Flat(σπ). Given IO(A, σ) =
[i, j] ∈ Intv, i corresponds to the minimal position where the first occurrence of
σ can be found in A, while j to the maximal one. Let us first focus on the
computation of the minimal position. If there exists a path π of A s.t. σ is not
recognized by σπ, then the minimal position where σ can be found in A does not
exist and -1 is returned. Otherwise, the minimal position where σ begins across
π is returned. Let us consider now the computation of the maximal position. If
all paths of the automaton do not recognize σ, then -1 is returned. If there exists
a path where σ is recognized but the character T appears earlier in the path,

7 Note that this is a decidable check since A and A′ are cycle-free, otherwise the interval
[−1,+∞] would be returned in the first case.



12 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

q0 q1 q2

q4 q3

q5
aaa bbb cc

aa
b

c

(a)

q0

q1 q2

q4 q3

q5

aaa
bbb

cc

aa
b

c

rr

rr

(b)

Fig. 6: Example of may-replacement

then +∞ is returned. Otherwise, the maximal index of the first occurrences of
σ across the paths of A is returned.
Replace. In order to give the intuition about how the abstract semantics
of replace will work, consider the three automata A, As, Ar ∈ T Fa/≡. Roughly
speaking, the abstract semantics of replace substitutes strings of As with strings
of Ar inside strings of A. Let us refer to As as the search automaton and to Ar as
the replace automaton. We need to specify two types of possible replacements,
by means of the following example. Consider A ∈ T Fa/≡ that is depicted in
Fig. 6a and suppose that the search automaton As is the one recognizing the
string bbb and the replace automaton Ar is a random automaton. In this case,
the replace abstract semantics performs a must-replace over A, namely substi-
tuting the sub-automaton composed by q1 and q2 with the replace automaton
Ar. Instead, let us suppose that the search automaton As is the one recognizing
bbb or cc. Since it is unknown which string must be replaced (between bbb and
cc), the replace abstract semantics needs to perform a may-replace: when a
string recognized by the search automaton is met inside a path of A it is left
unaltered in the automaton and, in the same position where the string is met,
the abstract replace only extends A with the replace automaton. An example
of may replacement is reported in Fig. 6, where A is the one reported in Fig. 6a,
the search automaton As is the one recognizing the language {bbb, cc} and the
replace automaton Ar is the one recognizing the string rr.

Before introducing the abstract semantics of replace, we define how to re-
place a string into an automaton. In particular, we define algorithm RP in Alg. 1,
that given A ∈ T Fa/≡, a replace automaton Ar and σ ∈ Σ∗ ∪ {T}, it returns a
new automaton that is identical to A except that σ is replaced with Ar.

Alg. 1 searches the given string σ across all paths of A, collecting the sequences
of transitions that recognize the search string σ and extracting them from the
paths of A (lines 2-3): an ε-transition is introduced going from the first state of the
sequence to the initial state of A′, and one such transition is also introduced for
each final state of A′, connecting that state with the ending state of the sequence
(lines 4-5). Then, the list of states composing the sequence of transitions is
iterated backwards (lines 6-7), stopping at the first state that has a transition
going outside of such list. All the states traversed in this way (excluding the one
where the iteration stopped) are removed from the resulting automaton, with the
transitions connecting them (lines 8-9), since they were needed only to recognize
the string that has been replaced. Note that RP corresponds to a must-replace. At



Twinning automata and regular expressions for string static analysis 13

Algorithm 1: RP algorithm

Data: Ao = 〈Qo,A, δo, qo0 , F o〉, Ar = 〈Qr,A, δr, qr0 , F r〉 ∈ T Fa/≡, σ ∈ Σ∗ ∪ {T}
Result: A ∈ T Fa/≡

1 Qresult ← Qo ∪Qr; δresult ← δo ∪ δr;
2 foreach π ∈ paths(Ao) do
3 foreach (qi, σ0, qi+1), . . . , (qi+n−1, σn, qi+n) ∈ π do

4 δresult ← δresult ∪ (qi, ε, q
r
0);

5 δresult ← δresult ∪ { (qf , ε, qi+n) | qf ∈ F r };
6 foreach k ∈ [i+ n− 1, i+ 1] do
7 if @(qk, σ

′, q) ∈ δo : q 6= qk+1 then

8 Qresult ← Qresult \ {qk};
9 δresult ← δresult \ {(qk, σ′, qk+1)};

10 else break;

11 return 〈Qresult,A, δresult, qo0 , F o〉;

this point, we are ready to define the replace abstract semantics. In particular,
if either A or As have cycles or As has a T-transition, we return Min({T}), namely
the automaton recognizing T. Otherwise, the replace abstract semantics is:

Hreplace(s, ss, sr)Im] ,



A if ∀σs ∈ L (As)

@σ ∈ L (A) .

