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Quantum computers as universal quantum simulators: state-of-art and perspectives

Francesco Tacchino,1 Alessandro Chiesa,2 Stefano Carretta,2 and Dario Gerace1, ∗

1Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100, Pavia, Italy
2Dipartimento di Scienze Matematiche, Fisiche, e Informatiche, Università di Parma, I-43124, Parma, Italy

The past few years have witnessed the concrete and fast spreading of quantum technologies for
practical computation and simulation. In particular, quantum computing platforms based on either
trapped ions or superconducting qubits have become available for simulations and benchmarking,
with up to few tens of qubits that can be reliably initialized, controlled, and measured. The present
review aims at giving a comprehensive outlook on the state of art capabilities offered from these
near-term noisy devices as universal quantum simulators, i.e. programmable quantum computers
potentially able to calculate the time evolution of many physical models. First, we give a pedagogic
overview on the basic theoretical background pertaining digital quantum simulations, with a focus
on hardware-dependent mapping of spin-type Hamiltonians into the corresponding quantum circuit
model as a key initial step towards simulating more complex models. Then, we review the main
experimental achievements obtained in the last decade regarding the digital quantum simulation
of such spin models, mostly employing the two leading quantum architectures. We compare their
performances and outline future challenges, also in view of prospective hybrid technologies, towards
the ultimate goal of reaching the long sought quantum advantage for the simulation of complex
many body models in the physical sciences.

I. INTRODUCTION

When trying to accurately describe the dynamical be-
havior of physical systems made of several interacting
fundamental constituents, and from these explain the
complexity of natural aggregates following a bottom up
approach, the well established classical laws of physics
fail to give an accurate picture of reality, as it is now
accepted and understood. In fact, quantum mechanics
is arguably the most complete and successful theory we
currently have to effectively describe the dynamics of the
elementary constituents of our universe. A great deal
of methods and simulation tools have been developed
in the last century, such as quantum Monte-Carlo [1],
molecular dynamics [2], and tensor networks [3] to name
a few examples, which allow solving some of the theo-
retical models formulated in quantum mechanical terms
and correctly describe a large variety of quantum phe-
nomena. The very concept of “simulation” has a broadly
understood meaning in Science, Technology, Engineering,
and Mathematics (STEM) applications. In fact, simulat-
ing any natural phenomenon is equivalent to artificially
reproduce its properties and its dynamical evolution in
time. This is primarily carried out through an accurate
mathematical modeling, i.e. a mapping of the informa-
tion we know about a system of interest onto a certain
set of variables and equations, followed by an analytic or
most often numerical solution. The resulting set of math-
ematical identities (or the computer with its numerical
program aimed at solving them) can then be named a
simulator. Such a simulator is used to study the behav-
ior of the real system under fairly general conditions, to
make predictions and to test new hypotheses, the only
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limitations being the validity of the initial modeling and
the available computational power.

It is generally accepted that most of the models we
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FIG. 1. Conceptual illustration of a universal simulator im-
plemented on a digital quantum computing device. A physi-
cal model describes the quantum state evolution in a physical
space, Ψ(t); this evolution can be approximated to arbitrary
precision by mapping the given model on a spin-type model
(which can be easily encoded, e.g., onto a qubits-based regis-
ter), and slicing the time evolution according to the Trotter-
Suzuki formula (see text); the sequence of unitary operations
can then be programmed through a quantum circuit model to
be directly run on a quantum computer, giving the approxi-
mated evolved state as an output, ψ(t).

currently deal with cannot be solved exactly with classi-
cal computing machines, such as modern supercomputers
obeying the laws of classical physics. The main reason
lies in the exponential scaling of time and memory re-
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sources needed to correctly capture the dynamics of the
relevant physical variables with increasing system size.
This is especially true when strong correlations between
the system parties play a dominant role, which is the
case in most interesting situations. In such cases, even
the most elaborate but inevitably approximate classical
simulation approaches so far developed fail in giving the
correct answers. Hence, quantum simulators have long
been proposed as a possible solution, building on the gen-
eral idea that since Nature ultimately behaves quantum
mechanically, only a computing machine obeying quan-
tum mechanical laws would be able to accurately simu-
late it [4–6]. A quantum simulator is a system under high
control of the experimenter, which is able to reproduce
the dynamical behavior of a given physical model, irre-
spective of the degree of internal correlations or entangle-
ment between the model’s degrees of freedom. Following
this route, a plethora of analog quantum simulators have
been proposed [7–18] and developed [19–30], in which
the physical properties of a targeted model are repro-
duced on a physical set-up under externally controlled
conditions. On the other hand, digital quantum simula-
tors are programmable and general purpose quantum de-
vices, which promise a larger flexibility on the models to
be solved [31–46]. In this respect, digital quantum simu-
lators are quantum computing machines not restricted to
emulate the dynamics of targeted models, but satisfying
DiVincenzo criteria [47] for quantum computation. Here
we will consider such digital quantum computers as uni-
versal quantum simulators (UQS) [31], meaning that they
are able, in principle, to reproduce with arbitrary preci-
sion the dynamics of any Hamiltonian model that can be
suitably encoded on a given quantum register and trans-
lated into a sequence of gate operations, as schematically
illustrated in Fig. 1. The time evolution of the physical
model is mapped onto an effective model defined on the
quantum hardware degrees of freedom, in which the time
evolution can be programmed in digital steps through a
sequence of unitary operations defined by a quantum cir-
cuit [48]. This mapping will be the focus of the present
review. As it will be recalled, the concept of universality
requires that the model Hamiltonian be the sum of locally
interacting terms, which in turn implies that the number
of required operations does not grow exponentially with
the system size. This, in practice, restricts the class of
Hamiltonian models that can be usefully simulated (al-
though to the ones that are most physically relevant).
On a more refined level, it is worth mentioning that hy-
brid digital-analog quantum simulators have also been
proposed, aimed at combining the easier scalability of
analog approaches with the intrinsic universality of digi-
tal quantum simulations [49]. Here, analog blocks allow
for the direct simulation of the time dynamics on a large
number of variables, thus reducing the number of digital
operations and errors, while digital blocks are included to
introduce a variety of possible interaction models. This
paradigm is hailed as a promising route leading to uni-
versal digital-analog quantum computation.

Several excellent reviews have been published in the
last few years, giving a broad account of quantum sim-
ulators, either general purpose [50–53] or more focused
on specific categories and/or quantum hardware [54–59].
Here we give a targeted overview on near term digital
quantum computers as devices able to perform universal
quantum simulations. This goes in line with the fast pace
of advancement in different quantum computing tech-
nologies that have made programmable devices available,
thus attracting widespread interest worldwide. In fact,
current quantum processors promise to overcome the
intrinsic limitations of simulating complex many body
physics with classical computing machines, although it
is still difficult to predict when this will happen. A tar-
geted goal would be to reach the long-sought “quantum
advantage”, i.e. a certified gain in either memory or tem-
poral efficiency obtained for the solution of a quantum
problem with respect to the equivalent simulation be-
ing performed on a classical supercomputer. Without
entering into the subtleties related to a rigorous defini-
tion of quantum advantage, here we just consider that a
quantum computer with fully operational N = 50 qubits
is able to store something like 8 × 2N ∼ 9 · 1015 bytes
of information (i.e. 9 Pb, assuming 8 bytes to store a
complex number in single-precision), which roughly cor-
responds to the random access memory of state-of-art su-
percomputers [60, 61]. Should this threshold be met with
an actual quantum simulation involving the whole quan-
tum hardware in the current Noisy Intermediate Scale
Quantum devices (NISQ) era [53], it would represent
the quantum advantage turning point. On a longer and
still unpredictable timescale, even farther-reaching con-
sequences are expected should fully fault tolerant and
scalable quantum hardware become available [62–65], in
which N > 100 logical qubits have to be complemented
with a much larger number of auxiliary quantum bits
aimed at correcting errors.
Our aim is to give an overview of the field that could
be useful to the beginning researcher or student, try-
ing to keep a pedagogic approach over the elementary
theoretical background throughout the manuscript, and
then summarizing the main experimental achievements
and prospective developments. Since most Hamiltonian
models can be mapped onto spin-type ones, being able
to efficiently simulate spin models on actual quantum
computing devices is crucial, not only because they pos-
sess interesting many body dynamics themselves but also
to open the door to the universal quantum simulation
of a large class of quantum models (typically interact-
ing fermionic particles) that are intractable by classi-
cal computation means [66]. Paradigmatic examples are
the Hubbard model in condensed matter [37, 64], or the
Schwinger model in lattice gauge field theory [41, 67]. In
particular, we emphasize the role of specific quantities
that are known to be difficult to compute but extremely
important in the description of the dynamical properties
of many body systems, such as quantum correlations.
In terms of actual quantum hardware, we will focus on
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reviewing the main experimental achievements obtained
in the last decade, specifically dealing with the simula-
tion accuracy of targeted spin Hamiltonians on different
quantum platforms. While several alternatives are cur-
rently being pursued to realize actual non-error corrected
quantum processors [68], from photonic integrated cir-
cuits [56] to spins in semiconductors [69], we concentrate
upon the two leading architectures that have been domi-
nating the scene: trapped ions manipulated through ex-
ternal microwave or optical fields [70–72], and supercon-
ducting circuits working at microwave frequencies [73–
76]. We anticipate that interesting results might already
be within reach in NISQ processors, despite the rela-
tively small number of useful operations and non-error
corrected qubits currently available on such devices. On
a parallel sight, while the main object is restricted to
quantum simulations of physical models and STEM ap-
plications in general, actual quantum processors might
eventually turn to solve complex problems in other fields
as well. As examples, classification and scheduling tasks,
stock market pricing [77, 78] and machine learning [79]
might benefit from speedup advantages over classical
computers. The basics of quantum circuit programming
reported in this review may be a useful starting point.
Last but not least, these topics settle within the quantum
technologies roadmap promoted at the European level
through the recently funded Quantum Flagship [80].

II. THEORY OF DIGITAL QUANTUM
SIMULATIONS

When the main object of a physical theory is to de-
termine the evolution in time of a given system, most
problems are formulated in terms of a set of differential
equations. Their solution is at the heart of many simu-
lation protocols nowadays, from molecular dynamics to
aircraft design. A very common situation is, for example,
a linear set of equations such as

d~x

dt
= M~x (1)

where M is a matrix and ~x represents a vector of dynam-
ical variables. Once an initial condition ~x(0) is given, the
formal solution to the above equation is simply

~x(t) = eMt~x(0) (2)

Implementing such a solution on a computer routine gives
a useful tool to fully solve the system dynamics, provided
that the size of the numerical problem is within reach
of the available computational resources. In quantum
mechanics, the paradigmatic example is the Schrödinger
equation (here and in the following, we take ~ = 1)

d |Ψ〉
dt

= −iH |Ψ〉 (3)

where H is known as the Hamiltonian operator. This
complex-valued differential equation is solved by com-
puting the unitary time-evolution operator U(t) = e−iHt.

Indeed, once the latter is known, any initial condition can
be evolved linearly as

|Ψ(t)〉 = U(t) |Ψ(0)〉 (4)

Matrix exponentiation is a very common numerical task
arising in many interesting simulation scenarios, and cru-
cially in the field of quantum mechanical systems. On
classical computers, this task turns out to be provably
difficult in terms of the matrix size, most notably for
quantum mechanical simulations, where the exponential
increase of the size of the Hilbert space of a composite
system with the number of sub-systems leads to an ex-
ponential demand of time and memory resources.

In 1982, Richard Feynman conjectured that using a
controllable quantum mechanical system as a comput-
ing resource, instead of a classical object, would provide
significant advantages in the simulation of quantum sys-
tems [6]. Indeed, just about fifteen years later, in 1996,
Seth Lloyd proved that idea to be essentially correct [31],
with the sole limitation that the systems to be simulated
only carry local interactions between their constituent
subsystems. In these review, we will thus concentrate on
system Hamiltonians of the form

H =

L∑

l

Hl (5)

where Hl acts locally only on a portion of the total sys-
tem. As a matter of fact, many Hamiltonian models of
physical interest can be formulated as in Eq. (5).

