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1 Introduction

To any four-dimensional N = 2 superconformal field theory (SCFT) one can canonically

associate a two-dimensional vertex operator algebra (VOA) [1],

χ : 4d N = 2 SCFT −→ VOA . (1.1)

The VOA χ[T ] arises as a cohomological reduction of the full local OPE algebra of a

four-dimensional theory T with respect to a certain nilpotent supercharge.1

This correspondence between four-dimensional SCFTs and two-dimensional VOAs il-

luminates both sides. The VOA computes a rich class of observables of the SCFT, which

would be difficult or even impossible to obtain by other methods, notably when the SCFT

has no known Lagrangian description. In the opposite direction, four-dimensional physics

expectations lead to interesting conjectures for some large classes of VOAs. A prime

example is the predicted existence of a two-dimensional topological quantum field theory

“valued in VOAs”, which was first inferred from the class S duality web of four-dimensional

SCFTs [2], and has subsequently been given a rigorous mathematical construction [3]. Fi-

nally, one may use this 4d/2d correspondence as an organizing principle for the whole

1The supercharge takes the schematic form Q + S, where Q and S denote a Poincaré and a conformal

supercharge, respectively.
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landscape of N = 2 superconformal field theories. Indeed, a natural ambition is to develop

a classification program for N = 2 SCFTs with the associated VOAs playing a foundational

role. A first set of results in this direction are certain universal bounds on four-dimensional

central charges [1, 4–6], derived by combining the analytic power of the VOA structure

with certain positivity constraints related to four-dimensional unitarity.

The vertex algebra χ[T ] represents an intricate shadow of the full SCFT T . It is

independent of exactly marginal couplings, and as such it captures “protected” data asso-

ciated to the whole conformal manifold in which a given SCFT lives. There are numerous

indications that χ[T ] is deeply connected with the physics of the Higgs branch of vacua

of T , though the full extent of the connection remains somewhat elusive. A remarkable

fact, observed in many examples and conjectured to be universally true [7], is that one can

recover directly from χ[T ] the Higgs branch MH [T ], as a holomorphic symplectic variety,

MH [T ] = Xχ[T ] , (1.2)

where XV denotes the associated variety of a VOA V [8]. This conjecture has deep conse-

quences for the structure of χ[T ],2 and it is one of the strongest indications to date that the

VOAs arising in connection with four-dimensional SCFTs are generally of a very special

type.3 Characterizing precisely what properties these VOAs must possess, and determining

in exactly what way the associated VOA encodes the physics of the Higgs branch, are two

major outstanding problems in this area.

In this paper we begin to address both of these problems. Though a comprehensive

theory remains at large, we observe a uniform pattern in a large class of examples that

allows us to begin extracting a general picture. We find that VOAs associated to four-

dimensional SCFTs admit particularly nice free field realizations. Free field realizations

are a familiar and useful tool from two-dimensional CFT — standard examples being the

Wakimoto representation of affine current algebras at general level and the vertex operator

representation of affine current algebras at level one. In contrast to these general and well-

known constructions, an important feature of the free field realizations that arise in the

present context is that they realize the simple quotient of the relevant VOA, i.e., all null

vectors vanish identically when expressed in terms of the free fields. This is a very delicate

property, as the VOAs in question occur at specific values of the central charges and other

parameters such that there is generally an array of non-trivial singular vectors.4 A related

fact is that our free field constructions are highly economical, in that they use a smaller

number of chiral bosons than would be required to realize the VOAs in question at generic

values of their parameters. This is analogous to the well-known fact that critical-level affine

Kac-Moody VOAs can be realized using fewer chiral bosons than their general-level cousins.

2In particular, the fact that Xχ[T ] must be symplectic implies that χ[T ] exhibits remarkable modular

properties — its vacuum character must obey a monic linear modular differential equation [7], even though

in general χ[T ] is irrational.
3For example, for (1.2) to hold, χ[T ] must possess certain singular vectors, which among other things

encode relations of the Higgs chiral ring.
4VOAs associated to four-dimensional SCFTs are typically “non-deformable”, i.e., they exist only for

isolated values of the central charge. When they happen to belong to continuous families, they correspond

to four-dimensional theories only at isolated points of their parameter space.
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Strikingly, we find that the free field realization of χ[T ] mirrors the effective field theory

(EFT) description of T on the Higgs branch of its moduli space of vacua. Examples can

accordingly be organized by the complexity of their EFT/free field realization roughly as

follows:

(i) In the simplest cases, the low energy degrees of freedom at a generic point of the

Higgs branch consist of n free, massless half-hypermultiplets, with n = dimCMH [T ].

In these examples, where the Higgs branch theory is purely geometric, the free field

realization for χ[T ] is given in terms of n chiral bosons, in one-to-one correspondence

with the n half-hypermultiplets describing the Higgs branch EFT. Furthermore, the

expressions for the generators of the VOA in terms of these free fields are determined

by the structure of the Higgs branch as an algebraic variety.

(ii) At the next layer of complexity we encounter theories for which an abelian gauge

group U(1)k remains unbroken at generic points of the Higgs branch, such that k free

vector multiplets survive in the low energy EFT. In such cases, we find that the free

field realization must include (in addition to the chiral bosons encoding the Higgs

branch geometry) k symplectic fermion pairs.

(iii) Finally, the most general (though perhaps least familiar) situation is when, in addition

to free fields, a decoupled interacting SCFT TIR also survives at generic Higgs branch

points. In such cases, we find that χ[T ] admits a “generalized free field” construction

of in terms of chiral bosons and the VOA χ[TIR], viewed as an irreducible building

block. As we are considering the EFT of T at a generic point of its Higgs branch, the

theory TIR will itself have a trivial Higgs branch. Thus, according to the relation (1.2),

χ[TIR] must have a zero-dimensional associated variety, which in technical terms

means that it will be C2-cofinite. The case described above in item (ii) can be

thought of as a special case of this scenario, where the C2-cofinite theory is a free

theory of symplectic fermions.

The existence and form of our free field realizations suggests that the VOAs arising from

four-dimensional SCFTs are even more deeply connected to the underlying Higgs branch

geometry than was previously understood, and in fact, may ultimately be recoverable from

the Higgs branch (decorated with the data of the EFT TIR living at the generic Higgs

branch point).

An additional benefit of our free field constructions is that, by virtue of their trans-

parent connection to Higgs branch geometry, they come equipped with a natural filtration

that can be (conjecturally) identified with the filtration by su(2)R charge described in de-

tail in [7]. As we will recall in section 2, the R-filtration is an important structure that is

inherited by the associated VOA of a four-dimensional SCFT that has hitherto not been

given an intrinsic VOA definition. However, it is a key ingredient in the detailed identi-

fication of two- and four-dimensional operators, and so in the extraction of implications

of four-dimensional unitarity for the structure of associated VOAs. By geometrizing the

associated VOA in the manner studied in this work, we can plausibly endow the associated

VOA with an intrinsic R-filtration.
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In this article, we describe in detail a set of examples that represent arguably the

simplest instances of each of the three categories outlined above. An additional simplifying

feature that is present in all of the examples discussed here is that the only singularity of

the Higgs branch is at the origin, where the original SCFT lives. The more general case

involves a Higgs branch that is a stratified symplectic space, with various singular sub-

strata supporting intermediate interacting low-energy degrees of freedom between those of

T and those of TIR. Additionally, in all cases described here the Higgs branch is spanned by

Goldstone bosons, which is a special feature not enjoyed in generic cases. More elaborate

examples that include nontrivial stratifications and flat directions not related to Goldstone

degrees of freedom will appear in a future publication [9].

The organization of this article is as follows. In section 2 we recall the essential aspects

of the correspondence (1.1), though an unfamiliar reader may need to consult the previous

literature, especially [1] and [7]. In section 3 we describe free field realizations of the

type described above for the VOAs associated to the Deligne-Cvitanović exceptional series

of simple Lie algebras. These are all examples where the Higgs branch theory is purely

geometric, so the free field constructions use only chiral bosons. In section 4 we consider the

case ofN = 4 super Yang-Mills theory with SU(2) gauge group. In this case there is a single

free abelian vector multiplet present at generic points of the Higgs branch, and accordingly

the free field realization involves an extra symplectic fermion pair. In section 5 we consider

the (A1, D2n+1) series of Argyres-Douglas SCFTs, for which the Higgs branch EFT includes

a factor that is identified with the (A1, A2n−2) Argyres-Douglas SCFT. The “free field

realizations” for these theories involve factors that are C2 co-finite Virasoro VOAs, which

are the associated VOAs for the (A1, Aeven) Argyres-Douglas theories. The constructions

of this section have appeared before for different reasons in work of Adamovic [10]. In

section 6 we return to the issue of the R-filtration of [7] and we conjecture a prescription

for identifying the R-filtration using our free field constructions, and subject our conjecture

to some basic checks. We conclude with some remarks about promising directions for future

investigation in section 7.

2 Geometric VOA preliminaries

In this section we record some foundational aspects of the SCFT/VOA correspondence that

will be relevant to our study below. This quick review is not meant to be self-contained

— we refer to the original paper [1] for the basic VOA construction and its more detailed

features. We emphasize here the aspects of the correspondence that connect most directly

with Higgs branch physics of the associated SCFT [2, 7].

2.1 Schur operators and the R-filtration

We first recall some basic notations. We shall denote by (E, j1, j2, R, r) charges of local

operators under the five Cartan generators of the four-dimensional superconformal algebra

su(2, 2|2), with E denoting the scaling dimension, (j1, j2) the Lorentz spins, and (R, r) the

charges under Cartan generators of the su(2)R⊕u(1)r R-symmetry. The underlying vector
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space V of the VOA χ[T ] is isomorphic to the space of Schur operators of the parent four-

dimensional SCFT T . By definition, Schur operators are those local operators that obey

E = 2R+ j1 + j2 , r = j2 − j1 , (2.1)

where the second relation is a consequence of the first if one assumes (as we always shall)

that the four-dimensional theory is unitary. Schur operators are thus characterized by

the three quantum numbers (E,R, r). Under the SCFT/VOA correspondence, each Schur

operator gives rise to a state in V , with holomorphic scaling dimension

h = E −R = R+ j1 + j2 . (2.2)

The triple grading of the space of Schur operators descends to a triple grading of the VOA

vector space,

V =
⊕

h,R,r

Vh,R,r . (2.3)

It is important to recognize that while the h and r gradings are natural from the viewpoint

of the VOA structure, the R grading is not. For instance, the normally ordered product

preserves h and r,5 but violates R. However, the specifics of the cohomological construction

of [1] imply that R-charge can at most decrease under normally-ordered multiplication,

NO(Vh1,R1,r1 ,Vh2,R2,r2) ⊆
⊕

k>0

Vh1+h2,R1+R2−k,r1+r2 . (2.4)

Consequently, there is a filtration by R that is preserved by the normally-ordered product.

That is, if we define,

Fh,R,r =
⊕

k>0

Vh,R−k,r , (2.5)

then we have

NO(Fh1,R1,r1 ,Fh2,R2,r2) ⊆ Fh1+h2,R1+R2,r1+r2 . (2.6)

In addition, a secondary bracket operation defined by taking the simple pole in the OPE

of two operators obeys

{Fh,R,r,Fh′,R′,r′} ⊆ Fh+h′−1,R+R′−1,r+r′ , (2.7)

so the bracket is filtered of tri-degree (−1,−1, 0).

VOAs that arise from four-dimensional SCFTs are necessarily equipped with an R-

filtration as we have just described. Furthermore, knowledge of the R-filtration is a

prerequisite for a detailed understanding of the identification between two- and four-

dimensional operators, which is turn required in many applications of VOA technology

to four-dimensional physics. In particular, the R-filtration is needed if one aims to impose

the full constraints of four-dimensional unitarity beyond simple systems of correlators such

as those studied in [1, 4–6].

