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Abstract
Purpose  Malignancy prediction in indeterminate thyroid nodules is still challenging. We prospectively evaluated whether 
the combination of ultrasound (US) risk stratification and molecular testing improves the assessment of malignancy risk in 
Bethesda Category IV thyroid nodules.
Methods  Ninety-one consecutively diagnosed Bethesda Category IV thyroid nodules were prospectively evaluated before 
surgery by both ACR- and EU-TIRADS US risk-stratification systems and by a further US-guided fine-needle aspiration 
cytology (FNAC) for the following molecular testing: BRAFV600E, N-RAS codons 12/13, N-RAS codon 61, H-RAS codons 
12/13, H-RAS codon 61, K-RAS codons 12/13, and K-RAS codon 61 point-mutations, as well as PAX8/PPARγ, RET/PC1, 
and RET/PTC 3 rearrangements.
Results  At histology, 37% of nodules were malignant. No significant association was found between malignancy and either 
EU- or ACR-TIRADS. In total, 58 somatic mutations were identified, including 3 BRAFV600E (5%), 5 N-RAS 12/13 (9%), 
13 N-RAS 61 (22%), 7 H-RAS 12/13 (12%), 11 H-RAS 61 (19%), 6 K-RAS 12/13 (10%), 8 K-RAS 61 (14%) mutations and 
2 RET/PTC1 (4%), 0 RET/PTC 3 (0%), 3 PAX8/PPARγ (5%) rearrangements. At least one somatic mutation was found in 
28% and 44% of benign and malignant nodules, respectively, although malignancy was not statistically associated with the 
outcome of the mutational test. However, the combination of ACR-, but not EU-, TIRADS with the presence of at least one 
somatic mutation, was significantly associated with malignant histology (P = 0.03).
Conclusion  US risk stratification and FNAC molecular testing may synergistically contribute to improve malignancy risk 
estimate of Bethesda category IV thyroid nodules.
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Introduction

Thyroid cancer is the most frequent endocrine tumor with 
an increasing incidence [1, 2], typically presenting as a 
thyroid nodule. However, most thyroid nodules are benign, 
with 5–15% malignancy risk [3–5], highlighting the cru-
cial importance to estimate their malignancy risk to pre-
vent patients to receive unnecessary surgery. Currently, 
the most reliable and common diagnostic procedure for 
thyroid nodule diagnosis is fine-needle aspiration cytology 
(FNAC) which accurately diagnoses benign and malignant 
nodules in most cases. However, in 10–25% of cases, nod-
ules are cytologically diagnosed as indeterminate [6, 7] 
and frequently patients are submitted to surgery to obtain a 
histological diagnosis. Nevertheless, only a small propor-
tion of indeterminate nodules is found to be malignant at 
histology with surgery being unnecessary in a consider-
able number of these patients [7–9].

The most challenging indeterminate nodules are those 
which, according to The Bethesda System for Reporting 
Thyroid Cytopathology (TBSRTC), are classified as atypia 
of undetermined significance/follicular lesion of undeter-
mined significance (AUS/FLUS) (Bethesda Category III), 
and follicular or oncocytic (Hürthle cell) neoplasm/suspi-
cious for a follicular or oncocytic (Hürthle cell) neoplasm 
(FN/SFN) (Bethesda Category IV) [10–12]. The 2017 
TBSRTC edition [13] revised the predicted probability 
of malignancy for indeterminate nodules which was esti-
mated to be 10–30 and 25–40% for AUS/FLUS and FN/
SFN, respectively, when the noninvasive follicular thyroid 
neoplasm with papillary-like nuclear features (NIFTP) is 
considered as a malignant tumor. While for AUS/FLUS 
nodules, the possibility to follow-up patients and repeat 
FNAC has been recommended [14], FN/SFN nodules rep-
resent a more relevant clinical problem to solve.