A. The quantum computer as a universal quantum
simulator

Given a Hamiltonian H that models the physical
system under investigation, the problem of comput-
ing the corresponding time evolution operator U(t) =
exp (−iHt) is equivalent to the task of implementing a
well defined unitary matrix. A quantum computer en-
dowed with a universal set of quantum gates is by defini-
tion able to perform any unitary transformation, albeit
not necessarily in an efficient number of elementary op-
erations [48]. What Lloyd actually proved is that univer-
sal quantum computers can calculate U(t) efficiently (i.e.
with polynomial time and memory resources in the size of
the target system) when H is a sum of local terms. The
proof is based on two fundamental facts: first, in the cir-
cuit model for UQS we can implement generic transfor-
mations by successively performing elementary unitary
operations (quantum gates), and appending one unitary
UA after another UB in the circuit results in a total uni-
tary, which is mathematically the product UAUB being
applied to the state of the qubit register. Second, any
unitary operation U acting on N qubits can be imple-
mented with O(22N ) elementary operations (we recall
that the dimension of the Hilbert space associated to N
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qubits is d = 2N ) [48, 81]. Following Ref. 31, we now
suppose that we are given a Hamiltonian expressed as
the sum of L local terms, as in Eq. (5), where L ∝ p ·N
such that p measures some degree of locality (e.g., the
number of nearest neighbors or second-to-nearest neigh-
bors in a lattice), and N is the total number of qubits
required to encode the computation. Hence, the number
of local terms, L, scales polynomial with N . In gen-
eral, according to the rules above, computing directly
U(t) = exp (−iHt) requires O(22N ) operations, and it is
therefore exponentially inefficient. However, let us call
ml the dimension of the subsystem over which the action
of Hl is restricted. Typically, we will have ml � 2N ,
since local terms only involve few-body interactions. In
this case, the unitary Ul(t) = exp (−iHlt) can be com-
puted with O(m2

l ) operations. The overall product

Ũ =
∏

l

Ul(t) (6)

can therefore be obtained on a universal quantum
computer by juxtaposing the circuit implementations
of the single Ul(t) unitaries, and it would take at
most O(Lm2

max) elementary operations, where mmax =
maxlml. The final step of the reasoning lies in the follow-
ing mathematical identity, which is known as the Suzuki-
Trotter (ST) decomposition:

e−i
∑
lHlt = lim

n→∞

(∏

l

e−iHlt/n
)n

(7)

Unless all the Hl operators commute, in which case the
ST identity is exact already for n = 1, the product of
local unitaries will not be exactly equal to the total target
unitary U(t) = exp (−iHt). However, it can be shown
that ∀n

U(t) = e−i
∑
lHlt =

(∏

l

e−iHlt/n
)n

+O

(
t2

n

)
(8)

which means that we can approximate arbitrarily well
the desired unitary operator by repeating n times the
sequence of gates corresponding to the product of local
terms for time slices t/n. All in all, we were able to
break our original problem into smaller pieces, e−iHlt/n,
which can now be implemented efficiently using only a
limited set of elementary gates and give the correct an-
swer up to an arbitrarily small digital error O(t2/n). In-
deed, for any ε > 0 and t, there exists a nε such that U(t)
can be computed within an approximation ε in at most
nεLm

2
max operations. This is polynomial in N whenever

L = poly(N), as for example in the case of nearest neigh-
bors interactions.

B. Quantum simulations cookbook

From now on, we will assume to work with a univer-
sal quantum computer, described in the standard circuit

model as a (quantum) digital device, i.e. qubit-based,
obeying the algebra of Pauli matrices and operating with
a universal set of quantum gates [48]. The problem of
quantum simulation can then be formulated and solved
on such a machine by taking a few simple steps, which
we are going to outline in the following.

First, define a model Hamiltonian of interest H. This
should contain all the dynamical information necessary
to describe and characterize the physical quantum sys-
tem under investigation. The most appropriate set of
variables and operators will appear in the mathematical
structure of H.

Second, map the target Hamiltonian H onto its repre-
sentation on the qubit Pauli algebra

H → H({σα}) (9)

In simpler terms, this means finding a suitable encod-
ing of the degrees of freedom of the target system into a
number N of qubits. The resulting mapped Hamiltonian
H will then be written in terms of Pauli matrices. Notice
that this mapping is straightforward for physical systems
consisting of collections of spin-1/2 objects, as they also
obey Pauli algebra, but it is possible in principle for a
large class of physical system, as it will be shown in the
following with some specific example. The quantum sim-
ulation will be efficient whenever such H is the sum of
local terms. Notice that this is usually not a limitation
in many practical cases, as most physical processes are
inherently local in nature. However, local Hamiltonian
models get mapped into non-local ones, as, e.g., when
the well known Jordan-Wigner transformation is applied
[82] to encode fermionic degrees of freedom. These mod-
els might be efficiently simulated on quantum hardware
implementing multi-qubit gates, as it will be detailed in
the following.

Third, assuming the target Hamiltonian is mapped
onto a sum of local contributions

H =
∑

l

Hl (10)

check whether [Hl, Hl′ ] = 0 ∀l, l′. If that is the case, then

e−iHt =
∏

l

e−iHlt (11)

with no digital error. Otherwise, choose the number of
ST steps (sometimes referred to as Trotter steps), n, that
is appropriate for the required degree of precision, in such
a way that

e−iHt '
(∏

l

e−iHlt/n
)n

(12)

This application of the ST formula is sometimes called
Trotterization in quantum simulations jargon.

Fourth, translate each local unitary e−iHlt (or
e−iHlt/n) into a sequence of quantum gates. This is al-
ways possible in at most O(m2

l ) operations and with any
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universal set of single- and two-qubits operations avail-
able on a general purpose quantum computer [48]. The
total quantum circuit encoding the time evolution will
be the juxtaposition of all the sequences corresponding
to the factors in the ST decomposition, repeated n times.

Finally, add initial state preparation at the beginning
of the circuit and an appropriate set of measurements
at the end to recover expectation values of the relevant
observable quantities on the evolved quantum state.

The points above represent a quite general set of in-
structions towards the design of a quantum simulation
algorithm. In the following, we will give some explicit
examples to show how this is done in practical cases. Of
course, such techniques are not limited to actual simula-
tions of real physical systems, but can become a tool for
a larger class of computational tasks whenever the prob-
lem of interest can be encoded in a Hamiltonian quantum
dynamics.

III. QUANTUM CIRCUITS

Among the steps that must be undertaken in order to
practically design and realize a digital quantum simula-
tion, the translation of unitary operators into elemen-
tary quantum gates is the one that is most typically
hardware-dependent. It is also critical in terms of re-
sults and performance, particularly in the present era of
noisy and intermediate-scale prototypes of quantum pro-
cessors, where the interplay between hardware properties
and target features is stronger.

Several universal sets of single- and two-qubit gates
are known [48], all in principle equally valid as a prim-
itive set to realize any quantum simulation. However,
every real hardware platform usually comes with a na-
tive set of operations that, due to the physical charac-
teristics of the device, are readily implemented in prac-
tice. The platform is in itself capable of implementing
universal quantum computation, and is thus a potential
UQS, if and only if the native set is a universal set in the
usual quantum computing sense. If that is the case, any
target unitary evolution can be translated in a combina-
tion of the native operations without unnecessary over-
head. Processors based on different technological plat-
forms may also exhibit distinct topological properties, i.e.
different qubit-qubit inter-connectivity and limitations in
gate directionality. While these do not pose hard limita-
tions to the computational power of the platform, since
they can always be compensated via, e.g., SWAP oper-
ations, they may results in some overhead in the total
length of the simulations. Hence, in this NISQ era some
platforms are more suitable for the simulation of certain
physical models (e.g. trapped ions, featuring built-in all-
to-all connectivity, can more easily simulate long-range
interactions), thus making a fair comparison of perfor-
mances less straightforward [83]. Of course, it should be
reminded that, as a general rule, only systems described
by local interaction terms are somehow guaranteed to be

efficiently mapped on a quantum computing register.

A. Pauli algebra and spin Hamiltonians

The mathematical properties of qubits are those of
spin-1/2 systems, thus obeying the algebraic properties
of Pauli matrices. The latter can be written in the com-
putational basis representation as

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(13)

and satisfy the following commutation and anti-
commutation rules

[σα, σβ ] = 2iεαβγσγ , {σα, σβ} = 2δαβI (14)

where α, β, γ ∈ {x, y, z}, εαβγ is the Levi-Civita tensor,
δαβ is the Kronecker delta and I is the identity matrix.

In order to be simulated on a qubit-based architecture,
any target Hamiltonian, H, has to be mapped into an
equivalent Hamiltonian, H, of interacting spin-1/2 oper-
ators. As already mentioned, this step is straightforward
for paradigmatic spin-1/2 Hamiltonians (e.g., implement-
ing Heisenberg or Ising models), but effective mappings
are known for a large variety of cases, ranging from spin
S > 1/2 [36, 43, 84] to fermionic and fermionic-bosonic
systems [32, 36–38, 43, 44, 46, 49, 85–87], including lat-
tice models related to gauge theories [67, 88]. The gen-
erator of time evolution in a N -qubit digital quantum
simulation therefore takes the general form

H =

N∑

i=1
α=x,y,z

h
(1)
α,iσ

(i)
α +

N∑

i,j=1
α,β=x,y,z

h
(2)
αβ,ijσ

(i)
α σ

(j)
β (15)

containing in general both single- and two-spin terms,
to which any other many body term time evolution can,
in principle, be reduced (see Sec. III D). Whenever the
overall structure of H retains a local nature, as it is the
case for many physically relevant examples, its transla-
tion into elementary gate operations can be done effi-
ciently. In the following, we will provide a dictionary of
useful decomposition rules in terms of different universal
sets of gates. Most of them are derived from real use-case
scenarios and can therefore be straightforwardly applied
to well known physical models.

B. Single-qubit rotations

Once the target Hamiltonian H is reduced to its coun-
terpart H on N spin-1/2 systems, a register of N qubits
can be used to encode and carry out the quantum simula-
tion via the identification of each qubit with a single spin-
1/2 element. All currently proposed and realized quan-
tum computing platforms allow addressing single qubits
with tailored control pulses to perform single qubit gates.
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The most general single qubit SU(2) operation has the
form

U(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
(16)

and can be obtained, for example, by combining well
known single qubit quantum gates such as the Hadamard
gate

H =
1√
2

(
1 1
1 −1

)
(17)

and the phase gate

Φ(δ) =

(
1 0
0 eiδ

)
(18)

Indeed, the following identity holds:

U(θ, φ, λ) = e−iθ/2Φ
(π

2
+ φ

)
HΦ(θ)HΦ

(
−π

2
+ λ
)

(19)
Rotations around the coordinate axes

Rα(θ) = exp

(
−iθ

2
σα

)
α = x, y, z (20)

can be implemented, up to global phase factors, by
choosing particular parameters in U(θ, φ, λ). For ex-
ample, Rz(λ) = e−iλ/2Φ(λ) = U(0, 0, λ), Rx(θ) =
U(θ,−π/2, π/2) and Ry(θ) = U(θ, 0, 0). Vice-versa, any
platform capable of implementing single-qubit rotations
around the coordinate axes can in principle realize an
arbitrary U(θ, φ, λ) via the following identity

U(θ, φ, λ) = Rz(φ)Rx(θ)Rz(λ) (21)

In Eq. (15), any single-spin term

H
(i)
1 =

∑

α=x,y,z

h
(1)
α,iσ

(i)
α (22)

essentially represents a magnetic field applied to the i-

th qubit along the direction identified by the vector ~h =

(h
(1)
x , h

(1)
y , h

(1)
z ). The induced time evolution

U
(i)
1 (t) = e−iH

(i)
1 t (23)

is a precession around the ~h axis, with the corresponding
action on a qubit being a rotation of the Bloch vector.
This can always be expressed in the U(θ, φ, λ) form, and
therefore as a combination of rotations around the co-
ordinate axes or of Hadamard and phase gates. Other
decompositions of general SU(2) transformations, as well
as approximate results employing only a finite set of
fixed-phase single qubit operations instead of continuous-
valued ones, are also known. [48, 89]

C. Two-qubits gates

Two-spin interactions appearing in the general Pauli
Hamiltonian, Eq. (15), are usually implemented in digital
quantum simulation protocols as combinations of single-
and two-qubits gates. The typical evolution operator has
the form

U
(i,j)
αβ (t) = e−iH

(i,j)
αβ t = e−iδσ

(i)
α ⊗σ

(j)
β (24)

where δ is a dimensionless phase factor. These terms
arise naturally in the simulation of many renown spin
models such as the Heisenberg model

H = J
∑

〈i,j〉

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z

)
, (25)

the XYZ model

H =
∑

〈i,j〉

(
Jxxσ

(i)
x σ(j)

x + Jyyσ
(i)
y σ(j)

y + Jzzσ
(i)
z σ(j)

z

)
,

(26)
which reduces to the so called XY model if Jzz = 0, or
the transverse field Ising model

H =
∑

i

hiσ
(i)
x +

∑

〈i,j〉
Jzzσ

(i)
z σ(j)

z (27)

Here 〈i, j〉 denote nearest neighbors spin pairs.