5The preservation of h is in the usual sense of conformal VOAs, where the spacetime coordinate z has

scaling dimension minus one in the OPE.
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To date, it has not been clearly understood whether the R-filtration can be given a

description that is intrinsic to the VOA (though see [11] for some progress in this direction).

Namely, given an abstract presentation of the VOA, there is no known general recipe to

define the R-filtration. A remarkable and important feature of the free field realizations

described in this paper (as well as those in [12]) is that they come equipped with a natural

(and intrinsic) filtration with the right properties to be identified with the R-filtration

inherited from four-dimensions. Indeed, by anticipating this application, the form of our

free field constructions can be partly motivated by the requirement that they give rise to

the right commutative vertex algebra structure at the associated-graded level.

2.2 Higgs branch and Hall-Littlewood operators as (strong) generators

A VOA is called strongly finitely generated if it possesses a finite collection of strong gener-

ators such that normally ordered products of those strong generators and their derivatives

span the space of states of the VOA. If a VOA is strongly finitely generated, then it (or

more precisely, its simple quotient) is completely characterized by the singular terms in the

OPEs between strong generators.

It is generally thought that the VOAs arising from four-dimensional SCFTs (with

finite central charge) are all strongly finitely generated, though the strong generators have

not been characterized entirely in four-dimensional terms. However, it is known that the

generators of the Higgs branch chiral ring (i.e., those operators obeying the half-BPS

condition E = 2R) necessarily give rise to strong generators of the VOA. Furthermore,

when the Hall-Littlewood chiral ring is different from the Higgs branch chiral ring, then

additional generators of the Hall-Littlewood chiral ring (which obey the more general BPS

condition E = 2R + j1) also correspond to strong VOA generators. There may also be

additional strong generators: for example, if the central charge in an interacting SCFT

does not take the Sugawara value for the flavor symmetry of the theory, then the stress

tensor will always be an additional strong generator of the associated VOA.

A weaker condition than being strongly finitely generated is for a VOA to be finitely

generated. This is the case when there exists a finite number of generators of the VOA

such that the full space of states can be constructed from the action of the modes of those

generators on the vacuum — this include the action of positive modes, i.e., one has access

to operators that appear in the singular OPEs of the generators, not just their normally

ordered products.

An attractive possibility that, to the authors’ knowledge, is compatible with all cur-

rently known examples, is that in theories with nontrivial Higgs branches the VOA opera-

tors arising from generators of the Hall-Littlewood chiral (and anti-chiral) ring generate the

associated VOA, even when they do not strongly generate it. As we will see in subsequent

sections, in the context of free field realizations a knowledge of the generators of the VOA

is quite powerful. If one has a construction of a set of generators as a elements of a free

field VOA, the full VOA is then determined automatically. This perspective will be further

explored in [9].

– 6 –
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2.3 Associated varieties, quasi-lisse vertex algebras, and the Higgs branch

Given any VOA V , one may define the vector subspace

C2(V) = span {a−ha−1b , a, b ∈ V} . (2.8)

Rearrangement formulae for normally ordered products imply that this space is spanned by

all possible normally ordered products that involve a derivative of a strong generator in any

position. The commutative Zhu algebra can then be defined as the vector space quotient,

RV
∼= V/C2(V) . (2.9)

Multiplication inRV is induced by the normally-ordered product, but in the quotient space,

this product becomes (super) commutative and associative. Additionally, at the level of

the quotient space, the secondary bracket mentioned above obeys the rules of a Poisson

bracket with respect to multiplication. Thus RV is a Poisson algebra, graded by conformal

dimension.

Arakawa has defined the associated variety of a VOA according to

XV = mSpec (RV) . (2.10)

Roughly, this means that XV is an affine algebraic variety defined by polynomial equations

that are the images singular vectors of V in the quotient RV . In practice, the ring RV may

include nilpotent elements, and the associated variety is defined by the reduction of RV in

which one further quotients by the nilradical.

It was conjectured in [7], and has since been confirmed in a large number of examples,

that for VOAs associated to four-dimensional SCFTs the associated variety is equivalent

to the Higgs branch. In [7] it was explained that this conjecture requires the vanishing

of a certain ideal in RV whose definition refers to the R-filtration on V . Subject to this

conjecture, one learns that the associated VOAs of four-dimensional SCFTs have associated

varieties that are symplectic.6 Such VOAs have been dubbed quasi-lisse by Arakawa and

Kawasetsu [13]. This property suggests that in some sense, these VOAs should be more

geometric than a generic VOA, with the finite-dimensional associated variety playing a

central role.

3 Deligne-Cvitanović exceptional series

We now turn to our first set of examples: the (simple) affine Kac-Moody vertex algebras

associated to the Deligne-Cvitanović (DC) series of finite-dimensional, simple Lie algebras7

a0 ⊂ a1 ⊂ a2 ⊂ g2 ⊂ d4 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8 , (3.1)

at level

k = −h∨

6
− 1 , (3.2)

6More generally, the associated variety may be a stratified symplectic space with a finite number of

symplectic leaves.
7The case of a0 is special and is identified with the Virasoro VOA at central charge c = − 22

5
.
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where h∨ denotes the dual Coxeter number. This family of VOAs has been singled out

in [1] as the set of theories that simultaneously saturate four-dimensional unitarity bounds8

for the central charge c4d and the flavor central charge k4d. Additionally, it has been proved

in [14] that for this family of VOAs the associated variety is the closure of the minimal

nilpotent orbit Omin(g) of the corresponding Lie algebra g.9

We will present free field realizations of these affine Kac-Moody VOAs that are spe-

cialized to the levels in question. As we have anticipated in the introduction, our free field

realizations will utilize n = dimCMH = 2(h∨ − 1) chiral bosons, which we take as being

in one-to-one correspondence with the half-hypermultiplets appearing in the Higgs branch

effective field theory. In all cases there will be one pair of chiral bosons that is treated

differently from the remaining n − 2, which are combined into h∨ − 2 copies of the (β, γ)

VOA with conformal weights (12 ,
1
2) (i.e., h

∨ − 2 symplectic bosons).

This asymmetry can be briefly understood as follows (see also [17]). The space

MH = Omin(g), as a hyperkähler manifold, enjoys an SU(2)R ×G isometry group, where

g = Lie(G). At any point on MH different from the origin this symmetry is broken

spontaneously to SU(2)R̄ ×G♮ where SU(2)R̄ = diag (SU(2)R × SU(2)θ) and the subgroup

SU(2)θ ×G♮ ⊂ G is described in more detail in section 3.2. The tangent space at the given

point organizes into a representation of the residual symmetry as (1⊕3,1)⊕ (2,R), where

dimR = 2(h∨ − 2).10 The four real directions that are neutral with respect to G♮ are

associated to the two distinguished chiral bosons mentioned above, while the remaining

directions that transform in the representation R give rise to symplectic bosons.

3.1 The a1 free field realization

To demonstrate the general structure of our construction, we first consider in detail the

simplest (geometric) entry of the Deligne-Cvitanović exceptional series: the affine Kac-

Moody VOA V− 4
3
(sl(2)), which is given in a standard basis {e(z), f(z), h(z)} by the OPEs

e(z)e(w) ∼ 0 , f(z)f(w) ∼ 0 , (3.3a)

h(z)e(w) ∼ 2 e(w)

z − w
, h(z)f(w) ∼ −2 f(w)

z − w
, (3.3b)

e(z)f(w) ∼ k

(z − w)2
+

h(w)

z − w
, h(z)h(w) ∼ 2k

(z − w)2
, (3.3c)

with k = −4/3. To motivate our free field construction, we will begin with a detailed

discussion of the associated variety of this VOA as a holomorphic-symplectic variety. Our

8For all cases except for g2 and f4, these VOAs are related to the theory of a single D3 brane probing

a singular fiber in an F -theory compactification on a K3 surface. The four dimensional interpretation, if

any, of the g2 and f4 entries remains elusive.
9The VOAs corresponding to the d4, e6 and e7 entries have also been recently considered in [15, 16].

These works suggest that these VOAs can be described using sigma models/curved βγ systems with singular

targets. It would be interesting to clarify the relation of these works to our present construction.
10In the description of MH as a holomorphic symplectic variety, only the abelian subgroup SO(2)R̄ ⊂

SU(2)R̄ generated by R̄ = R − 1
2
hθ (with hθ the Cartan generator of sl(2)θ) is visible. The (holomorphic)

tangent space decomposes as 10 ⊕ 11 ⊕R 1
2
, where the suffix indicates the R̄-charge.

– 8 –
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approach will be to “approximate” the associated variety with the cotangent bundle T ∗C∗,

meaning we will find a (Zariski) open, dense subset that is equivalent to this cotangent

bundle. We will think of the coordinates of this cotangent bundle as finite-dimensional,

classical analogues of the free fields that we will use in our construction, and we can realize

the Higgs chiral ring in terms of them. We then look for an affine uplift, which singles out

three possible (and interesting) values for the level k.

The Higgs branch/associated variety in this case is the closure of the unique nilpotent

orbit of sl(2), i.e., the full nilcone,

MHiggs = Onil(sl(2)) =
{
x ∈ sl(2)

∣∣x2 = 0
}
. (3.4)

This has the structure of an algebraic variety when written in terms of the sl(2)-valued

function11

x =

(
p e

f −p

)
, x2 =

(
p2 + e f 0

0 p2 + e f

)
!
= 0 . (3.5)

From the second equation one recognizes the alternate description MHiggs = C2/Z2. The

holomorphic symplectic structure is encoded in the Poisson brackets of the component

functions of x, and these are just given by the sl(2) Lie algebra,

{h, e} = +2 e , {h, f} = −2 f , {e, f} = h , (3.6)

where we have defined h = 2p. In terms of this basis for the generators of the coordinate ring

of MHiggs, we can perform a nilpotent Higgsing by setting 〈e〉 = A 6= 0. Because the Higgs

branch is a just a nilpotent orbit, the most general point away from the origin of MHiggs

takes this form after a change of basis by conjugation. We can now consider the open patch

{e 6= 0} ⊂ MHiggs. In this patch, the relation (3.5) can simply be solved by setting

f = −e−1 p2 . (3.7)

Thus in this patch, there are coordinates e ∈ C∗ and p ∈ C, with Poisson bracket

{p, e} = e , {p, e−1} = −e−1 . (3.8)

This just describes the cotangent bundle T ∗C∗ with its canonical symplectic form. More-

over, this patch is invariant under the scaling C∗ action on MHiggs, which gives the simple

R-charge assignments R[p] = R[e] = 1, R[e−1] = −1.

We will look for a free field realization that “affinizes” this simple, finite-dimensional

geometric construction. To do so, we introduce two chiral bosons δ(z), ϕ(z) with OPEs

δ(z1)δ(z2) ∼ 〈δ, δ〉 log z12 , ϕ(z1)ϕ(z2) ∼ 〈ϕ,ϕ〉 log z12 , δ(z1)ϕ(z2) ∼ 0 , (3.9)

where z12 = z1 − z2. The VOA avatar of the C∗-valued e in our finite-dimensional model

is the exponentiated chiral boson

e(z) = eδ(z)+ϕ(z) , (3.10)

11We will freely identify g with g∗ using the invariant Killing form.
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which will eventually be identified with the corresponding generator of the affine Kac-

Moody algebra VOA. In order for this identification to be reasonable, we have to verify

that the OPE of e(z) with itself is regular, which in turn requires that

〈ϕ,ϕ〉 = −〈δ, δ〉 , (3.11)

so the combination δ(z) + ϕ(z) appearing in the exponential is a null direction.

