
10 March 2023

University of Parma Research Repository

A Predictive Technique for the Real-Time Trajectory Scaling under High-Order Constraints / GUARINO LO
BIANCO, Corrado; Faroni, Marco; Beschi, Manuel; Visioli, Antonio. - In: IEEE/ASME TRANSACTIONS ON
MECHATRONICS. - ISSN 1083-4435. - 27:1(2022), pp. 315-326. [10.1109/TMECH.2021.3063627]

Original

A Predictive Technique for the Real-Time Trajectory Scaling under High-Order Constraints

Publisher:

Published
DOI:10.1109/TMECH.2021.3063627

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2890624 since: 2022-02-18T09:01:34Z

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

1

A Predictive Technique for the Real-Time
Trajectory Scaling under High-Order Constraints

Corrado Guarino Lo Bianco∗, Marco Faroni, Manuel Beschi, and Antonio Visioli

Abstract—Modern robotic systems must be able to react to
unexpected environmental events. To this purpose, planning
techniques for the real-time generation/modification of trajec-
tories have been developed in recent times. In the frequent case
of applications which require following a predefined path, the
assigned timing law must be inspected in real time so as to verify
whether it satisfies the system constraints or, conversely, if it must
be scaled in order to obtain a feasible trajectory. The problem
has been addressed in several ways in the literature. One of the
known approaches, based on the use of nonlinear filters, is revised
in this paper in order to return feasible solutions under any
circumstances. Differently from alternative strategies, it manages
constraints up to the torque derivatives and has evaluation times
compatible with the ones required by modern control systems.
The proposed technique is validated through simulations and real
experiments. Comparisons are proposed with an algorithm based
on a model predictive technique and with an alternative scaling
system.

I. INTRODUCTION

Modern sensing devices equipping new robotic systems al-
low them to perceive the environment and react in real time to
unexpected situations. Such reaction capability has encouraged
developing algorithms for the real-time generation of trajec-
tories, characterized by computational times which must be
compatible with the sampling rates of discrete time controllers.
Typically, planned trajectories must be time optimal, although
almost-minimum-time solutions are often accepted because of
the real-time requirement. Obviously, generated trajectories
must take into account the physical limits of the system.

The first real-time trajectory planners for multi-axis robotic
systems appeared in relatively recent times [1]–[3]. These
early works devised a feasible point-to-point motion by taking
into account kinematic constraints on joint speeds, accelera-
tions, and jerks. Recent works reconsidered the problem to
take into account constraints up to the nth derivative of the
generated signal [4] or to consider arbitrary initial and final
interpolating conditions and asymmetric jerk bounds [5].

An alternative planning problem concerns the generation
of trajectories along assigned paths, by adopting the so-
called path-velocity decomposition [6]. This problem appears
when the application requires to strictly follow an assigned
path. Solutions provided in early works were all based on

∗Corresponding author
C. Guarino Lo Bianco is with the Dipartimento di Ingegneria

dell’Informazione, University of Parma, Italy, email: guarino@ce.unipr.it
M. Faroni is with the Istituto di Sistemi e Tecnologie Industriali Intelligenti

per il Manifatturiero Avanzato, National Research Council, Milan, Italy,
email:marco.faroni@stiima.cnr.it.

M. Beschi and A. Visioli are with the Dipartimento di Ingegneria Meccanica
e Industriale, University of Brescia, Brescia, Italy, email: {manuel.beschi,
antonio.visioli}@unibs.it.

concepts deriving from the Pontryagin Maximum Principle,
so that minimum-time trajectories were obtained via numerical
integration techniques. The first works considered trajectories
in the joint space subject to torque constraints [7]–[9]. In [10]
a similar technique was used to limit the maximum feeding
voltage of the joint motors, while in [11] the approach was
modified so as to manage torque-constrained problems. The
planner proposed in [12] was similarly able to limit the actua-
tors speeds and torques. The methodology was later extended
in [13] by smoothing the trajectory through the adoption
of continuous acceleration profiles. Recent techniques solve
the planning problem by means of nonlinear programming
techniques [14]–[16] Finally, few other works formulated
the constrained planning problem in the Cartesian space by
considering differential constraints on the robot Cartesian pose
[17] or on a quadrotor pose [18].

The above mentioned planning methods have computational
times in the order of 10−2 s or higher. Their real-time use
is limited to applications with moderate sampling rates or,
more commonly, for the generation of trajectories just before
the motion execution. Many applications require, however,
faster planning times. For example, modern robotic systems
require prompt reactions to environmental changes and human
behaviors: if a trajectory needs to be re-planned while the
system is moving, for example in order to avoid collisions
with other machines or human beings, the reaction time must
be very short and “almost real-time” techniques can not be
used in such a context. The problem can be handled by
generating on-the-fly a new collision-free path and a new
timing law, so as to stave off the dangerous situation in
minimum time. The available time does not allow preliminary
checks, so that the resulting trajectory may be unfeasible with
respect to the kinematics or the dynamics constraints and,
consequently, collisions may occur because the path tracking
is lost. Applications like this motivated the study of the so-
called online trajectory scaling problem. Trajectory scaling
consists in modifying the timing law while the trajectory is
being executed, in order to prevent saturation of the robot
physical limits. The technique proposed in this paper belongs
to this class of algorithms.

A. Related works

The trajectory scaling problem aims to scale the assigned
timing law to preserve the trajectory feasibility and to guar-
antee a good path tracking. The problem was originally
addressed in [19] for a manipulator subject to speed and torque
constraints. The problem is highly nonlinear and, according to
real-time requirements, it must be solved with computational

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

2

times dictated by the sampling rate of the system. The number
of solving techniques proposed in the literature is quite limited.

The large majority of existing methods uses the path-
velocity decomposition concept (rare exceptions can be found
in [20], [21]). These methods can be grouped in two families.
The first one acts at control level: a path-following controller
computes the robot joint commands based on the actual state
from the robot. Differently from path-tracking controller, these
techniques aims to minimize the deviation with respect to the
desired path by using the longitudinal velocity as an addi-
tional manipulated variable. Feedback controllers have been
proposed, for example, in [22], [23]. Model predictive control
techniques are now becoming popular; they are also referred
to as Model Predictive path-Following Control (MPFC) [24]–
[27]. Most MPFC strategies generate in real time a minimum-
time timing law for the system [24], [25]; few of them can be
used also to scale a preassigned timing law, like in the case
of the problem at hand [26], [27]. The solution is found by
means of nonlinear programming algorithms which generate
optimal feedback command signals.

The second family of methods modifies the assigned timing
law at planning level, by avoiding any interactions with the
control system. They can be used with any control structures
since they preserve the feasibility by acting on the reference
signal through the knowledge of the system model. Also
regarding this class of methods, both non-look-ahead [28]–
[30] and look-ahead methods [31], [32] have been proposed.

Control- and planning-based approaches have advantages
and disadvantages. As control-based approaches directly act
at control level, they can also partially compensate undesired
behaviors caused by parametric uncertainties. On the other
hand, they require ad-hoc controllers (a peculiarity that is gen-
erally undesired by developers of robotic systems, who prefer
solutions in which the motion control system and the planning
system are kept disjoint). Vice versa, the lack of an actual
feedback in planning-based approaches can cause constraint
violations because of parametric uncertainties and unforeseen
control actions. This is generally avoided by slightly down-
scaling the admissible bounds.

The technique proposed in this paper is based on a
widespread planning-based approach, also named Trajectory
Scaling System (TSS) [29], [33]. TSSs scale trajectories by
first converting a given set of constraints, assigned in the
joint space or in the Cartesian space, into equivalent bounds
on velocity, acceleration and, when possible, jerk of the
longitudinal timing law. If the equivalent limits are satisfied,
the original constraints are fulfilled as well. In other words, the
original multidimensional constrained problems is converted
into a scalar one. The trajectory feasibility is achieved by
scaling the timing law with the aid of nonlinear filters like the
ones proposed in [33], [34]. The filters – which are the core
of the system – are designed so as to generate feasible output
signals starting from references which may be potentially
unfeasible. Input and output signals coincide as long as the
former ones are feasible, otherwise the filter generates an
output that satisfies the constraints and is as close as possible
to the reference. The original signal is rejoined in minimum
time as soon as it meets the feasibility conditions again. The

earliest TSSs were able to manage velocity, acceleration, and
torque constraints in the joint space [33]. The scaling strategy
was later improved in [29] by introducing bounds on joint
jerks and torque derivatives.