The exact and most effective decomposition of U
(i,j)
αβ (t)

terms into elementary quantum gates varies from plat-
form to platform, depending on the available set of na-
tive operations. One common situation, typical of, e.g.,
superconducting qubit technology with cross-resonance
interactions [90–92], is a native universal set

S1 = {Rα(θ),CNOT} (28)

containing single qubit rotations and the two-qubit
CNOT entangling gate

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (29)

Let ZZ(δ) be the unitary operation

ZZ(δ) = e−iδσz⊗σz (30)

This can be realized using the elementary quantum gates
belonging to S1 with the following quantum circuit:

e−iδσz⊗σz =
Rz(2δ)

(31)

Other terms generated by σα ⊗ σβ can be obtained from
the construction above by suitable changes of reference
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frames, implemented with single qubit rotations. Indeed,
remembering the following identities

Ry

(π
2

)
σzRy

(
−π

2

)
=σx

Rx

(π
2

)
σzRx

(
−π

2

)
= − σy

(32)

it is straightforward to verify that

e−iδσy⊗σy =

Rx(π/2) Rx(−π/2)

Rx(π/2) Rz(2δ) Rx(−π/2)
(33)

and

e−iδσx⊗σz =

Ry(π/2) Ry(−π/2)

Rz(2δ)
(34)

These gate sequences can be combined to simulate all
of the paradigmatic spin models mentioned above. For
example, it is straightforward to prove that for the two-
qubit Heisenberg model we have

e−iδ(σ
(1)
x σ(2)

x +σ(1)
y σ(2)

y +σ(1)
z σ(2)

z ) = XX(δ)YY(δ)ZZ(δ) (35)

where AB(δ) = e−iδσa⊗σb , and all of the terms on the
right hand side commute with each other. More detailed
examples will be given in Sec. III G.

Another universal set, defined S2, that often arises in
superconducting realizations and proposals of quantum
simulators replaces the CNOT gate with a parametric
XX + YY interaction [42, 84, 93, 94]

Uxy(δ) = e−iδ(σx⊗σx+σy⊗σy) (36)

In this case, we can take as the fundamental building
block XX(δ) = e−iδσx⊗σx , to which all other unitary evo-
lution terms generated by σα ⊗ σβ can be reduced with
single-qubit changes of reference frame. The XX(δ) gate
is realized in S2 as

Uxy(δ/2) Uxy(δ/2)
XX(δ) =

Rx(π) Rx(−π)

(37)

Finally, let us call S3 = {Rα(θ),CΦ(δ)} the universal
set of quantum gates containing all single qubit rotations
and the controlled phase gate

CΦ(δ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiδ


 (38)

The latter is natively implemented on superconducting
platforms with state dependent frequency shifts [64, 85,

95–97], and is closely related to the Ising interaction gen-
erated by HIsing ∝ σz⊗σz [98]. In view of the latter prop-
erty, it is not surprising that the ZZ(δ) building block can
be obtained directly from a single CΦ(δ) just with single
qubit corrections and apart from an overall phase:

ei(δ/4)ZZ(δ/4) =

Φ(−δ/2)

Φ(δ) Φ(−δ/2)
(39)

An equivalent construction with two CΦ(δ) is the follow-
ing

eiδ/2ZZ(δ/2) =

Rx(π) Rα(π)

Φ(δ) Rα(π) Φ(δ) Rx(π)

(40)
where rotations around α = x, y enable the range of neg-
ative and small angles in those real experimental setups
where the achievable phases δ in a single CΦ(δ) gate
might be limited due to hardware constraints [85].

In quantum simulators based on trapped ions tech-
nology [71, 99, 100], the fundamental set of operations,
which we will call S4, typically includes individual single
qubit z rotations

T
(j)
1 (θ) = e−iθσ

(j)
z , (41)

collective non-entangling operations

T2(θ) = e−iθ
∑
j σ

(j)
z , T3(θ, φ) = e−iθ

∑
j σ

(j)
φ (42)

where σφ = cosφσx + sinφσy, and Mølmer-Sørensen col-
lective entangling gates [101]

T4(θ, φ) = e−iθ
∑
i<j σ

(i)
φ σ

(j)
φ (43)

Any subset of qubits can in principle be addressed with
the collective gates, while leaving the others untouched.
On a 2-qubit quantum register, T4(δ, 0) can for example
be used to obtain XX(δ). Of course, the naturally col-
lective character of trapped ions quantum gates is best
exploited for the quantum simulation of long range and
multiple-body interactions.

It is worth pointing out that while the elementary de-
composition of typical two-qubits interaction terms re-
ported here can be used to perform the digital quan-
tum simulation of generic spin Hamiltonians, this is
not necessarily the optimal strategy in general. Indeed,
further optimization of, e.g., combined two qubit op-
erations can lead to an overall reduction of the total
number of gates for particular target Hamiltonian mod-
els [42, 88, 102, 103]. Examples of these techniques ap-
plied to the Heisenberg model simulated with S1 and S2
universal sets are discussed in Sec. III G below.
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D. Multiple-qubit interactions

The generalization of U
(i,j)
αβ (δ) building blocks to N -

qubit interactions leads to unitary evolution terms of the
form

Uα1...αN (δ) = e−iδ
⊗
i σ

(i)
αi (44)

These can be in principle always decomposed into single-
and two-qubit operations. An example within the S1
universal set is the following:

e−iδ(σz⊗σz⊗σz) =

Rz(2δ)
(45)

The pattern can be generalized to any N > 3, and
changes of reference frames can be applied to individual
qubits as done for the N = 2 case.

In trapped ions processors, whose universal set S4 na-
tively contains many body interactions, the decomposi-
tion of N -body terms can usually be done very efficiently
using Mølmer-Sørensen gates [104] and the limits on N
are in principle dictated only by the scalability of the
hardware set-up itself.

E. Suzuki-Trotter decomposition and digital error

When designing a quantum simulation which requires
the non-trivial application of Suzuki-Trotter approxima-
tion formula, Eq. (7), the degree of acceptable digital
error must be carefully assessed. This is critical for
intermediate-scale non error-corrected quantum proces-
sors, where the increase in the number of gates which
comes with the increase in the number n of Trotter steps
cannot proceed indefinitely without affecting the quality
of the results. In practical cases, it is usually sufficient
for the digital error to be just smaller than the hard-
ware noise. If O1 and O2 are two operators such that
[O1,O2] 6= 0, the so called first-order Suzuki-Trotter for-
mula gives [105]

e(O1+O2)δ '
(
eO1

δ
n eO2

δ
n

)n
− δ2

2n
[O1,O2] (46)

A better scaling of the digital error can be obtained at
the cost of an additional factor per iteration using the
second-order formula [105]

e(O1+O2)δ =
(
eO2

δ
2n eO1

δ
n eO2

δ
2n

)n
+O

(
δ3

n2

)
(47)

In both cases, a ratio rε = δp/nq controls the digital
error as a function of the target evolution phase and the
number of Trotter steps. Two different strategies can
therefore be envisioned.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

FIG. 2. Fidelity of the digital evolution for |ψ0〉 = |00〉, O1 =

−i(σ(1)
x + σ

(2)
x ) and O2 = −iσ(1)

z σ
(2)
z . The solid black line

shows the fixed n = 5 approach, which fails after a very short
phase evolution. The dotted red line shows the case in which n
increases linearly with δ according to n = δ/2ε, while the solid
green line shows the case in which the increase in n = δ2/2ε
keeps the digital error fully under control. In the plot, ε = 0.1
and n goes up to n ' 104 when the scaling is quadratic with
the phase.

On the one hand, one could aim at a fixed digital preci-
sion ε over the whole range of the dynamical simulation.
This requires to increase the number of Trotter steps, and
consequently the total length of the quantum circuit to
be computed, keeping the ratio rε fixed. As an example,
for the first-order formula in Eq. (46) we get

nε(δ) ∝
δ2

2ε
(48)

Notice that while the number of digital steps increases,
the phase evolution δn = δ/n required in each step de-
creases as 1/n, thus keeping the overall computation time
on the physical hardware linear in the total phase pro-
vided that each digital step can be implemented with a
coherent operation of duration t ∝ 1/δn [31].

On the other hand, when the maximum length of quan-
tum circuits that can be faithfully realized is de facto
limited, such as in state-of-the-art noisy quantum pro-
cessors, it might be convenient to follow a different ap-
proach, namely to keep fixed the length of the quantum
circuit (i.e. the number of steps n). This produces a
phase-dependent digital error scaling e.g. with δ2 in the
first-order case. The fixed computational complexity,
and consequently the uniform effect of hardware noise
over the whole simulation, comes at the cost of a lim-
ited range of phases (and therefore of physical times) in
which the results of the simulation agree with the target
model. Hybrid solutions are also possible, e.g. by select-
ing reasonable number of steps n in different intervals
of phases δ, always with the primary goal of balancing
the total error arising both from the hardware noise and
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W VU(t)

|+〉a

|ψ〉R

⇒ 〈σx〉

⇒ 〈σx〉

H

X X

Rx(π/2)

FIG. 3. Ancilla-based algorithm to compute dynamical cor-
relation functions. The two alternative paths at the end of
the circuit show a possible choice of unitaries Umeas which,
followed by a measurement in the computational basis, give
access to the real and imaginary parts of CVW(t), proportional
to 〈σx〉 and 〈σy〉 respectively.

software-level approximations. In Fig. 2 we compare the
two different approaches (fixed ε or fixed n) by showing
how the fidelity |〈ψ0|ψn(δ)〉| of the digitally evolved state

|ψn(δ)〉 =
(
exp

(
O1

δ
n

)
exp

(
O2

δ
n

))n |ψ0〉 with respect to
the exact evolution |ψex〉 = exp ((O1 + O2) δ) |ψ0〉 de-
creases at long evolution times t ∝ δ when n is fixed
or increases only linearly with the phase. In this sim-

ple 2-qubit case, we choose O1 = −i(σ(1)
x + σ

(2)
x ) and

O2 = −iσ(1)
z σ

(2)
z , corresponding to interaction terms typ-

ical of an Ising model in a transverse field.

F. Extracting physical observables

At the end of a quantum simulation, the final state
|ψ(t)〉 of the quantum register is measured to retrieve
information about the physical properties of the system
under study. With an appropriate mapping of the generic
observable of interest, O, onto a combination spin-1/2 op-
erators, the expectation value 〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉 can
be reconstructed by a readout procedure combining, e.g.,
appropriate unitary operations Umeas and measurements
in the computational basis. The reason why Umeas might
be needed is that the eigenstates of O are, in general, dif-
ferent from the computational basis states: for example,
if O = σx for a single qubit, the readout of 〈σx(t)〉 can
be done by performing a Hadamard gate (i.e., mapping
σx 7→ σz) followed by a standard measurement in the
computational basis. Joint qubit measurements are also
possible, in general, as a way of characterizing the output
quantum state [93].

More refined strategies allow the extraction of complex
physical quantities and to optimize the efficiency of the
measurement process. Here we will review in particu-
lar ancilla-assisted observation of dynamical correlation
functions and of the spectrum of an Hermitian operator.
This topic is discussed in detail in Ref. 33.

Given aN -qubit state |ψ〉, a HamiltonianH generating

time evolution and two unitary operators V and W, we
define the dynamical correlation CVW(t) function as the
quantity

CVW(t) = 〈V†(t)W〉 = 〈ψ|eiHtV†e−iHtW|ψ〉 (49)

The quantum circuit in Fig. 3 describes how to compute
CVW(t) using a quantum register and an ancilla qubit
a. Here we assume that the quantum register is already
prepared in the desired state |ψ〉, e.g. the ground state of
the target physical system, and that the ancilla starts in
the quantum superposition

√
2|+〉 = |0〉+ |1〉. The joint

initial state of the quantum register R and the ancilla is
therefore |φ〉aR = |+〉a|ψ〉R. The first step is a W unitary
performed on R and controlled by the ancilla:

|φ〉aR →
1√
2

(|0〉a|ψ〉R + |1〉aW|ψ〉R) (50)

A quantum circuit implementing the digital simulation
of the time evolution U(t) = eiHt is then applied to the
quantum register to evolve the state |ψ〉, thus leading to

1√
2

(|0〉aU(t)|ψ〉R + |1〉aU(t)W|ψ〉R) (51)

Finally, a V unitary is applied to R, controlled by the
state |0〉 of the ancilla (this can be obtained by adding
X ≡ σx quantum gates on a before and after the standard
controlled operation). The output state is:

|φout〉 =
1√
2

(|0〉aVU(t)|ψ〉R + |1〉aU(t)W|ψ〉R) (52)

A measure of the observable σx on the ancilla gives

〈σ(a)
x 〉 = Tr

[(
σ(a)
x ⊗ I

)
|φout〉〈φout|

]

= Re [CVW(t)]
(53)

In a similar way, Im [CVW(t)] can be obtained by measur-

ing 〈σ(a)
y 〉, in a second run of the algorithm. In total

〈2σ(a)
+ 〉 = CVW(t) (54)

where 2σ+ = σx + iσy. The same scheme can be ap-
plied to equal-time correlations by removing the unitary
evolution or by moving it at the beginning of the circuit
to evolve some initial state. It is worth noting explicitly
that the useful information at the end of the proposed
procedure is accessible through the ancilla a alone, while
the larger quantum register R needs not to be measured
at the end. The algorithm can also be generalized effi-
ciently to the extraction of n-point time-correlation func-
tions [107] and of the expectation value of any operator

which can be expressed as O =
∑
j cjV

†
jWj where Vj ,Wj

are unitary operators [33].
With the addition of a classical Fast Fourier Transform

