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Abstract We discuss the structure of the shock wave solution for a system of
Navier-Stokes equations, obtained as hydrodynamic limit of a BGK descrip-
tion of the dynamics of monoatomic gases at kinetic level. We investigate first
the thickness of the transition region of the shock profile for a monoatomic
gas, for varying Mach number and different physical options for the viscos-
ity coefficient. The analysis is then extended to a binary gas mixture. Some
numerical results for noble gases are presented and discussed.

Keywords Shock wave structure · Shock thickness · Navier-Stokes equations ·
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1 Introduction

Shock wave solutions for hyperbolic systems of conservation and balance laws
have been widely studied [1–3], and the problem of the smoothness of such
solutions has drawn a lot of attention [4–6].
More recently, many papers have been devoted to characterize global and
piecewise smooth solutions in terms of singular barriers [7], especially in pres-
ence of multi-temperature models for gas mixtures [8–12].
In this paper, we focus on a particular feature of the shock wave structure
concerning the shock thickness, i.e. the size of the narrow region where the
transition from an equilibrium state to another occurs.
The thickness has order of magnitude of the mean free path of the particles and
depends on the unperturbed Mach number, that characterizes the strength of
the shock [13]. Although we expect the decrease of the thickness for increas-
ing Mach number, experiments in monoatomic gases (some results for Argon
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are given in [14]) show that thickness decreases up to a certain Mach number
(about 3.1 for Argon) and then increases again.
Some efforts to explain theoretically such behavior have been made start-
ing from the classical paper of Gilbarg and Paolucci [15], where a continuum
approach has been used, and also in the framework of general dissipative hy-
perbolic systems [13]. More specifically, in [15] it is also pointed out that a key
role is played by viscosity and heat conductivity and the critical value for the
Mach number strongly depends on these quantities.
In this paper, we investigate the shock thickness both for a single fluid and a
binary mixture of monoatomic gases, whose evolutions are described by Navier-
Stokes equations obtained as hydrodynamic limit of a recent BGK model [16,
17].
In particular, as regards the shock thickness for a single gas, we compare the
results obtained with different models for viscosity (power laws and numeri-
cal approximation of experimental data given in [18]). As concerns the binary
gas mixture, we model viscosity by suitable approximations of experimental
values [18] and we discuss the occurrence of a possible critical value for Mach
number, corresponding to a minimum for the shock thickness.
The paper is organized as follows: after recalling the kinetic BGK-type de-
scription for a binary gas mixture of monoatomic gases and its hydrodynamic
closure at Navier-Stokes level in Section 2, we formulate the steady shock wave
problem in Section 3 both for a single fluid and a binary mixture. In Section 4
we discuss the trend of shock thickness versus the unperturbed Mach number
in both cases. Some concluding remarks are given in Section 5.

2 The mathematical model

2.1 Kinetic description

We consider a recent BGK-type description for a binary mixture of monoatomic
gases [16] in a regime dominated by the elastic collisions [17]. The evolution
of the distribution functions fi = fi(x, ξ, t), i = 1, 2, is governed by the nondi-
mensional equations

∂f1
∂t

+

3∑
i=1

ξi
∂f1
∂xi

=
1

ε
[ν11 (n1M11 − f1) + ν12 (n1M12 − f1)]

∂f2
∂t

+

3∑
i=1

ξi
∂f2
∂xi

=
1

ε
[ν21 (n2M21 − f2) + ν22 (n2M22 − f2)] ,

(1)

where x ∈ R3, ξ ∈ R3, t ∈ R+ are position, microscopic velocity and time vari-
able, respectively; ε > 0 is a small parameter corresponding to the Knudsen
number, νij , i, j = 1, 2, denotes the frequency of the collisions between com-
ponents i and j. We remark that the i–th equation of this BGK model shows
a sum of two relaxation operators, one describing collisions between particles
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of i–th species, and the other counting for the effects on the i–th distribution
function due to interactions with species j 6= i.
Each local attractor Mij , i, j = 1, 2, is a Maxwellian function