Molecular testing on FNAC material has been employed 
in the diagnosis of thyroid nodules to better define the 
risk of malignancy and, in 2009, Nikiforov and co-work-
ers demonstrated the feasibility of a molecular testing 
panel, including BRAF and RAS mutations as well as 
RET/PTC and PAX8/PPARγ rearrangements [15]. Other 
subsequent reports have strengthened the importance of 
this approach, which was demonstrated to improve the 
assessment of malignancy risk of indeterminate nodules 
by means of mutational and gene expression analyses [16, 
17]. However, the uncertainty in defining malignancy risk 
of indeterminate thyroid nodules is not completely solved 
at present.

In the past few years, ultrasound (US)-based risk esti-
mates for thyroid nodules have been developed. The Thy-
roid Imaging Reporting and Data System (TIRADS) has 
been established and endorsed by the American College of 

Radiologists (ACR-TIRADS) [18], the European Thyroid 
Association (EU-TIRADS) [19], and the Korean Society 
of Thyroid Radiology (K-TIRADS) [20] to reduce unnec-
essary thyroid nodule FNAC. Therefore, the TIRADS is 
increasingly becoming the standard type of US reporting 
of thyroid nodules. However, US malignancy risk estimate 
of indeterminate nodules is still a matter of discussion. 
Indeed, AUS/FLUS and FN/SFN classes may include a 
significant proportions of follicular thyroid cancers (FTC) 
and follicular variant of papillary thyroid cancer (FVPTC); 
these histological subtypes can have unsuspicious US pres-
entation [21, 22].

Little is known on whether US characteristics of inde-
terminate thyroid nodules may concur to better define the 
risk estimate when assessed in association with molecular 
testing. In this study, we prospectively evaluated whether the 
combination of US risk-stratification systems and molecu-
lar testing improves the assessment of malignancy risk in 
TBSRTC Category IV thyroid nodules.

Materials and methods

We prospectively evaluated 106 thyroid nodules in euthy-
roid patients consecutively referred to the Unit of Internal 
Medicine and Oncological Endocrinology of the University 
of Parma-University Hospital of Parma from Nov 2014 to 
2018 with a cytological diagnosis of category IV thyroid 
nodule, according to the 2010 TBSRTC. All patients had 
already been referred to surgeon for lobectomy or total thy-
roidectomy. In almost all cases, FNAC was performed at the 
same institution with cytological reading performed at the 
local pathology unit. All cytological readings were reviewed 
by an expert cytopathologist (LC). The study consisted in a 
US re-evaluation of all nodules and a subsequent FNAC for 
molecular testing.

Ultrasound study

US was performed by an US machine (MyLab 70 X-Vision®-
Esaote, Milan, Italy) with a 4–13 MHz probe. Nodule char-
acteristics recorded during US examination were: diameters 
(anteroposterior, transverse, and longitudinal); shape, which 
was considered taller-than-wide if the anteroposterior diam-
eter exceeded the transverse diameter; margins (smooth or 
ill-defined, including lobulated or irregular); composition 
(solid, cystic, and mixed); echogenicity (hyperechoic, iso-
echoic, hypoechoic—relative to the thyroid parenchyma—or 
markedly hypoechoic, i.e., more hypoechoic than strap mus-
cles); calcifications (absent, microscopic, macroscopic—
including rim calcifications); comet-tail artifacts and other 
indeterminate hyperechoic foci; vascularization (intran-
odular, peripheral or mixed) and suspected extrathyroidal 
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extension. Each nodule was classified according to the 
widely used US risk-stratification systems ACR-TIRADS 
and EU-TIRADS. In addition, the ACR-TIRADS score was 
also calculated, according to the characteristics of this risk-
stratification system, to be used as a continuous variable in 
the statistical analyses. US descriptions were assessed in 
real-time during the US evaluation; TIRADS were defined 
during the review of the recorded images. All US evalua-
tions were performed by the same endocrinologist experi-
enced in thyroid US (GC) and all images were recorded for 
further examination which was jointly performed by two 
endocrinologists experienced in thyroid US (GC and MM) 
to maximally reduce the impact of interobserver variability.