The main drawback of all the TSSs proposed up to now
[29], [33] comes from the stringent assumption that path and
timing law were provided to the scaling system in real time.
As a consequence, the scaling system is not aware of the
future trend of reference signals. If such condition applies,
the feasibility of the generated references cannot be guaranteed
with certainty, despite heuristic techniques have been proposed
in order to mitigate the problem [35], [36].

B. Contribution

In this paper, the scaling approach presented in [29] is
revised in order to guarantee the convergence toward a feasible
solution. Differently from the TSSs proposed in previous
papers, this new technique inspects the assigned path for
a finite look-ahead horizon. The pre-inspection mechanism
is obtained by revising the strategy appeared in [34] and
ensures that the resulting scaled trajectory is feasible in any
circumstances.

The main advantage of the approach is that, differently from
the other known look-ahead strategies, it manages bounds
concerning the high order dynamics of the system. More
precisely, it simultaneously handles bounds on joint speeds,
accelerations, jerks, torques, and torque derivatives. This is
an important step ahead with respect to other approaches
proposed in the literature which manage bounds on the low-
order dynamics. For example, [31] addresses position, velocity,
and acceleration limits, while [27] considers velocity and
torque limits. This real-time achievement is possible because
of the low computational burden of the TSS.

The approach has been tested in simulation and through
experiments involving a Universal Robots UR10 manipulator.
Comparisons with the earlier versions of the TSS proposed
in [29], [33] have shown that the new strategy returns signif-
icantly better results. Furthermore, the paper also shows that
the TSS and the MPFC return comparable solutions, but the
shorter evaluation times of the TSS allow for managing an
increased number of constraints. The method effectiveness and
the usefulness of the additional bounds on torque derivatives
have been demonstrated in the accompanying video.

II. PRELIMINARY CONSIDERATIONS

Robotic manipulators are subject to kinematics and dy-
namics constraints, so that their trajectories should always
be planned by considering the presence of limits on joint
velocities q̇(t) ∈ RN , accelerations q̈(t) ∈ RN , and torques
τ (t) ∈ RN , where N indicates the number of joints. When
possible, also jerks

...
q(t) ∈ RN and torque derivatives τ̇ (t) ∈

RN should be bounded in order to generate smoother motions.
Analytically, the following equations must be satisfied

q̇ ≤ q̇(t) ≤ q̇ , (1)

q̈ ≤ q̈(t) ≤ q̈ , (2)
...
q ≤

...
q(t) ≤

...
q , (3)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

3

τ ≤ τ (t) ≤ τ , (4)
τ̇ ≤ τ̇ (t) ≤ τ̇ , (5)

where q̇, q̈, q̈, τ , τ̇ ∈ (R−)N and q̇, q̈, q̈, τ , τ̇ ∈ (R+)N

are lower and upper bounds on velocities, accelerations,
jerks, torques, and torque derivatives, respectively. Limits are
typically assumed constant, but they may actually change
depending on the operating conditions. In this paper, bounds
can be indifferently assumed constant or variable.

A trajectory q(t) in the configuration space can be defined
by specifying the joint paths through a function f(s) ∈ RN ,
where s ∈ [0, sf] is the curvilinear coordinate and sf is
the path length. In this paper, the first derivative of the
path with respect to the curvilinear coordinate is defined as
follows: f ′(s) := (df)/(ds). The third path derivative, i.e.,
f ′′′(s) := (d3f)/(ds3), is assumed piecewise continuous, so
that f(s), f ′(s), and f ′′(s) are continuous functions.

Path f(s) can be converted into a trajectory by specifying
a timing law s(t) for the curvilinear coordinate, so that joint
references can be expressed as follows

q(t) := f [s(t)] . (6)

Given such premises, and according to the differentiation
chain rule, first, second, and third time derivatives of trajecto-
ries can be respectively represented as follows

q̇(s, ṡ) = f ′(s)ṡ , (7)
q̈(s, ṡ, s̈) = f ′′(s)ṡ2 + f ′(s)s̈ , (8)

...
q(s, ṡ, s̈,

...
s) = f ′′′(s)ṡ3 + 3f ′′(s)ṡs̈+ f ′(s)

...
s . (9)

Joint torques can be evaluated through the inverse dynamics
function as follows

τ = D(q) q̈ + C(q, q̇)q̇ + g(q) + v(q, q̇) , (10)

where D(q) is the inertia matrix, C(q, q̇) is the matrix of
Coriolis and centripetal contributions, g(q) is the gravity
vector, and v(q, q̇) is the vector of the friction terms. Bearing
in mind (6)–(8), (10) can be rewritten as follows

τ (s, ṡ, s̈) = a1(s)s̈+ a2(s, ṡ) . (11)

where

a1(s) :=D̃(s)f ′(s) , (12)

a2(s, ṡ) :=D̃(s)f ′′(s)ṡ2 + c̃(s, ṡ)ṡ+ g̃(s) + ṽ(s, ṡ). (13)

Analogously, by differentiating (10) and by considering (6)–
(9), the torque derivative can be represented as follows

τ̇ (s, ṡ, s̈,
...
s) = a1(s)

...
s + a3(s, ṡ, s̈) , (14)

where a1(s) is given by (12) and

a3(s, ṡ, s̈) :=
˙̃
D(s, ṡ)[f ′′(s)ṡ2 + f ′(s)s̈]

+ D̃(s)[f ′′′(s)ṡ3 + 3f ′′(s)ṡs̈] ,

+ d̃(s, ṡ)ṡ+ 2c̃(s, ṡ)s̈+ l̃(s, ṡ)ṡ

+ ẽ(s, ṡ)s̈ , (15)

where d̃(s, ṡ)ṡ + 2c̃(s, ṡ)s̈ comes from the differentiation of
the Coriolis and centripetal terms, and l̃(s, ṡ)ṡ+ẽ(s, ṡ)s̈ comes
from the differentiation of the gravity and friction terms.

TABLE I
EXPRESSIONS USED FOR THE EVALUATION OF THE EQUIVALENT

LONGITUDINAL BOUNDS. DEPENDENCE ON s HAS BEEN DROPPED FOR
CONCISENESS.

f ′k > 0 f ′k < 0 f ′k = 0

ρk [
...
q k − f ′′′k ṡ3 − 3f ′′k ṡs̈]/f

′
k [

...
q
k
− f ′′′k ṡ3 − 3f ′′k ṡs̈]/f

′
k ∞

σk [
...
q
k
− f ′′′k ṡ3 − 3f ′′k ṡs̈]/f

′
k [

...
q k − f ′′′k ṡ3 − 3f ′′k ṡs̈]/f

′
k −∞

λk [q̈k − f ′′k ṡ
2]/f ′k [q̈

k
− f ′′k ṡ

2]/f ′k ∞
µk [q̈

k
− f ′′k ṡ

2]/f ′k [q̈k − f ′′k ṡ
2]/f ′k −∞

ηk q̇k/f
′
k q̇

k
/f ′k ∞

ζk q̇
k
/f ′k q̇k/f

′
k −∞

a1k > 0 a1k < 0 a1k = 0

γk [τ̇k − a3k(ṡ, s̈)]/a1k [τ̇k − a3k(ṡ, s̈)]/a1k ∞
δk [τ̇k − a3k(ṡ, s̈)]/a1k [τ̇k − a3k(ṡ, s̈)]/a1k −∞
αk [τk − a2k(ṡ)]/a1k [τk − a2k(ṡ)]/a1k ∞
βk [τk − a2k(ṡ)]/a1k [τk − a2k(ṡ)]/a1k −∞

As shown in [29], (7)–(9), (11), and (14) make it possible
to convert constraints (1)–(5) into the following equivalent
bounds on ṡ, s̈, and

...
s

R−(s) ≤ ṡ ≤ R+(s) , (16)
S−(s, ṡ) ≤ s̈ ≤ S+(s, ṡ) , (17)

U−(s, ṡ, s̈) ≤ ...
s ≤ U+(s, ṡ, s̈) . (18)

Practically, the dimension of the feasibility problem reduces,
since it only requires synthesizing an appropriate scalar trajec-
tory s(t). The equivalent bounds can be evaluated as follows
(see also [29])

R−(s) := max
k=1,...,N

{ζk}, R+(s) := min
k=1,...,N

{ηk}, (19)

S−(s) := max
k=1,...,N

{βk, µk}, S+(s) := min
k=1,...,N

{αk, λk},
(20)

U−(s) := max
k=1,...,N

{δk, σk}, U+(s) := min
k=1,...,N

{γk, ρk}.
(21)

The analytical expressions of the terms in (19)–(21) can be
found in Table I. Bounds ηk and ζk come from (1), λk and
µk come from (2), and ρk and σk come from (3). Analogously,
(4) leads to αk and βk, and (5) leads to γk and δk. It is worth
mentioning that, according to Table I, conditions ηk > 0 and
ζk < 0 are always satisfied so that, ∀s ∈ [0, sf], the following
expression holds with certainty

R−(s) < 0 < R+(s) .