Mij = ni

(
mi

2πTij

) 3
2

exp

(
− mi

2Tij
|ξ − uij |2

)
, (2)

depending on the i−th particle mass mi, species density ni and some fictitious
parameters uij and Tij . Such auxiliary quantities can be expressed in terms
of the species macroscopic fields

ni =

∫
R3

fi(ξ)dξ, ui =
1

ni

∫
R3

ξfi(ξ)dξ ,

3niTi = mi

∫
R3

|ξ − ui|2fi(ξ)dξ ,

(3)

by imposing that the exchange rates for momentum and energy of each bi-
nary BGK operator coincide with the ones of the corresponding Boltzmann
operator. This requirement automatically implies the correct conservation of
global momentum and energy. These exchange rates can be made explicit for
Maxwell molecules, and can be properly approximated for general intermolec-
ular potentials. Specifically, one gets

uij = (1− aij)ui + aijuj , Tij = (1− bij)Ti + bijTj + γij |ui − uj |2, (4)

with

aij =
ηijninj

νij(mi +mj)
, bij =

2aijmi

mi +mj
,

γij =
miaij

3

(
2mj

mi +mj
− aij

)
,

(5)

where ηij is a suitable approximation of a proper averaged cross section and de-
pends on the intermolecular potential. More precisely, νij is constant for cross
sections of Maxwell molecules type, while for general intermolecular potentials
it is a non-constant function depending on species velocities and temperatures.
As detailed in [16], a reasonable approximation is obtained by evaluating the
averaged cross section in suitable points, leading to functions ηij depending
on Ti, Tj , ui, uj through

zij =

[
3

(
Ti
mi

+
Tj
mj

)
+ |ui − uj |2

]1/2
. (6)

In order to guarantee the positivity of the global temperature, BGK collision
frequencies must fulfill the constraints

νij ≥
1

2
ηijnj . (7)

Proper choices of the BGK collision frequencies νij are discussed in [16] again;
here it is enough to point out that they may depend on number densities and on
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averaged cross sections ηij , and then possibly on other macroscopic moments
of the distribution functions in case of interaction potentials different from
Maxwell molecules.
A proper dissipation estimate has also been proved for such a BGK model [16],
in terms of classical Boltzmann H–functional. Moreover, the indifferentiability
principle holds, namely in a mixture of two identical gases, sharing of course
the same mass, the distribution function f1 + f2 satisfies the BGK equation
for a single monoatomic gas.

2.2 Hydrodynamic limit

We consider a first order expansion of the distribution functions

fi = f0i + εf1i , i = 1, 2 , (8)

and analogous expansions for the corresponding macroscopic quantities. As
typical in Chapman-Enskog approximations, the macroscopic fields related to
the collision invariants (namely ni, u, T ) must be unexpanded.
By standard techniques, the following system of Navier-Stokes equations is
obtained in the hydrodynamic limit (when ε→ 0)

∂ni
∂t

+∇x · (niu) + ε∇x · (niu1
i ) = 0 , i = 1, 2

∂

∂t
(ρu) +∇x · (ρu⊗ u) +∇x(nT ) + ε∇x ·P1 = 0

∂

∂t

(
1

2
ρ|u|2 +

3

2
nT

)
+∇x ·

[(
1

2
ρ|u|2 +

5

2
nT

)
u

]
+ ε∇x ·

(
P1 · u

)
+ ε∇x · q1 = 0 ,

(9)

where the corrections of order 1 (denoted by the superscript 1) for species
mean velocities, global pressure tensor and heat flux are given respectively by
[17]

ρ1u
1
1 =

m1 +m2

η012

1

ρ2
[−m2n2∇x(n1T ) +m1n1∇x(n2T )] = −ρ2u1

2

P 1
`m = −T

(
n1

ν011 + ν012
+

n2
ν021 + ν022

)(
∂u`
∂xm

+
∂um
∂x`

− 2

3
∇x · uδ`m

)
q1 =

5

2
T (n1u

1
1 + n2u

1
2)

− 5

2
T

(
n1

m1(ν011 + ν012)
+

n2
m2(ν021 + ν022)