(FFT), the strategy described above for time correlation
functions can be used to extract the spectrum of a Hermi-
tian operator Q. The most relevant example in physical
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Rx(π/2) Rx(−π/2) Ry(π/2) Ry(−π/2)

Rz(2δ) Rx(π/2) Rz(2δ) Rx(−π/2) Ry(π/2) Rz(2δ) Ry(−π/2)

ZZ(δ) YY(δ) XX(δ)

Rx(2δ − π/2) H H Rx(π/2)

Rz(2δ) R†
z(2δ) R†

x(π/2)

Uxy(δ/2) Uxy(δ/2) Uxy(δ/2)

Rx(π/2) R†
x(π/2) Ry(π/2) R†

y(π/2)

Rx(π/2) R†
x(π/2) Ry(π/2) R†

y(π/2)

(a)

(b) (c)

FIG. 4. Quantum circuits for the digital quantum simulation of the 2-qubit Heisenberg model with S1 and S2 universal sets.
(a) 6-CNOT decomposition. (b) 3-CNOT decomposition. [102, 103] (c) 3-Uxy decomposition. [42, 106]

problems is certainly Q = H, for some Hamiltonian of
interest H. The hybrid quantum-classical approach, first
proposed in Ref. 33 and then further developed and ap-
plied (see e.g. Ref. 103), requires the quantum register R
to be initialized in a state |ψ〉 with some overlap with the
eigenstates |Ql〉 of Q

|ψ〉 =
∑

l

λl|Ql〉 (55)

Since by hypothesis the target operator is Hermitian,
its exponential UQ(θ) = e−iQθ is a unitary operator.
This can be realized on the quantum register in ex-
actly the same way as any standard time-evolution op-
erator UH(θ) = e−iHθ. We can then compute the ex-
pectation value 〈ψ|UQ(θ)|ψ〉 with the ancilla-based pro-
tocol described in the prevoius paragraph, setting e.g.
|ψ〉R = |ψ〉, t = 0 (i.e. removing the time evolution U(t)
part in Fig. 3), W = UQ(θ) and V = I. In general, the
result will be of the form

〈UQ(θ)〉 =
∑

l

|λl|2e−iqlθ (56)

where ql are the eigenvalues of Q. Applying FFT to the
variable θ then yields

FFT (〈UQ(θ)〉) =
∑

l

2π|λl|2δ(q − ql) (57)

G. Examples

The Hamiltonian for a 2-qubit isotropic Heisenberg
model is

HHeis,2 = J
(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y + σ(1)
z σ(2)

z

)
. (58)

The induced time evolution then reads

UHeis,2(δ) = e−iδ(σ
(1)
x σ(2)

x +σ(1)
y σ(2)

y +σ(1)
z σ(2)

z )

= e−iδσ
(1)
x σ(2)

x e−iδσ
(1)
y σ(2)

y e−iδσ
(1)
z σ(2)

z

(59)

where δ = Jt and the second equality, which is es-
sentially the ST formula for n = 1, follows from

[σ
(1)
α σ

(2)
α , σ

(1)
β σ

(2)
β ] = 0 ∀α, β. Recalling Eq. (35) and the

results in Sec. III C, a 6-CNOT decomposition for arbi-
trary δ can be given using the universal set S1, as shown
in Fig. 4a. An equivalent and more efficient circuit in
terms of number of two-qubit operations can be designed,
according to the results discussed in Ref. [102], if we con-
sider the time evolution operator globally as a single two-
qubit transformation, see Fig 4b. Within S2, besides jux-
taposing gate sequences of the form shown in Eq. (37),
an optimal decomposition, using again only three 2-qubit
gates instead of six, is reported in Fig. 4c, based on the
identity [42, 106]

HHeis,2 =
J

2
(Hxxyy +Hxxzz +Hzzyy) (60)

whereHααββ = σ
(1)
α σ

(2)
α +σ

(1)
β σ

(2)
β . In S3 a decomposition

with three CΦ(δ) follows immediately from Eq. (39) and
single qubit changes of reference frame. Finally, in S4 a
possible realization of the Heisenberg interaction can be
obtained for some digital resolution δ as

UHeis,2(δ) = ABCAC† (61)

where A = T4(δ, 0), B = T4(δ, π/2) and C =
T3(π/4, π/2). With any of the above elementary decom-
position in quantum gates, the digital quantum simula-
tion of the 2-qubits Heisenberg model can be performed
and physical information can be extracted by using the
methods discussed in Sec. III F. In a numerical example
reported in Fig. 5a we show the digital quantum simu-
lation of the individual magnetization of the two spins,

which can be extracted by measuring the observable σ
(i)
z

and using the definition 〈s(i)z 〉 = (1/2)〈σ(i)
z 〉. No digital

error is present in this case.
The decomposition of the 2-spin Heisenberg model into

elementary quantum gates presented above can be used
as a building block, in combination with single qubit ro-
tations, to perform more complex digital quantum sim-
ulations. A 3-spin Heisenberg chain with open ends and
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1FIG. 5. Digital quantum simulation of spin models. The exact
(‘ex’) curves are obtained with full Hamiltonian exponentia-
tion, the dotted lines represent ideal digital approximation
computed with the Suzuki-Trotter formula, and the quantum
simulations data points (‘qs’) are computed numerically by
matrix multiplication using the decomposition in elementary
quantum gates. (a) Individual spin magnetization for the 2-
qubit Heisenberg model, using the decomposition in Fig. 4b
for the digital quantum simulation. The initial state of the
two spins is

√
2|ψ0〉 = |↑〉 (|↑〉+ |↓〉). (b) Time evolution of

the occupation probability of the initial state |ψ0〉 = |100〉 of
3 qubits interacting as a linear Heisenberg chain with open
ends in an external field. Here J12 = J23 = J and Bg = 20J .
(c) Total magnetization of a pair of qubits interacting accord-
ing to the transverse field Ising model, with Jzz = J and
Bg = 2J . The digital quantum simulation is performed using
the S1 fundamental set of operations.

Nb = 2 bonds, put in an external field, has a Hamiltonian
of the form

HHeis,3 = HB +H12
Heis,2 +H23

Heis,2 (62)

where

HB =
Bg

2

(
σ(1)
z + σ(2)

z + σ(3)
z

)
(63)

describes a magnetic field oriented along the z-direction
and each of the spin-spin bonds corresponds to a term

Hij
Heis,2 = Jij

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z

)
(64)

U12
δ/n

U23
δ/n

a X X

1 α Rz(δB)

2 Rz(δB)

3 Rz(δB) β

n

FIG. 6. Quantum circuit allowing to compute time-
correlation functions of the 3-qubit Heisenberg model between

next-to-nearest neighbors qubits, namely 〈σ(3)
β (t)σ

(1)
α 〉. The

operators α and β represent (controlled) σα and σβ unitary
transformations, δB = Bgt and Uij

δ/n is a shorthand notation

for Uij
Heis,2(δij/n). The part inside the green box must be

repeated n times.

In general, the two bonds can be nonequivalent, i.e. J12 6=
J23. Since [H12

Heis,2, H
23
Heis,2] 6= 0 (independently from the

coupling constants Jij), the quantum simulation must be
carried out using the ST digital procedure, alternating
the application of the results presented for the 2-spin
case on the two bonds

UHeis,3(δ) =
(
U12

Heis,2(δ12/n)U23
Heis,2(δ23/n)

)n
e−iHBt

(65)
where δij = Jijt. The part describing the magnetic field
on equivalent spins (we set the gyromagnetic ratio g1 =
g2 = g3 = g) corresponds to single qubit rotations around
the z axis. Since this part commutes with the rest, it
can be performed at the beginning of the circuit without
any phase discretization. In Fig. 5b we show how these
results can be used to compute the time evolution of the
occupation probability of an initial state |ψ0〉 = |100〉.

As a third example, we recall that the Hamiltonian
of the transverse field Ising model (TIM), introduced in
Eq. (27), in the two-qubit case can be written as

HTIM,2 = HB,x +Hzz (66)

where

HB,x =
Bg

2

(
σ(1)
x + σ(2)

x

)
Hzz = Jzzσ

(1)
z σ(2)

z (67)

The quantum simulation of the transverse field Ising
model corresponds to the following digital process

UTIM,2(t) =
(

ZZ(Jzzt/n)e−i(σ
(1)
x +σ(2)

x )Bgt2n

)n
(68)

Apart from straightforward single qubit rotations around
the x axis, the required quantum circuit contains only ZZ
operations, which can easily be translated into elemen-
tary quantum gates as shown in Sec. III C. The time evo-
lution of the total magnetization of the spin dimer along
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1FIG. 7. Digital quantum simulation of dynamical correla-
tion functions for the three spin Heisenberg model, computed
using the circuit in Fig. 6. The digital quantum simulation
is shown for n = 5 Trotter steps, with the dotted line rep-
resenting the expected result for continuous phase and the
data points showing the result of the corresponding quan-
tum circuit for a selection of phase values. Here the quantum
register is initialized in the quantum state corresponding to
|ψ〉 = |↓↓↓〉 and we set J12 = J23 = J and Bg = 20J . (a) Au-

tocorrelation 〈s(1)x (t)s
(1)
x 〉. (b) Nearest neighbors 〈s(2)x (t)s

(1)
x 〉

cross correlation. (c) Next-to-nearest neighbors 〈s(3)x (t)s
(1)
x 〉

cross correlation.

z can then be extracted by measuring the expectation

values of σ
(i)
z , see Fig. 5c.

Finally, we also report the example of a 3-spin open
Heisenberg chain with an application of the ancilla-based
algorithm discussed in Sec. III F to the extraction of

spin-spin dynamical correlations Cαβij (t) = 〈s(i)α (t)s
(j)
β 〉 =

(1/4)〈σ(i)
α (t)σ

(j)
β 〉 on the system ground state. The latter,

for the model under study and for a sufficiently strong
external field, B, is well approximated by |ψ〉 = |↓↓↓〉,
which is then assumed as the initial state on the quan-
tum register. The structure of the required quantum cir-
cuit is shown in Fig. 6 for the case of next-to-nearest
neighbors cross correlations. Autocorrelations and near-
est neighbors correlations can be computed in a similar
way by changing the target qubit involved in the opera-
tions controlled by the ancilla. Numerical results based
on S1 decompositions are presented in Fig. 7.

Despite the relatively small size of the systems pre-
sented in the previous examples, all the elements intro-
duced in this section can be used as basic modules to
extend the quantum simulation to an arbitrary number
of spins with pairwise interactions. When scaling up any
spin chain to a larger number of interacting elements,
i.e., with Nb > 2 and possibly to different inter-qubits
connectivity, one may also consider that all the terms in-
volving disjoint sets of locally interacting spins generate
independent time-evolution terms commuting with each
other. These can then be simulated in parallel by using
the elementary quantum circuit building blocks defined
above, thus reducing the overall complexity of the quan-
tum simulation (i.e., depth of the quantum circuit). As
an example, let’s consider a chain of 4 spins labelled from
1 to 4 with pairwise 1− 2, 2− 3, and 3− 4 interactions:
the 1− 2 and 3− 4 blocks can be run in parallel [36, 43].
It is also worth mentioning that, concerning the simu-
lation of dynamical correlation functions, in any N -spin
system there are O(N2) two-body sigma correlations of

the form 〈s(i)α (t)s
(j)
β 〉. These quantities, which are often

of great physical interest [103], can then be extracted
efficiently, in principle, with the ancilla-based methods
discussed in Sec. III F, e.g. by repeating a polynomial
number of times the calculation with slightly modified
circuits for each spin pair.

As mentioned in Sec. II B, many problems in digi-
tal quantum simulations can be reduced to an equiv-
alent spin Hamiltonian, which can in turn be directly
mapped onto a N -qubit quantum register. A signifi-
cant example is provided by fermionic systems, which
play a central role in fields such as quantum chemistry,
solid state physics and material sciences and, at the
same time, are typically hard to treat with classical com-
putational methods. To understand how the mapping
H 7→ H({σα}) is carried out in such a case, we consider
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an elementary two-sites Fermi-Hubbard model:

H = − V
(
c†1,↓c2,↓ + c†1,↑c2,↑ + h.c.