The same assertion is generally not true for the acceleration
and the jerk bounds. For the planning problem considered in
this paper, the feasible set will be further limited in order
to avoid backward movements by replacing (16) with the
following expression

0 ≤ ṡ ≤ R+(s) . (22)

III. THE TRAJECTORY SCALING SYSTEM

In the working scenario considered in [29], paths f(s) and
timing laws s(t) were provided to the system in real time and
without any preliminary inspections, thus possibly leading to

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

4

unfeasibility issues. In order to avoid tracking problems, they
were handled at run-time by the TSS in order to make them
compatible with (1)–(5). In particular, the TSS was conceived
so as to properly scale down s(t) to preserve the feasibility,
while maintaining an accurate tracking of f(s). Such target
was achieved by means of the Third Order Nonlinear Filter
(TONF) proposed in [34], which is able to generate a new
feasible reference, as close as possible to the nominal one,
starting from a signal which is possibly unfeasible with respect
to (16)–(18). If the input signal newly becomes feasible, the
filter output reestablishes the tracking condition in minimum
time and without overshoots. The mentioned properties apply
when bounds on velocity, acceleration, and jerk are constant.
Unfortunately, as shown by the expressions in Table I, the
problem considered here admits bounds which depend on s,
ṡ, and s̈: depending on the system state, alternative bounds
are possible for the same value of s. Owing to the bounds
variability, scaling techniques which are not aware of the
upcoming references cannot preserve the feasibility with cer-
tainty. Indeed, as shown in [8], [9], [35], [36], the system
may enter regions from which it will certainly evolve toward
unfeasible configurations or, even worse, S+ and U+ may be-
come smaller than S− and U−, respectively, so that the space
of the feasible solutions may result empty (see, for example,
Fig. 5 in [37]). The knowledge of the upcoming reference
signals can be used to avoid such situations. In [35] and in
[36], issues deriving from variable bounds were managed by
means of heuristic techniques exploiting the knowledge of the
past system evolution. In this work, heuristic strategies are
replaced by a deterministic approach, which assumes that an
analytic representation of f(s) is provided at the beginning of
the motion. Conversely, the a-priori knowledge of s(t) is not
required, so that it may also be changed at run time. It is worth
mentioning that the manipulator starts moving immediately
after f(s) is assigned, i.e., the problem is completely handled
in real time through an algorithm whose computational burden
is compatible with the sampling period.

The main difference between the heuristic techniques early
proposed and the new deterministic one is that the latter al-
ways guarantees the generation of a scaled feasible trajectory,
independently from the working conditions.

A. Existence of a feasible solution to the trajectory scaling
problem

The following definitions and propositions are instrumental
for the comprehension of the scaling algorithm proposed in
Subsection III-B.

Definition 1: The admissible region is the set of points
S(s, ṡ, s̈) in the (s, ṡ, s̈)-space for which the following condi-
tions simultaneously hold

S−(s, ṡ) ≤ 0 ≤ S+(s, ṡ) , (23)
U−(s, ṡ, s̈) ≤ 0 ≤ U+(s, ṡ, s̈) , (24)

Practically, S(s, ṡ, s̈) is the volume in the (s, ṡ, s̈)-space
individuated by (17), (18), and (22).

The definition of admissible region here proposed is slightly
different from the one typically used for the management

s
.

s

inadmissible
region

S(s, s)
.

inadmissible
region

inadmissible
region

R
+(s)

inferiorly connected region

v

v(s)~

s(s)~
.

Fig. 1. The restricted admissible regions of S(s, ṡ) is obtained by subtracting
the inadmissible regions from the (s, ṡ)-space. The inferiorly connected subset
is the light blue area superiorly limited by R+(s) (the green dash-dotted line)
or by ˙̃s(s) (the magenta solid line). The dashed blue line highlights the upper
bound ṽ(s) of the inferiorly connected subset, while the dotted brown line
represents v.

of similar problems. For example in [9], for a acceleration-
bounded planning problem, the inequality to be satisfied was
S−(s, ṡ) ≤ S+(s, ṡ). Four different reasons motivated the
alternative definition used in this paper. Firstly, the TSS
generates feasible trajectories in real time and, to this purpose,
the use of S(s, ṡ, s̈) simplifies its convergence toward a
solution since it allows a larger number of possible com-
binations. Secondly, the nonlinear filter, which is the core
of the TSS, currently requires that R−, S−, U− ∈ R− and
R+, S+, U+ ∈ R+, even if such limit could be dropped by
means of techniques derived from [37]. Thirdly, the proposed
trajectory scaling algorithm explicitly requires that s̈ = 0 must
belong to the feasible set. Finally, as already pointed out, upper
and lower bounds on acceleration and jerk may invert, so that
it is always better to maintain a reasonable gap between them.

In Subection III-B, it will be shown that the TSS exploits
trajectories in which s̈ = 0. To this purpose, let us introduce
the concept of restricted admissible region:

Definition 2: Assume s̈ = 0. The restricted admissible
region is the set of points S(s, ṡ) in the (s, ṡ)-space for which
the following conditions

S−(s, ṡ) ≤ 0 ≤ S+(s, ṡ) , (25)
U−(s, ṡ, 0) ≤ 0 ≤ U+(s, ṡ, 0) , (26)

simultaneously hold.
Definition 3: S(s, ṡ) is inferiorly connected if ṽ(s) >

0,∀s ∈ (0, sf), where ṽ(s) is defined as follows

ṽ(s) := min
{
R+(s), ˙̃s(s)

}
, (27)

and where ˙̃s(s) is the maximum value of ṡ for which pair
{s, [0, ṡ]} belongs to S(s, ṡ).

Definition 3 can be immediately understood with the aid
of Figure 1, which shows a possible shape for S(s, ṡ) and
for the inferiorly connected region. As already proven in
[8], admissible regions may show very complex shapes with
unfeasible islands, tunnels, disjointed sections. This is even
more true for the problem considered in this paper, since
additional constraints on jerk have been added.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

5

The scaling technique proposed in this paper requires infe-
riorly connected admissible regions. Fortunately, the following
proposition applies:

Proposition 1: S(s, ṡ) is inferiorly connected when bounds
on velocity, acceleration, and jerk are defined according to
(19)–(21) and the system dynamics is given by (11) and (14).
Proof – For the sake of conciseness, the proof will assume that
f ′k(s) > 0 and a1k(s) > 0 but, with a similar reasoning, the
results can be extended to the other cases. The proposition can
be proved by demonstrating that all the points in the (s, ṡ)-
space, which admit values of ṡ sufficiently close to 0, certainly
belong to S(s, ṡ). In turn, this implies that S(s, ṡ) is inferiorly
connected. For all the equations reported in the following it
will be assumed that k = 1, 2, . . . , N and s is any points
belonging to [0, sf].