A natural first proposal for an affine uplift of the conjugate variable p is then given by

the complementary null chiral boson,

p(z) =
1

2 〈δ, δ〉∂(δ(z)− ϕ(z)) . (3.12)

This choice (and normalization) is motivated by the requirement that the simple poles in

the OPEs among e(z) and p(z) provide reproduce the Poisson brackets (3.8),

Resz=w (p(z)e(w)) = e(w) , Resz=w (p(z)p(w)) = Resz=w (e(z)e(w)) = 0 . (3.13)

The operators e(z) and p(z) generate a subVOA of the full rank (1, 1) lattice VOA associ-

ated to our two chiral bosons, that we can write schematically as12

Π :=
∞⊕

n=−∞

(V∂ϕ ⊗ V∂δ) e
n(δ+ϕ) ≃

∞⊕

n=−∞

(
Vp ⊗ V∂(δ+ϕ)

)
en(δ+ϕ) , (3.14)

where Vj , j ∈ {∂ϕ, ∂δ, p, ∂(δ + ϕ)} is the abelian affine current VOA associated with the

current j.

The subVOA Π admits a natural ascending filtration that, in anticipation of our iden-

tification with the R-filtration described in section 2, we will denote by R. We define13

FRΠ := span
{
(∂n1(δ − ϕ) · · · ∂nk(δ − ϕ)∂m1(δ + ϕ) · · · ∂mℓ(δ − ϕ)en(δ+ϕ)) , k + n 6 R

}
,

(3.15)

in terms of which we clearly have

Π =
⋃

i∈Z

FiΠ , FiΠ ⊆ FjΠ , i 6 j . (3.16)

The components FRΠ are infinite dimensional for any R ∈ Z and R is unbounded below,

but this will not cause us any real trouble since the VOA Π admits two further gradings by

conformal weight and by U(1) charge relative to the affine current ∂(δ − ϕ)(z), which we

denote by h and m, respectively. It is then easy to see that the filtered subspaces (FRΠ)h,m
with fixed values of h and m are finite-dimensional, and furthermore for fixed h and m the

filtration truncates to the left (i.e., one has (FRΠ)h,m = {0} for R < m).

12In order to generate this VOA one needs to also invert e(z). One then has, for example, ∂(δ + ϕ) =

NO(e−1, ∂e), where NO(−,−) denotes conformal normal ordering.
13In equation (3.15) we use the convention of nested conformal normal ordering (A1A2 . . . An−1An) :=

(A1(A2(· · · (An−1An) · · · ))). More generally, unless otherwise specified, products of free fields in this paper

are assumed to be creation/annihilation normally ordered.
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∂(δ − ϕ) en(δ+ϕ) ∂(δ + ϕ) ∂

R 1 n 0 0

h 1 n 1 1

m 0 n 0 0

Table 1. Grading of basic elements of the commutative vertex algebra GrRΠ. The R-filtration on

Π is easily read off based on the classical limit, with the important additional simplification that

there are no nontrivial relations amongst operators in Π.

This filtration enjoys good properties analogous to those attributed to the R-filtration

in section 2: the normally ordered product and secondary bracket are compatible with the

filtration as in (2.6) and (2.7). As such, the associated graded with respect to this filtration

is a commutative vertex algebra, which is generated by eδ+ϕ, e−δ−ϕ, and ∂(δ−ϕ) subject to

the obvious relations under multiplication and differentiation.14 This commutative algebra

has a natural geometric interpretation in terms of our “approximation” of the Higgs branch:

it is the arc space J∞(T ∗C∗).15 The R-grading on this commutative vertex algebra is the

one inherited from the C∗ scaling symmetry of the underlying cotangent bundle, and we

summarize the various gradings below in table 1.

With these constructs in place, we can realize the V− 4
3
(sl(2)) OPE in terms of our

free fields. The generators {e(z), f(z), h(z)} all correspond to Higgs branch chiral ring

generators with R = h = 1, and compatibility with the R-filtration will be a significant

constraint on the form of our realization. The generator e(z) was given in (3.10) as e(z) =

exp(δ+ϕ). We note that (F1Π)1,1 is one dimensional and spanned by this exponential, so

this is the only acceptable option.

Next we consider the Cartan generator h(z). It has U(1) charge m = 0, so must live

in (F1Π)1,0, which is two dimensional and spanned by the previously introduced p(z) and

the additional null boson ∂(δ + ϕ). To produce the correct h× e OPE we must then have

h(z) = 2 p(z)+α∂(δ+ϕ)(z) for some numerical parameter α. Notice that the ambiguity is

in terms of an element of F0Π. To determine α we compare to the h× h OPE in (3.3) and

find the condition α = 1
2k. This implies that, up to a redefinition of δ and ϕ,16 we have

h(z) = k ∂ϕ(z) , 〈ϕ,ϕ〉 = −〈δ, δ〉 = 2

k
. (3.19)

14Here we are overloading the notation for these operators, using the same notation in the associated

graded GrRΠ as in the VOA Π.
15See, for example, [18] for a discussion of arc spaces in connection with quasi-Lisse vertex algebras.
16The redefinition of δ, ϕ is as follows:

δ 7→ δ
′ =

(

1

2
−

1

k〈δ, δ〉

)

δ +

(

1

2
+

1

k〈δ, δ〉

)

ϕ , (3.17)

ϕ 7→ ϕ
′=

(

1

2
+

1

k〈δ, δ〉

)

δ +

(

1

2
−

1

k〈δ, δ〉

)

ϕ . (3.18)

It is easy to check that 〈δ′, ϕ′〉 = 0, 〈ϕ′, ϕ′〉 = −〈δ′, δ′〉 = 2
k
, and δ + ϕ = δ′ + ϕ′.
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It remains to determine the most complicated generator: f(z). (F1Π)1,−1 is five-

dimensional, and by requiring the correct h× f and e× f OPEs we find that

f(z) = −
((

k

2
∂δ

)2

− k(k + 1)

2
∂2δ

)
e−(δ+ϕ) , (3.20)

where we have left the z dependence on the right hand side implicit. We note that up

to terms that are sub-leading in the R-filtration, this matches the classical expression

for the relevant element of the Higgs branch chiral ring expressed in cotangent bundle

coordinates (3.7).

At this point, all the generators of the affine VOA are determined, but we still need

to verify regularity of the f × f OPE. This implies a constraint on the level k of the VOA,

that to this point we have treated as a general parameter,17

k ∈
{
− 2,−1

2
,−4

3

}
. (3.21)

The first two levels correspond to the critical level and the Z2 orbifold of the βγ system

respectively. For these levels the free-field realization presented above can be rewritten

in terms of a (β, γ) pair of conformal weights (1, 0) and (12 ,
1
2) respectively by undoing

the relevant bosonization, with the critical-level case realizing the standard Wakimoto

representation of the critical sl(2) VOA.

Some remarks are in order at this point. The free field realization given

in (3.10), (3.19), (3.20) with k = −4
3 has been introduced by Adamovic in [19].18 Sec-

ondly, as was shown in [19], this construction yields the simple quotient of the affine vertex

algebra at k = −4/3, i.e., singular vector are identically zero. We note also that this free

field construction uses only two chiral bosons, as opposed to the three employed in the

more familiar (and valid for general level) Wakimoto realization.

3.2 The general construction

The construction of the previous section can be generalized to the full DC exceptional

series. We will adopt a similar strategy to what was done above for the a1 case: we

consider a patch of the associated variety/Higgs branch that is identified by a choice of

nilpotent Higgsing. In this patch, the component of the moment map that was turned on

will be invertible (to be precise, we will consider the localization of the Higgs chiral ring

with respect to the relevant component of the moment map). Algebraically the resulting

patch will take the form C∗×CdimCMH−1, i.e., we will be able to explicitly solve the Higgs

chiral ring relations in terms of dimCMH generators (and the inverted moment map) that

obey no additional relations amongst themselves.

In contrast to the a1 case, the Poisson structure on this patch will not take an entirely

obvious form. However, a modest redefinition will allow us to describe the same patch as (a

17It may be worth noting that for k = − 4
3
one can write f(z) = − 2

9
Q · eδ−ϕ in terms of the screening

charge Q =
∫

e−2δ.
18This free field realization has in fact appeared previously in the work of [20].
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g g♮ R h∨ k Ig♮ →֒g Ig♮ →֒sp(R)

a1 − − 2 −4
3 − −

a2 Ch⊥ 1+ ⊕ 1− 3 −3
2 − −

g2 a1 4 4 −5
3 3 10

d4 a1 ⊕ a1 ⊕ a1 (2,2,2) 6 −2 1, 1, 1 4, 4, 4

f4 c3 14′ 9 −5
2 1 5

e6 a5 20 12 −3 1 6

e7 d6 32 18 −4 1 8

e8 e7 56 30 −6 1 12

ar ar−2 ⊕ Ch⊥ (r− 1)+ ⊕ (r− 1)− r + 1 −1 1 2

br a1 ⊕ br−2 (2,2r− 3) 2r − 1 −2r−3
2 ,−2 1, 1 2r − 3, 4

cr cr−1 2(r− 1) r + 1 −1
2 1 1

dr a1 ⊕ dr−2 (2,2r− 4) 2r − 2 −2r−4
2 ,−2 1, 1 2r − 4, 4

Table 2. Lie-algebraic data for finite-dimensional simple Lie algebras relevant to the structure of

the minimal nilpotent orbit. The top portion of the table corresponds to the Deligne-Cvitanović

exceptional series of Lie algebras. The entry for the level is obtained by applying (3.46) (to each

simple factor) when g 6= a1, a2. See the appendix of [22] for a useful review of embedding indices.

quotient of) a cotangent bundle, with its canonical Poisson brackets. We use this cotangent

approximation of the Higgs branch as the starting point for an affine uplift in terms of a

lattice VOA and an appropriate number of (β, γ) systems. The resulting expressions for

the generators of the VOA are given in (3.44), (3.19), (3.45), (3.47), and (3.50).

Remarkably, we will see that the existence of an affine uplift of our set-up singles out

the DC series at the correct levels, together with VOAs associated to discrete quotients

of free theories, namely V− 1
2
(sp(2n)) ≃ (Vβγ)

n/Z2. The general construction presented in

this section is new, but the case of g = a2 has appeared previously (with slightly different

notation) in [21].

Minimal nilpotent orbits and a cotangent patch. Let us recall the algebraic and

geometric structure of minimal nilpotent orbits, which are the associated varieties/Higgs

branches for the theories in question. For a fixed choice of g, let θ be a choice of highest

root and sl(2)θ = 〈eθ, fθ, hθ〉 ⊆ g the associated sl(2) triple. The minimal nilpotent orbit

of g is then defined to be

Omin(g) = G.eθ , g = Lie(G) . (3.22)
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Here we denote the commutant subalgebra of sl(2)θ in g by g♮ = Com(sl(2)θ, g). With

respect to sl(2)θ × g♮, the Lie algebra g decomposes according to

g =
(
g♮ ⊕ sl2

)
⊕ (R, 2) . (3.23)

where R is a specific quaternionic representation of g♮. We supply the data of g♮ and R for

all finite-dimensional, simple Lie algebras in table 2. It will also prove useful to decompose

g according to its hθ weight spaces, whereupon we have a “five-graded” structure,

g = (Cfθ)−2 ⊕
(
R−

)
−1

⊕
(
g♮ ⊕ Chθ

)
0
⊕
(
R+

)
+1

⊕ (Ceθ)+2 . (3.24)

The dimension of Omin(g) can be deduced from (3.24) by counting the number of generators

that act non-trivially on eθ. These consist of all the elements in R−, along with fθ and hθ.

It follows that

dimCOmin = dimR+ 2 = 2(h∨ − 1) . (3.25)

In the second equality we have used the identity dimR = 2(h∨ − 2) where h∨ is the dual

Coxeter number of g, which can be verified from table 2.