)

+U
(
c†1,↓c1,↓c

†
1,↑c1,↑ + c†2,↓c2,↓c

†
2,↑c2,↑

) (69)

where h.c. means the Hermitian conjugate and the oper-

ator c†i,s (ci,s) creates (annihilates) a fermion with spin

s ∈ {↑, ↓} on site i ∈ {1, 2}. In H, the coefficients V and
U are hopping and on-site repulsion energies. Fermionic
operators obey the canonical anticommutation rules

{ci,s, c†i′,s′} = δii′,ss′I {ci,s, ci′,s′} = 0 (70)

The mapping is obtained by applying the Jordan-Wigner
transformation [32, 33, 82, 108], which in this case takes
the explicit form [59, 85]

c†1,↓ = I⊗ I⊗ I⊗ σ+ ≡ σ(4)
+

c†2,↓ = I⊗ I⊗ σ+ ⊗ σz ≡ σ(3)
+ σ(4)

z

c†1,↑ = I⊗ σ+ ⊗ σz ⊗ σz ≡ σ(2)
+ σ(3)

z σ(4)
z

c†2,↑ =σ+ ⊗ σz ⊗ σz ⊗ σz ≡ σ(1)
+ σ(2)

z σ(3)
z σ(4)

z

(71)

Here, as usual, we use 2σ+ = σx + iσy and the anticom-
mutation relations are preserved due to the properties of
Pauli matrices. The resulting Pauli Hamiltonian reads

H =
V

2

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

+ σ(3)
x σ(4)

x + σ(3)
y σ(4)

y

)

+
U

4

(
σ(1)
z σ(4)

z + σ(1)
z + σ(4)

z

+ σ(2)
z σ(3)

z + σ(2)
z + σ(3)

z

)

(72)

Since H is now the sum of local single- and two-body
Pauli terms, the corresponding time evolution operator
can be digitally simulated on a 4-qubit quantum register,
using the techniques and the building blocks described
above for paradigmatic spin-1/2 interactions.
While a one-dimensional fermionic chain with on-site and
nearest-neighbor interactions can be mapped onto a spin
Hamiltonian including only one- and two-spin terms [36],
the application of the Jordan-Wigner transformation in
more than one dimension or with long-range couplings
leads to multi-spin interactions in the resulting Hamil-
tonian. Indeed, in the most general case, the mapping

of Eq. (71) takes the form c†j =
(∏j−1

l=1 −σ
(l)
z

)
σ
(j)
+ [33],

where we have introduced a single label j = {i, s} for
fermionic modes, addressing both site and spin variables.
The resulting spin Hamiltonian contains several terms,
depending on the number of occupied states existing be-
tween each pair of interacting fermions after lattice sites
have been properly ordered [43]. The quantum simu-
lation of these terms is demanding, in terms of quan-
tum circuit depth, for any architecture implementing

only two-qubit interaction terms. Hence, in the NISQ
era, the practical quantum simulation of fermionic mod-
els can strongly benefit from native many body terms
in the hardware Hamiltonian, as it is the case for the
trapped ion quantum processors to be briefly recalled in
the following.

IV. EXPERIMENTAL ACHIEVEMENTS AND
PROSPECTIVE TECHNOLOGIES

The last few years have represented a timeline of in-
tense development towards the realization of quantum
computing architectures. Among the plethora of possi-
ble platforms, two leading technologies have been emerg-
ing: trapped ions and superconducting quantum circuits.
Here we give a brief overview of the main achievements
reported to date in these two experimental set-ups. The
focus will be on the perspective development of these two
platforms as universal quantum simulators, rather than
reviewing the technical details of the different setups, for
which thorough reviews already exist. We notice that
a comparison between the two leading platforms can be
done based, for instance, on relevant figures of merit such
as gate fidelities or the ratio between coherence and gat-
ing times, roughly representing the number of operations
that the quantum hardware can reliably perform before
the quantum information is degraded. However, it is im-
portant to stress that most of the remarkably high ex-
perimental fidelities reported in the literature have been
achieved on two-qubit setups that, although in principle
scalable, are optimized for a specific target and are often
pushed to the experimental limits. Conversely, when sev-
eral qubits are connected and operated together, many
new challenges emerge, such as the need to selectively ad-
dress only some of them or to stem cross-talk errors. As
discussed below, this yields slower and more error-prone
gates. Hence, a fair study on the actual performances of
a quantum simulator should be done on an architecture
including several interacting qubits, in order to assess the
effective scalability of the given setup. A useful concept,
in this respect, is that of “quantum volume”, recently
introduced by IBM researchers with the aim of quan-
tifying with a single paramenter the performance of a
quantum computer, based on how efficiently a quantum
algorithm can be run [109]. The quantum volume takes
into account both width (i.e., the number of qubits used)
and depth (i.e., the number of reliable operations per-
formed) of a given quantum circuit. Despite a few non
trivial issues related, e.g., to individual qubit address-
ing and frequency crowding, adding qubits to the actual
hardware mostly appears to be a technological challenge,
while implementing a sequence of high-fidelity operations
on several qubits could be more demanding. Indeed, this
requires a considerable improvement of gate fidelities,
suppression of both qubit decoherence and coherent er-
rors due to imperfect qubit manipulations, and reduction
of unwanted qubit-qubit interactions (cross-talk) whose
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FIG. 8. Summary of state-of-art experimental digital quan-
tum simulations. Open circles represent results obtained on
superconducting circuits quantum processors, while squares
correspond to experimental quantum simulations on trapped
ions processors. The color code corresponds to different target
models being simulated: two-spin Transverse field Ising model
(TIM2), two-spin XY (XY2) and XYZ (XYZ2) models, 3- and
6-spin many body interactions (MB3,6, fidelities given as es-
timated bounds), two-spin Heisenberg model (Heis2), and 2-
to 4-mode Fermi Hubbard model (FHx, with x = 2, 3, 4). Al-
though more digital steps than the ones reported here were
actually performed in some of the experiments, data points
are shown only when some measure of accuracy was provided
in the original reference. Fidelities from Ref. 93 are given
with respect to the ideal evolution for a fixed phase value
and initial state, while those from Ref. 100 are process fideli-
ties given with respect to the expected digitized evolution.
Finally, data from Ref. 85 are extrapolated linear trends of
fidelity with respect to the ideal digital outcome.

harmful effect increases with the system size. Increasing
the quantum volume truly represents the next challenge
for current NISQ devices to evolve into useful quantum
simulators.

In Fig. 8, we try to give a quantitative summary of
the main experimental achievements reported in the
recent literature. As mentioned above, it is generally
difficult to directly compare experiments performed on
different platforms, under different initial conditions, and
reporting slightly different figures of merit. However,
the graph aims at giving a visual idea of the scenario on
the digital quantum simulation of spin Hamiltonians up
to date, and the capabilities offered in different quantum
hardware. Evidently, there is still a considerable correla-
tion between the number of digital steps included in the
simulation and the fidelity of the final state obtained.
As a general comment, trapped ions quantum simulators
allow deeper quantum circuits with better performance,
i.e. a larger number of Trotter steps is possible. This is
in line with recent studies comparing the two platforms
when challenged with similar quantum algorithms on 5

qubits processors [110]. One may notice that 5 Trotter
steps are currently a limiting value for superconducting
circuit quantum simulators, where the fidelity drops to
values slightly above 60%, still far from an acceptable
result, also in view of scalability. Finally, in terms of
size of the simulated model we see that spin-models
with up to 6 spins have been simulated on trapped ions
processors [100], while up to 4 spins on superconducting
ones [103].
As a last comment, it is worth mentioning that great ef-
forts have been lately devoted to design error-mitigation
strategies to improve the quality of the final results from
the data directly extracted from the quantum hardware.
Some of them are problem specific, based, e.g., on
the symmetries of the target Hamiltonian [111], or on
general properties of the measured observables [103],
which set constraints on the output of the quantum
calculation. In particular, the stabilizer-like method
proposed in Ref. [111] could enable the detection of up
to 60-80 % of depolarizing errors, thus largely improving
the results of variational algorithms, as well as of
quantum simulations. Theoretical proposals have also
been developed, demonstrating that the accuracy in the
expectation values of computed quantum observables
can be improved by suitably interpolating to zero noise
the results on a series of experiments at varying noise
levels [112, 113]. This strategy has been recently applied
to suppress incoherent errors in variational calcula-
tions on superconducting circuits [114] (see below).
The combination of these two approaches could further
improve the accuracy of the computed observables [111].

We will now give a more detailed description of each of
the two aforementioned experimental platforms, and the
corresponding key results on the digital quantum sim-
ulation of spin models. A word of warning should be
given, however, before any further discussion takes place:
a number of challenges still need to be faced before either
one or the other may ultimately develop into a fully oper-
ational quantum simulation technology with clear advan-
tages over classical simulations of quantum many body
models. In fact, while scalability requires that the num-
ber of qubits on a given quantum hardware be arbitrarily
increased without degrading the reliability of individual
preparation and read-out, as well as quantum gating fi-
delities, there is no current quantum technology that is
truly fulfilling this requirement. The key challenges to be
faced in the forthcoming years are thus related to prac-
tically addressing these issues, even before fault tolerant
quantum computation be developed.

A. UQS with trapper ions

Atomic ions trapped in a suitable combination of static
and time-varying electric fields have been representing
one of the most promising routes towards realizing fully
operational quantum processors since the late nineties
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[54, 70, 115]. As compared to neutral atoms, the trap-
ping potential for charged atomic species can be much
stronger, thus allowing to hold each single ion for several
hours, and even days, with very long coherence times
and a remarkably high degree of external control. This
makes them a reliable solution for quantum information
processing satisfying all of the required DiVincenzo crite-
ria (for a comprehensive recent review on the state-of-art
of this technology focused on quantum computing, we re-
fer to Ref. 72). Today, digital quantum processors with
up to 11 programmable ions in a linear Paul trap have
been made available [116], also through spin-off compa-
nies such as IonQ offering restricted cloud access (see
https://ionq.com/, accessed 2019-09-01). Other compa-
nies are working on providing access to general purpose
trapped ion quantum computing hardware with up to 20
qubits, such as Alpine Quantum Technologies (see, e.g.,
https://www.aqt.eu/, accessed 2019-09-01). In such real-
izations the trapping is generally created through radio
frequency oscillating electric fields that generate a sta-
ble two-dimensional potential well for the charged atoms
[117], such that ions are then confined by a further har-
monic trap along a linear chain, in which the single parti-
cles are stably kept a few microns apart due to the mutual
Coulomb repulsion [70]. While this is the configuration
that currently allows the most performing type of ap-
paratus as programmable NISQ devices, it is considered
hardly scalable towards larger numbers of trapped ions
within the same chain, as well as to higher dimension-
ality of the confining potential, for which new solutions
will have to be realized. In particular, modularity [118]
and 2D arrays [119] are being considered as valuable ap-
proaches, for which we will likely see progress in the near
future. It is worth noticing that this type of hardware re-
quires ultra-high vacuum and possibly laser cooling, but
not necessarily cryogenic apparatus to be operated.
Trapped ions may be employed as reliable, coherently
manipulated qubits, in which the information is encoded
into the internal quantum states of the charged atomic
species. While we refer the interested reader to more spe-
cialized review works on trapped ion quantum technolo-
gies [71, 115, 117], we hereby summarize its main aspects
for completeness, especially concerning the ongoing de-
velopments towards programmable NISQ devices. First,
we remind that different types of trapped ion qubits can
be defined, depending on the frequency spacing between
the relevant energy eigenstates selected to encode the
logical |0〉 and |1〉. In general, hyperfine qubits are en-
coded into a pair of hyperfine energy levels typically sep-
arated by GHz frequencies, while optical qubits are de-
fined corresponding to quadrupole active transitions in
the hundreds THz range; also Zeeman qubits can be de-
fined by application of an external static magnetic field,
opening a low frequency (few MHz) and tunable gap be-
tween magnetic levels. Pros and cons characterize each
specific choice, and a dedicated experimental apparatus
must necessarily be developed for one qubit type or the
other. Among the different possibilities, particularly ad-

vanced appear the technologies based on 40Ca+ as op-
tical qubits [120, 121], and 43Ca+ or 171Yb+ as hyper-
fine qubits [122, 123], respectively, although several other
atomic species with a single outer electron can be success-
fully trapped [70, 72]. In fact, irrespective of the specific
qubit realization, initialization and readout of their quan-
tum state is performed through coherent manipulation,
e.g. by using external lasers of suitable frequency to op-
tically pump the ion state into the desired one (prepara-
tion), or by detecting resonantly scattered radiation from
an optical transition (readout). The qubits’ individual
control (i.e., single-qubit operations) can be performed
by directly coupling the |0〉 and |1〉 eigenenergy levels,
for which the required tools inevitably depend on the
qubits type (e.g., hyperfine qubits require microwave con-
trol or stimulated Raman coupling, while optical qubits
internal states are directly coupled through a resonant
laser) [117]. Two-qubit entangling gates between ions
trapped along the same chain are realized by exploiting
the transverse normal vibrational modes of the whole ion
string trapped in a harmonic potential [124], which are
used as a bus to transfer quantum information. Cur-
rently, the most performing multi-qubit operations rely
on a controlled-phase type of gate that was originally
proposed from Mølmer and Sørensen [101], whose formal
expression is given in Eq. (43). The details of the spe-
cific implementation of these gates depend on the type of
qubit [71, 125, 126]. In general, they require only global
control lasers to entangle multiple qubits, hence avoiding
beams to be independently focused on each ion (which
may anyway be necessary, e.g., for single-qubit control).
In hyperfine qubits-based quantum hardware, a Mølmer-
Sørensen gate with a global laser and suitably detuned
individually addressing beams allow to realize an effec-
tive two-qubit XX gate, which then becomes the native
two-qubit gate on that hardware [123]. Elementary com-
binations of single-qubit rotations and such XX two-qubit
gate finally lead to the CNOT gate [48]. Independently
of the specific implementation, an unequivocal advantage
of any trapped ion quantum hardware is that each qubit
can be connected (and entangled) to any other qubit in
the chain, thus practically realizing all-to-all connectiv-
ity.
In terms of absolute performance specifically meant for
prospective applications in quantum computing, the dif-
ferent experimental platforms have essentially shown
quite comparable figures of merit. In particular, when
working with isolated or pairs of trapped ions, single-
qubit operations with fidelities in the order of 99.9999%
have been shown [127], as well as two-qubit gates reach-
ing fidelities in excess of 99.9% even in different exper-
imental setups [122, 128]. Typical duration for single-
qubit gates varies between 100 ns and few tens of µs,
while two qubit gating times range in the µs to few hun-
dred µs interval [72, 122, 129]; readout is typically per-
formed in hundreds of µs with fidelities in the 99.99%
range [130]. Generally speaking, a trade-off between
speed and fidelity has to be found, where faster usu-