σs ys σ

RP(A, σs, Ar) if L (As) = {σs}⊔
σ∈L (As)

RP(A, σ, Ar tT Min({σ})) otherwise

In the first case, if none of the strings recognized by the search automaton As
is contained into strings recognized by A, we can safely return the original au-
tomaton A without any replacement. In the special case where L (As) = {σs},
we return the automaton obtained by performing a replacement calling the func-
tion RP(A, σs, Ar). In the last case, for each each string σ ∈ L (As), we perform a
may replace of σ with Ar: note that, this exactly corresponds to a call RP where
the replace automaton is Ar tT Min({σ}), namely σ is not removed. The so far
obtained automata are finally lubbed together.
Substring. Given A ∈ T Fa/≡ and two intervals i, j ∈ Intv, the abstract se-
mantics of substring returns a new automaton A′ soundly approximating any
substring from i to j of strings recognized by A, for any i ∈ i, j ∈ j s.t. i ≤ j.

Given A ∈ T Fa/≡, in the definition of the substring semantics, we rely
on the corresponding regex r since the two representations are equivalent and
regexes allow us to define a more intuitive formalization of the semantics of
substring. Let us suppose that HsIm] = A ∈ T Fa/≡ and let us denote by r

the regex corresponding to the language recognized by A. At the moment, let us
consider exact intervals representing one integer value, namely Ha1Im] = [i, i] and
Ha2Im] = [j, j], with i, j ∈ Z. In this case, the abstract semantics is defined as:

Hsubstr(s, a1, a2)Im] ,
⊔

Min({ σ | (σ, 0, 0) ∈ Sb(r, i, j − i) })

where Sb takes as input a regex r, two indexes i, j ∈ N, and computes the set
of substrings from i to j of all the strings recognized by r. In particular, Sb is



14 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

Algorithm 2: Sb algorithm

Data: r regex over A, i, j ∈ N
Result: { (σ, n1, n2) | σ ∈ Σ∗, n1, n2 ∈ N }

1 if j = 0 ∨ r = ∅ then
2 return ∅;
3 else if r = σ ∈ Σ∗ then
4 if i > |σ| then return {(ε, i− |σ|, j)} ;
5 else if i+ j > |σ| then return {(σi . . . σ|σ|−1, 0, j − |σ|+ i)} ;
6 else return {(σi . . . σi+j , 0, 0)} ;

7 else if r = T then
8 result← {(ε, i− k, j) : 0 ≤ k ≤ i, k ∈ N};
9 result← result ∪ { (•k, 0, j − k) | 0 ≤ k ≤ j, k ∈ N };

10 return result;

11 else if r = r1r2 then
12 result← ∅;
13 subs1 ← Sb(r1, i, j);
14 foreach (σ1, i1, j1) ∈ subs1 do
15 if j1 = 0 then
16 result← result ∪ {(σ1, i1, j1)};
17 else
18 result← result ∪ { (σ1 · σ2, i2, j2) | (σ2, i2, j2) ∈ Sb(r2, i1, j1) };
19 return result;

20 else if r = r1||r2 then
21 return Sb(r1, i, j) ∪ Sb(r2, i, j);
22 else if r = (r1)∗ then
23 result← {(ε, i, j)}; partial← ∅;
24 repeat
25 result← result ∪ partial; partial← ∅;
26 foreach (σn, in, jn) ∈ result do
27 foreach (suff, is, js) ∈ Sb(r1, in, in + jn) do
28 if @(σ′, k, w) ∈ result . σ′ = σn · suff ∧ k = is ∧ w = js then
29 partial← partial ∪ {(σn · suff, is, js)};
30 until partial 6= ∅;
31 return result;

defined by Alg. 2 and, given a regex r and i, j ∈ N, it returns a set of triples of
the form (σ, n1, n2), such that σ is the partial substring that Alg. 2 has computed
up to now, n1 ∈ N tracks how many characters have still to be skipped before the
substring can be computed and n2 ∈ N is the number of characters Alg. 2 needs
still to look for to successfully compute a substring. Hence, given Sb(r, i, j), the
result is a set of such triples; note that given an element of the resulting set
(σ, n1, n2), n2 = 0 means that no more characters are needed and σ corresponds
to a proper substring of r from i to j. Thus, from the resulting set, we can filter
out the partial substrings, and retrieve only proper substrings of r from i to j,
by only considering the value of n2. Alg. 2 is defined by case on the structure of
the input regex r:

1. j = 0 or r = ∅ (lines 1-2): ∅ is returned since we either completed the
substring or we have no more characters to add;

2. r = σ ∈ Σ∗ (lines 3-6): if i > |σ|, the requested substring happens after
this atom, and we return a singleton set {ε, i − |σ|, j}, thus tracking the
consumed characters before the start of the requested substring; if i+j > |σ|,
the substring begins in σ but ends in subsequent regexes, and we return a



Twinning automata and regular expressions for string static analysis 15

singleton set containing the substring of σ from i to its end, with n1 = 0
since we begun collecting characters, and n2 = j − |σ|+ i since we collected
|σ| − i characters; otherwise, the substring is fully inside σ, and we return
the substring of σ from i to i+ j, setting both n1 and n2 to 0;

3. r = T (lines 7-10): since r might have any length, we generate substrings
that (a) gradually consume all the missing characters before the substring
can begin (line 8) and (b) gradually consume all the characters that make
up the substring, adding the unknown character • (line 9);

4. r = r1r2 (lines 11-20): the desired substring can either be fully found in
r1 or r2, or could overlap them; thus we compute all the partial substrings
of r1, recursively calling Sb (line 13); for all {σ1, i1, j1} returned, substrings
that are fully contained in r1 (i.e., when j1 = 0) are added to the result (line
16) while the remaining ones are joined with ones computed by recursively
calling Sb on r2 with n1 = j1 and n2 = j2;

5. r = r1||r2 (lines 20-21): we return the partial substring of r1 and the ones
of r2, recursively calling Sb on both of them;

6. r = (r1)∗ (lines 22-31): we construct the set of substrings through fixpoint
iteration, starting by generating {ε, i, j} (corresponding to r1 repeated 0
times - line 23) and then, at each iteration, by joining all the partial results
obtained until now with the ones generated by a further recursive call to Sb,
keeping only the joined results that are new (lines 24-30).

Above, we have defined the abstract semantics of substring when intervals
are constant. When Ha1Im] = [i, j] and Ha2Im] = [l, k], with i, j, l, k ∈ Z, the
abstract semantics of substring is

Hsubstr(s, a1, a2)Im] ,
⊔

a∈[i,j],b∈[l,k],a≤b

⊔
Min({ σ | (σ, 0, 0) ∈ Sb(r, a, b− a) })

We do not precisely handle the cases when the intervals are unbounded (e.g.,
[1,+∞]). These cases have been already considered in [8] and treated in an ad-
hoc manner and one may recast the same proposed idea in our context. Neverthe-
less, when these cases are met, our analysis returns the automaton recognizing
any possible substring of the input automaton, still guaranteeing soundness.

5 Experimental Results

Tarsis has been compared with five other domains, namely the prefix (Pr), suf-
fix (Su), char inclusion (Ci), bricks (Br) domains (all defined in [16]), and Fa/≡
(defined in [8], adapting their abstract semantics definition for Java, without
altering their precision).

All domains have been implemented in a prototype of a static analyzer for a
subset of the Java language, similar to Imp (Sect. 3), plus the assert statement.
In particular, our analyzer raises a definite alarm (DA for short) when a failing
assert (i.e., whose condition is definitely false) is met, while it raises a possible
alarm (PA for short) when the assertion might fail (i.e., the assertion’s condition



16 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

1 vo i d s u b s t r i n g ( ) {
2 S t r i n g r e s = ” s u b s t r i n g t e s t ” ;
3 i f ( nondet )
4 r e s = r e s + ” pas sed ” ;
5 e l s e
6 r e s = r e s + ” f a i l e d ” ;
7 r e s u l t = r e s . s u b s t r i n g (5 , 18) ;
8 a s s e r t ( r e s . c o n t a i n s ( ”g” ) ) ;
9 a s s e r t ( r e s . c o n t a i n s ( ”p” ) ) ;

10 a s s e r t ( r e s . c o n t a i n s ( ” f ” ) ) ;
11 a s s e r t ( r e s . c o n t a i n s ( ”d” ) ) ;
12 }