FNAC for molecular testing

Nodules were then submitted to FNAC for molecular test-
ing. FNAC was performed by capillarity using a 90 mm, 
27-gauge needle (Artsana, Granate, Italy) equipped with a 
mandrel which was removed once the nodule was reached 
to selectively sample the nodule. The maneuver was per-
formed under US guidance with a 10–5.5 probe (Esaote, 
Italy). Upon collection, each specimen was harvested in a 
1.5 mL Eppendorf tube and immediately frozen in dry ice 
along with another Eppendorf tube containing 0.5 mL saline 
in which the needle was rinsed. Soon after, all tubes were 
frozen at − 80 °C for further molecular testing. All FNACs 
were performed by the same operator (MM). Two FNACs 
were performed for each nodule with the same procedure. 
The material from the second FNAC was used if the first 
one failed to obtain enough material for molecular testing.

Molecular testing

BRAF and RAS mutation analyses

DNA isolation for BRAF and RAS somatic mutation analy-
ses were performed at the Section of Endocrinology of the 
University of Ferrara, Italy, using the needle wash out. The 
presence of somatic BRAF and RAS mutations was inves-
tigated in each sample as previously described [23] using 
the EasyPGX® ready THYROID CE IVD kit (cod. RT028, 
Diatech Pharmacogenetics srl, Jesi, Ancona, Italy) on a real-
time PCR machine (CFX96 Touch Real-Time PCR Detec-
tion System, BioRad, Milano Italy), following the manufac-
turer’s instructions.

RNA extraction and cDNA synthesis for rearrangements

All the analyses for rearrangement identification were per-
formed at the Institute of Genetics, and Laboratory of the 
Department of Medicine and Surgery, University Hospital 
of Parma, Italy. Total RNA was extracted using the RNeasy® 

Plus Mini Kit (Qiagen) following the manufacturer’s instruc-
tions. Concentration and purity of each RNA sample were 
assessed using Nanodrop spectrometer (Thermo Scientific, 
Wilmington, DE) and RNA integrity score was obtained by 
Tapestation (Agilent Technologies, Wilmington, DE). Puri-
fied RNA samples were stored at − 80 °C until analysis. 
Reverse transcription was carried out using the QuantiTect® 
Reverse Transcription Kit (Qiagen) according to the manu-
facturer’s instructions. Samples were stored at − 80 °C. For 
Real-time PCR cDNA was amplified using the iCycler iQ 
Real-Time Detection System (BioRad, CA, USA) with the 
TaqMan 2 × Universal PCR Master Mix with No AmpErase 
UNG (Life Technologies, CA, USA). For the identification 
of the PAX8/PPARγ gene rearrangement, a pre-designed 
TaqMan probe was used (Assay ID: Hs04396712_ft, Ther-
moFisher Scientific, USA). For RET/PTC1 and RET/PTC3 
gene rearrangements, custom Dual Labeled Probes were 
used (Metabion International AG) (Supplementary Table 1). 
Finally, for the TaqMan Human Endogenous Control, PGK1 
housekeeping gene (Thermo Fisher Scientific, USA) was 
used. Quantification was performed by employing the 
2−∆∆Ct method [24].

The study was double blinded: molecular testing person-
nel was blinded to all FNAC, US, and histopathology data, 
and pathologists were blinded to molecular testing, FNAC, 
and US findings. The study was performed in accordance 
with the ethical standards according to the 1964 Declaration 
of Helsinki and its later amendments. A written informed 
consent was obtained from each patient before enrollment. 
The study was approved by the Ethics Committee of Parma 
(protocol N.25116; 07-14-2014).

Statistical analysis

Qualitative variables are expressed as absolute and percent-
age frequency and differences between them were assessed 
by means of Chi squared or Fisher exact test depending on 
the frequency. All the variables were tested with univari-
ate models of logistic regression to find crude significances 
and Odds Ratio. The normality of quantitative variables was 
assessed by means of Kolmogorov–Smirnov test. In the case 
of normality, data were reported as mean (M) ± standard 
deviation (SD). Otherwise, median and interquartile ranges 
(IQ) were reported. Consequently, independent sample t test 
or Mann–Whitney U test were used. Correlations between 
variables were assessed using Pearson’s correlation test. 
Multivariate models of logistic regression were used to test 
possible independent factors influencing histological results, 
including in the model all the possible variables with clini-
cal meaning independently of their univariate significance 
and excluding multicollinearity. Finally, sensitivity, specific-
ity, positive predictive value (PPV), and negative predictive 
value (NPV) were calculated. A P value ≤ 0.05 was chosen 
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as significant. For all the analyses, IBM SPSS Statistics v 26 
(IBM, Amork, NY, USA) was used.