By denoting with dfk(s) the elements of vector D̃(s)f ′′(s)
and by using the same notation for the elements of c̃(s, ṡ),
g̃(s), and ṽ(s, ṡ), each component of (13) can be written as
follows

a2k(s, ṡ) = dfk(s)ṡ
2 + ck(s, ṡ)ṡ+ gk(s) + vk(s, ṡ) . (28)

Since dfk(s) and ck(s, ṡ) are always finite, a positive constant
Kk can be found such that the following equation applies ∀s ∈
[0, sf] and for sufficiently small values of ṡ > 0∣∣dfk(s)ṡ2 + ck(s, ṡ)ṡ

∣∣ ≤ Kkṡ . (29)

From Table I, and from (28) and (29), it follows that

αk(s, ṡ) a1k(s) = τk − a2k(s, ṡ)
≥ τk − gk(s)− vk(s, ṡ)−Kkṡ (30)

βk(s, ṡ) a1k(s) = τk − a2k(s, ṡ)
≤ τk − gk(s)− vk(s, ṡ) +Kkṡ (31)

Since the manipulator motors are always selected so as to
generate torques which surely compensate both gravity and
friction effects, the following expression holds

τk < gk(s) + vk(s, ṡ) < τk ,

and, consequently, the following definitions apply

σ(s, ṡ) := τk − gk(s)− vk(s, ṡ) > 0 , (32)
σ(s, ṡ) := τk − gk(s)− vk(s, ṡ) < 0 . (33)

By substituting (32) and (33) in (30) and (31), respectively,
and by choosing sufficiently small values for ṡ, the following
conditions are satisfied

αk(s, ṡ)a1k(s) ≥ σk(s, ṡ)−Kkṡ > 0 ,

βk(s, ṡ)a1k(s) ≤ σk(s, ṡ) +Kkṡ < 0 .

Since a1k(s) was assumed positive, then αk(s, ṡ) > 0 and
βk(s, ṡ) < 0. In the same way, from Table I it immediately
descends that for sufficiently small values of ṡ, conditions
λk > 0 and µk < 0 are satisfied. As a consequence, by virtue
of (20), (25) always holds for sufficiently small values of ṡ.

By recalling that s̈ = 0 and since all functions which appear
in (15) are finite ∀s ∈ [0, sf], it can be asserted that, for ṡ→ 0,
there exists K̂ > 0 such that

|a3k(s, ṡ, 0)| < K̂ṡ . (34)

Table I makes it possible to write

γk(s, ṡ, 0)a1k(s) = τ̇k − a3k(s, ṡ, 0) ≥ τ̇k − K̂ṡ , (35)

δk(s, ṡ, 0)a1k(s) = τ̇k − a3k(s, ṡ, 0) ≤ τ̇k + K̂ṡ , (36)

which immediately leads to γk(s, ṡ, 0) > 0 and δk(s, ṡ, 0) < 0
for ṡ→ 0. Since Table I also shows that when ṡ→ 0, ρk > 0
and σk < 0, (21) implies that (26) is satisfied. �

Remark 1: Practically, Proposition 1 asserts that, if motor
torques are sufficient for compensating gravity and friction
terms, S(s, ṡ) is always inferiorly connected. This in turn
implies, as shown in next Subection III-B, that a solution for
the scaling problem can be found.

Proposition 2: By assuming that v is the minimum value of
ṽ(s) for s ∈ [0, sf], i.e.,

v := min
s∈[0,sf]

{ṽ(s)} , (37)

any trajectories admitting a constant speed ṡ is certainly
feasible ∀s ∈ [0, sf] if the following condition holds:

0 < ṡ ≤ v.

Proof – The following inequality necessarily holds ∀s ∈
[0, sf]: ṡ ≤ v ≤ ṽ(s) ≤ R+(s), so that (16) is satisfied. In the
same way, ∀s ∈ [0, sf], it can be asserted that ṡ ≤ v ∈ S(s, ṡ),
so that (25) and (26) apply. In turn, this implies that (it is worth
recalling that ṡ is constant, so that s̈ =

...
s = 0) acceleration and

jerk satisfy (17) and (18), respectively, so that the trajectory
is feasible. �

Definition 4: The Escape Speed Function (ESF) is the twice
differentiable velocity function ṡ(t) which is found by solving
the following optimization problem

min{tf} (38)

subject to the acceleration and the jerk constraints, i.e., to (17)
and (18), and to the following boundary conditions

ṡ(0) = ṡ0 , s̈(0) = s̈0 , ṡ(tf) = vl , s̈(tf) = 0 ,

where tf is the total traveling time. The exact structure of
function ṡ(t) has not been specified, since it is not relevant for
the discussion. Potentially, any twice differentiable function
can be used. For such reason, the problem optimizer has not
been specified in (38).

The ESF is a minimum-time time trajectory starting from a
generic initial velocity, ṡ0, and acceleration, s̈0, and ending
with final speed vl and null acceleration. As the ESF is
twice differentiable, the associated jerk is, at least, piecewise
continuous. It is important to point out that, depending on ṡ0,
on s̈0, and on constraints (17) and (18), the solution set of the
optimization problem may be empty.

B. Look-ahead trajectory scaling algorithm

The trajectory scaling problem always admits the straight-
forward solution shown in Figure 2. It is found by first
imposing vl < v, in order to guarantee that the central part of
the velocity function is feasible, being contained in S(s, ṡ).
For the initial and final transients, the expressions in Table I
can be used to individuate the maximum values that s̈(t) and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

6

Algorithm 1: Solution of the trajectory scaling prob-
lem
Data: qlim := [q̇, q̇, q̈, q̈,

...
q,

...
q, τ , τ , τ̇ , τ̇]T , assigned

bounds; si := [si ṡi s̈i]
T , current filter state;

s∗i := [s∗i , ṡ
∗
i , s̈
∗
i]

T , reference signal for the
curvilinear coordinate.

Result: sk, scaled trajectory.
1 do
2 (̃si+1, F1)← TONF Update(si, s∗i , f(s), qlim);
3 F2 ← SolveESF(̃si+1, vl, qlim);
4 if !F1 | !F2 then
5 s̃i+1 ← SingleStepESF(si, vl, qlim);

6 si+1 ← s̃i+1;
7 F1, F2 ← 0
8 while si < sf ;

s
.

s

feasible

ference

Fig. 2. The magenta curve represents a feasible, but inefficient, solution to
the scaling problem.

...
s (t) can assume so as to satisfy (16)–(18). Roughly speaking,
the feasibility is achieved by means of sufficiently smooth
initial and final transients.

Unfortunately such solution shows two problems: it is
evidently inefficient, because vl may be small, and it totally
neglects the user-defined timing law ṡ∗. The discrete-time
approach proposed hereafter has been conceived to overcome
both problems.

In the remainder of this Section, subscript i identifies the
sampling instants, so that:
• s∗i := [s∗i , ṡ

∗
i , s̈
∗
i]

T is the reference trajectory at time t =
iTs, where Ts is the sampling rate;

• s̃i := [s̃i, ˙̃si, ¨̃si]
T is the output of a TONF system [34];

• ŝi := [ŝi, ˙̂si, ¨̂si]
T indicates the first sample of the ESF

solution;
• si := [si, ṡi, s̈i]

T is the scaled trajectory, i.e., the output
of Algorithm 1.

The trajectory scaling problem admits multiple solutions.
Algorithm 1 proposes one of them, trying to keep it as close
as possible to the assigned reference signal. In particular,
at each sampling time, Algorithm 1 can only return one of
the following two different outputs: si = ŝi+1, evaluated by
solving the ESF, or si = s̃i+1, evaluated with the TONF.

Figure 3 can help to understand how such selection is
made. For simplicity, trajectories in Figure 3 are considered
feasible when they lie below R+(s). Furthermore, v coincides
with the minimum of R+(s). These simplifications have been
introduced for presentation reasons, but the real algorithm
actually checks that (17), (18), and (22) are simultaneously

fulfilled, so that the solution feasibility also depends on the
acceleration and the jerk bounds.

Assume that at time i the ESF solution is feasible: it will
soon be shown that such condition is always satisfied. Thus,
starting from si, it is possible to reach vl through a feasible
trajectory. The resulting composite profile – see the dashed
green curve followed by the constant vl segment in Figure 3a
– is a possible alternative solution for the scaling problem.
It is faster than the one proposed in Figure 2, but it is still
inefficient.