(a) Program subs

1 vo i d l oop ( ) {
2 S t r i n g v a l u e = read ( ) ;
3 S t r i n g r e s = ”Repeat : ” ;
4 wh i l e ( nondet )
5 r e s = r e s + va l u e + ” ! ” ;
6 a s s e r t ( r e s . c o n t a i n s ( ” t ” ) ) ;
7 a s s e r t ( r e s . c o n t a i n s ( ” ! ” ) ) ;
8 a s s e r t ( r e s . c o n t a i n s ( ” f ” ) ) ;
9 }

(b) Program loop

Fig. 7: Program samples used for domain comparison

evaluates to TBool). Comparisons have been performed by analyzing the code
through the coalesced sum domain specified in Sect. 4.2 with trace partition-
ing [31] (note that all traces are merged when evaluating an assertion), plugging
in the various string domains. All experiments have been performed on a HP
EliteBook G6 machine, with an Intel Core i7-8565U @ 1.8GHz processor and 16
GB of RAM memory.

To achieve a fair comparison with the other string domains, the subjects of
our evaluation are small hand-crafted code fragments that represent standard
string manipulations that occur regularly in software. Pr, Su, Ci and Br have
been built to model simple properties and to work with integers instead of in-
tervals, and have been evaluated on small programs: Sect. 5.1 compares them to
Tarsis and Fa/≡ without expanding the scope of such evaluations. Sect. 5.2 in-
stead focuses on slightly more advanced and complex string manipulations that
are not modeled by the aforementioned domains, but that Fa/≡ and Tarsis can
indeed tackle, highlighting differences between them.

It is important to notice that performances of programs relying on automata
(highlighted in Sect. 5.3) are heavily dependent on their implementation. Both
Fa/≡ and Tarsis (whose sources are available on GitHub8,9) come as non-
optimized proof-of-concept libraries (specifically, Tarsis has been built following
the structure of Fa/≡ to ensure a fair performance comparison) whose perfor-
mances can be greatly improved.

5.1 Precision of the various domains on test cases

We start by considering programs subs (Fig. 7a) and loop (Fig. 7b). subs calls
substring on the concatenation between two strings, where the first is constant
and the second one is chosen in a non-deterministic way (i.e., nondet condition
is statically unknown, lines 3-6). loop builds a string by repeatedly appending
a suffix, which contains a user input (i.e., an unknown string), to a constant
value. Tab. 1 reports the value approximation for res for each abstract domain
and analyzed program when the first assertion of each program is met, as well

8 Fa/≡ source code: https://github.com/SPY-Lab/fsa
9 Tarsis source code: https://github.com/UniVE-SSV/tarsis



Twinning automata and regular expressions for string static analysis 17

as if the abstract domain precisely dealt with the program assertions. For the
sake of readability, Tarsis and Fa/≡ approximations are expressed as regexes.

When analyzing subs, both Pr and Su lose precision since the string to
append to res is statically unknown. This leads, at line 7, to a partial substring of
the concrete one with Pr, and to an empty string with Su. Instead, the substring
semantics of Ci moves every character of the receiver in the set of possibly
contained ones, thus the abstract value at line 7 is composed by an empty set
of included characters, and a set of possibly included characters containing the
ones of both strings. Finally, Br, Fa/≡ and Tarsis are expressive enough to
track any string produced by any concrete execution of subs.

When evaluating the assertions of subs, a PA should be raised on lines 9
and 10, since ”p” or ”f” might be in res, together with a DA alarm on line 11,
since ”d” is surely not contained in res. No alarm should be raised on line 8
instead, since ”g” is part of the common prefix of both branches and thus will
be included in the substring. Such behavior is achieved when using Br, Fa/≡,
or Tarsis. Since the substring semantics of Ci moves all characters to the set of
possibly contained ones, PAs are raised on all four assertions. Since Su loses all
information about res, PAs are raised on lines 7-10 when using such domain. Pr
instead tracks the definite prefix of res, thus the PA at line 7 is avoided.