The (closure of the) minimal nilpotent orbit for any g is an affine algebraic variety

with quadratic defining relations, known as the Joseph relations. In the symmetric algebra

S(g∗) (i.e., polynomials on g) one defines the ideal I2 according to

Sym2Adj = [2Adj]⊕ I2 , (3.26)

whereAdj denotes the adjoint representation of g, [2Adj] is the representation with Dynkin

labels twice those of the adjoint, and we identify Sym2Adj with the space of degree-two

polynomials on g. The closure of the minimal nilpotent orbit is then given by

Omin(g) =
{
x ∈ g

∣∣∣ I2 = 0
}
. (3.27)

In the case g = sl(2) studied above, we were able to (rather trivially) solve the defining

relations of the minimal nilpotent orbit given in (3.5) in the open patch where e 6= 0. We

want to perform an analogous construction for the general case. First we fix a basis for g

which reflects the decomposition (3.23). Let eA, fA, A = 1, . . . , dim(R), be bases for R+

and R−, let J
♮
α be a basis for g♮, and let eθ, hθ, fθ be a basis for sl(2)θ. In this basis, the

g−Lie algebra/Poisson brackets of moment maps is given by

{
eA, eB

}
= +ΩAB eθ ,

{
eA, eθ

}
= 0 ,

{
eθ, eθ

}
= 0 ,

{
fA, fB

}
= −ΩAB fθ ,

{
fA , fθ

}
= 0 ,

{
fθ, fθ

}
= 0 ,

{
fθ, eA

}
= fA ,

{
eθ, fA

}
= eA ,

{
hθ, eA

}
= eA ,

{
hθ, fA

}
= −fA , (3.28)

{
fA, eB

}
= IαAB J♮α − 1

2
ΩAB hθ ,

{
J♮α, J

♮
β

}
= (f ♮) γ

αβ J♮γ ,
{
J♮α, eA

}
= (tα)

B
A eB ,

{
J♮α, fA

}
= (tα)

B
A fB ,

{
J♮α, eθ

}
= 0 ,

{
J♮α, hθ

}
= 0 ,

{
J♮α, fθ

}
= 0 .
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Here ΩAB is a non-degenerate symplectic form on R, the symmetric tensor IαAB = IαBA

intertwines Sym2R with the adjoint representation of g♮, (f ♮) γ
αβ are the structure constants

of g♮, and the tensor (tα)
B

A specifies the embedding of g♮ in sp(R) as in table 2. This

embedding can be equivalently specified by a tensor TAB
α such that J♮α = TAB

α MAB where

MAB are the generators of sp(R) and (tα)
B

A = −2ΩAC TCB
α .

The Joseph relations can be decomposed according to their weight under the action of

hθ. The relations of maximal weight (two) are given by

Yα := TAB
α eA eB − eθ J

♮
α = 0 . (3.29)

It is easy to verify that Yα obeys {eA,Yα} = 0, which implies that the relations Yα have

maximal weight in their g−representation. The next set of Joseph relations are the g

descendants of Yα, which are given by

{fA,Yα} = (tα)
B

A Y′
B , Y′

A := eθ fA +
1

2
hθ eA + (Kα) B

A J♮α eB = 0 , (3.30)

where the explicit form of the tensor (Kα) B
A will not be used.19 With eθ inverted, equa-

tions (3.29) and (3.30) can be solved for J♮α and fA in terms of the generators e±1
θ , eA, and hθ.

The generator fθ could then be determined in a similar way by looking at g descendants

of the relations Y′
A. However, it is more efficient to obtain this generator using the Poisson

bracket

{fA, fB} = ΩABfθ . (3.31)

The left-hand side can be computed using the expression for fA in terms of e±1
θ , eA and hθ,

and the Poisson brackets (3.28).

The result is that in the dense, open patch {eθ 6= 0}, the Joseph relations can be solved

completely by expressing J
♮
α, fA, fθ in terms of the remaining generators:

J♮α = TAB
α eA eB e−1

θ , fA =

(
êAe

−1
θ − 1

2
hθ eA

)
e−1
θ , fθ =

(
S− 1

4
h2θ

)
e−1
θ ,

(3.32)

where we have defined

êA = −ΩAB XBCDEeCeDeE , S =
1

4
XABCD eAeBeCeD e−2

θ . (3.33)

We note that S is invariant under g♮ and the tensor X projects Sym4R onto the singlet

representation.20 The Poisson brackets (3.28) hold as a consequence of the following basic

brackets amongst independent moment maps,
{
eA, eB} = ΩAB eθ ,

{
eA, eθ} =

{
eθ, eθ} = 0 ,

{
hθ, eA

}
= eA ,

{
hθ, eθ

}
= 2 eθ .

(3.35)

19This tensor is determined from the identity δAB δβα + 2TCB
α I

β
AC = δβα (tγ)

C
A (Kγ) B

C .
20The structure of S is discussed in some detail for the DC series in section 3.3. For the remaining cases,

we have

e
2
θ S ∼















(h⊥)
2 for g = ar ,

0 for g = cr ,

ǫabǫcdgIJ gKLe
a
I e

b
Ke

c
Je

d
L for g = soM .

(3.34)

In the final entry, a, b · · · ∈ {1, 2} and I, J · · · ∈ {1, 2, . . . ,M − 4}. Refer to table 2 to discern notation.
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The expressions we have deduced above generalize (3.8), but are not yet in a form

that suggests an obvious affine free field uplift. However, this can be remedied by a slight

modification. Consider the cotangent bundle

T ∗
(
C∗ × C(h∨−2)

)
, (3.36)

with coordinates dθ and hθ for the T ∗(C∗) factor and ξA, A = 1, . . . , 2(h∨ − 2) for the

remaining affine factor. The symplectic structure on this space is the canonical one, given

by the following Poisson brackets of the coordinate functions
{
ξA, ξB} = ΩAB ,

{
ξA, eθ} =

{
eθ, eθ} = 0 ,

{
hθ, ξA

}
= 0 ,

{
hθ, dθ

}
= dθ .

(3.37)

We can now embed the Poisson algebra of the eA and eθ in the Poisson algebra of coordinate

functions on T ∗(C∗) according to

eA = (dθ) ξA , eθ = d2θ . (3.38)

Alternatively, we have an isomorphism of the relevant open patch of the minimal nilpotent

orbit with T ∗(C∗ × C(h∨−2))/Z2, where the Z2 acts by negation on ξA and dθ. As dθ is

C∗-valued, this is a free Z2 action and the quotient is smooth. It is this smooth Z2 quotient

that will play the role that was previously played by T ∗C∗ in the case g = sl(2).

Remark: it is somewhat interesting to note that the computation described in the pre-

vious paragraphs is very similar to what Joseph did in his original paper [23]. Let U(g)

denote the universal enveloping algebra of g, J0 the Joseph ideal and r = Chθ ⊕R+ ⊕Ceθ.

Theorem 4.3 of [23] states that for g 6= sln there exists a unique embedding of U(g)/J0 in

U(r)eθ := {e−s
θ U(r), s = 0, 1, 2, . . . } that reduces to the identity when restricted to r. The

classical limit of this embedding coincides with (3.32), (3.33). For g = sln there is a one

parameter families of such embeddings.

Affinization and free field realizations. We are now in position to develop an affine

uplift of the above construction. We introduce affine currents in the same basis for g as

above: let eA, fA, J
♮
α, A = 1, . . . , dim(R), α = 1, . . . , dim(g♮) be bases for R+, R−, and g♮,

respectively. The OPEs of eθ, fθ, hθ are as in (3.3). We collect here most of the remaining

OPEs:

eA(z1)eB(z2) ∼ +
ΩAB

z12
eθ(z2) , eA(z1)eθ(z2) ∼ 0 , eθ(z1)eθ(z2) ∼ 0 , (3.39a)

fA(z1)fB(z2) ∼ −ΩAB

z12
fθ(z2) , fA(z1)fθ(z2) ∼ 0 , fθ(z1)fθ(z2) ∼ 0 , (3.39b)

fθ(z1)eA(z2) ∼ +
1

z12
fA(z2) , eθ(z1)fA(z2) ∼ +

1

z12
eA(z2) , (3.39c)

hθ(z1)eA(z2) ∼ +
1

z12
eA(z2) , hθ(z1)fA(z2) ∼ − 1

z12
fA(z2) , (3.39d)

fA(z1)eB(z2) ∼
k

z212
ΩAB +

1

z12

(
IαAB J ♮

α(z2)−
1

2
ΩAB hθ(z2)

)
. (3.39e)

The notation is further explained below (3.28). We have omitted the OPEs of the form

J ♮ × J ♮, J ♮ × e, and J ♮ × f , all of which follow from the Poisson brackets (3.28).
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The free field construction. As in the a1 case, the free fields we will use in our con-

struction are in correspondence with the coordinates of the cotangent bundle appearing

in (3.36) and (3.37). In this case, in addition to the chiral bosons δ and ϕ satisfying (3.9)

and (3.19), we have additional symplectic bosons {ξA(z)} with OPEs

ξA(z1)ξB(z2) ∼ ΩAB

z12
. (3.40)

This is just (h∨ − 2) copies of the (β, γ)−VOA, and we will denoted it by Vξ. The (β, γ)

VOA comes with a natural filtration defined by assigning the weight R[β] = R[γ] = 1
2 and

letting derivatives carry zero degree. In other words, we have

FRVβγ = span {(∂n1β · · · ∂nkβ∂m1γ · · · ∂mℓγ) , k + ℓ 6 2R} . (3.41)

The associated graded of this filtration is simply the arc space J∞C2 = J∞(T ∗C), with the

R-grading induced by the C∗ scaling action of C2. Because of the Z2 quotient described

above in our finite-dimensional model for the Higgs branch, our free field realizations will

now be given in terms of not the lattice subVOA Π but rather the related subVOA

Π 1
2
:=

∞⊕

n=−∞

(V∂ϕ ⊗ V∂δ) e
n
2
(δ+ϕ) . (3.42)

In the remainder of this section, we will give a realization of the (simple) affine VOA

V
−h∨

6
−1

(g), where g ∈ {a2, g2, d4, f4, e6, e7, e8} as a subalgebra of

VFF := Vξ ⊗Π 1
2
, Vξ ≃ (Vβγ)

⊗(h∨−2) . (3.43)

The form of the generators e(z) and eA(z) is fixed by charge and filtration considera-

tions to be

eθ(z) = 1⊗ eδ+ϕ , eA(z) = ξA ⊗ e
δ+ϕ
2 . (3.44)

These expression should be compared to the classical counterparts (3.38). It is clear that

these generators satisfy the correct OPEs (3.39a). Let us then turn our attention to the

g♮ factor. The latter is a subalgebra of sp(R). The realization of the corresponding affine

VOA then follows from the canonical realization of the symplectic VOA as a subalgebra of

Vξ, so that

J ♮
α(z) := TAB

α ξAξB ⊗ 1 , V k♮(g♮) ⊂ V− 1
2
(sp(R)) ⊂ Vξ . (3.45)

where the tensor TAB
α specifies the embedding. This implies that, for g 6= a1, a2, the level

k can be determined as follows.21 The level k♮ is fixed by the embedding of g♮ →֒ sp(R)

to take the value k♮ = −1
2Ig♮ →֒sp(R). This embedding index can be easily determined by

looking at the index of R as a representation of g♮. Similarly, the level k is obtained from

k♮ by the embedding of g♮ →֒ g. The result is that the level k is determined to be

k = −1

2

Ig♮ →֒sp(R)

Ig♮ →֒g

for g 6= a1, a2 . (3.46)

21This restriction comes from the requirement that for our argument to apply, g♮ must be non-abelian.
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For the Deligne-Cvitanović exceptional series this reproduces the expected value k =

−1
6h

∨ − 1, see table 2 for more details.