Alternatively, starting again from si, a new output s̃i+1

can be obtained by means of the TONF Update function
(see line 2 of Algorithm 1). The inputs of such function are
given by si, s∗i , f(s), and qlim (i.e., a vector that contains
the bounds associated to (1)–(5)). Flag F1 = 1 indicates
that the corresponding transient is feasible. Then, function
SolveESF evaluates a new solution of the ESF problem starting
from s̃i+1 (see line 3 of Algorithm 1). If such solution is
feasible, SolveESF returns F2 = 1. If F1 = F2 = 1 then
the combination TONF+ESF (blue segments in Figure 3),
is feasible and represents a further solution to the scaling
problem. Such solution is better than the previous one – it is
faster and it allows tracking the reference signal – so that the
system output will be assigned as follows: si+1 = s̃i+1 (see
line 6 of Algorithm 1). It is important to notice that the solution
of the ESF problem at time i + 1 (dashed blue line) will be
necessarily feasible. This implies that two possible solutions
will be potentially available at time i+1: the first one, based
on the ESF solution found at time i, is certainly feasible, the
second one, based on a new combination TONF+ESF, is more
efficient, but can be unfeasible. In the latter case – for example,
the red transient in Figure 3a – one of the two flags, F1 or
F2, will be zero: the next state is evaluated by SingleStepEFS
(see line 5 of Algorithm 1), which returns the first step of the
ESF transient found at time i. Practically, the reference signal
is abandoned in order to preserve the feasibility.

Figure 3b shows a possible further evolution of the system.
In particular, it highlights that the system lingers on the dotted
blue trajectory until a better alternative is found. At time i+4
the sequence TONF + ESF returns a feasible combination, so
that si+5 coincides with the TONF output. The system evolves
according to such scheme until it safely reaches sf .

Remark 2: As shown in Figure 3b, under normal operating
conditions, velocity vl is never reached, since Algorithm 1 nat-
urally generates profiles which are as close as possible to s∗.
For such reason, the actual algorithm has been implemented
by imposing vl = 0. Such choice, which makes unnecessary
to evaluate the actual value of v, may be risky only if v is
very close to 0 and if the sampling rate is too wide, since
the system could actually stop. This is clearly a degenerate
situation since, v close to 0 implies that the acceleration and
jerk bounds almost overlap despite the system is moving very
slowly. This situation only occurs if the motor torques cannot
compensate the friction and the gravity terms.

Remark 3: The ESF can be solved with the aid of a nonlinear
programming algorithm but, alternatively, very similar results
can be obtained by means of the second order nonlinear
filter proposed in [33], i.e., the precursor of the TONF. The

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

7

s
.

s

l

s
.

s

Fig. 3. A typical trajectory generated by means of Algorithm 1. (a) At time
i + 1 the TONF proposes evolving toward s̃i+2 (solid red line), but the
subsequent transient obtained by solving the ESF is unfeasible (dashed red
line): the TONF transient is discarded and the system evolves toward ŝi+2.
(b) A complete transient: unfeasible combinations TONF + ESF (red curves)
are always discarded in favor of feasible transients. The final scaled trajectory
is highlighted by means of black dots.

advantage of such filter is that it has negligible computational
times, a very important characteristic for an online technique.
The filter, which generates minimum-time position trajectories
subject to bounds on velocity and acceleration, has been
conversely used in this paper for the generation of velocity
transients admitting bounds on acceleration and jerk. Such
result is achieved by assigning an initial state ṡ(0) = ṡ0
and s̈(0) = s̈0 to the filter, and by subsequently imposing
an input reference signal equal to ṡ(t) = vl and s̈(t) = 0. It
is worth remarking that, due to the variability of bounds (20)
and (21), the resulting transients may be unfeasible. This is
not a problem since, according to Algorithm 1, the information
provided by SolveESF is a flag which simply points out if a
feasible solution toward vl has been found or not. If such
solution is not available, the system evolves along the feasible
trajectory found during previous iteration.

Remark 4: A similar technique was proposed in [37] for a
scaling problem considering bounded velocities, accelerations
and torques and a piecewise continuous longitudinal acceler-
ation. It was based on a finite horizon pre-inspection of the
trajectory. It is interesting to notice that the reasoning used in
this work to prove the existence of a solution also applies
to the strategy used in [37]. Such result can be achieved
by expanding the inspection horizon used in that work. In
particular, since in [37] the acceleration can be discontinuous,
the ESF can be obtained by imposing s̈i+1 equal to S−i until vl
is almost reached. The “safe” speed profile, i.e., vl, is reached
through a final step admitting acceleration s̈i+1 = (vl− ṡi)/T .
Conversely, in this paper accelerations must be continuous, so
that the ESF must be found by solving, at each sampling time,
a continuous-acceleration velocity planning problem.

IV. RESULTS AND DISCUSSION

The TSS has been validated by means of simulations and
experimental tests. Subsections IV-A describes the setup of
the tests, Subsection IV-B and IV-C show simulation and
experimental results, respectively.

A. Setup

The tests consider a Universal Robots UR10, version 3.5,
manipulator, a six-link anthropomorphic system. The manipu-
lator constraints have been obtained by slightly downgrading
the ones suggested by the robot company. The following limits
have been used for velocities, accelerations, and torques

q̇ = −q̇ = [2 2 3 3 3 3]T rad s−1,

q̈ = −q̈ = [5 5 10 10 10 10]T rad s−2,

τ = −τ = [200 200 100 50 50 50]TNm.

The following bounds have been added when the scaling
method makes it possible:

...
q = −...

q = [50 100 100 100 100 100]T rad s−3, (39)

τ̇ = −τ̇ = [700 700 700 50 20 10]TNm s−1. (40)

The outputs of the scaling methods are the reference signals
for the robot controller, which is based on a cascade archi-
tecture: its outer loop is a position controller with sampling
period equal to 8 · 10−3 s while the inner loop is a velocity
controller with sampling period equal to 10−3 s. The outer
position loop, together with the scaling algorithms, runs in
ROS (Robot Operating System) Kinetic on an external PC
(operating system Ubuntu 16.04) communicating with the
robot via a TCP connection. The position controller is given by
a proportional gain plus a feedforward velocity term derived
from the reference signal. In the real setup, the inner loop is
built-in in the robot control system, so that its actual structure
is unknown. In the simulations, the inner loop was imple-
mented as a PI controller with inverse dynamics decoupling.

The path used in the tests, parametrized as function of s ∈
[0, 1], is expressed as follows:

qd = qstart + Ω sin(ωs) , (41)

where qstart = [0,−2, 0, 0, 0, 0.5]T rad, while different con-
figurations were chosen for Ω and ω, so as to generate two
different test cases (all terms are expressed in radians):
• Case A: Ω = [0.3 0.6 0.7 0.65 0.75 0.8]T , ω = 2π,
• Case B: Ω = −[0.3 0.6 0.7 0.65 0.75 0.8]T , ω = 3π.
Nominal timing law s∗(t), i.e., the timing law which is used

for the generation of the possibly unfeasible reference, was
obtained by considering a bang-zero-bang, piecewise-constant
jerk signal, so that the corresponding acceleration signal is
characterized by continuous trapezoidal profiles. Rest-to-rest
transients have been achieved by imposing initial and final
velocities and accelerations equal to zero. A proper choice
of upper and lower bounds on ṡ∗(t), s̈∗(t) and

...
s ∗(t) allows

trajectories with different traveling times. Depending on the
chosen limits, trajectories qd[s

∗(t)] may be unfeasible.

B. Simulation results

A comparison with different scaling methods is proposed.
First of all, two versions of the predictive TSS have been
implemented. The first one handles bounds on joint velocities,
accelerations, and torques and will be referred as Acceleration
bounded TSS (A-TSS). The second one can also manage jerk
and torque derivative constraints, so that it is synthetically

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

8

TABLE II
CHARACTERISTICS OF THE TESTED SCALING SYSTEMS. THE FIRST

COLUMNS INDICATE WHICH CONSTRAINTS ARE CONSIDERED, THE LAST
ONE POINTS OUT PREDICTIVE SYSTEMS.