Results

Of the 106 nodules enrolled, 10 were excluded because the 
patients chose to postpone surgery, 4 because the final histol-
ogy was not consistent with thyroid lesions (i.e., 3 parathy-
roid adenoma, 1 paraganglioma), 1 because of poor quality 
of nucleic acids. Therefore, data presented here are from 
91 FN/SFN nodules collected in 90 patients, whose demo-
graphic characteristics are reported in Table 1. Patients were 
more likely to be female and the mean maximum nodule 
diameter was 22 mm. US characteristics are described in 
Table 1. When considering the ACR-TIRADS classifica-
tion system, the most represented class was “TR4 - Mod-
erately suspicious” which was observed in 47% of cases. 
“High risk” was the most frequent class when considering 
EU-TIRADS classification, being observed in 42% of cases 
(Table 2).

We found at least one molecular alteration in 31 nodules 
(34%), for a total of 58 molecular derangements. The low-
est prevalence was found for BRAFV600E, PAX8/PPARγ, 

and RET/PTC1, while RET/PTC3 rearrangement was not 
present. The most present were H-RAS 61 and N-RAS 61 
somatic mutations (Table 2).

Malignant histology was found in 37% of cases with 
FVPTC being the most represented histological type 
(Table 1). Among the investigated nodules, two were con-
sistent with NIFTP and were considered among the group 
of FVPTC. FTC was found in six cases (7%), five of which 
were minimally invasive, and one was widely invasive. Fol-
licular adenoma was the most frequently observed benign 
histology. Differences in US characteristics and molecular 
testing between benign and malignant nodules are shown 
in Table 3.

Regarding the ACR-TIRADS, benign nodules were 
mostly represented by the “TR4 moderately suspicious” 
class (52%), whereas “TR3 mildly suspicious” and “TR5-
highly suspicious” equally represented the most frequent 
class (38%) in malignant nodules. Regarding the EU-
TIRADS, the most representative class was the “High risk” 
one, with 42% and 41% frequency in benign and malignant 
nodules, respectively. Overall, US characteristics did not 
significantly differ between benign and malignant nodules. 
Therefore, these systems did not accurately separate benign 
from malignant nodules in our series.

The frequency of molecular alterations was higher in 
malignant nodules (44%) as compared to benign nodules 
(28%), but this difference did not reach statistical signifi-
cance. Among molecular markers, N-RAS 61, H-RAS 61, 
and K-RAS 61 somatic mutations mainly characterized 
benign nodules, whereas N-RAS 61 was the main molecu-
lar alteration identified among malignant nodules (15%). 
However, its frequency was similar to that found in benign 
nodules (14%). All BRAFV600E mutated nodules were 
malignant. Among 60 mutation-negative samples, 41 (68%) 
were benign and 19 (31%) were malignant.

Considering nodules with at least one molecular altera-
tion, we did not find any significant association with US 
characteristics, described by either ACR-TIRADS or EU-
TIRADS risk assessment (Chi-square value: 1.101 and 
0.224, respectively; P value: 0.294 and 0.636, respectively). 
Only one tumor sample harbored multiple mutations; in 
particular, this sample displayed the H-RAS 12–13 and the 
BRAFV600E somatic mutations and was consistent with a 
FVPTC at histology.