We now address the realization of sl(2)θ. Notice that the embedding index of sl(2)θ =

〈eθ, fθ, hθ〉 into g is 1, so that the level of sl(2)θ coincides with the level of g denoted by

k. The generators eθ(z) and hθ(z) are given in (3.44) and (3.19). The remaining generator

fθ(z) is fixed by fθ × eθ and fθ × hθ OPEs to take a form that generalizes the sl(2)

result (3.20),

fθ(z) =

(
S♮ ⊗ 1− 1⊗

((
k

2
∂δ

)2

− k(k + 1)

2
∂2δ

))(
1⊗ e−(δ+ϕ)

)
, (3.47)

where we recall that 〈ϕ,ϕ〉 = −〈δ, δ〉 = 2
k , and S♮ ∈ Vξ must have h = 2 and be a g♮

singlet. Furthermore, since the sl(2)θ and g♮ current algebras must commute, S♮ should

commute with the J ♮ currents, and finally the S♮ × S♮ OPE must conspire with the value

of k to render the fθ × fθ OPE regular.

For the DC series, such an S♮ can indeed be found. It is useful to distinguish two cases,

S♮ =




(k + 2)T ♮ , T ♮ = −TSug[g

♮] + ∂ξΩ−1ξ , k 6= −2 ,

−1
2

(
(J ♮

1, J
♮
1)A1 + (J ♮

2, J
♮
2)A1 + (J ♮

3, J
♮
3)A1

)
, k = −2, i.e. g = d4 ,

(3.48)

where TSug[g
♮] is the Sugawara stress-tensor constructed using the g♮ affine currents. In

the special case of g = d4, the three bilinears in the expression above are actually iden-

tical (J ♮
1, J

♮
1) = (J ♮

2, J
♮
2) = (J ♮

3, J
♮
3), as is familiar from class S constructions involving full

punctures. It should be noted that if k 6= −2, then T ♮ satisfies the Virasoro algebra with

c♮ = 1− 6
(k + 1)2

k + 2
. (3.49)

This non obvious fact can be verified by direct calculation. The value of the central charge

given in (3.49) coincides with that of the Virasoro algebra obtained by quantum Drinfel’d-

Sokolov reduction of slθ(2). In the remaining case with k = −2, S♮ has regular OPE

with itself. These properties of S♮ guarantee that fθ(z1)fθ(z2) ∼ 0. It is also essential

that T ♮ has regular OPE with the generators of V k♮(g♮), which guarantees that indeed

J ♮(z1)fθ(z2) ∼ 0.

The generators that remain to be constructed are the fA(z). These are slθ(z) de-

scendants of eA(z), so they can be obtained by the first OPE in (3.39c). This yields the

expression

fA(z) =

(
ξ̂A ⊗ 1 +

k

2
ξA ⊗ ∂δ

)(
1⊗ e−

1
2
(δ+ϕ)

)
, (3.50)

where ξ̂ is defined as

S♮(z1) ξA(z2) ∼
h♮ξ
z212

ξA(z2) +
1

z12
ξ̂A(z2) , h♮ξ = −1

4
(2k + 1) . (3.51)

When computing fA via the first OPE in (3.39c), there is a potential second-order pole.

This vanishes thanks to a cancellation between the term proportional to h♮ξ in (3.51) and a
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second order pole coming from the part of the OPE arising entirely from Π 1
2
. The complete

set of generators have thus been constructed, see (3.44), (3.45), (3.19), (3.47), and (3.50).

It is not entirely obviously that the remaining OPEs will necessarily take the correct form,

but these can be verified by explicit calculation.

The expressions for the generators fθ(z) and fA(z) given in (3.47) and (3.50) should

be compared to their classical counterparts (3.32), (3.33), and (3.38). In fact, the former

can be obtained starting from the classical expressions and adding (finitely many) lower

terms in the R-filtration so that the OPEs of the affine currents are correctly reproduced.

Nilpotent Higgsing and Drinfel’d-Sokolov reduction. Let us pause for a moment

to discuss in greater detail the relation of the above construction to the procedure of

nilpotent Higgsing. In particular, we observe that in a sense the free field realizations we

have presented can be considered as inversions of the quantum Drinfel’d-Sokolov reduction.

In our examples, the Higgs branch is smooth away from the origin and all the points on

the smooth locus are equivalent. Let us consider the point corresponding to eθ = 1 with all

the remaining generators taken to vanish. The transverse space to the SL(2)θ orbit of this

point inside the minimal nilpotent orbit of g is isomorphic to T ∗(C(h∨−2)). This space can

be identified with the space described by the coordinates ξA appearing in (3.38), and are

associated to (Goldstone) bosons of the free theory obtained in the IR. The same subspace

T ∗(C(h∨−2)) can also be identified by first solving the Joseph relations as we did above and

further picking the point eθ = 1, hθ = 0 in the T ∗C∗ factor of (3.36). In these examples

the R-symmetry in the IR, denoted by SU(2)R̄, can be identified in the UV. The R̄ Cartan

generator mixes with the flavor symmetry as

R̄ = R− 1

2
hθ . (3.52)

This combination of quantum numbers vanishes for the operator that gets an expectation

value, namely eθ, while the coordinates associated to the free bosons satisfy R[ξA] =

R̄[ξA] =
1
2 .

At the level of the associated VOA, this Higgsing operation corresponds to quantum

Drinfel’d-Sokolov (DS) reduction22 which is the procedure for imposing the constraint

eθ(z) = 1 via BRST. It is useful to consider a simple variant of the usual DS reduction,

described in [2], in which one regards all the affine currents of g that are not in sl(2)θ as

an sl(2)θ module and performs the reduction as explained in [2]. For the DC exceptional

series this procedure yields precisely the symplectic boson VOA Vξ.

In the free field realization, this process is equivalent to setting the chiral bosons

δ(z) = ϕ(z) = 0. Once this is done, the generators eA(z) (see (3.44)) become equivalent to

the ξA(z), while the remaining generators of the affine VOA reduce to composites of the

latter. It appears that this is an instance of a very general construction, with the VOA fo

the theory that arises in the IR by Higgsing getting “dressed” by chiral bosons to obtain

the VOA of the UV theory. We will encounter an interesting variant of this phenomenon

22This is the case in an array of situations that includes the examples above and many class S construc-

tions [2].
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in section 5. This seems to be a useful perspective more generally, and will be described

in a more illustrative set of examples in [9].

Central charges and the stress tensor. Our free field VOA has a canonical stress

tensor arising as the sum of stress tensors associated to the various free fields, namely,

T = Tξ + Tδ + Tϕ , (3.53)

where Tξ = ∂ξΩ−1ξ, and where we recall that the stress tensor of a chiral boson φ can be

written as

Tφ =
1

2〈φ, φ〉
(
(∂φ)2 + α∂2φ

)
, (3.54)

where α is the “background charge”. The generator hθ ∼ ∂ϕ must have conformal weight

h = 1, so Tϕ cannot have a background charge. On the other hand, the operator eλ(δ+ϕ)

should have conformal weight λ, which fixes δ to have background charge αδ = −2.23 Taken

together, this means that the central charges associated to the various factors in (3.53) are

given by

cξ = (2− h∨) , cϕ = 1 , cδ = 1 + 6k = −h∨ − 5 . (3.55)

And summing the contributions to the central charge we verify that

c = cξ + cδ + cϕ = −1× (h∨ − 2) + (1− h∨ − 6) + 1 = −2− 2h∨ , (3.56)

which is the correct (Sugawara) value. Indeed, one can check directly that in our free field

realization, the Sugawara stress tensor is identically equal to the canonical stress tensor

given in (3.53) with the necessary background charges.

Null states and Higgs chiral ring relations A key feature of the free field realizations

given above is that they in fact realize the simple quotient of the relevant affine Kac-Moody

VOA. In other words, null states are identically set to zero. For now we will omit the a1

case, which will be further discussed in section 5. For any g the Joseph ideal introduced

in (3.26) can be decomposed as

I2 = X⊕ 1 . (3.57)

A unique feature of the Deligne-Cvitanović exceptional series is that X is an irreducible

representation of g ⋉ Out(g) where Out(g) denotes the group of outer automorphisms of

g.24 The maximal ideal of V k(g) for k = −1 − h∨/6 and g in the DC series, with the

exception of a1, is generated by singular vectors of conformal dimension two transforming

in the representation X.25 This fact is well known for the cases a2, g2, and f4, for which

23In our example 〈δ, δ〉 = −〈ϕ,ϕ〉 = − 2
k
. It follows that our exponentiated null boson eλ(δ+ϕ) has

dimension − 1
2
(αδ + αϕ)λ where αδ and αϕ are defined as the background charges as in (3.54).

24The only case for which the outer automorphism acts non trivially is given by d4 for which X is the

sum of three irreducible representations that are permuted by the triality automorphism of d4. In the case

of a1 the factor X is trivial.
25Following standard VOA notation, we use the symbol V k(g) to denote the universal affine vertex algebra

at level k and Vk(g) to indicate its simple quotient.
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the level is admissible26 see [24], and was proven in for the remaining cases in [14]. We

then need to show that the free field realizations presented above satisfy

NO(J, J)
∣∣
X
= 0 , (3.58)

Since X is an irreducible representation we can focus on any vectors in X. We will choose

to consider the vectors with maximal hθ weight, which are given by

TAB
α eA eB − eθ J

♮
α , (3.59)

where the tensor TAB
α was introduced in (3.45) and we have dropped the NO from the

notation. This is the VOA uplift of the null relation (3.29). It is straightforward to verify

that these operators are identically zero in our realizations by using the expressions for eθ,

eA, and J ♮
α from (3.44) and (3.45),

TAB
α eA eB−eθ J

♮
α = TAB

α

(
ξA⊗e

δ+ϕ
2
)(
ξB⊗e

δ+ϕ
2
)
−
(
1⊗eδ+ϕ

)(
TAB
α ξAξB⊗1

)
= 0 . (3.60)

Remark: it is gratifying to observe that the construction presented in this section works,

without adding extra degrees of freedom, only in the cases for which Wk(g, fθ) ≃ C, where

Wk(g, fθ) denotes the (simple quotient of) the W-algebra associated with (g, fθ) at level

k. Theorem 7.2 of [14] classifies the pairs (g, k) for which this is the case:

1. g is of type a1, k ∈ {−2,−1
2}.

2. g is in the DC exceptional series at level k = −h∨/6− 1.

3. g is of type cℓ at level k = −1
2 .

Entries (1) and (2) have been realized above while (3) corresponds to the standard real-

ization of V− 1
2
(sp(2r)) in terms of symplectic bosons. The cases ar>2 from table 2 admit

free field realizations similar to the ones presented here, but with an additional affine gl1
current. This extra free field has a natural geometric interpretation in terms of the asso-

ciated variety of V−1(slr+1). The latter was determined in [25] and is not symplectic. The

case of g = soN with N > 6, N 6= 8 requires further additional degrees of freedom.

3.3 Deligne-Cvitanović constructions in detail

For the sake of concreteness, we present details relating to the free field construction for

each of the Deligne-Cvitanović exceptional VOAs below. Many of the constructions given

here closely mirror constructions in the case of finite-dimensional Lie algebras appearing

in [26]. The relations are due to the similarities between our construction and those of

minimal realizations of simple Lie algebras mentioned in the remark below equation (3.35).