Vel. Acc. Jerk Torque Torque deriv. Pred.

A-TSS X X X X
J-TSS X X X X X X

NJ-TSS X X X X X
MPFC X X X X

indicated as Jerk bounded TSS (J-TSS). The performance of
both TSSs has been compared with the ones obtained with
the sole alternative methods proposed in the literature: the
Non-predictive Jerk bounded TSS (NJ-TSS) proposed in [29],
which is the precursor of the novel scaling system and admits
a zero look-ahead horizon, and the strategy recently proposed
in [26], [27], which uses a Model Predictive path-Following
Control (MPFC) and, conversely, allows path pre-inspections.
Similarly to [27], the MPFC has been implemented in ACADO
[38] with the following settings: the predictive horizon is
equal to 50 sampling periods, inputs are parametrized as
staircase functions whose intervals are five times larger than
the sampling period, and the problem is solved by means
of a single-shooting SQP solver with maximum number of
iterations equal to one. The problem in [27] minimizes the
weighted sum of the squared norm of the path-following error,
the deviation from the assigned timing law, and the control
efforts (joint torques and second derivative of the timing law).
Weights are respectively set to 108, 105, 0.5, and 10−7. The
characteristics of all systems are summarized in Table II.

Comparisons are shown in Tables IIIa and IIIb. They mainly
concern path tracking errors, which are defined as follows

e(iTs) := min
s∈[0,1]

‖q(iTs)− qd(s)‖2 , (42)

where q(iTs) is the vector of the joint variables sampled at
time iTs. Each column of both tables refers to a different
trajectory, individuated through its nominal traveling time
(tnom), i.e., the desired transient time. Both tables propose
comparisons between the four alternative methods in terms of
maximum (emax) and mean (emean) path tracking errors. The
last four rows compare the approaches in terms of traveling
times. More precisely, they show the ratios between the
traveling times of nominal (tnom) and scaled (tsc) trajectories:
the closer the result to 1, the better. As expected, the non-
predictive technique of the NJ-TSS is outperformed by all the
other methods: the heuristic strategy used for the avoidance
of possible feasibility issues activates also in non critical
situations, so that transient times are inevitably longer and the
robot controller is solicited by frequent timing law changes.
Conversely, a direct comparison between the A-TSS and the
MPFC – which adopt, as shown in Table II, the same con-
straints – reveals that the first generally returns slightly faster
transients, at the cost of slightly higher tracking errors. The J-
TSS, which additionally bounds jerks and torque derivatives,
shows similar scaling factors: despite the higher number of
constraints, transient times are generally shorter than the
MPFC ones. In conclusion, a deeper analysis of the results
in Tables IIIa and IIIb highlights that differences between the

TABLE III
PATH TRACKING ERRORS AND SCALING FACTORS, OBTAINED THROUGH

SIMULATIONS. VALUES ASSOCIATED TO MAXIMUM ERRORS (emax) MUST
BE MULTIPLIED BY 10−3 , WHILE AVERAGE ERRORS (emean) MUST BE

MULTIPLIED BY 10−4 .

tnom [s]
5.0 4.0 3.5 3.0 2.5 2.0

emax

[rad]

A-TSS 0.53 1.39 2.71 3.76 3.84 5.65
J-TSS 0.53 1.39 1.97 2.47 2.46 5.52

NJ-TSS 12.0 16.4 17.5 18.5 18.8 19.8
MPFC 0.52 1.78 2.26 2.53 3.14 4.03

emean

[rad]

A-TSS 0.66 2.09 4.07 7.16 8.15 10.7
J-TSS 0.66 1.93 3.40 4.17 4.85 6.02

NJ-TSS 4.16 11.4 11.0 11.1 12.4 14.2
MPFC 0.59 1.92 3.20 5.06 5.67 5.69

tnom/tsc

A-TSS 0.99 0.99 0.99 0.97 0.84 0.69
J-TSS 0.99 0.99 0.99 0.92 0.80 0.65
NJTSS 0.99 0.99 0.93 0.83 0.69 0.56
MPFC 1.00 1.00 0.98 0.92 0.79 0.60

(a) Case A

tnom [s]
9.0 7.0 5.5 4.0 2.5

emax

[rad]

A-TSS 0.64 4.21 5.08 7.44 7.80
J-TSS 0.64 2.46 2.43 2.85 2.95
NJ-TSS 16.8 17.6 18.7 18.6 19.3
MPFC 0.48 1.33 1.89 2.77 3.87

emean

[rad]

A-TSS 0.37 2.20 5.57 8.03 9.16
J-TSS 0.37 1.49 3.04 3.75 4.20
NJ-TSS 12.8 17.5 18.9 20.1 21.0
MPFC 0.33 1.10 2.67 5.34 4.19

tnom/tsc

A-TSS 1.00 0.99 0.99 0.86 0.57
J-TSS 1.00 0.99 0.99 0.80 0.52
NJ-TSS 1.00 0.94 0.77 0.59 0.38
MPFC 1.00 1.00 0.97 0.84 0.47

(b) Case B

three predictive techniques are minimal in terms of tracking
errors and scaling factors, while worse performances have
been detected for the NJ-TSS. As shown in Subection IV-C,
different conclusions can be drawn in terms of computational
efficiency.

A relevant property of the scaling technique proposed in
this work is represented by its capability to recover delays
accumulated to preserve the feasibility. Figure 4 shows the
trends of s(t) and s∗(t) for all the experiments of Case B.
More precisely, solid blue lines represent the assigned nominal
references, while dashed green lines indicate the corresponding
scaled signals provided by the J-TSS. The 9-second-long
trajectory does not violate the assigned bounds, so that output
and input of the J-TSS coincide, i.e., the trajectory is not
scaled. On the contrary, for transients of length 2.5 and 4 s,
the feasibility is preserved by scaling s∗(t). The 5.5 s and
the 7 s transients show the aforementioned behavior: the
nominal reference is left for feasibility reasons but, as soon
as critical points are passed, the system accelerates to recover
the reference signal (see the red ovals).

Figures 5 and 6 still refer to Case B and to a nominal
transient time tnom = 2.5 s. Figure 5 shows the scaled
longitudinal timing law and its derivatives, while Figure 6

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

9

tnom = 2.5 s

tnom = 5.5 s

tnom = 7.0 s

tnom = 9.0 s

tnom = 4.0 s

0 2 4 6 8 10(s)
0

0.2

0.4

0.6

0.8

1.0

s

s

*

Fig. 4. Comparison between nominal reference signal s∗(t) and the output of
the scaling system, i.e. s(t), for Case B of the torque derivative constrained
problem. The red ovals highlight situations in which s(t) initially abandons
and, then, rejoins s∗(t). s∗(t) exactly tracks s(t) when this latter is feasible.

0 1 2 3 4 5

0 1 2 3 4

0

0.8

0.4

0

0.8

-0.8

0

8

-8

(s)

(s)

s
 (

m
 s

-2
)

..

a b

s
 (

m
 s

-1
)

.

s
 (

m
 s

-3
)

..
.

b

ba

R
+

R
+

S
+

S
+

S
-

S
-

U
+

U
-

Fig. 5. Scaled longitudinal reference signals (solid blue lines) obtained for
Case B and a nominal transient time tnom = 2.5 s. (a) figures refer to the
A-TSS, while (b) figures refer to the J-TSS. Dashed red lines indicate the
equivalent longitudinal bounds, while dotted black lines refer to the nominal,
unfeasible reference. According to Table I, the equivalent bounds instantly
depend on the state of motion, so that the A-TSS and the J-TSS limits are
different. The J-TSS transients are evidently smoother.

shows the resulting reference signals for the second joint of the
robot, i.e., the most solicited one. In both figures, (a) indicates
the scaled profiles generated by the A-TSS, while (b) indicates
the J-TSS profiles. Figure 5 points out that, as desired, the
scaling system prevents the problems highlighted in [35], [37],
so that conditions (23) and (24) are both satisfied and a
feasible solution to the scaling problem is found. Both figures
also highlight that the J-TSS output signals are evidently
much smoother and, consequently, they less stress the sys-
tem mechanics. Despite minor violations occasionally occur,
constraints are generally satisfied. Violations are largely due
to the wide sampling period imposed by the communication
between PC and controller: faster sampling rates would reduce
amplitude and frequency of the violations.