The relationships between US characteristics, muta-
tional test outcome and malignant histology are reported in 
Table 4a. Malignancy was not associated with the outcome 
of the mutational test, nor with US risk assessment by ACR- 
and EU-TIRADS. However, ACR-TIRADS displayed the 
best performance. Therefore, we run a univariate analysis, 
testing the combination of ACR-TIRADS risk stratification 
plus the presence of at least one molecular alteration ver-
sus malignant histology. The results, reported in Table 4b, 

Table 1   General characteristics of the nodules

M mean, (SD) standard deviation, F female, US ultrasound, FVPTC 
follicular variant of papillary thyroid cancer, FTC follicular thyroid 
cancer, MTC medullary thyroid cancer

Age of the patients M (SD) 54 (12.9)
Sex of the patients F (%) 65 (71)
Maximum US nodule diameter mm, M (SD) 22 (12)
Maximum histologic diameter mm, M (SD) 21 (12)
ACR score M (SD) 4.64 (2.1)
Hypoechoic nodule n (%) 55 (60)
Isoechoic nodule n (%) 36 (40)
Hyperechoic nodule n (%) 0 (0)
Solid nodule n (%) 78 (86)
Mixed nodule n (%) 13 (14)
Irregular margins n (%) 16 (18)
Microcalcifications n (%) 13 (14)
Taller than wide n (%) 10 (11)
US findings of extrathyroidal extension 2 (2)
Histological type
 FVPTC 26 (28)
 FTC 6 (7)
 MTC 2 (2)

Benign histology n (%) 57 (63)
 Histological type
 Follicular adenoma 45 (50)
 Adenomatous hyperplasia 12 (13)

Multinodular goiter 73 (80)
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demonstrated that this combination was significantly associ-
ated to malignant histology (P = 0.03), with a sensitivity of 
65% (95% CI 46–80), specificity of 58% (95% CI 44–71), 
PPV of 48% (95% CI 33–63), and NPV of 73% (95% CI 
58–85). EU-TIRADS was far from reaching statistical sig-
nificance at the univariate analysis (Table 4a), therefore, it 
was not considered for the US + molecular testing combina-
tion analysis.

Discussion

In this study, we found that the combination of US risk-strat-
ification systems and molecular testing improves the assess-
ment of malignancy risk in TBSRTC IV thyroid nodules as 
compared to each individual assessment.

In line with the data reported by TBSRTC [13], we found 
a malignancy rate of 37% in our series of FN/SFN nodules, 
indicating that the latter was correctly characterized, avoid-
ing selection bias. NIFTP may represent a significant pro-
portion of AUS/FLUS and FN/SFN classes. However, in our 

series, we found only two NIFTP (2.2% of the whole group), 
representing a very low proportion of the identified lesions. 
On this background, we decided to keep these two cases 
in the “malignant” group of FVPTC, not to lose statistical 
power in the different groups.

The role of US in the risk estimate of cytologically inde-
terminate thyroid nodules is a matter of debate. We found 
a quite high percentage of high-risk TIRADS categories 
among benign tumors, reducing the potential of US charac-
teristics to detect malignant nodules, despite the correct use 
of these US risk estimation systems, as indicated by the lit-
erature [18, 19]. Hypoechogenicity represents the US feature 
that accounts for these specificity issues. Hypoechogenicity 
was frequently found in benign as well as malignant nod-
ules in our series. This may represent a confounding factor 
that impairs the identification of malignancy. Regarding the 
performance of US risk-stratification in cytologically inde-
terminate thyroid nodules, Trimboli et al. reported a sub-
optimal accuracy, although high sensitivity was found for 
the American Thyroid Association (ATA) system [23, 24]. 
This issue is of particular interest when dealing with FTC 

Table 2   General US (A) and molecular characteristics (B) of the nodules

US ultrasound

A

ACR-TIRADS n (%) TR1—benign 0 (0)
TR2—not suspicious 10 (11)
TR3—mildly suspicious 13 (14)
TR4—moderately suspicious 43 (47)
TR5—highly suspicious 25 (28)

EU-TIRADS n (%) Benign 0 (0)

Low risk 28 (31)
intermediate risk 25 (27)
High risk 38 (42)

B

Total number of nodules with molecular alterations n (%) 31 (34)