)
∇xT

(10)

and

n = n1 + n2 , ρ = ρ1 + ρ2 = m1n1 +m2n2

ρu = ρ1u1 + ρ2u2 , T =
1

n

2∑
i=1

niTi +
1

3n

2∑
i=1

mini|ui − u|2 .
(11)
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Terms ν0ij (i, j = 1, 2) and η012 are the zero order approximation of νij and
η12, respectively. Their dependence on the macroscopic fields follows from the
choice of BGK collision frequencies (as said above, see again [16]), taking into
account that the macroscopic fields related to collision invariants (ni, u and
T ) must be unexpanded.
We can observe that P1 is a traceless tensor and it is proportional to the strain
tensor via the viscosity coefficient

µ =

(
n1

ν011 + ν012
+

n2
ν021 + ν022

)
T , (12)

while the heat flux correction depends on the thermal conductivity coefficient

λ =
5

2

(
n1

m1(ν011 + ν012)
+

n2
m2(ν021 + ν022)

)
T . (13)

3 The steady shock wave problem

In this section we formulate the classical problem of the shock wave structure
for the one dimensional steady version of the previous Navier-Stokes equa-
tions (9). We can get rid of the parameter ε by a proper scaling of the space
variable, and substituting the relationships (10) in (9) we finally get

d

dx
(niu) + (−1)i−1

d

dx

{
m1 +m2

mi

1

η012

1

ρ2
×

[
−m2n2

d

dx
(n1T ) +m1n1

d

dx
(n2T )

]}
= 0 , i = 1, 2

d

dx
(ρu2 + nT )− 4

3

d

dx

(
µ
du

dx

)
= 0

d

dx

[(
1

2
ρu2 +

5

2
nT

)
u

]
− 4

3

d

dx

(
µu
du

dx

)
− d

dx

(
λ
dT

dx

)
+

5

2

d

dx

{
T (m2 −m1)

m1 +m2

m1m2

1

η012

1

ρ2
×

[
−m2n2

d

dx
(n1T ) +m1n1

d

dx
(n2T )

]}
= 0 ,

(14)

where the viscosity µ and thermal conductivity λ are given respectively in (12)
and (13).
We observe that the first two equations in (14) give as expected the conserva-
tion of total mass

d

dx
(ρu) = 0 , (15)

and it can be used to express species density n2 in terms of the remaining
variables n1, u and T , reducing thus the number of equations.
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The shock wave structure problem consists in discussing the solutions of (14)
with asymptotic equilibrium condition at ±∞; we indicate such configurations
by E± = (n1,±, u±, T±).
The analysis will be proposed for varying Mach number computed at −∞

M2 =
3ρ−u

2
−

5n−T−
, (16)

and the stationary state at +∞ is connected to the equilibrium at −∞ by
means of classical Rankine-Hugoniot conditions

n1,+ =
4M2

M2 + 3
n1,− , u+ =

M2 + 3

4M2
u− ,

T+ =
(5M2 − 1)(M2 + 3)

16M2
T− .

(17)

Starting from the model for a binary gas mixture, thanks to the consistency
properties of the model, it is possible to recover the hydrodynamic description
for a single monoatomic gas by imposing that components share the same par-
ticle mass m; more precisely, the system of differential equations (14) reduces
to the well known steady Navier-Stokes equations [19,20]

d

dx
(ρu) = 0

d

dx
(ρu2 + nT )− 4

3

d

dx

(
µ
du

dx

)
= 0

d

dx

[(
1

2
ρu2 +

5

2
nT

)
u

]
− 4

3

d

dx

(
µu
du

dx

)
− d

dx

(
λ
dT

dx

)
= 0 ,

(18)

where the viscosity and thermal conductivity coefficients obtained by the
Chapman-Enskog procedure applied to the BGK model are given by

µ =
nT

ν0
, λ =

5

2

nT

mν0
=

5

2

µ

m
, (19)

and ν0 is the zero order approximation of the unique relaxation parameter
that is involved at kinetic BGK level.
By using the conservation of mass (first equation in (18)), we have ρu = const.,
hence ρ = ρ−u−/u. By performing then analogous integrations in last two
equations of (18), the system above can be reduced to two first order ODEs
for the unknowns u and T , as

du

dx
=

3

4µ

[
ρ−u−(u− u−) + n−u−

(
T

u
− T−
u−

)]
dT

dx
= − 1

2λ

[
ρ−u−(u− u−)2 + n−(5T−u− − 3Tu− − 2T−u)

]
.