16

ally means more error prone. Considering also that the
reported coherence times of trapped ion qubits vary be-
tween few hundred ms [131] and hundreds of seconds (i.e.,
up to several minutes) [127, 132], depending on the type
of qubit, the trapped ion quantum hardware is the one
currently allowing to achieve the highest coherence vs.
gating time ratio, ideally in the order of 105 to 106 (e.g.,
assuming two-qubit gate times in the order of 100-200
µs, and depending on the qubit type).
It is worth emphasizing, however, that the considerations
above are mostly limited to few qubits quantum hard-
ware: while analog quantum simulators of Ising chains
have been shown with more than 50 trapped ions [29],
digital quantum simulators are quite challenging to scale
up. In fact, increasing the number of ions in the chain ul-
timately limits gates fidelity, mainly due to the difficulties
of individually addressing single qubits while avoiding
cross-talks between the different beams. Moreover, er-
rors affecting the overall success of a quantum computa-
tion generally arise from two distinct mechanisms: deco-
herence, e.g. from undesired qubit-environment coupling
such as spontaneous emission, frequency shift, or mo-
tional heating, and imperfect control fields, such as mis-
calibrated or noisy control field amplitude, frequency, or
polarization, which typically result in quantum gate er-
rors. Targeted strategies to mitigate these issues will be-
come crucial to further improve the trapped ion quantum
hardware [72]. On a quantitative level, it has recently
been reported that the fidelity of multi-qubit entangling
Mølmer-Sørensen gates degrades from 99.6% with 2 op-
tical qubits down to 86% when the same quantum hard-
ware is loaded with 10 optical qubits [133]. On the other
hand, a quantum processor based on 11 hyperfine qubits
has recently been shown to achieve an all-to-all connec-
tivity with single- and two-qubit XX gate fidelities of
99.5% and 97.5% on average, respectively [116]. It is in-
teresting to notice that these results improve previous re-
ports on an analogous 5-qubits quantum processor [110],
as a clear signature of the ongoing development.

After reviewing the basic aspects of trapped ion quan-
tum hardware, and the up-to-date figures of merit cur-
rently achieved in state-of-art experimental platforms, we
hereby show a few examples of digital quantum simula-
tion performed on one such a NISQ device. An example
of results showing the first universal quantum simulations
performed on NISQ processor based on optical qubits is
given in Fig. 9, as reported back in 2011 in Ref. 100
from Lanyon et al. This represents a seminal work since
it shows that the same quantum hardware can be ex-
perimentally reprogrammed to run the digital quantum
simulation of different spin models and interaction terms,
even for Hamiltonian terms not natively implemented on
the simulator. Each spin-1/2 is directly mapped onto a
single ionic qubit, and unitary operations (C, D, E, and
F ) are defined in terms of the universal set of gates in
Eqs. 41-43, which is native on this hardware (see original
reference for details). The time evolution is quantified by
a dimensionless phase θ = Et/~, which is reported on the

FIG. 9. Experimental quantum simulation of two-spin mod-
els of increasing complexity is shown in the bottom panels:
the digital resolution was kept fixed as θ/n = π/16, i.e. up
to n = 12 Trotter steps for the data shown in the figure, and
each panel displays the corresponding sequence of unitary op-
erations in each digital step; the lines correspond to the exact
evolution, the empty symbols correspond to the ideal digi-
tized evolution, and filled symbols are the quantum simulator
results for the evolution of the different eigenstates (reprinted
with permission from Ref. 100). Copyright 2011, American
Association for the Advancement of Science.

horizontal axis. The initial state is chosen as an eigen-

state of
∑
i σ

(i)
x , and the population in each of the eigen-

states is monitored as a function of θ. The same work
reported digital quantum simulation of up to 6 spins and
multi-spin interaction terms, allowing to envision the po-
tentialities of digital quantum simulators for fundamental
physics studies. Hence, the work from Lanyon et al. sets
a reference standard for all the following demonstrations
of digital quantum simulation on NISQ processors. At
time of writing, we are not aware of any digital quantum
simulation of spin models performed on quantum proces-
sors based on hyperfine qubits such as the one presented,
e.g., in Ref. 116, although it would be interesting to test
them with some of the algorithms presented in this re-
view, indeed.

The quantum hardware employed to obtain the results
of Fig. 9 has more recently been applied to the quan-
tum simulation of the real time dynamics underlying
particle-antiparticle pair creation in lattice gauge field
theories [67], where up to 4 qubits were employed to run
the related quantum circuit. There, digital quantum
simulation is obtained after mapping the fermionic
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degrees of freedom into Pauli spin operators applying
the Jordan-Wigner transformation, as outlined before.
Given the size of the quantum register, a toy model suc-
cessfully simulating the electron-positron spontaneous
creation from vacuum fluctuations and the persistence of
their entanglement was reported, which creates a bridge
between digital quantum simulators and elementary
particle physics.
Without restricting to the main object of the present
review, it is worth mentioning recent results obtained
on trapped ion quantum technology. First, a 20 qubits
register has been shown to reliably allow for the creation
of multi-qubit entangled states [120], thus opening the
door to quantum simulations of larger spin systems. The
same quantum hardware has been used to show a hybrid
quantum-classical approach to the simulation of the
Schwinger model [134]. The latter belongs to the class of
variational optimization algorithms commonly employed
in quantum chemistry [135], an approach now commonly
defined Variational Quantum Eigensolver (VQE). In
fact, the latter methods have been recently applied to
accurately calculate the ground state energy of simple
molecules [121]. Conceptually similar approaches have
also been applied to the quantum simulation of effective
field theories in nuclear physics, such as calculating the
deuteron nucleus binding energy with percent accuracy
and using record depth quantum circuit on a ion trap
quantum processor [136]. A VQE algorithm has been
recently described and applied to obtain the ground state
energy of a large chemical complex, such as the water
molecule, by using a hyperfine qubits-based quantum
processor [137].

In summary, despite considerable progress and the ma-
turity reached, many challenges still need to be addressed
before practical quantum computers based on trapped
ion technology may allow universal quantum simulations
outperforming classical computations, in perspective. It
currently appears a significant challenge to operate a
quantum computer with a number of fully controlled
qubits larger than a few tens, still preserving the required
figures of merit in terms of gates fidelity and coherence
properties, which might still need a few years of intense
research and development.

B. UQS with superconducting circuits

Superconducting quantum circuits have lately emerged
as a practical quantum computing technology after a
fast development in the last decade [64, 138–146]. In
fact, this platform has reached the level of reliability
typical of trapped ions quantum processors in only few
years of continuous improvement [110]. It is worth
mentioning that some of the worldwide leading high-
tech companies that are currently targeting the realiza-
tion of NISQ hardware are concentrating their efforts
on this technology. As for the trapped ion case, re-

stricted cloud access is also provided to superconducting
quantum processors of up to 20 qubits from IBM (see
https://www.research.ibm.com/ibm-q/, accessed 2019-
09-01) and up to 16 qubits from Rigetti Computing (see
https://www.rigetti.com/, accessed 2019-09-01), respec-
tively. These devices work with cryogenic set-up in a
3He/4He dilution refrigerator with 10-15 mK base tem-
perature, in which qubits can be efficiently encoded into
the anharmonic energy spectrum of the lowest collec-
tive charge/current excitations in a micro-LC resonator,
with a nanostructured Josephson junction playing the
role of a nonlinear inducting element. With respect
to quantum hardware based on trapped atomic species,
these architectures certainly bring along the advantages
of a solid state chip-based microelectronic technology, al-
though working at low temperature and with intrinsic
limitations in inter-qubit connectivity. Several families
of superconducting qubits have been realized (i.e., phase
qubits, rf-sQUID, flux qubits, charge qubits, transmons),
characterized by different ratios between the character-
istic parameters of their quantized Hamiltonian, namely
charging energy of a Cooper pair, inductive and Joseph-
son energy. These systems are multi-level quantum oscil-
lators whose energy spectrum is made sufficiently anhar-
monic to enable selective addressing of only the two low-
est energy levels, which then become the |0〉 and |1〉 qubit
states. While additional levels may become a resource
to implement two-qubit gates [144, 147] or quantum-
error correction codes [148], they also represent a pos-
sible source of leakage errors that must necessarily be
limited by using, e.g., long control pulses for qubit tran-
sitions. We refer to Ref. 58 for a detailed description and
a comparison between the different types of supercon-
ducting qubits. Here we only note that the evolution of
these devices led to the realization of the transmon [140],
which has allowed to reach coherence times in the 100 µs
range for single qubits [145]. This is a development of
the Cooper pair box into a circuit less sensitive to charge
noise but still characterized by a sufficiently anharmonic
energy spectrum. The frequency of the transmon can be
tuned by varying the Josephson energy using a SQUID.
The 2D transmon is nowadays the elementary unit of sev-
eral scalable architectures [65], but other transmon-like
qubits have been realized, such as the Xmon [64], which
has already shown remarkable fidelities even in a setup
consisting of 9 qubits [149, 150].
Different qubits in these platforms are typically intercon-
nected through superconducting transmission line res-
onators, and they can be individually addressed through
other transmission lines wired at the edges of the chip
board. The latter allow to perform single-qubit initial-
ization, manipulation, and read out through microwave
pulses. Current superconducting quantum circuits allow
for single-qubit gate fidelities above 99.9% [64]. Each
qubit is dispersively coupled to a resonator to mediate an
effective qubit-qubit interaction, employed to implement
two-qubit gates. These are obtained either (i) by tuning
the qubit transition frequency by a local magnetic field,
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or (ii) by using a cross-resonant (CR) drive, in which
microwaves resonant with a target qubit are applied on
another control qubit. While the first realizations of
scheme (i) were obtained by bringing the two qubits
into mutual resonance to get a virtual photon exchange
(thus yielding an effective XY interaction [93]), the most
promising implementations are currently based on tun-
ing one qubit along a “fast adiabatic trajectory”[64] that
moves the |11〉 component of the wave-function close to
the avoided level crossing with state |02〉, leading to a
state-dependent phase and hence to the implementation
of the controlled-phase gate [147]. This approach results
in very fast (40 ns) and high-fidelity two-qubit gates,
compared to relaxation and coherence times in the 20-
40 µs range on average [64]. Conversely, scheme (ii)
uses fixed-frequency qubits in order to avoid frequency
crowding and implements a CNOT gate by activating
the resonator-mediated interaction via a cross-resonant
drive [91]. This requires more selective pulses and hence
results in slower two-qubit gates, taking ∼ 200 − 300 ns
[91, 151] with only slightly longer coherence times (50 µs
on average quality devices) and average fidelity of 96%.
These results make platforms based on scheme (i) more
promising in view of concatenating several gates to per-
form quantum simulation algorithms. Furthermore, the
possibility to tune the phase of CΦ gates makes architec-
ture (i) more flexible than (ii), and it reduces the circuit
depth for the simulation of many model Hamiltonians
of physical interest. In this respect, a novel proposal to
directly implement exchange-type gates with tunable am-
plitude and phase on fixed frequency qubits (thus mak-
ing also this architecture much more flexible for quantum
simulations) has been recently reported [152].
Readout still represents one of the main limitations of
superconducting platforms. Indeed, accurate readout
based on transmission measurements of the frequency
shift of auxiliary resonators is usually slow, taking few
hundreds of ns, with average accuracy in excess of 96%
[151]. However, high-fidelity (i.e., more than 99%) read-
out was demonstrated in 140 ns on a four-qubit setup
[153].
As already noted for trapped-ion architectures, we finally
point out that while remarkable results have been ob-
tained in samples specifically aimed at testing the basic
operations on few qubits circuits, thus reaching fidelities
no more limited by unitary errors [154], the realization
of a scalable platform able to implement fast and high
fidelity single- and two-qubit gates, as well as efficient
readout, still represents a key challenge. Indeed, recent
studies have demonstrated that systematic coherent er-
rors due to an imperfect implementation of the elemen-
tary gates are still one of the leading error sources when
several qubits are operated together in a quantum sim-
ulation [103]. This will also become evident from the
examples of digital quantum simulations reported below.