Molecular alterations N % of total molecular 
alterations

% of total 
nodules

BRAF V600E 3 5 3
N-RAS 12–13 5 9 5
N-RAS 61 13 22 14
H-RAS 12–13 7 12 8
H-RAS 61 11 19 12
K-RAS 12–13 6 10 7
K-RAS 61 8 14 9
RET/PTC 1 2 4 2
RET/PTC 3 0 0 0
PAX8/PPARγ 3 5 3
Total 58
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whose cytology at FNAC examination is included within 
TBSRTC indeterminate categories. US does not provide spe-
cific markers for FTC and, although different US criteria 
have been suggested [25, 26], its role remains questioned 
[27]. More promising appear to be the findings of Grani 
and co-workers who reported encouraging results from ATA 
and TIRADS on the risk estimate of indeterminate nodules 
[28]. However, most of these data are based on retrospec-
tive analyses. Moreover, the indeterminate classes are often 
reported according to different classification systems. The 

novelty of our study is represented by the fact that US was 
performed after a diagnostic FNAC in a prospective design 
and by selectively targeting FN/SFN nodules.

As compared to the EU-TIRADS, which we included 
in our US evaluation based on the geographic area of our 
patients, we found that ACR-TIRADS provides a better 
performance, even though it has no predictive value for 
malignancy.

To improve the risk stratification of indeterminate thy-
roid nodules several studies tested the diagnostic potential of 

Table 3   US characteristics and 
molecular markers in benign 
and malignant nodules

US ultrasound
* Fisher exact test

Benign n 57 Malignant n 34 P*

ACR-TIRADS n (%)
 TR1—benign 0 (0) 0 (0) 0.33
 TR2—not suspicious 6 (10) 4 (12)
 TR3—mildly suspicious 9 (16) 4 (12)
 TR4—moderately suspicious 30 (52) 13 (38)
 TR5—highly suspicious 12 (21) 13 (38)
ACR-TIRADS score 4.5 (1.8) 4.9 (2.6) 0.39
EU-TIRADS n (%)
 Benign 0 (0) 0 (0) 0.99
 Low risk 17 (30) 11 (32)
 Intermediate risk 16 (28) 9 (27)
 High risk 24 (42) 14 (41)

Nodules with at least one molecular alteration 16 (28) 15 (44) 0.17
Molecular alterations (% on number of nodules)
 BRAF V600E 0 (0) 3 (9)
 N-RAS 12–13 5 (9) 0 (0)
 N-RAS 61 8 (14) 5 (15)
 H-RAS 12–13 5 (9) 2 (6)
 H-RAS 61 8 (14) 3 (9)
 K-RAS 12–13 5 (9) 1 (3)
 K-RAS 61 7 (12) 1 (3)
 RET/PTC1 2 (4) 0 (0)
 RET/PTC3 0 (0) 0 (0)
 PAX8/PPARγ 2 (4) 1 (3)

Table 4   Relationship between US characteristics, molecular markers and malignant histology (univariate analysis)

SE standard error, OR odds ratio, US ultrasound

A Beta SE P OR OR 95% CI

Molecular marker alterations 0.705 0.454 0.121 2.023 0.831–4.926
EU-TIRADS − 0.088 0.435 0.839 0.915 0.390–2.148
ACR-TIRADS 0.806 0.472 0.088 2.238 0.887–5.644
ACR-TIRADS score 0.089 0.103 0.385 1.093 0.894–1.337

B Beta SE P OR OR 95% CI

ACR-TIRADS plus at least one molecular marker alteration 0.925 0.448 0.039 2.521 1.048–6.066
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somatic mutation panels in thyroid FNAC material [15, 16]. 
Large genetic panels, such as ThyroSeq v2 next-generation 
sequencing (NGS) assay have been developed. Nikiforov and 
co-workers studied 104 benign and 39 malignant FN/SFN 
nodules, with a sensitivity of 90%, specificity of 93%, PPV 
of 83% and NPV of 96% [12]. Valderrabano and co-work-
ers reported a slightly worse performance in a series of 37 
benign and 13 malignant FN/SFN nodules, with a sensitivity 
of 85%, specificity of 84%, PPV of 65%, and NPV of 94% 
[29]. In 2019, Steward and co-workers reported the results of 
the ThyroSeq v3 Genome Classifier on the malignancy risk 
estimate of 60 benign and 33 malignant at TBSRTC IV nod-
ules, with a sensitivity of 97%, specificity of 75%, NPV of 
98%, and PPV of 68% [30]. However, commercial panels for 
molecular testing are not always available outside research 
protocols, are generally expensive [31], and therefore, may 
not be easily affordable in clinical practice.