(20)

The asymptotic states are given respectively by

E− = (u−, T−) , E+ =

(
M2 + 3

4M2
u−,

(5M2 − 1)(M2 + 3)

16M2
T−

)
, (21)

with M2 = (3mu2−)/(5T−).
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4 Analysis of shock thickness

We discuss the shock wave structure by investigating the rapid but continuous
transition from an equilibrium state to another when M > 1. Its measure is
usually given by the shock thickness [13,15]

∆ =
u− − u+

max |du/dx|
, (22)

that clearly depends on the Mach number. In several papers [13–15], it has
been pointed out that for monoatomic gases the thickness of the shock de-
creases up to a critical value for Mach number M̂ and then, in an unexpected
way, it increases for higher values of Mach number.
After checking this result for a single gas with different intermolecular poten-
tials, we analyze the shock thickness in a binary mixture of noble gases for
varying Mach number.

4.1 Shock thickness for a single gas

In order to construct numerically the shock profile and hence evaluate the
shock thickness, we first investigate the stability of equilibria at ±∞ by means
of typical tools of the qualitative theory of dynamical systems.
We have that the jacobian matrix associated to (18) evaluated in E−

J− = J(E−) =


3n−T−

4µ(T−)u−

(
5

3
M2 − 1

)
3n−

4µ(T−)

n−T−
λ(T−)

3n−u−
2λ(T−)

 (23)

has two eigenvalues with positive real parts when M > 1, since

det(J−) =
15

8

n2−T−

µ(T−)λ(T−)
(M2 − 1) > 0

tr(J−) =
3n−T−

4µ(T−)u−

(
5

3
M2 − 1

)
+

3n−u−
2λ(T−)

> 0 .

(24)

It is also possible to prove that eigenvalues are real [20]. Therefore, the equi-
librium E− is an unstable node with a two-dimensional unstable manifold.
As concerns the equilibrium state at +∞, we have that the jacobian matrix
evaluated in E+

J+ = J(E+) =


n−T−M

2

2µ(T+)u−(M2 + 3)

(
9− 5M2

) 3n−M
2

µ(T+)(M2 + 3)

5n−T−(M2 − 1)

4λ(T−)

3n−u−
2λ(T+)

 (25)
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has negative determinant

det(J+) =
15

2

n2−T−

µ(T+)λ(T+)

M2

M2 + 3
(1−M2) < 0 , (26)

when M > 1; therefore, E+ is a saddle point (then unstable) and both stable
and unstable manifolds have dimension 1.
The shock solution, which can be viewed as the heteroclinic orbit connect-
ing the two equilibria, is obtained numerically by a backward Runge-Kutta
method, starting from a perturbation of equilibrium E+ along the direction
individuating the stable manifold.
It is clear that the shock structure strictly depends on the way we model viscos-
ity (and hence thermal conductivity) [15]. In equation (19) we have observed
that, in our derivation from the kinetic level, viscosity and thermal conductiv-
ity depend on the zero order approximation of the relaxation parameter ν0 of
the BGK description. By assuming that

ν0 = σ(T )n (27)

then the function σ (and consequently the parameter ν0) is uniquely deter-
mined as

σ(T ) =
T

µ(T )
. (28)

In this analysis we consider and compare two different approximations for the
viscosity µ(T ):

1. a power law for temperature dependence of viscosity [19]

µ = µref

(
T

Tref

)k

, (29)

where Tref is a reference temperature (we shall consider Tref = 50K) and
µref is the corresponding value of viscosity for a chosen noble gas (see
Table 1, where we report values for Argon and Helium). As concerns the
parameter k, we consider
a. k = 1

2 corresponding to hard sphere intermolecular potential;
b. k = 1 corresponding to Maxwell molecule potential;
c. k = k̃ with 1

2 < k̃ < 1 in order to reproduce a realistic potential (for

example k̃ = 0.816 for Argon and k̃ = 0.647 for Helium) [15];
2. a least squares approximation (LSA) of the values of viscosity given in [18];

in particular we approximate the empirical values in the range 50− 300K
(see Table 1) by a linear function of the temperature

µ = αT + β , (30)

where
- α = 0.0749, β = 0.6327 for Argon;
- α = 0.0553, β = 3.8720 for Helium.
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Argon Helium

T (in K) µ (in µPa · s) µ (in µPa · s)
50 4.32 6.04
100 7.97 9.66
150 11.94 12.61
200 15.89 15.26
250 19.50 17.72
300 22.83 20.04

Table 1 Some experimental values of viscosity for Argon and Helium [18].