C. Experimental results
The implementation of the scaling techniques on the actual

control system required to take into account for the evalu-
ation times of the algorithms. In [27] the MPFC showed a
computational time close to 0.5 ms for a 3-dof robot. In that
paper, acceleration constraints were not considered and the
dynamic model of the robot was simplified, so as to neglect
gravity terms and to consider a continuous Coulomb friction.
Conversely, this work considers a 6-dof robot and accounts

0 1 2 3 4 5

0 1 2 3 4

0

4

-4

0

2

-2

0

200

-200

0

600

-600

(s)

(s)

q
2
 (

ra
d

 s
-1

)
.

q
2
 (

ra
d

 s
-2

)
..

t
2
 (

N
m

s-1
)

.

t
2
 (

N
m

)

b

a

b

b

b

a

a

Fig. 6. Reference signals for the second joint, obtained (a) with the A-TSS
and (b) with the J-TSS for Case B and a nominal transient time tnom = 2.5 s.
Assigned bounds are satisfied, but minor violations occur because of the long
sample time of the control system. Transients of the J-TSS are evidently
smoother.

for the full dynamics of the system, including its friction
discontinuities. The complexity of the optimal control problem
associated to the MPFC exponentially grows depending on
the number of joints and constraints. Some preliminary tests
revealed that, owing to the higher complexity of the problem at
hand and to the computational capabilities of the experimental
set-up, the MPFC computational time was incompatible with
the sampling rate of the robot controller. For such reason, the
results proposed in the following will only concern the TSS
approaches. However, the simulations of Subection IV-B have
proved that, in terms of tracking errors and ratio tnom/tsc, the
A-TSS and the MPFC algorithms are substantially equivalent,
so that similar experimental outcomes are expected.

A pre-inspection technique like the one proposed in Sub-
section III-B is exhaustive and it guarantees with certainty
the generation of feasible profiles; however, it shows variable
evaluation times - as the look-ahead horizon is not constant.
Under realistic operating conditions, the look-ahead inspection
can be stopped before vl is reached and a constant time-
horizon can be used for all the trajectories. For the problem at
hand, good performances were achieved for the A-TSS by
adopting a time horizon of 7 sampling instants, while for
the J-TSS the horizon had to be increased to 10 intervals.
Such values were obtained by repeating the simulations of
Subsection IV-B for progressively shorter horizons and by
simultaneously checking that performances were not affected
by the changes.

The evaluation times statistics of the 3 algorithms are
summarized in Tab IV. The tests were performed on a Intel i7-
6700HQ @2.60GHz CPU with a single-core implementation.
In all the cases, peak times are compatible with the sampling
period of the system (i.e., 8 · 10−3 s). The non-predictive
system shows the lowest computational burden, since the look-
ahead inspection is missing. The higher computational times

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

10

TABLE IV
MEAN, STANDARD DEVIATION, AND MAXIMUM EVALUATION TIMES.

mean [s] std [s] max [s]

A-TSS 4.28 · 10−4 3.92 · 10−4 2.62 · 10−3

J-TSS 6.63 · 10−4 3.11 · 10−4 5.17 · 10−3

NJ-TSS 7.80 · 10−5 9.78 · 10−5 2.32 · 10−3

of the J-TSS with respect to the A-TSS are partially due to the
increased look-ahead horizon but, above all, to the evaluation
of the torque derivatives.

The experimental results are summarized in Table Va for
Case A and in Table Vb for Case B. Due to the model
uncertainties, detected errors are clearly larger than simulated
ones, but all trajectories have been correctly executed by the
robot. Conversely, without the aid of scaling systems, the
trajectories relative to tnom = 3, 2.5, 2 s for Case A and the
ones relative to tnom = 5.5, 4, 2.5 s for Case B can not be
executed because they are too demanding and, consequently,
the manipulator controller enters an emergency status.

Another detail must be pointed out. All the three TSSs do
not scale the slowest trajectories – see for example tnom = 5 s
for Case A and tnom = 9 s for Case B – since they are feasible
with respect to the constraints. It can be consequently asserted
that measured tracking errors only depend on the performance
of the feedback control system. It is interesting to notice that
path tracking errors for the fa stest trajectories of the test set
remain at comparable levels, thus proving the effectiveness of
the approach: error increments are only caused by the faster
dynamics of the reference signals.

Tables Va and Vb point out that errors produced by the
NJ-TSS are less dependent on the nominal time-length of the
trajectories. In particular, for the fastest transients, errors are
more limited than the ones detected for the other two methods,
i.e., apparently the non-predictive technique returns better
solutions. The reason of such behavior can be easily explained.
The NJ-TSS trajectories are scaled more heavily than the ones
generated by the other algorithms – see Tables IIIa and IIIb –
so that the controller is less solicited and tracking errors are
consequently smaller. For the same reason, the J-TSS generally
produces slightly smaller errors than the A-TSS.

The multimedia attachment shows the execution of the
two most demanding trajectories for Case A and Case B,
respectively. In the video, a trajectory generated by the A-
TSS is immediately followed by the corresponding J-TSS
one. The robot base was deliberately left unfixed with respect
to the ground: system vibrations induced by the motion
are highlighted through a water-filled bottle. The increased
motion smoothness achieved by bounding torque derivatives
is evident: the A-TSS trajectories are only slightly faster (see
the values of tnom/tsc reported in Table IIIa and Table IIIb),
but vibrations produced by the J-TSS are evidently lower.

V. CONCLUSIONS

The method proposed in this work modifies the trajectory
timing laws to make them feasible with respect to the given
kinematics and dynamics constraints and, consequently, to
guarantee an accurate path tracking. Compared to existing

TABLE V
MAX AND MEAN PATH TRACKING ERRORS EXPERIMENTALLY MEASURED.

ALL VALUES MUST BE MULTIPLIED BY 10−3 .

tnom [s]
5.0 4.0 3.5 3.0 2.5 2.0

emax

[rad]

A-TSS 14.5 24.3 26.1 36.0 32.4 36.0
J-TSS 14.8 25.4 32.2 33.4 34.2 33.7

NJ-TSS 13.6 19.8 21.0 19.1 19.9 22.1

emean

[rad]

A-TSS 0.73 1.12 1.39 1.89 1.86 2.21
J-TSS 0.69 0.65 1.45 1.78 1.92 2.02

NJ-TSS 0.75 1.25 1.28 1.63 1.72 2.03

(a) Case A

tnom [s]
9.0 7.0 5.5 4.0 2.5

emax

[rad]

A-TSS 9.72 17.9 25.2 34.2 36.1
J-TSS 10.9 16.7 32.8 32.0 32.7

NJ-TSS 12.9 14.1 19.8 20.1 23.3

emean

[rad]

A-TSS 0.47 0.85 1.49 1.86 2.32
J-TSS 0.53 0.81 1.51 1.67 1.89

NJ-TSS 0.82 1.01 1.17 1.24 1.56

(b) Case B

strategies, the proposed approach guarantees the feasibility
of the trajectory in any circumstances. Differently from al-
ternative strategies, the proposed approach is able to take
into account high-order constraints (namely, jerk and torque
derivative bounds) in real time thanks to the use of an
efficient nonlinear filter. Simulations and experiments have
demonstrated that predictive strategies provide better perfor-
mance than approaches based on causal data. In particular, the
proposed algorithm modifies the assigned timing law less than
non-look ahead techniques. Moreover, high-order constraints
evidently improve the smoothness of the resulting motion.

It is worth noticing that, when tested on a real system, all
methods gave comparable path-following errors because of the
uncertainties of the system model and the consequent non-
ideal behavior of the real controller. Choosing either a look-
ahead or a non-look-ahead technique is therefore also a matter
of computational capabilities of the available hardware. Lim-
ited hardware capabilities would impose using the NJ-TSS,
as its evaluation times are, at least, one order of magnitude
smaller. Alternatively, the A-TSS or J-TSS should be chosen
to guarantee the aforementioned advantages.