In our study, we used a noncommercial panel which 
largely derives from previous experiences [32, 33]. We 
found a molecular alteration in 34% of nodules, half of 
which had malignant histology. These data differ from pre-
vious results reported with noncommercial panels. Using a 
7-gene panel, including BRAF, RAS, RET/PTC, and PAX8/
PPARγ, on a total of 214 FN/SFN nodules, Nikiforov and 
co-workers demonstrated mutational positivity in 18% of 
samples, 87% of which were malignant at histology [34]. 
With a wider mutational panel, Beaudenon-Huibregtse and 
co-workers demonstrated a mutational positivity in 26% of 
19 TBSRTC IV nodules, finding a molecular alteration in 4 
out of 6 malignant nodules and in 1 out of 13 benign nodules 
[35]. In 2017, Eszlinger and co-workers studied 199 FN/SFN 
nodules from a European population using a panel includ-
ing BRAF and RAS mutations as well as PAX8/PPARγ and 
RET/PTC rearrangements. They found a mutational positiv-
ity in 11% of cases with the detection of 8/30 carcinomas, 
while 14/156 benign samples revealed a false-positive test. 
Their sensitivity was 27% with a specificity of 91%, a PPV 
and a NPV of 36 and 87%, respectively [36]. Therefore, our 
data may be included in the spectrum of the wide perfor-
mance variability of studies employing noncommercial tests, 
which is possibly due to different study design (including the 
fact that some reports are from retrospective studies), nod-
ule number and size, and genetic background of the studied 
populations.

In our series, we found a higher mutation rate as com-
pared to many of the previously published studies that used 
noncommercial panels. However, malignancy rate in our 
mutation positive cases is lower than that reported in other 
studies [34, 37], although higher than that documented by 
others [36]. Since the overall prevalence of malignancy in 
our series is comparable with that reported in the literature 
for TBSRTC IV nodules [13], a selection bias is unlikely 
to have occurred in our study. We can hypothesize that, 

based on our results, the genetic characteristics of FN/
SFN nodules diagnosed in our population are different 
from those reported in other studies. More specifically, 
the presence of N-RAS 61, H-RAS 12–13, and PAX8/
PPARγ genetic alterations in histologically benign nod-
ules, in keeping with previous reports [38, 39] could have 
affected the specificity of our results. This does not apply 
to BRAF mutations; all cases corresponded to a malignant 
histology, in line with the high prediction of malignancy 
of this molecular marker [32, 37]. We cannot exclude that 
the limited sample size may have affected the sensitivity 
of our study, which is relatively low, although higher than 
that reported by the other authors using similar molecular 
testing [36]. Of note, we also analyzed our results after 
selecting only the 7 genes used in previous studies [34, 36] 
out of the 10 genes included in our panel: we did not find 
any association between malignant histology and molecu-
lar test outcome alone or molecular test outcome plus US 
findings (data not shown).

Points of strength of our study are represented by the 
monocentric, prospective, and double-blinded design 
using the international Bethesda classification system for 
categorizing our cytology, according to the ATA guide-
lines. Moreover, US studies and FNAC have all been per-
formed by the same persons. Cytology and histology have 
been carried out at the same Institution by the same team 
of pathologists. Point of weakness may be represented by 
the limited nodule sample size. However, the main feature 
of this study is of methodological interest. In fact, we tried 
to verify whether, in a prospective study, the combination 
between the new US reporting systems with molecular 
testing may improve the risk estimate of FN/SFN thyroid 
nodules. To the best of our knowledge, this is the first 
study based on such approach and with such design.

Although our approach is characterized by quite low 
sensitivity and specificity, our strategy allows for an 
improvement in these parameters. Validation studies with 
higher number of nodules are needed to define the role of 
this combination strategy in the decision making to oper-
ate or not an indeterminate thyroid nodule. In this context, 
our approach may be considered as a pilot study for further 
experience aimed at extending the number of observations 
on this issue, to impact on practical approach.
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