The thermal conductivity coefficient follows consequently from (19).
The profile of the shock thickness ∆ versus the Mach number for Argon and
Helium are reported in Figure 1 and 2, respectively. We observe that, when
viscosity is modeled by power laws with exponent k 6= 0.5 or by the linear
function (30), the shock thickness ∆ decreases up to a critical value of the
Mach number M̂ and then, from this value on, ∆ increases. On the other
hand, in the case of hard spheres intermolecular potential (k = 0.5 in the
power law (29)), the shock thickness strictly decreases for increasing Mach
numbers.
We notice also that the critical Mach number depends both on the chosen gas
and on the viscosity model; more precisely, one has that

- for Argon M̂|k=1 ' 3.1 < M̂|LSA ' 3.4 < M̂|k=k̃ ' 3.7,

- for Helium M̂|k=1 ' 3.2 < M̂|LSA ' 4.2 < M̂|k=k̃ ' 5.2,

where M̂|k=1, M̂|k=k̃ and M̂|LSA denote the critical Mach number when vis-
cosity is described by a power law with exponent k = 1, a power law with
exponent k = k̃ and a least square approximation, respectively.
We point out that when we consider a Mawell molecules potential we obtain
approximately the same critical value for the Mach number (around 3.1) for
both gases, and such value is in agreement with the one obtained experimen-
tally for Argon [14].

4.2 Shock thickness for a binary gas mixture

As done in the previous subsection, a preliminary analysis on the stability of
asymptotic equilibria of system (14) for a binary mixture, which are

E− = (n1,−, u−, T−)

E+ =

(
4M2

M2 + 3
n1,−,

M2 + 3

4M2
u−,

(5M2 − 1)(M2 + 3)

16M2
T−

)
,

(31)

provides some indications about the construction of the shock profiles.
As already shown in [21], for M > 1, the equilibrium E− at −∞ is unstable,
with a three dimensional unstable manifold and no stable manifold; also the
steady state E+ at +∞ is unstable, but with a two dimensional unstable
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and one dimensional stable manifolds, respectively. As in the case of a single
gas, the shock profile is given by the heteroclinic orbit connecting the two
equilibria and obtained numerically by solving backward with a Runge-Kutta
scheme a Cauchy problem, with initial condition given by a perturbation of the
equilibrium E+ along the eigenvector corresponding to the stable manifold.
As concerns viscosity and thermal conductivity coefficients, we recall that their
expressions consistently derived from our BGK model are given by (12) and
(13), respectively; therefore, they are uniquely determined once the zero order
approximations ν0ij of the relaxation parameters νij are given. Analogously to
the case of a single gas, we assume that

ν0ij = σij(T )nj , i, j = 1, 2 , (32)

and the symmetry relation σ12 = σ21. Moreover, we denote by χ the concen-
tration of the first component (and the concentration of the second species is
therefore given by 1 − χ). It follows that viscosity and thermal conductivity
coefficients given in (12) and (13) can be rewritten respectively as

µ =

(
χ

σ11χ+ σ12(1− χ)
+

1− χ
σ12χ+ σ22(1− χ)

)
T (33)

and

λ =
5

2

(
χ

m1(σ11χ+ σ12(1− χ))
+

1− χ
m2(σ12χ+ σ22(1− χ))

)
T . (34)

We observe that, in absence of the second component (χ = 1), formula (33)
should reproduce the viscosity of the first component as single fluid, and con-
sequently the term σ11 is uniquely determined in terms of gas viscosity and
temperature. Analogously, the quantity σ22 is determined by reproducing the
viscosity of the second component as single gas, when χ = 0.
In particular, for the i−th component, it follows that