26The case of a2 is a so-called boundary admissible levels: h∨+k = h∨

p
with p ∈ Z>0 and coprime with h∨.
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The a2 entry. In this case there is a single (β, γ) symplectic boson pair, and the ingre-

dients in the free field construction are given by

ξ =

(
β

γ

)
, J ♮ = βγ , T ♮ =

1

2
J ♮J ♮ +

1

2
(β∂γ − ∂βγ) , ξ̂ =

(
−1

2 β
2γ + ∂β

+1
2 γ

2β + ∂γ

)
. (3.61)

Here the symplectic form on the (β, γ) system and the (single) symmetric intertwining

tensor I are given by

Ω =

(
0 1

−1 0

)
, I = −3

2

(
0 1

1 0

)
. (3.62)

The g2 entry. This is an affine version of a construction due to Joseph [27]. In this

case there are two symplectic boson pairs, which we denote by (ξA) = (β1, β2, γ1, γ2) whose

non-vanishing OPEs are given by

βa(z)γb(w) ∼
δab

z − w
. (3.63)

In this case g♮ = a1 and the corresponding affine generators take the form

J ♮
+ = β2γ1 +

1√
3
γ2γ2 , J ♮

0 = 3β1γ1 + β2γ2 , J ♮
− = 3

(
β1γ2 −

1√
3
β2β2

)
, (3.64)

while the stress tensor appearing in (3.48) is given by

T ♮ = −TSug[sl(2)
♮
k=−5] +

1

2

2∑

a=1

(βa∂γa − ∂βaγa) . (3.65)

It is not hard to verify that the symplectic bosons (ξA) transform in the spin-3/2 represen-

tation of g♮ = a1.

The d4 entry. In this case we have g♮ = a1 ⊕ a1 ⊕ a1 and the symplectic bosons ξa1a2a3

transform in the tri-fundamental representation. These can be thought of as the symplectic

bosons associated to the a1 trinion theory of class S, where nilpotent Higgsing amounts to

closing a single puncture in the four-times punctured sphere [2]. Their OPE takes the form

ξa1a2a3(z)ξb1b2b3(w) ∼ ǫa1b1ǫa2b2ǫa3b3

z − w
, (3.66)

where ai, bi ∈ {1, 2}. The affine current subVOA associated to ĝ♮ is realized by

J
(a1b1)
1 =

1

2
ǫa2b2ǫa3b3 ξ

a1a2a3ξb1b2b3 ,

J
(a2b2)
2 =

1

2
ǫa1b1ǫa3b3 ξ

a1a2a3ξb1b2b3 ,

J
(a3b3)
3 =

1

2
ǫa1b1ǫa2b2 ξ

a1a2a3ξb1b2b3 .

(3.67)

The prescription of (3.48) now gives

S♮(z) := J2
1 (z) = J2

2 (z) = J2
3 (z) , J2

A := ǫacǫbdJ
ab
A Jcd

A . (3.68)

The operator S♮(z) has regular self-OPE and also has regular OPE with the Jab
A (A =

1, 2, 3). However it is not a null operator, as is reflected in (3.51).

– 22 –



J
H
E
P
0
9
(
2
0
1
9
)
0
5
8

The f4 entry. Here we have g♮ = c3 = sp(6) ⊃ sl(3). We adopt a notation in which only

the sl(3) symmetry is manifest. The symplectic bosons transform in the 14′ of sp(6) which

decomposes as

ξ =
(
β(AB),γ(AB), β, γ

)
, (3.69)

where A,B ∈ {1, 2, 3} are sl(3) indices and parentheses denote symmetrization. The non-

vanishing OPEs among the symplectic bosons are given by

β(AB)(z)γ(CD)(w) ∼
δACδ

B
D + δADδ

B
C

z − w
, β(z)γ(w) ∼ 1

z − w
. (3.70)

The generators of ĝ♮ take the form

(
J ♮
)A
B
= βACγCB − 1

3
δAB βCDγCD , J ♮ = 3βγ − 1

2
βCDγCD , (3.71)

(
J ♮
)(AB)

= βABβ +
1

2
√
2
ǫACDǫBEFγCEγDF ,

(
J ♮
)
(AB)

= γABγ +
1

2
√
2
ǫACDǫBEFβ

CEβDF . (3.72)

In the last equation we have decomposed the g♮ = sp(6) generators with respect to the

sl(3) subalgebra that acts linearly on the indices A,B,C,D, . . . . We will do the same for

the remaining entries of the DC series.

The e6 entry. In this case g♮ = a5 = sl(6) ⊃ sl(3)⊕ sl(3). We adopt a notation in which

only the sl(3)⊕ sl(3) symmetry is manifest. The symplectic bosons transform in the 20 of

sl(6) which decomposes as

ξ =
(
βAḂ,γȦB, β, γ

)
, (3.73)

where A,B ∈ {1, 2, 3} and Ȧ, Ḃ ∈ {1̇, 2̇, 3̇}. The non-vanishing OPEs among the symplectic

bosons are given by

βAȦ(z)γBḂ(w) ∼
δAB δȦ

Ḃ

z − w
, β(z)γ(w) ∼ 1

z − w
. (3.74)

The generators of the ĝ♮ affine current subVOA take the form

(
J ♮
)A
B
= βAȦγȦB − 1

3
δAB H ,

(
J ♮
)Ȧ
Ḃ
= −γḂAβ

AȦ +
1

3
δȦ
Ḃ
H , J ♮ = 3βγ −H , (3.75)

(
J ♮
)AḂ

= βAḂβ +
1

2
ǫACDǫḂĊḊγĊCγḊD ,

(
J ♮
)
ȦB

= −γȦBγ − 1

2
ǫȦĊḊǫBCDβ

CĊβDḊ , (3.76)

where H := βAȦγȦA.
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The e7 entry. In this case g♮ = d6 = so(12) ⊃ sl(6). We adopt a notation in which only

the sl(6) symmetry is manifest. The symplectic bosons transform in the 32 of so(12) which

decomposes as

ξ =
(
β[AB],γ[AB], β, γ

)
, (3.77)

where A,B ∈ {1, 2, 3, 4, 5, 6} and square brackets denote antisymmetrization. The non-

vanishing OPEs among the symplectic bosons are given by

β[AB](z)γ[CD](w) ∼
δACδ

B
D − δADδ

B
C

z − w
, β(z)γ(w) ∼ 1

z − w
. (3.78)

The generators of ĝ♮ take the form

(
J ♮
)A
B
= βACγCB − 1

6
δAB H , J ♮ = 6βγ +H , (3.79)

(
J ♮
)AB

= βABβ +
1

8
ǫABCDEFγCDγEF ,

(
J ♮
)
AB

= γABγ +
1

8
ǫABCDEFβ

CDβEF , (3.80)

where H := βABγBA.

The e8 entry. In this case g♮ = e7 ⊃ sl(8), and we use a notation in which only the sl(8)

symmetry is manifest. The symplectic bosons transform in the 56 of e7 which decomposes

according to

ξ =
(
β[AB],γ[AB]

)
, (3.81)

where A,B ∈ {1, . . . , 8} and square brackets denote antisymmetrization. The non-

vanishing OPEs among the symplectic bosons are given by

β[AB](z)γ[CD](w) ∼
δACδ

B
D − δADδ

B
C

z − w
. (3.82)

The generators of ĝ♮ take the form

(
J ♮
)A
B
= βACγCB − 1

8
δABH ,

(
J ♮
)ABCD

= β[ABβCD] +
1

4!
ǫABCDEFGHγEFγGH ,

(3.83)

where H := βABγBA.

4 su(2) N = 4 super Yang-Mills

We now turn to a case in which free vector multiplets survive in the low energy effective

theory on the Higgs branch, namely the simplest interacting N = 4 SYM theory, with

gauge group SU(2). According to our general recipe, the free field realization of the relevant

VOA should involve symplectic fermions in addition to the chiral bosons associated to the

geometry.
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For this theory, the associated VOA is the (simple quotient of the) small N = 4

super-Virasoro algebra at central charge c = −9 [1]. The VOA is generated by sl(2)

affine currents e(z), h(z), f(z) at level k = 1
6c = −3

2 , a Virasoro stress-tensor T (z), and

four fermionic currents organized into two sl(2) doublets denoted by G±(z) and G̃±(z).

In fact, for this particular level, the Virasoro stress-tensor is not an independent strong

generator, but rather it is equal to the Sugawara stress-tensor constructed from the sl(2)

affine currents, as we review below.

When thought of as a special case of an N = 2 theory, the Higgs branch is given by

MHiggs = C2/Z2 . (4.1)

which of course is the same as the Higgs branch in the example of section 3.1. However in

the present case, the low energy EFT on the Higgs branch is a U(1) N = 4 theory, so the

free hypers describing the geometry of the Higgs branch are supplemented by a free vector

multiplet. Relatedly, this theory had Hall-Littlewood chiral ring operators that are not

simply Higgs branch operators. Indeed, the fermionic currents G± and G̃± are precisely

the extra Hall-Littlewood (anti-)chiral ring generators.

As in our previous example, we will have a pair of chiral bosons δ, ϕ that we will use

to describe the same T ∗C∗ patch in the Higgs branch as before, but now we also have a

symplectic fermion pair, {η1(z), η2(z)} with OPE

η1(z)η2(w) ∼
2

(z − w)2
, η1(z)η1(w) ∼ 0 , η2(z)η2(w) ∼ 0 . (4.2)

We denote by Vη the corresponding symplectic fermion VOA. This VOA comes with a

natural R-filtration with

FRVη = span {∂n1η1 · · · ∂nkη1∂
m1η2 · · · ∂mℓη2 , k + ℓ 6 R} . (4.3)

Our free field realization will come by identifying the small super-Virasoro VOA as a

subVOA of the free fields VOA,

Virc=−9
N=4 ⊂ Vη ⊗Π 1

2
, (4.4)

where Π 1
2
is as in (3.42). It is interesting to note the appearance of Π 1

2
in our construction,

even though we have seen before that the (affinization) of single-valued functions on the

T ∗C∗ inMH are described by Π. This actually has a natural geometric explanation in terms

of the Higgs branch effective theory. The free vector multiplet giving rise to the symplectic

fermions η1,2 is associated with unlifted Coulomb branch directions that are fibered over the

Higgs branch.27 Indeed, one can check using the explicit description of the N = 4 moduli

space as C3/Z2 that the line bundle associated to the unlifted Coulomb directions picks up a

factor of −1 when encircling the C∗ direction in the patch of interest, so fermionic variables

should be paired with half-integer-powered exponentials in the free field realization.

27More generally, one should think of the free fermions appearing in the Higgs branch VOA as spanning

a Grassmann-odd vector bundle over the Higgs branch that encodes the embedding of the Higgs branch

into the full moduli space of the theory.
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Based on their quantum numbers and the R-filtration, the expression for generators

with positive h(z) eigenvalue are fixed to be of the form

e(z) = 1⊗ eδ+ϕ ,

(
G+(z)

G̃+(z)

)
=

(
η1

η2

)
⊗ e

δ+ϕ
2 , (4.5)

where we indeed see the predicted pairing of symplectic fermions with half-integer-powered

exponentials. These operators are the sl(2) highest weight generators of the VOA, and in

order to obtain the remaining generators it will be sufficient to construct the sl(2) affine

Kac-Moody current f(z) and act on the generators in (4.5). The generator f(z) will take the

same form as in the case of DC exceptional series appearing in (3.47), where now we have

S♮ = (k + 2)T ♮ =
1

2
T ♮ , T ♮ = Tη := −1

2
η1η2 . (4.6)

Similarly h(z) = −3
2(1⊗ ∂ϕ). By lowering the sl(2) spin acting with f(z) on (G+, G̃+) we

further obtain
(
G−(z)

G̃−(z)

)
=

(
3

4

(
η1

η2

)
⊗ ∂δ − 1

2

(
∂η1

∂η2

)
⊗ 1

)(
1⊗ e−

δ+ϕ
2

)
. (4.7)

The canonical stress tensor is the sum of three free field contributions, T = Tη + Tδ + Tϕ.