When analyzing loop, we expect to obtain no alarm at line 6 (since character
”t” is always contained in the resulting string value), and PA at lines 7 and 8.
Pr infers as prefix of res the string ”Repeat: ”, keeping such value for the whole
analysis of the program. This allows the analyzer to prove the assertion at line
6, but it raises PAs when it checks the ones at lines 7 and 8. Again, Su loses
any information about res since the lub operation occurring at line 3 cannot
find a common suffix between ”Repeat: ” and ”!”, hence PAs are raised on lines
6-8. Since the set of possible characters contains T, Ci can correctly state that
any character might appear in the string. For this reason, two PAs are reported
on lines 7 and 8, while no alarm is raised on line 6 (again, this is possible
since the string used in the contains call has length 1). The alternation of T
and ”!” prevents Br normalization algorithm from merging similar bricks. This
will eventually lead to overcoming the length threshold kL, hence resulting in
the [{T}] (0,+∞) abstract value. In such a situation, Br returns TBool on all
contains calls, resulting in PAs on lines 6-8. The parametric widening of Fa/≡
collapses the colon into T. In Tarsis, since the automaton representing res grows
by two states each iteration, the parametric widening defined in Sect. 4.1 can
collapse the whole content of the loop into a 2-states loop recognizing T!. The

Domain Program subs Program loop

Pr ring test 7 Repeat: 7

Su ε 7 ε 7

Ci [] [abdefgilnprstu ] 7 [:aepRt ] [!:aepRt T] X
Br [{ring test fai, ring test pas}] (1, 1) X [{T}] (0,+∞) 7

Fa/≡ ring test (pas||fai) X Repeat: (T)∗ X
Tarsis (ring test pas||ring test fai) X Repeat: (T!)∗ X

Table 1: Values of res at the first assert of each program



18 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

1 vo i d t o S t r i n g ( S t r i n g [ ] names ) {
2 S t r i n g r e s=”Peop le : {” ;
3 i n t i =0;
4 wh i l e ( i<names . l e n g t h ){
5 r e s=r e s+names [ i ] ;
6 i f ( i !=names . l eng th −1)
7 r e s=r e s+” , ” ;
8 i=i +1;
9 }

10 r e s=r e s+”}” ;
11 a s s e r t ( r e s . c o n t a i n s ( ” Peop le ” ) ) ;
12 a s s e r t ( r e s . c o n t a i n s ( ” , ” ) ) ;
13 a s s e r t ( r e s . c o n t a i n s ( ” not ” ) ) ;
14 }

(a) Program toString

1 vo i d count ( boo l ean nondet ) {
2 S t r i n g s t r ;
3 i f ( nondet ) s t r=” t h i s i s the t h i n g ” ;
4 e l s e s t r=” the t h r o a t ” ;
5 i n t count=countMatches ( s t r , ” th ” )
6 a s s e r t ( count>0) ;
7 a s s e r t ( count==0) ;
8 a s s e r t ( count==3) ;
9 }

(b) Program count

Fig. 8: Programs used for assessing domain precision

precise approximation of res of both domains enable the analyzer to detect that
the assertion at line 6 always holds, while PAs are raised on lines 7 and 8.

In summary, Pr and Su failed to produce the expected results on both subs
and loop, while Ci and Br produced exact results in one case (loop and subs,
respectively), but not in the other. Hence, Fa/≡ and Tarsis were the two only
domains that produced the desired behavior in these rather simple test cases.

5.2 Evaluation on realistic code samples

In this section, we explore two real world code samples. Method toString
(Fig. 8a) transforms an array of names that come as string values into a single
string. While it resembles the code of loop in Fig. 7b (thus, results of all the
analyses show the same strengths and weaknesses), now assertions check contains
predicates with a multi-character string. Method count (Fig. 8b) makes use of
countMatches (reported in Sect. 2) to prove properties about its return value.
Since the analyzer is not inter-procedural, we inlined countMatches inside
count. Tab. 2 reports the results of both methods (stored in res and count,
respectively) evaluated by each analysis at the first assertion, as well as if the
abstract domain precisely dealt with the program assertions.

As expected, when analyzing toString, each domain showed results similar
to those of loop. In particular, we expect to obtain no alarm at line 11 (since
”People” is surely contained in the resulting string), and two PAs at line 12 and
13. Pr, Su, Ci and Br raise PAs on all the three assert statements. Fa/≡ and

Domain Program toString Program count

Pr People: { 7 [0,+∞] 7

Su ε 7 [0,+∞] 7

Ci [{}:Peopl ] [{}:,Peopl T] 7 [0,+∞] 7

Br [{T}] (0,+∞) 7 [0,+∞] 7

Fa/≡ People: {(T)∗T} X [2, 3] X
Tarsis People: {}||People: {(T,)∗T} X [2, 3] X

Table 2: Values of res and count at the first assert of the respective program



Twinning automata and regular expressions for string static analysis 19

Domain subs loop toString count

Pr 11 ms 3 ms 78 ms 29 ms
Su 10 ms 2 ms 92 ms 29 ms
Ci 10 ms 3 ms 90 ms 29 ms
Br 13 ms 3 ms 190 ms 28 ms

Fa/≡ 10 ms 52013 ms 226769 ms 4235 ms
Tarsis 34 ms 38 ms 299 ms 39 ms

Table 3: Execution times of the domains on each program

Tarsis detect that the assertion at line 11 always holds. Thus, when using them,
the analyzer raises PAs on lines 12 and 13 since: comma character is part of res
if the loop is iterated at least once, and T might match ”not”.