σii =
T

µi
, i = 1, 2 , (35)

where µi indicates the viscosity of the i−th species as single fluid. Some values
of viscosity at certain reference temperatures are given in the first and second
column of Table 2 for Neon and Argon. Using data of Table 2 (and for other
noble gases see [18]) we obtain for such mixture some reference values for σii by
means of formula (35) and we approximate them linearly at any temperature
by least squares method.
As concerns σ12, we compute such quantity when the two components are

equally concentrated (χ = 0.5). In particular, from (33) we get that σ12 at a
given temperature T is the positive solution of the quadratic algebraic equation

µξ2 + [µ(σ11 + σ22)− 2T ]ξ + µσ11σ22 − T (σ11 + σ22) = 0 , (36)

where reference values of σ11, σ22 are obtained as described above and values
of viscosity at specific temperatures are given in the third column of Table 2
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χ = 1 χ = 0 χ = 0.5

T (in K) µ (in µPa · s) µ (in µPa · s) µ (in µPa · s)
50 7.70 4.32 5.68
100 14.39 7.97 9.90
150 19.72 11.94 13.76
200 24.29 15.89 17.57
250 28.36 19.50 21.44
300 32.10 22.83 25.32

Table 2 Some experimental values of viscosity for a mixture of Neon and Argon at different
concentrations [18].

for a mixture of Neon and Argon. Some reference values of σ12 are obtained
by solving equation (36) in correspondence of the tabulated temperatures and
viscosities, and σ12 as function of a generic temperature T is deduced from a
linear least squares approximation of these values. Heat conductivity follows
consequently from equation (34).
For a mixture of Neon (first component) and Argon (second species), by means
of the procedure described above, we obtain the following approximation for
coefficients σij , i, j = 1, 2,

σ11 = 0.0117T + 5.8587

σ12 = 0.0084T + 8.7089

σ22 = 0.0050T + 11.6710 .

(37)

Figure 3 shows the trend of the shock thickness ∆ defined in (22) versus the
Mach number for the considered mixture. We can notice that also for this
binary mixture of monoatomic gases, the shock thickness rapidly decreases up
to a critical value of the Mach number M̂ ' 3.7; then ∆ increases from this
value on.
Finally, in Figure 4 we can notice also that the critical Mach number depends
on the chosen mixture and different choices of the concentrations lead to dif-
ferent critical Mach numbers. More precisely, the profile of the shock thickness
versus the Mach number is shown for

- mixture of Neon (50%) and Argon (50%); critical value for Mach number
M̂ ' 3.9 (see Panel (a));

- mixture of Krypton (50%) and Xenon (50%); critical value for Mach num-
ber M̂ ' 3.6 (see Panel (b));

- mixture of Neon (75%) and Argon (25%); critical value for Mach number
M̂ ' 4.3 (see Panel (c));

- mixture of Krypton (75%) and Xenon (25%); critical value for Mach num-
ber M̂ ' 3.5 (see Panel (d)).

5 Conclusions

We have investigated the thickness of shock structure solutions for varying
Mach number, when the fluid dynamic regime is modeled by a system of
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Navier-Stokes equations consistently derived from a BGK model.
For a single gas, we have compared different models of viscosity and shown
that in general the shock thickness is not monotonically decreasing for in-
creasing Mach number. However, such behavior cannot be detected when the
intermolecular potential of rigid spheres is considered.
We have shown, as already observed in experiments, the existence of a critical
Mach number at which the shock thickness changes its trend, and a minimum
shows up. We have noticed also that the value of such critical Mach number
is strictly related to the chosen gas and viscosity model, in accordance with
previous studies on shock thickness in single fluids.
The same analysis has been presented also for a binary mixture of monoatomic
gases. To our knowledge, this issue has not yet been addressed in the litera-
ture (only partial results at fixed Mach number can be found for instance in
[22–24]); here we take advantage also of the expression of viscosity coefficients
obtained consistently by Chapman-Enskog asymptotics starting from a BGK
model and fitted with real data. Our results show that also in the case of bi-
nary mixtures of noble gases the shock thickness is not strictly decreasing. As
already observed in single fluids, a proper threshold for Mach number can be
found for these mixtures and in correspondence of this value (depending on
the chosen gaseous components of the mixture) the profile of shock thickness
shows a minimum.
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