The first digital quantum simulations of spin models
on superconducting quantum hardware were experimen-
tally reported in 2015 [93]. Here, the evolution of the

FIG. 10. Experimental quantum simulation of the Ising model
in a transverse homogeneous field for two spins with increas-
ing number of Trotter steps, performed on a superconduct-
ing quantum processor with 4 Niobium qubits interconnected
through Aluminum transmission line resonators (shown in the
picture, with false color images, input and output ports and
single qubit flux bias lines are also highlighted). Dependence
of final state fidelity on the number of digital steps used in the
quantum simulation is also shown, for different phase angles
(color bars), as compared to ideal unitary evolution for the
given Trotter step (reprinted under Creative Commons Attri-
bution 3.0 License from Ref. 93, published by the American
Physical Society).

spin magnetization in Heisenberg and Ising models was
systematically studied for 2-spin type Hamiltonians on a
4-qubits quantum processor, as a function of the number
of ST steps. Superconducting processors with tunable
frequency qubits (through external flux bias lines) natu-
rally implement a XY-type interacting spin Hamiltonian,
which can be used as the basis to digitally program a
full Heisenberg or Ising type evolution through a circuit
model, as outlined in the previous section and explained
in detail in the original references [42, 93]. An example is
reported in Fig. 10, where the digital evolution is explic-
itly shown for the two spins projections along the mag-
netic field direction, z, with up to 3 digital time steps,
for an initial state prepared in |↑〉 (|↑〉 − i |↓〉) /

√
2 that

evolves non trivially in time. A summary of the fidelity
obtained from these quantum simulations on the same
quantum hardware with up to 5 Trotter steps is also re-
ported from the original reference [93]. While the ideal
fidelity of the simulated quantum state with respect to
the exact evolution increases against the number of Trot-
ter steps, the experimental one starts to decrease after
about 2 or 3 digitized steps, depending on the phase. It
is evident that 5 digitized steps in the simulated time evo-
lution still presented limited fidelities, due to the short
coherence times and to systematic circuit errors. Nev-
ertheless, such results have set a milestone as a proof of
concept demonstration of universal quantum simulations
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FIG. 11. Experimental quantum simulation of the dynami-
cal correlations for the Heisenberg model of three spins in a
chain (symbols) in external magnetic field along z, compared
to the ideal evolution for the given number of digital time
steps (n = 2, lines), including autocorrelations as well as near-
est neighbors and next-to-nearest neighbors cross correlations.
Only the real part of the correlation functions are plotted; the
agreement on the imaginary part is analogously good. Digi-
tal quantum simulations have been performed on IBM Quan-
tum Experience, chips ibmqx4 (a sketch of the chip layout
and inter-qubits connectivities is explicitly shown), ibmqx5,
and ibmqx20, respectively, accessed online for cloud quantum
computing (data replotted from the original Ref. 103).

in superconducting quantum circuits.

Correlation functions represent some of the most use-
ful and informative quantities to be calculated in quan-
tum many body physics. A first attempt at simulating
the digital time evolution of two-point correlations was
already reported in [93]. More recently, dynamical corre-
lation functions have been experimentally simulated on
the quantum processors made freely available by IBM,
through their IBM Quantum Experience (see quantu-
mexperience.ng.bluemix.net/qx/experience) [103, 155].
These processors are based on fixed frequency super-
conducting qubits allowing the experimenter to imple-
ment arbitary single-qubit rotations and CNOT two-
qubit gates, along the lines of scheme (ii) described above
(see qiskit.org). These elementary operations are then
combined as in Fig. 4 to obtain complex expectation
values for the correlation functions. The results reported
in Ref. 103 are encouraging in view of scalability: dy-
namical correlations were digitally simulated for various
basic spin models, ranging from Ising to isotropic and
anisotropic exchange Hamiltonians, both for spin dimers
and trimers [103]. The largest number of ST steps that
could be reliably simulated on the IBM quantum proces-
sor was n = 4 for spin dimers, and n = 2 for trimers
(due to the larger depth of the corresponding quantum
circuit). An example of the digital quantum simulation
of time-dependent two-body correlation functions, as de-
fined in the previous section, is reported in Fig. 11 for
a three spin-1/2 Heisenberg model in external magnetic

field along z for an initial state |↓↓↓〉, as compared to the
ideal digitized evolution with n = 2 ST steps, showing
truly remarkable agreement. A sketch of the available 5-
qubit quantum hardware is also shown, with an outline
of chip connectivity. In Ref. 103, the largest quantum
simulation reported on the actual IBM quantum hard-
ware actually employed 5 qubits (4 encoding the target
system, plus 1 ancilla for correlations readout), show-
ing good agreement with the expected behavior despite
the noisy nature of the quantum processors. It is im-
portant to note that the accuracy of these results was
largely improved by systematic post-processing correc-
tions based on general properties of the extracted cor-
relation functions, a problem-specific procedure which
could be applied to many other quantum simulations, af-
ter analysis of the symmetries of the target Hamiltonian
[111]. Fitting of such digitally simulated correlations
allows one to extract four-dimensional inelastic neutron
scattering spectra, a crucial experimental tool to char-
acterize magnetic molecules [156, 157]. The speedup of
a quantum processor in simulating the dynamical cor-
relations needed to compute the inelastic neutron cross-
section could allow for an efficient and real time inter-
pretation of experiments on complex molecules, a task
which is nowadays infeasible with classical computer sim-
ulations. This study also reports a systematic analysis of
the errors propagating on the quantum hardware, high-
lighting that one of the main limitations to circuit depth
is currently represented by systematic off-resonant driv-
ing errors [158]. This could be a direct consequence of
the many transitions that must be addressed on a chip
consisting of several qubits with only slightly different
transition frequency (the so-called frequency crowding).
In fact, recent quantum simulations of similar models
performed on a 20-qubit quantum hardware show that a
proper accounting of such errors is essential to obtain a
reasonable agreement with expected results [155].
Going beyond spin models, the superconducting quan-
tum hardware has been tested as a UQS of the Fermi-
Hubbard model [159], which has been experimentally
achieved with up to 4 modes [85].
A hybrid approach combining adiabatic to digital quan-
tum computation was reported in Ref. [150], where a su-
perconducting circuit made of frequency-tunable qubits
and implementing two-qubit controlled-phase gates ac-
cording to scheme (i) was used to probe the dynamics of a
chain of 9 interacting spins, starting in a factorized state
and evolving along an adiabatic trajectory by switching
on an anisotropic exchange interaction term. Recent re-
sults in hybrid quantum-classical approaches, such as the
VQE method already recalled at the end of the previous
Section, have been efficiently employed to show quantum
chemistry simulations on superconducting NISQ proces-
sors [86, 160, 161], in which the ground state energy of
multi-atomic molecules was calculated with precision ap-
proaching the chemical accuracy limits [152]. Using an
evolution of the VQE algorithm, nuclear physics quan-
tum simulations have also been reported in supercon-
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ducting quantum hardware, with the cloud computing of
the deuteron binding energy [87]. Along the same lines
of trapped ions quantum simulators [67, 134], a simi-
lar quantum classical algorithm has been used to solve
for the Schwinger model dynamics on a superconducting
quantum hardware [88].

Interesting comparisons between trapped ions and su-
perconducting quantum processors in applying such hy-
brid quantum-classical approaches have been reported,
in which the same algorithm was simulated on different
platforms, showing a substantial equivalence of the two
leading architectures when the same number of qubits
could be used, but trapped ions processors allowing for
a larger system size to be simulated [136]. Compared to
trapped-ion technologies, superconducting circuits show
much larger gates speed, even if the ratio of coherence
time to gate operation remains smaller. This can be a
remarkable advantage when comparing the performance
of quantum and classical devices in terms of absolute
execution time of a given algorithm. While progress in
the last few years has led to a substantial increase of
the coherence times in transmon qubits, the leading er-
rors in multi-qubit architectures are still coherent [103].
Indeed, the need to address several qubits with only
slightly different transition frequencies, as well as the
small anharmonicities required to keep long coherence
times, require long and often not completely resonant
driving pulses [154]. In addition, inter-qubit interactions
are never completely switched off, even when qubits are
in the idle phase. This leads to unwanted evolution of
the multi-qubit wave-function (cross-talk), an effect in-
creasing with the system size and strongly depending
also on the chip connectivity. For quantum simulation
purposes, the latter should be as close as possible to
that of the target system, in order to reduce the cir-
cuit depth and avoid cumbersome SWAP gates. In fact,
trapped ions are more promising for establishing entan-
glement between distant pairs of qubits, and hence also
to simulate fermionic Hamiltonians involving multi-qubit
interaction terms, although the first attempts to go be-
yond nearest-neighbors coupling have been reported on
three-qubit quantum processors [162]. Finally, compared
to trapped ion-based technologies in which all qubits are
identical, superconducting qubits are all characterized by
different parameters (such as transition frequencies and
mutual couplings), which are also affected by thermal cy-
cling and hence require a detailed and frequent charac-
terization to accurately calibrate the control pulses [163].
As mentioned above, considerable work is currently fo-
cusing on understanding the main sources of error, and
on developing error mitigation techniques to enhance
the overall quantum simulation fidelities [103, 111, 164].
These theoretical proposals have been recently and suc-
cessfully applied to improve the accuracy of the observ-
ables extracted from VQE calculations on a supercon-
ducting chip [114]. Although demonstrated on elemen-
tary single- and two-qubit gates in a VQE experiment,
this protocol can be applied to mitigate errors of any

quantum algorithm since it is problem-independent and
does not lead to any hardware overhead. However, its ap-
plication requires the experimenter to control the amount
of noise on the hardware (which in Ref. [114] is mapped
on the evolution under a scaled drive) and it is limited
to incoherent errors.
In the ongoing effort to develop a fault tolerant quantum
computing architecture, these results pave the way to-
wards reaching the quantum advantage, possibly already
within the NISQ time frame. As a summary of all the
previous results, IBM tested the concept of quantum vol-
ume on three of its devices, finding that it doubled each
year (from 2017 to 2019), from 4 to 8 to 16, a trend simi-
lar to Moore’s Law for classical computers and promising
for future perspectives. Nevertheless, similar conclusions
apply here as already given for the trapped ion quantum
hardware: despite considerable progress and the first at-
tempts at performing full digital quantum simulations,
several challenges need to be addressed before quantita-
tive and not only qualitative accuracy be reached, espe-
cially on larger system sizes and running deeper quantum
circuits. Specifically, a deeper understanding of error and
noise sources, as well as suitable strategies to mitigate
them on hardware with larger number of qubits is cru-
cial at this NISQ stage [155], which will be the focus of
intense research and development in the coming years.