If count (with the inlined code from countMatches) was to be executed,
count would be either 2 or 3 when the first assertion is reached, depending on
the choice of str. Thus, no alarm should be raised at line 6, while a DA should
be raised on line 7, and a PA on line 8. Since Pr, Su, Ci and Br do not define
most of the operations used in the code, the analyzer does not have information
about the string on which countMatches is executed, and thus abstract count
with the interval [0,+∞]. Thus, PAs are raised on lines 6-8. Instead, Fa/≡ and
Tarsis are instead able to detect that sub is present in all the possible strings
represented by str. Thus, thanks to trace partitioning, the trace where the loop
is skipped and count remains 0 gets discarded. Then, when the first indexOf
call happens, [0, 0] is stored into idx, since all possible values of str start with
sub. Since the call to length yields [10, 17], all possible substrings from [2, 2]
(idx plus the length of sub) to [10, 17] are computed (namely, ”e throat”, ”is is
th”, ”is is the”, . . . , ”is is the thing”), and the resulting automaton is the one
that recognizes all of them. Since the value of sub is still contained in every
path of such automaton, the loop guard still holds and the second iteration is
analyzed, repeating the same operations. When the loop guard is reached for
the third time, the remaining substring of the shorter starting string (namely
”roat”) recognized by the automaton representing str will no longer contain sub:
a trace where count equals [2, 2] will leave the loop. A further iteration is then
analyzed, after which sub is no longer contained in any of the strings that str
might hold. Thus, a second and final trace where count equals [3, 3] will reach
the assertions, and will be merged by interval lub, obtaining [2, 3] as final value
for count. This allows Tarsis and Fa/≡ to identify that the assertion at line 7
never holds, raising a DA, while the one at line 8 might not hold, raising a PA.

5.3 Efficiency

The detailed analysis of two test cases, and two examples taken from real-world
code underlined that Tarsis and Fa/≡ are the only ones able to obtain precise
results on them. We now discuss the efficiency of the analyses. Tab. 3 reports the
execution times for all the domains on the case studies analyzed in this section.
Overall, Pr, Su, Ci, and Br are the fastest domains with execution times usually
below 100 msecs. Thus, if on the one hand these domains failed to prove some



20 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

of the properties of interest, they are quite efficient and they might be helpful to
prove simple properties. Tarsis execution times are higher but still comparable
with them (about 50% overhead on average). Instead, Fa/≡ blows up on three
out of the four test cases (and in particular on toString). Hence, Tarsis is
the only domain that executes the analysis in a limited time while being able to
prove all the properties of interest on these four case studies.

The reason behind the performance gap between Tarsis and Fa/≡ can be
accounted on the alphabets underlying the automata. In Fa/≡, automata are
built over an alphabet of single characters. While this simplifies the semantic
operations, it also causes state and transition blow up w.r.t. the size of the
string that needs to be represented. This does not happen in Tarsis, since
atomic strings (not built through concatenation or other string manipulations)
are part of the alphabet and can be used as transition symbol. Having less
states and transitions to operate upon drastically lowers the time and memory
requirements of automata operations, making Tarsis faster than Fa/≡.

Tarsis’s alphabet has another peculiarity w.r.t. Fa/≡’s: it has a special sym-
bol for representing the unknown string. Having such a symbol requires some
fine-tuning of the algorithms to have them behave differently when the symbol
is encountered, but without additional tolls on their performances. Fa/≡’s al-
phabet does not have such a symbol, thus representing the unknown string is
achieved through a state having one self-loop for each character in the alpha-
bet (including the empty string). This requires significantly more resources for
automata algorithms, leading to higher execution times.

6 Conclusion

In this paper we introduced Tarsis, an abstract domain for sound abstraction
of string values. Tarsis is based on finite state automata paired with their
equivalent regular expression: a representation that allows precise modeling of
complex string values. Experiments show that Tarsis achieves great precision
also on code that heavily manipulate string values, while the time needed for
the analysis is comparable with the one of other simpler domains.