In particular, η1 and η2 have conformal weight 1 while eλ(δ+ϕ) has weight λ. As in (3.56)

we can check that the central charge takes the correct value

c = cη + cδ + cϕ = −2 + (1 + 6k) + 1 = −9 . (4.8)

Indeed, the fact that this free field construction realizes the simple VOA follows from the

fact that T = TSugawara identically in this construction.

A remark is in order. This free field realization is almost identical to one that was

presented in [21] and recently generalized in [12].28 The version given here has several

advantages. The first is that it is more flexible than the one of [21]. As in the example of

section 3.1, where the existence of a free field realization involving only two chiral bosons

singles out three possible values of k (see (3.21)) also in this case a free field construction

exists for multiple (in fact two) values of k. In this case the second value is k = −1
2 and

the free field realization is given by

f(z) = −1⊗
(

1

16
(∂δ)2 +

1

8
∂2δ

)
e−(δ+ϕ)

(
G−(z)

G̃−(z)

)
=

1

4

(
η1

η2

)
⊗ ∂δ e−

δ+ϕ
2 . (4.10)

28The explicit identification proceeds as follows. The starting point is given in [21] where the (β, γ, b, c)

system is bosonized in terms of three chiral bosons that we denote by α [21], β [21], δ [21]. The next step is

to defined new chiral bosons as linear combinations as these three as in [10] with k = − 3
2
. The latter are

denoted as µ [10], ν [10], γ [10]. With this done, the free field realization above can be identified by setting

δ = −
2

k
ν [10] , ϕ = +

2

k
µ [10] , η1 = e

−
1
2
γ [10] , η2 = ∂γ [10]e

+ 1
2
γ [10] . (4.9)
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while the generators (4.5) remains unchanged. The physical interpretation of this second

possibility is transparent: this is the VOA associated to the Z2 quotient ofN = 4 SYM with

gauge group U(1). Another important and useful feature of this realization is that the SL(2)

outer automorphism of the small N = 4 super-Virasoro algebra is completely manifest and

consists of rotations of η1 and η2. Both features appear to be very useful in generalization

of this construction to higher-rank N = 4 theories and higher-genus class S theories.

5 (A1, Dodd) Argyres-Douglas theories

Our final family of examples are such that relevant VOA V is realized in terms of free fields

together with an “irreducible” building block consisting of a C2-cofinite VOA VIR, where

VIR = χ[TIR] is associated to the decoupled interacting theory TIR that survives at generic

points on the Higgs branch. This surviving theory necessarily has trivial Higgs branch,

so by (1.2) the VOA VIR is C2-cofinite. Interestingly, the relevant VOA construction has

appeared recently in the mathematical literature [10].

The theories in question are the (A1, D2n+1) Argyres-Douglas SCFTs, all of which

share the simple Higgs branch

MHiggs[AD(A1,D2n+1)] = C2/Z2 . (5.1)

This is the same Higgs branch we have met several times before, but now at a generic point

on the Higgs branch the effective theory, aside from a free hypermultiplet describing the

flat directions, includes a decoupled copy of the (A1, A2n−2) Argyres-Douglas SCFT, which

has trivial Higgs branch itself.

The VOAs associated to the these Argyres-Douglas theories have been understood to

be given by [28, 29]

V = χ[AD(A1,D2n+1)] = V−2+ 2
2n+1

(sl(2)) , VIR = χ[AD(A1,A2n−2)] = Vir2,2n+1 , (5.2)

where Vir2,2n+1 denotes the Virasoro VOA underlying the non-unitary (2, 2n+1) minimal

model, and the as in the DC series the UV and IR VOAs are related by quantum Drinfel’d-

Sokolov reduction.29 According to our general philosophy, the VOA V should realized as a

subVOA of a tensor product of chiral bosons with VIR,

V ⊂ VIR ⊗Π , (5.4)

where Π is the lattice subVOA introduced in (3.14). The generators of V can be found

with the same form as in (3.10), (3.19), and (3.47), but with an important difference. They

29In general, DS reduction of Vk(sl(2)) at admissible levels k + 2 = p
q
gives the (p, q) minimal model

Virasoro algebra. A simple consistency check of this statement is that

cDS = 1− 6
(k + 1)2

k + 2
= 1− 6

(p− q)2

pq
, k + 2 =

p

q
. (5.3)
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are given by

e(z) = 1⊗ eδ+ϕ , (5.5a)

h(z) = 1⊗ k ∂ϕ , (5.5b)

f(z) =

(
(k + 2)TIR ⊗ 1− 1⊗

((
k

2
∂δ

)2

− k(k + 1)

2
∂2δ

))(
1⊗ e−(δ+ϕ)

)
, (5.5c)

where 〈ϕ,ϕ〉 = −〈δ, δ〉 = 2
k and k = −4n/(2n + 1). Here TIR is the generator of the

(simple) Virasoro VOA at central charge c(2, 2n+1). Importantly, this realization has the

property that the null states of the VOA V are proportional to the null operators of the

VOA VIR. In both cases there is a unique singular vector that generate the maximal ideal

of the corresponding universal vertex algebra so that to check this statement it is sufficient

to verify that it holds for these unique singular vectors. Let us illustrate this point in more

detail for the first couple of examples.

First, let us look at the Sugawara stress tensor TSug in the free field realization. Direct

computation shows that

TSug :=
1

2(k + 2)

(
ef + fe+

1

2
hh

)
= Tδ + Tϕ + TIR , (5.6)

where

Tδ + Tϕ = −k

4
(∂δ ∂δ − ∂ϕ∂ϕ) +

k

2
∂2δ . (5.7)

Now we consider the composite operator

O1 := e TSug −
1

2

(
e′h− eh′ − 1

3
e′′
)

. (5.8)

This operator is quasiprimary and highest-weight with respect to sl(2), where the latter

is the global part of the affine current algebra. In the free field realization (5.5), this

composite takes the form

O1 =

(
TIR ⊗ 1− 1⊗

(
1

3

(
1 +

3 k

4

)
(υ2+ − 2 ∂υ+)

))(
1⊗ eδ+ϕ

)
, (5.9)

where υ+ = ∂(δ + ϕ). The composite operator O1 defined in (5.8) is null precisely when

the level is given by k = −4
3 . This is easily seen in the free field realization: for k = −4

3 ,

the expression (5.9) reduces to O1 = TIR ⊗ eδ+ϕ, moreover for this level, corresponding to

n = 1 in the notation introduced in (5.2), the infrared VOA VIR reduces to the trivial VOA

whose only generator is the identity operator, in particular TIR = 0. The operator O1 is

thus manifestly zero for this level.

The previous example is clearly exceptional since the IR VOA in this case is trivial.

The next case, with n = 2, presents more structure. To study this case we introduce the

operator O2 in V which, in terms of free fields, is given by

O2 =

(
ΛIR⊗1+(8+5k)

(
TIR⊗F1+T ′

IR⊗
(
− 5

32
υ+

)
+T ′′

IR⊗ 1

32
+1⊗(4+3k)F2

))

×
(
1⊗eδ+ϕ

)
, (5.10)
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where

ΛIR = (TIRTIR)−
3

10
T ′′
IR , (5.11)

and F1,2 = F1,2[υ+] are polynomials in υ+ and its derivative. Though it will not be

important to have the explicit form of this operator in terms of e(z), h(z), and f(z), it

is essential (and true) that it is indeed possible to write O2 entirely in terms of the affine

currents. When k = −8
5 (corresponding to n = 2) the expression (5.10) reduces to

O2 = ΛIR ⊗ eδ+ϕ = ΛIR ⊗ e . (5.12)

In this case, TIR generates the simple Virasoro VOA with central charge c = c(2, 5) = −22
5 ,

and for this value of the central charge the composite operator ΛIR is null (and thus zero

in the simple VOA). Consequently the operator O2 is identically zero in this free field

realization. The cases of higher n work similarly, with an operator On in the affine current

VOA becoming proportional to (Tn
IR+ . . . )⊗eδ+ϕ at the appropriate level, with (Tn

IR+ . . . )

the unique singular vector of the relevant Virasoro VOA.

6 The R-filtration

We have seen that the free field realizations arising from the Higgs branch EFT of a four-

dimensional SCFT come equipped with natural R-filtrations that we propose (as in [12] for

a different class of theories) to identify with the physical R-filtration inherited from four

dimensions. Having access to this extra structure is of vital importance in promoting VOA

spectral data to four dimensional SCFT data.

This proposal is motivated by the effective field theory interpretation of the free fields:

the chiral bosons that encode the geometry of the Higgs branch inherit a filtration that

arises manifestly from the scaling symmetry of the Higgs branch. Any extra degrees of

freedom associated to “irreducible” (or C2-cofinite) building blocks must be endowed with

their own R-filtration.30 Then since the relevant VOA V is realized as a subVOA of the

“effective field theory” VOA VEFT,

V ⊂ VEFT , (6.1)

having the filtration at the level of the EFT building blocks implies an R-filtration on the

UV VOA.

The R-weights assigned to the free fields and C2-cofinite piece appearing in the ex-

amples considered in this work are summarized in table 3, where (δ, ϕ) are chiral bosons,

ξ are symplectic bosons, and η are symplectic fermions. When VEFT includes C2-cofinite

building blocks, like the one generated by the stress tensor TIR in the previous section, the

R-filtration of this part should be given independently or determined by other methods.

There are two fundamentally attractive aspects of this proposal. The first is the

manifest property that the subspace (of the associated graded GrFV) with h = R coincides

30This point shows that the characterization of the R-filtration for C2-cofinite VOAs related to four-

dimensional SCFTs is of particular interest, and this is a subject that we intend to pursue in future work.
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ξ ∂(δ − ϕ) e
n
2
(δ+ϕ) ∂(δ + ϕ) η1 η2 TIR ∂

R 1
2 1 n

2 0 1
2

1
2 1 0

h−R 0 0 0 1 1
2

1
2 1 1

r 0 0 0 0 +1
2 −1

2 0 0

h−R− r 0 0 0 1 0 1 1 1

h−R+ r 0 0 0 1 1 0 1 1

Table 3. Summary of the R-weights assigned to the free fields and C2-cofinite piece.

with the Higgs branch chiral ring. As we emphasized in section 3.2, this fact also provides

an efficient way to determine the explicit form of the free field realization by computing

“quantum corrections” to the expression for the Higgs branch generators by subleading

terms in the filtration. More generally, the Hall-Littlewood chiral ring is easily extracted

by restricting to operators with h = R+ r.

The second important non-trivial consistency check of our proposal is that the R-

filtration arising from free fields assigns weight R = 1 to the stress tensor.31 Recall that in

the examples we have analyzed, the stress tensor has taken the form32

T = Tδ + Tϕ + Trest , Trest ∈ {0, Tξ, Tη, TIR} = {0, ξ∂ξ, ηη, TIR} . (6.2)

On the right hand side of the second equation we have given a schematic form of the

corresponding operator that correctly reflects the components of the R-filtration to which

it belongs. The precise expressions for Tξ and Tη can be found in and below (3.53) and

in (4.6), respectively, while TIR corresponds to the C2-cofinite piece appearing in (5.5c). The

R-weight assigned to Trest by the rules of table 3 is manifestly 1 as it should be. Concerning

the remaining piece of the stress tensor, there is a non-trivial cancellation that gives

Tδ + Tϕ = −k

4

(
(∂δ)2 − 2∂2δ − (∂ϕ)2

)
=

1

2

(
υ+υ− − ∂υ−

)
+

k

2
∂υ+ , (6.3)

where

υ+ = ∂ (δ + ϕ) , υ− = −k

2
∂ (δ − ϕ) . (6.4)

The rules of table 3 then assign charges R[υ+] = 0, R[υ−] = 1 so that R[Tδ+Tϕ] = 1. Notice

that this phenomenon follows from the requirement that eδ+ϕ has regular OPE with itself

so that δ+ϕ is a light-like direction in the lattice of chiral bosons, i.e., 〈δ+ϕ, δ+ϕ〉 = 0.33

31Here by assigning weight, we mean that this is the smallest R for which the operator belongs to FRV.