C. Prospective technologies for UQS

While the two leading technologies outlined above are
currently the mainstream in practical quantum comput-
ing, it is still unclear if they will be able to overcome
the challenges to reach a large number (N > 100) of
logical qubits and a significantly larger amount of er-
ror correcting ones. Alternative technologies might also
start playing a role in the meantime. In this respect, it
is interesting to follow recent progress in semiconductor-
based technologies. After the widespread success of semi-
conductors in microelectronics applications, they have
been a little behind the scene in the quest for practi-
cal quantum computing devices despite the early pro-
posals [165]. In particular, semiconductor based quan-
tum dots have long been considered as potential spin
qubits. Single-spin read-out and manipulation has been
shown quite early [166, 167], but scalability has been hin-
dered so far, mostly due to coherence times being limited
by nuclear spin dephasing and spin-orbit coupling [168].
However, recent advances in silicon-based quantum dots
have renewed interest in the actual possibilities of these
technologies: CNOT gates between two quantum dots
have been shown with about 78% fidelity [169], and two-
qubit gates with fidelities in the order of 80% have also
been reported, with single qubit rotation precision of
∼ 99% [170–173]. Gating times are below 100 ns, and
dephasing times about 200 ns [171]. These results, al-
though still far from the required performances achieved,
e.g., in the trapped ion or superconducting circuits archi-
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tectures, are quite promising and set a stepping stone on
the development of a fully semiconductor-based quantum
technology, evidently interesting for a number of reasons
(from cheap costs to the potential for mass scale manu-
facturing).
In parallel to research on quantum dots, controlled im-
purities and defect ions in silicon have been lately con-
sidered for a potentially low-cost quantum technolo-
gies [69]. After the demonstration of single-spin read-
out and manipulation of localized donor impurities in
silicon [174, 175], two-qubit quantum gates have been
proposed for this prospective platform [176, 177]. Very

recently, the first
√

SWAP operation between Phospho-
rus donor electrons in silicon, with gating time of 800 ps
and fidelity around 94% has been reported [178]. These
results hold promise that further developments might be
seen in the near future, if challenges related to scalability
will be overcome.
While electronic states in engineered potentials or in im-
purity states are naturally emerging as reasonable can-
didates for a qubit-based architecture, it is less obvious
that photons, in particular photonic integrated circuits,
could play a significant role as UQS. Photonic circuits
have been largely explored as analog quantum simula-
tors [56]. The main limitation to exploit photonic states
for quantum computing lies in their weak interactions,
due to intrinsically small material nonlinearities. While
it may be argued that suitable electromagnetic confine-
ment in nonlinear materials might lead to single-photon
sensitivity [179, 180], no such effect has been measured
at time of writing. Mixed radiation-matter excitations
in semiconductors, also called exciton-polaritons, have
been shown to be sensitive at the single quantum level
[181, 182], which might play a role in realizing analog sim-
ulators of strongly interacting photonic lattices [13, 183],
but their effective use as qubits is still immature. On the
other hand, a few companies are investing in a photonic-
based quantum computer, which could then be used as a
UQS employing continuous variable cluster states [184],
but we are not aware of any proof-of-principle demon-
stration at the moment.
Magnetic molecules manipulated through electromag-
netic pulses have also been proposed as a potential plat-
form for quantum information processing [36], thanks to
their long coherence times and high degree of chemical
tunability. This allows to engineer suitable structures of
elecronic [185] or nuclear [186] spin qubits in which the
qubit-qubit interaction is effectively switched on and off
by electromagnetic pulses. Furthermore, the richness of
the molecular Hilbert space can be exploited to directly
encode logical qubits with embedded quantum error cor-
rection in single molecules [148].
Finally, also arrays of optically or magnetically trapped
neutral atoms, typically excited in Rydberg states, have
been proposed as a platform for quantum simulations
[35], although several challenges need to be addressed for
quantum computing applications, particularly related to
the short coherence times as compared to trapped ions
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FIG. 12. Prospective hybrid platforms for UQS: (a) hybrid
spin-photon qubits encoded in a superconducting resonators
array with spin ensembles in each resonator, inter-connected
through transmon qubits playing the role of nonlinear ele-
ments employed for two-qubits gating, and resulting theo-
retical quantum simulation of a 3-spin transverse field Ising
model for different values of photon and spin dissipation rates
(see original Ref. 43); (b) electromechanical nanoresonators
(EMR) mutually coupled through a superconducting nonlin-
ear element represent the building block of a scalable UQS ar-
chitecture, in which qubits are encoded in mechanical degrees
of freedom, and the corresponding test of a digital quantum
simulation of a 2-spin transverse field Ising model taking all
the sources of error and dissipation into account (see original
Ref. 84).

[187]. While analog simulators with more than 50 Ry-
dberg atoms have been reported [27], and two-qubit en-
tanglement has been recently shown with ∼ 97% fidelity
[188], it is still premature to expect digital quantum sim-
ulators based on fully controlled Rydberg-atomic qubits.

Together with existing technologies that are moving
their first steps into actual quantum computing applica-
tions, it is worth concluding this brief overview by men-
tioning a few potentially promising hybrid technologies,
which are usually aimed at merging the best character-
istics of two or more existing approaches [189, 190]. The
philosophy behind these proposals is simple: it is quite
likely that a hybrid technology will be in the best position
to simultaneously meet all the requirements in terms of
scalability (possibly in multi-dimensional arrays), chip-
scale integration, and high operational reliability (i.e.,
long qubits coherence and short gating times). A number
of proposals for prospective quantum technologies have
been reported, which we will hereby summarize briefly
and refer to the original references for further details.
For instance, spin ensembles coherently coupled to su-
perconducting microwave resonators have been proposed
as a backbone of a novel hybrid quantum technol-
ogy [95, 96, 191]. This hybrid architecture would ex-
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ploit the long coherence times of spin ensembles and the
easy manipulation of photons in tunable resonators. A
full digital quantum computing architecture has been
devised [43, 192], for which we report an example in
Fig. 12(a), where the transverse field Ising model of 3
spins (see Hamiltonian model in the inset) is theoreti-
cally shown to be simulated with a large overall fidelity
(∼ 95% on average) when realistic dissipation parame-
ters are assumed [43]. This kind of architecture could be
even built with single magnetic molecules strongly cou-
pled to the quantized resonator field [193, 194].
Along similar lines, hybrid architectures based on Ni-
trogen Vacancy (NV) centers coupled to Carbon nan-
otubes have also been proposed [195]. Mechanical de-
grees of freedom have also been considered to be part of
hybrid platforms, due to their intrinsically low dephas-
ing rates. In particular, quantum information processing
has been theoretically shown in optical devices in which
qubits are encoded in the lowest lying mechanical lev-
els [196], as well as in NV centers coupled to mechanical
resonators and superconducting waveguides [197]. Re-
cently, mechanical qubits encoding has been considered
in a hybrid set up coupling vibrating nanoresonators to
superconducting circuits [84]. An example of such an
electromechanical quantum computing architecture is re-
ported in Fig. 12(b), with theoretical simulations of the
digitized evolution of the transverse field Ising model of
2 spins (see Hamiltonian model in the inset) performed
on such hypothetical platform, with very interesting fi-
delities in the order of 99.9% for the overall quantum
simulation if the EMR dephasing is neglected, which re-
duces to about 99% for realistic pure dephasing rates.
These numbers are extremely promising, and could mo-
tivate further experimental efforts towards realization of
the required building blocks.

V. OUTLOOK AND PERSPECTIVES

We have given a brief summary of the current status
on quantum simulators, restricting our overview to the
use of quantum computers as general purpose machines
that can be programmed to solve for the exact time evo-
lution of an arbitrary Hamiltonian model. The only pre-
scription for such a universal quantum simulator is that
the physical model under analysis be mapped onto an
effective local Hamiltonian obeying the algebra of Pauli
matrices, which is then encoded directly in a qubit-based
quantum computer through a quantum circuit model. A
number of observables, such as spectra and correlation
functions, can be accessed upon measurement in the com-
putational basis. After giving a pedagogic introduction
to the theoretical background allowing to translate the
digitized unitary evolution in discrete time steps into the
corresponding quantum algorithm made of a sequence of
one- and two-qubits gates, we have reviewed recent ex-
perimental results on the two leading quantum technol-
ogy platforms. Finally, we have outlined a few existing

technologies that might develop into quantum computing
hardware, and hence be useful for quantum simulation,
as well as prospective hybrid approaches that might even-
tually be tested.

Since most Hamiltonian models of physical interest can
be expressed in terms of locally interacting spin terms,
we have focused this review on the most widespread spin-
type models, such as the Heisenberg and Ising models in
an external magnetic field. Getting acquainted and ap-
plying the basic techniques developed for such models
allows to quickly grasp the quantum simulation of more
general quantum many body systems that are typically
intractable with classical simulations, mostly due to ex-
ponential scaling of the required resources with the sys-
tem size, such as the Fermi-Hubbard model. The road
to quantum advantage is an exciting targeted goal to be
fulfilled in the coming years, following the availability
of NISQ quantum hardware with few tens of non-error
corrected qubits. While the advent of quantum error
correction will most probably have a transformative im-
pact allowing to realize universal quantum simulations
with arbitrary digital precision, in the intervening years
error mitigation techniques and further technological im-
provement will bring interesting results also from current
experiments, which are limited by noisy gates and qubits
coherence times. In this respect, increasing gate fidelities
and reducing gate duration are some of the technological
challenges to be faced in the near term. In fact, these
developments should all lead to an increase in “quantum
volume” [83, 109, 198], i.e. a larger number of actual
qubits usefully participating in a given quantum com-
putation, which is currently limited to less than 10 in
essentially all of the available platforms. When such a
number will actually be on the order of 30 to 40, quan-
tum advantage will finally be within reach of such NISQ
digital quantum simulators, at least for some targeted
applications or models.

In the meantime, a great deal of work is ongoing to de-
vise new potential use cases and algorithms to be run on
these machines, for which learning techniques of quantum
circuit programming might turn being useful. A brief,
non-exhaustive list, with a bit of personal taste, is given
in the following. Restricting to problems of academic
interest, the dynamical localization of quantum Hamil-
tonians that have a classical chaotic behavior [199, 200],
requiring simulation of the quantum Fourier transform,
could be run on a universal quantum computer. More
recently, universal quantum computers have been receiv-
ing attention from machine learning applications, in par-
ticular to develop quantum neural networks, with the
aim of processing an exponentially large amount of data
with polynomial resources [79]. The first attempts in
this direction have been reported [201–203]. Universal
quantum simulators might also help solving problems in
open quantum system dynamics, for which novel numer-
ical approaches have already been developed [204, 205].
Simulating the digitized non-unitary evolution of an open
quantum system on a quantum computer is a topic of cur-
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rent interest [99, 104, 206–210]. Finally, the huge body
of knowledge accumulated in the past half a century to
classically simulate the many body dynamics of quan-
tum systems of increasing complexity, such as quantum
Monte-Carlo, molecular dynamics, and density matrix
renormalization group could be integrated into quantum
algorithms to be run on digital quantum computers, with
far-reaching and still unknown consequences.
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[65] A. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross,
M. Steffen, J. M. Gambetta, J. M. Chow, Nat. Commun.
2015, 6 , 6979.

[66] M. Troyer, U.-J. Wiese, Phys. Rev. Lett. 2005, 94 ,
170201.

[67] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg,
A. Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz,
P. Zoller, R. Blatt, Nature 2016, 534 , 516.

[68] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, J. L. O’Brien, Nature 2010, 464 , 45.

[69] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L.
Hu, J. R. Petta, Science 2013, 339 , 1174.

[70] C. Monroe, J. Kim, Science 2013, 339 , 1164.
[71] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Mar-

tinez, S. X. Wang, S. Quint, M. F. Brandl, V. Neben-
dahl, C. F. Roos, M. Chwalla, M. Hennrich, R. Blatt,
New J. Phys. 2013, 15 , 123012.

[72] C. D. Bruzewicz, J. Chiaverini, R. McConnell, J. M.
Sage, Applied Physics Reviews 2019, 6 , 021314.

[73] J. Clarke, F. K. Wilhelm, Nature 2008, 453 , 1031.
[74] R. J. Schoelkopf, S. M. Girvin, Nature 2008, 451 , 664.
[75] M. H. Devoret, R. J. Schoelkopf, Science 2013, 339 ,

1169.
[76] X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, F. Nori,

Physics Reports 2017, 718-719 , 1 , microwave photon-
ics with superconducting quantum circuits.

[77] S. Woerner, D. J. Egger, npj Quantum Inf. 2019, 5 , 15.

[78] A. Martin, B. Candelas, Á. Rodŕıguez-Rozas, J. D.
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[80] A. Aćın, I. Bloch, H. Buhrman, T. Calarco, C. Eichler,
J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko,
S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt,
R. Thew, A. Wallraff, I. Walmsley, F. K. Wilhelm, New
J. Phys. 2018, 20 , 080201.

[81] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. We-
infurter, Phys. Rev. A 1995, 52 , 3457.

[82] P. Jordan, E. Wigner, Zeitschrift für Physik 1928, 47 ,
631.

[83] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation,
J. M. Gambetta, arXiv:1811.12926 [quant-ph] 2018.

[84] F. Tacchino, A. Chiesa, M. D. LaHaye, S. Carretta,
D. Gerace, Phys. Rev. B 2018, 97 , 214302.

[85] R. Barends, L. Lamata, J. Kelly, L. Garćıa-Álvarez,
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J. M. Chow, J. M. Gambetta, Nature 2019, 567 , 491.
[115] R. Blatt, D. Wineland, Nature 2008, 453 , 1008.
[116] K. Wright, K. M. Beck, S. Debnath, J. M. Amini,

Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti,
M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi,
J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreike-
meier, V. Chaplin, M. Keesan, C. Monroe, , J. Kim,
arxiv:1903.08181 [quant-ph] 2019.

[117] D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev.
Mod. Phys. 2003, 75 , 281.

[118] A. Bautista-Salvador, G. Zarantonello, H. Hahn,
A. Preciado-Grijalva, J. Morgner, M. Wahnschaffe,
C. Ospelkaus, New Journal of Physics 2019, 21 ,
043011.

[119] C. D. Bruzewicz, R. McConnell, J. Chiaverini, J. M.
Sage, Nature Communications 2016, 7 , 13005.

[120] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel,
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