The analysis proposed in this paper is intra-procedural and we are currently
working on extending it to an inter-procedural analysis. Moreover, in order to
further improve the performance of our analysis, sophisticated techniques such
as abstract slicing [26, 27] can be integrated to keep the size of automata arising
during abstract computations as low as possible, by focusing the analysis only
on the string variables of interest. Finally, in this paper, we did not investigate
completeness property of Tarsis w.r.t. the considered operations of interest.
This would ensure that no loss of information is related to T Fa/≡ due to the
input abstraction process [9]. Our future directions will include a deeper study
about T Fa/≡ completeness, and possibly the application of completion processes
when incompleteness arises for a string operation [24].



Twinning automata and regular expressions for string static analysis 21

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Dolby, J., Janku, P., Lin,
H., Hoĺık, L., Wu, W.: Efficient handling of string-number conversion. In:
Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementa-
tion, PLDI 2020, London, UK, June 15-20, 2020. pp. 943–957. ACM (2020).
https://doi.org/10.1145/3385412.3386034

2. Abdulla, P.A., Atig, M.F., Chen, Y., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,
J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8559, pp. 150–166. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 10

3. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Janku, P.: Chain-free string con-
straints. In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for
Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei,
Taiwan, October 28-31, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11781, pp. 277–293. Springer (2019). https://doi.org/10.1007/978-3-030-31784-
3 16

4. Almashfi, N., Lu, L.: Precise string domain for analyzing javascript arrays and ob-
jects. In: 2020 3rd International Conference on Information and Computer Tech-
nologies (ICICT). pp. 17–23 (2020)

5. Amadini, R., Gange, G., Stuckey, P.J.: Dashed strings for string
constraint solving. Artificial Intelligence 289, 103368 (2020).
https://doi.org/https://doi.org/10.1016/j.artint.2020.103368

6. Arceri, V., Maffeis, S.: Abstract domains for type juggling. Electron. Notes Theor.
Comput. Sci. 331, 41–55 (2017). https://doi.org/10.1016/j.entcs.2017.02.003

7. Arceri, V., Mastroeni, I.: A sound abstract interpreter for dynamic code.
In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC ’20: The
35th ACM/SIGAPP Symposium on Applied Computing, online event, [Brno,
Czech Republic], March 30 - April 3, 2020. pp. 1979–1988. ACM (2020).
https://doi.org/10.1145/3341105.3373964

8. Arceri, V., Mastroeni, I., Xu, S.: Static analysis for ecmascript string manipulation
programs. Appl. Sci. 10, 3525 (2020). https://doi.org/10.3390/app10103525

9. Arceri, V., Olliaro, M., Cortesi, A., Mastroeni, I.: Completeness of abstract do-
mains for string analysis of javascript programs. In: Hierons, R.M., Mosbah,
M. (eds.) Theoretical Aspects of Computing - ICTAC 2019 - 16th International
Colloquium, Hammamet, Tunisia, October 31 - November 4, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11884, pp. 255–272. Springer (2019).
https://doi.org/10.1007/978-3-030-32505-3 15

10. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.
(eds.) Computer Aided Verification, 16th International Conference, CAV 2004,
Boston, MA, USA, July 13-17, 2004, Proceedings. Lecture Notes in Computer
Science, vol. 3114, pp. 321–333. Springer (2004). https://doi.org/10.1007/978-3-
540-27813-9 25

11. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM
Program. Lang. 3(POPL), 49:1–49:30 (2019). https://doi.org/10.1145/3290362



22 Luca Negrini, Vincenzo Arceri�, Pietro Ferrara, and Agostino Cortesi

12. Choi, T., Lee, O., Kim, H., Doh, K.: A practical string analyzer by the widen-
ing approach. In: Kobayashi, N. (ed.) Programming Languages and Systems, 4th
Asian Symposium, APLAS 2006, Sydney, Australia, November 8-10, 2006, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4279, pp. 374–388. Springer
(2006). https://doi.org/10.1007/11924661 23

13. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) Static Analysis, 10th International Symposium,
SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings. Lecture Notes in
Computer Science, vol. 2694, pp. 1–18. Springer (2003). https://doi.org/10.1007/3-
540-44898-5 1

14. Cortesi, A., Olliaro, M.: M-string segmentation: A refined abstract domain for
string analysis in C programs. In: Pang, J., Zhang, C., He, J., Weng, J. (eds.) 2018
International Symposium on Theoretical Aspects of Software Engineering, TASE
2018, Guangzhou, China, August 29-31, 2018. pp. 1–8. IEEE Computer Society
(2018). https://doi.org/10.1109/TASE.2018.00009