A more elaborate procedure, which we have not addressed in the present work, would involve using the

non-degeneracy of the inner product defined by VOA two-point functions in order to upgrade the filtration

to an actual grading on V. The present notion of R-charge assignment for the stress tensor will then match

that true R-grading assignment.
32Additionally, in the examples we have considered, T coincides with the Sugawara stress tensor so that

it is not a strong generator of the VOA.
33This appear to be the only sensible affine uplift of the C∗ variable e.
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Furthermore, the term in Tδ + Tϕ leading in the R-filtration, namely 1
2

(
υ+υ− − ∂υ−

)
, is

entirely determined by the further requirement that eδ+ϕ has conformal dimension one.

Using the filtration R of the VOA V one can define the associated graded GrRV ,
which is a commutative vertex algebra (in fact a vertex Poisson algebra). This coincides

with V as a vector space, but the multiplication is modified and respects R-grading. In

general, the associated graded algebra will have more generators than the original VOA.

The simplest example of this phenomenon is realized when the stress-tensor of the VOA

takes the Sugawara form, which was the case for all examples analyzed in this work. Then

the composite operator NO(J, J)|g-singlet ∼ T has weight R[T ] = 1 < 2R[J ] = 2. In the

associated graded, this produces the (Higgs branch) relation µ2|g-singlet = 0, where µ is

the moment map Higgs branch operator. This leaves the image of the stress tensor in the

associated-graded as an independent generator.

This is actually a more general phenomenon: the associated graded has more gener-

ators and more relations compared to the original VOA. An interesting example of this

phenomenon that does not involve the stress tensor has been found recently in [30] and

further studied in [31].34 We hope (and expect) our free field realizations to provide a

simplified description of the associated graded algebra. The challenge is to find a criterion

to determine which elements of GrRVEFT lie in GrRV . We leave a systematic investigation

of this problem for future work.

Checks against the Macdonald index for V
−

4

3

(sl(2)). A rudimentary check for our

proposal is that the graded character of the associated-graded of the VOAs in question

should match the Macdonald index of the four-dimensional SCFT. Here we will perform

some preliminary checks of this claim for the case of the V− 4
3
(sl(2)) VOA. The match

involves infinite families of operators and is summarized in table 4.

The Macdonald index is obtained as a limit of the full superconformal index (see,

e.g., [32, 33]) and depends on two superconformal fugacities, together with generic fugacities

for the flavor symmetry which we will leave implicit. It is given by the trace formula

IMacdonald(q, t) := STrHM
(qE−2R−r tR+r) , (6.5)

where STr denotes the supertrace, and HM denotes the subspace of the Hilbert space of

local operators of the SCFT satisfying E + 2j1 − 2R − r = 0. The expression (6.5) is

written in terms of four-dimensional quantum numbers, and the match with the vacuum

character of the associated VOA is obtained by recalling that the conformal weight in the

chiral algebra is given by h = E−R. The explicit expression for the Macdonald index in all

the examples studied in this paper is known.35 The index for the a0 and a1 entries of the

DC series and the examples of section 5 can be found in [11]; the a2 entry coincides with

χ[AD(A1,D4)] and its Macdonald index can be found in [34]; the d4, e6, e7, and e8 entries are

34In [11] a prescription to recover the R-filtration has been proposed in some special cases. While

extending that prescription to the general situation appears hard and might require intricate knowledge

of the underlying four-dimensional theory, the R-filtration based on free field realizations is systematically

determined after an appropriate (geometric) free field realization is found.
35With the exception of the g2 and f4 entries of the DC exceptional series, which do not have a known

four dimensional origin.
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h−R

h− j
0 1 2 3 4 5

0 en — — — — —

1 — — t en — — —

2 — — e ∂2en+1 t ∂en+1 t2 en —

3 — — — . . . h ∂3en+1, t ∂2en+1 t2 ∂en+1

4 — — — — . . . . . .

5 — — — — — . . .

Table 4. This table summarizes operators in the VOA V
−

4
3
(sl(2)), organized according to the two

“twists” h−j and h−R. The label n runs over 0, 1, 2, . . . ,∞, and we use the notation t = TSugawara.

Only operators that are both quasi-primaries and sl(2)F highest weight states are displayed. The

symbol “-” indicates that no operators exist with the given twists and “. . . ” indicate additional

operators with dimension h > 6. The form of the operators is schematic but unambiguous.

class S theories with regular punctures, so the indices can be obtained using the methods

introduced in [32]; finally the case of N = 4 SYM is reviewed in [12]. The specific case of

interest, V− 4
3
(sl(2)), is the associated VOA of the four dimensional Argyres-Douglas theory

of type (A1, D3), and the Macdonald index can be found in [11].

Let us proceed by explaining how the Macdonald index can be computed according

to our prescription using free fields. The free fields in this example are those of the VOA

Π defined in (3.14). We recall the expressions for the generators of V and the Sugawara

stress tensor, organized in order of decreasing R assignment.

e(z) = eδ+ϕ , (6.6)

h(z) = υ− − 2

3
υ+ , (6.7)

f(z) =

(
− 1

4
υ2− − 1

3

(
υ−υ+ +

1

2
∂υ−

)
− 1

9
(υ2+ − ∂υ+)

)
e−(δ+ϕ) , (6.8)

TSug(z) = T (z) =
1

2

(
υ+υ− − ∂υ−

)
− 2

3
∂υ+ , (6.9)

where the υ± are defined in (6.4).

To determined the refined vacuum character, it is useful to organize the space of

composites of the generators (6.6), (6.7), and (6.8) in irreducible representations of sl(2)z⊕
sl(2)F where sl(2)z denotes the global part of the Virasoro algebra and sl(2)F the global

part of the affine algebra. This is useful becauseR takes a fixed value within each irreducible

representation. We denote by V hw
h,j the vector space of highest weights (h, j) with respect

to the Cartan generators of sl(2)z ⊕ sl(2)F . To compute the refined index we can therefore

focus on a fixed value of (h, j) and look for a basis of V hw
h,j that minimizes the R assignments

for its elements.

The entries of table 4 are obtained by restricting to operators with fixed h − j and

arranging them according to their h−R weight, following the prescription just described.
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This is a simple exercise when h− j is small, but quickly becomes cumbersome for higher

values of this quantum number. The results agree with the Macdonald index for all oper-

ators shown in table 4.

7 Discussion

In this work we have introduced free field realizations for VOAs associated to four-

dimensional SCFTs whose building blocks are in direct correspondence with the low energy

degrees of freedom on the Higgs branch. These realizations are highly economical and have

the important property that they give rise to a simple VOA, with all singular vectors au-

tomatically set to zero. We have focused here on three instructive families of examples.

In the first family, all low energy degrees of freedom are associated to the geometry of the

Higgs branch. Alternatively, in the second and third families there are additional vector

multiplets and interacting degrees of freedom, respectively, present at generic points of the

Higgs branch.

The case studies presented in this paper have some additional features that simplify

their analysis. Firstly, in all cases there is a flavor symmetry gF such that the infrared

R-symmetry on the Higgs branch is realized as a subalgebra of sl(2)R × gF . Relatedly,

these are examples where Higgsing of the UV theory can be performed at the VOA level

by quantum Drinfel’d-Sokolov reduction, and the free field realizations we presented can

to a certain extent be thought of as inversions of that DS reduction. A second simplifying

factor is that in our examples, the only singularity of the Higgs branch is at the origin,

which seems to have important consequences for the complexity (or rather, simplicity) of

the free field constructions.

We have found, and will report upon in a future publication, a number of cases where

free field realizations similar to the ones presented here can be established, but for which

one or both of the aforementioned simplifying features is absent. The emerging picture is

that the VOA associated to a given theory T can be realized in terms of the VOA of the

theory obtained from T by (partial) Higgsing at a point x on the Higgs branch, along with

a certain number of free fields:

χ[T ] ⊂ χ[TIR]⊗ Vfree , TIR = T ≀ x , x ∈ MHiggs[T ] . (7.1)

Here T ≀x denotes36 the (irreducible) effective theory supported at the point x on the Higgs

branch, while Vfree in general includes free bosons and free fermions, with the number of

chiral bosons in Vfree being equal to n = dimMHiggs[T ]− dimMHiggs[TIR]. However, some

of these chiral bosons can be re-written as symplectic bosons, denoted by ξ in this paper,

so we write n = 2(mξ +m∗).

The symplectic variety MHiggs[T ] admits is in general a stratified symplectic space

with a finite number of symplectic leaves. Based on work to date, it seems that the

number m∗ is equal to the depth of the stratification [36]. In light of this observation,

36The notation is borrowed from [35] to suggest the letter ‘s’ for slicing. The Higgsing appearing in (7.1)

includes the setup discussed in [35] but is more general.
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the simple structure of the Higgs branches considered in this paper allows us to find free

field realizations with m∗ = 1. When considering Higgsing such that TIR itself possesses

a non-trivial Higgs branch (meaning that we have not maximally Higgsed) this procedure

can be iterated. In certain cases, like the one analyzed in this work, the construction (7.1)

can be considered as the inverse operation of Drinfel’d-Sokolov reduction.

The free field constructions given here have a number of appealing applications. The

first of these we have explored in a preliminary way in section 6: the free field construction

gives rise to a natural filtration that we have conjectured to be equivalent to the underlying

R-filtration arising from the su(2)R charge in four dimensions. This is of particular interest

if one aims to get a good understanding of constraints arising from the intersection of four-

dimensional unitarity with VOA physics. Examples of interesting unitarity bounds arising

from only a rudimentary understanding of the R-symmetry structure of the associated

VOA have appeared in [1, 5, 6], but a more detailed analysis should be possible with good

control over this filtration.

Another key application of free field realizations such as those we have presented is to

representation theory of VOAs. On general grounds, as these free field realizations are of

the simple quotient of the relevant VOA, the remainder of the free field VOA will furnish a

(generally reducible) module for this simple quotient. A concrete case where this approach

has been worked in detail is the VOA associated to N = 4 SYM theory with gauge group

SU(2), which we have discussed in section 4. Adamovic [21] showed that this VOA admits

two irreducible modules in category O (the vacuum module and another one), and that

the bcβγ free field VOA decomposes as the direct sum of these two modules.

A related open question is whether the free field realizations that we have discussed

admit a further specification in terms of screening charges. In this work, we have described

the VOA χ[T ] by giving explicit expressions for its strong generators in terms of free fields.

Ideally, χ[T ] would be equivalently characterized as the kernel of a set of screening charges

inside the free field VOA. A concrete realization of this aspiration can again be found

in the example of [21]. Such screening charges might admit a geometric interpretation,

as global compatibility conditions for free field realizations “based” on overlapping open

patches of the Higgs branch. In the examples described in this paper, we were able to

find approximations of the Higgs branch in terms of a single open patch, which however

failed to cover a measure-zero set of points. One may imagine a more systematic approach,

where the full Higgs branch is covered with an atlas of charts, such that the conditions of

global compatibility are encoded in a set of screening charges. Such a construction would

be somewhat reminiscent of the realization of VOAs in terms of curved βγ systems, though

we anticipate that the details would be quite different.

Finally, the most ambitions application of our findings might be to the classification

program of N = 2 four-dimensional SCFTs. We are learning that the VOAs associated to

4d SCFTs are very special, and that they might be fully characterized by the effective field

theory on the Higgs branch. Combining these new insights with the constraints of four-

dimensional unitarity offers a promising blueprint for carving out the space of consistent

N = 2 theories.
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