15. Cortesi, A., Zanioli, M.: Widening and narrowing operators for ab-
stract interpretation. Comput. Lang. Syst. Struct. 37(1), 24–42 (2011).
https://doi.org/10.1016/j.cl.2010.09.001

16. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for
static analysis of string values. Softw. Pract. Exp. 45(2), 245–287 (2015).
https://doi.org/10.1002/spe.2218

17. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM Sym-
posium on Principles of Programming Languages, Los Angeles, California, USA,
January 1977. pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

18. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks.
In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the
Sixth Annual ACM Symposium on Principles of Programming Languages,
San Antonio, Texas, USA, January 1979. pp. 269–282. ACM Press (1979).
https://doi.org/10.1145/567752.567778

19. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992). https://doi.org/10.1093/logcom/2.4.511

20. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Confer-
ence Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978. pp. 84–96. ACM Press (1978).
https://doi.org/10.1145/512760.512770

21. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Jagannathan,
S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014. pp. 541–554. ACM (2014). https://doi.org/10.1145/2535838.2535849

22. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages:
Fund. of Theor. CS. Academic Press Professional, Inc. (1994)

23. D’Silva, V.: Widening for Automata. MsC Thesis, Inst. Fur Inform. - UZH (2006)
24. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-

plete. J. ACM 47(2), 361–416 (2000). https://doi.org/10.1145/333979.333989,
https://doi.org/10.1145/333979.333989

25. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Co-
hen, A. (ed.) Compiler Construction - 23rd International Conference, CC 2014,



Twinning automata and regular expressions for string static analysis 23

Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8409, pp. 197–217. Springer (2014).
https://doi.org/10.1007/978-3-642-54807-9 12

26. Mastroeni, I., Nikolic, D.: Abstract program slicing: From theory towards an imple-
mentation. In: Dong, J.S., Zhu, H. (eds.) Formal Methods and Software Engineer-
ing - 12th International Conference on Formal Engineering Methods, ICFEM 2010,
Shanghai, China, November 17-19, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6447, pp. 452–467. Springer (2010). https://doi.org/10.1007/978-3-
642-16901-4 30

27. Mastroeni, I., Zanardini, D.: Abstract program slicing: An abstract interpretation-
based approach to program slicing. ACM Trans. Comput. Log. 18(1), 7:1–7:58
(2017). https://doi.org/10.1145/3029052, https://doi.org/10.1145/3029052

28. Midtgaard, J., Nielson, F., Nielson, H.R.: A parametric abstract domain for lattice-
valued regular expressions. In: Rival, X. (ed.) Static Analysis - 23rd Interna-
tional Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceed-
ings. Lecture Notes in Computer Science, vol. 9837, pp. 338–360. Springer (2016).
https://doi.org/10.1007/978-3-662-53413-7 17

29. Park, C., Im, H., Ryu, S.: Precise and scalable static analysis of jquery using a reg-
ular expression domain. In: Ierusalimschy, R. (ed.) Proceedings of the 12th Sympo-
sium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November
1, 2016. pp. 25–36. ACM (2016). https://doi.org/10.1145/2989225.2989228

30. Preda, M.D., Giacobazzi, R., Lakhotia, A., Mastroeni, I.: Abstract sym-
bolic automata: Mixed syntactic/semantic similarity analysis of executables.
In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. pp. 329–341. ACM (2015).
https://doi.org/10.1145/2676726.2676986

31. Rival, X., Mauborgne, L.: The trace partitioning ab-
stract domain. ACM Trans. Program. Lang. Syst. 29(5),
26–es (Aug 2007). https://doi.org/10.1145/1275497.1275501,
https://doi.org/10.1145/1275497.1275501

32. Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S.
(ed.) Implementation and Application of Automata - 18th International Con-
ference, CIAA 2013, Halifax, NS, Canada, July 16-19, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7982, pp. 16–23. Springer (2013).
https://doi.org/10.1007/978-3-642-39274-0 3

33. Wang, H., Chen, S., Yu, F., Jiang, J.R.: A symbolic model checking approach
to the analysis of string and length constraints. In: Huchard, M., Kästner, C.,
Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018. pp. 623–633. ACM (2018). https://doi.org/10.1145/3238147.3238189

34. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–70
(2014). https://doi.org/10.1007/s10703-013-0189-1