REFERENCES

[1] X. Broquère, D. Sidobre, and I. Herrera-Aguilar, “Soft motion trajectory
planner for service manipulator robot,” in IEEE/RSJ Int. Conf. Intell.
Robots and Syst., (IROS08), 2008, pp. 2808–2813.

[2] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of timeopti-
mal, jerk-limited trajectories,” in IEEE/RSJ Int. Conf. Intell. Robots and
Syst., (IROS08), 2008, pp. 3248–3253.

[3] T. Kröger and F. M. Wahl, “On-line trajectory generation: basic concepts
for instantaneous reactions to unforeseen events,” IEEE Trans. Robot.,
vol. 26, no. 1, pp. 94–111, Feb. 2010.

[4] B. Ezair, T. Tassa, and Z. Shiller, “Planning high order trajectories
with general initial and final conditions and asymmetric bounds,” Int. J.
Robot. Res., vol. 33, no. 6, pp. 898–916, 2014.

[5] D. Sidobre and K. Desormeaux, “Smooth Cubic Polynomial Trajectories
for Human-Robot Interactions,” J. of Intell. & Robot. Sys., Oct 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3063627, IEEE/ASME
Transactions on Mechatronics

11

[6] K. Kant and S. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–89,
1986.

[7] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” J Dyn
Sys Meas Control, vol. 106, no. 1, pp. 102–106, 1984.

[8] K. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Trans. Autom.
Control, vol. 30, no. 6, pp. 531–541, Jun. 1985.

[9] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of
robotics manipulators along specified paths,” Int. J. Robot. Res., vol. 4,
no. 3, pp. 3–17, 1985.

[10] M. Tarkiainen and Z. Shiller, “Time optimal motions of manipulators
with actuator dynamics,” in IEEE Int. Conf. Robot. and Autom., ICRA93,
May 1993, pp. 725–730 vol.2.

[11] Q.-C. Pham, “A General, Fast, and Robust Implementation of the Time-
Optimal Path Parameterization Algorithm,” IEEE Trans. on Rob., vol. 30,
no. 6, pp. 1533–1540, Dec 2014.

[12] P. Shen, X. Zhang, and Y. Fang, “Complete and time-optimal path-
constrained trajectory planning with torque and velocity constraints:
theory and applications,” IEEE/ASME Trans. on Mech., vol. 23, no. 2,
pp. 735–746, April 2018.

[13] P. Shen, X. Zhang, Y. Fang, and M. Yuan, “Real-time acceleration-
continuous path-constrained trajectory planning with built-in tradeoff
between cruise and time-optimal motions,” IEEE Trans. Autom. Sci. and
Eng., vol. 17, no. 4, pp. 1911–1924, 2020.

[14] A. K. Singh and K. M. Krishna, “A class of non-linear time scaling
functions for smooth time optimal control along specified paths,” in
IEEE/RSJ Int. Conf. on Intell. Rob. and Sys., Sep. 2015, pp. 5809–5816.

[15] H. Pham and Q. Pham, “Time-optimal path tracking via reachability
analysis,” in IEEE Int. Conf. on Robot. and Autom. (ICRA), May 2018,
pp. 3007–3012.

[16] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Trans. on Autom. Contr., vol. 54, pp. 2318–2327, 2009.

[17] J. Kim and E. A. Croft, “Online near time-optimal trajectory planning
for industrial robots,” Rob. and Comp.-Int. Manuf., vol. 58, pp. 158–171,
2019.

[18] X. Zhang, Y. Fang, X. Zhang, P. Shen, J. Jiang, and X. Chen, “Attitude-
constrained time-optimal trajectory planning for rotorcrafts: Theory and
application to visual servoing,” IEEE/ASME Trans. on Mech., 2020.

[19] O. Dahl and L. Nielsen, “Torque-limited path following by online
trajectory time scaling,” IEEE Trans. Robot. Autom., vol. 6, no. 5, pp.
554–561, 1990.

[20] F. Lange and M. Suppa, “Trajectory generation for immediate path-
accurate jerk-limited stopping of industrial robots,” in IEEE Int. Conf.
Robot. and Autom., ICRA15, May 2015, pp. 2021–2026.

[21] F. Lange and A. Albu-Schäffer, “Iterative path-accurate trajectory gen-
eration for fast sensor-based motion of robot arms,” Advanced Robotics,
vol. 30, no. 21, pp. 1380–1394, 2016.

[22] B. Olofsson and L. Nielsen, “Path-tracking velocity control for robot
manipulators with actuator constraints,” Mechatronics, vol. 45, pp. 82–
99, 2017.

[23] Y.-S. Lu and Y.-Y. Lin, “Smooth motion control of rigid robotic manipu-
lators with constraints on high-order kinematic variables,” Mechatronics,
vol. 49, pp. 11–25, 2018.

[24] M. Böck and A. Kugi, “Real-time Nonlinear Model Predictive Path-
Following Control of a Laboratory Tower Crane,” IEEE Trans. Control
Syst. Technol., vol. 22, no. 4, pp. 1461–1473, July 2014.

[25] N. van Duijkeren, R. Verschueren, G. Pipeleers, M. Diehl, and J. Sw-
evers, “Path-following NMPC for serial-link robot manipulators using
a path-parametric system reformulation,” in Proc. of the Europ. Contr.
Conf., Aalborg (Denmark), 2016, pp. 477–482.

[26] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Control
for Constrained Output Path Following,” IEEE Trans. on Autom. Contr.,
vol. 61, no. 4, pp. 1026–1039, April 2016.

[27] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of Nonlinear Model Predictive Path-Following Control for an Industrial
Robot,” IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1505–
1511, July 2017.

[28] G. Antonelli, S. Chiaverini, and G. Fusco, “A new on-line algorithm
for inverse kinematics of robot manipulators ensuring path tracking
capability under joint limits,” IEEE Trans Robot Automat, vol. 19, no. 1,
pp. 162–167, Feb. 2003.

[29] C. Guarino Lo Bianco and O. Gerelli, “Online trajectory scaling for
manipulators subject to high-order kinematic and dynamic constraints,”
IEEE Trans. on Rob., vol. 27, no. 6, pp. 1144–1152, Dec. 2011.

[30] F. Flacco, A. De Luca, and O. Khatib, “Control of redundant robots
under hard joint constraints: Saturation in the null space,” IEEE Trans.
Rob., vol. 31, pp. 637–654, 2015.

[31] M. Faroni, M. Beschi, N. Pedrocchi, and A. Visioli, “Predictive inverse
kinematics for redundant manipulators with task scaling and kinematic
constraints,” IEEE Trans. on Rob., vol. 35, no. 1, pp. 278–285, Feb 2019.

[32] M. Faroni, M. Beschi, C. Guarino Lo Bianco, and A. Visioli, “Predictive
joint trajectory scaling for manipulators with kinodynamic constraints,”
Contr. Engin. Pract., vol. 95, p. 104264, 2020.

[33] C. Guarino Lo Bianco and F. Wahl, “A novel second order filter for
the real-time trajectory scaling,” in IEEE Int. Conf. Robot. and Autom.,
(ICRA11), Shanghai, China, May 2011, pp. 5813–5818.

[34] C. Guarino Lo Bianco and F. Ghilardelli, “A discrete-time filter for the
generation of signals with asymmetric and variable bounds on velocity,
acceleration, and jerk,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp.
4115–4125, Aug 2014.

[35] ——, “Techniques to preserve the stability of a trajectory scaling
algorithm,” in IEEE Int. Conf. on Rob. and Autom. (ICRA2013), 2013,
pp. 870–876.

[36] ——, “A scaling algorithm for the generation of jerk-limited trajectories
in the operational space,” Robot. and Comput.-Integr. Manuf., vol. 44,
pp. 284 – 295, 2017.

[37] M. Yuan, Z. Chen, B. Yao, and J. Hu, “An improved online trajectory
planner with stability-guaranteed critical test curve algorithm for gen-
eralized parametric constraints,” IEEE/ASME Trans. on Mech., vol. 23,
no. 5, pp. 2459–2469, Oct 2018.

[38] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, pp. 298–312, 2011.

Corrado Guarino Lo Bianco graduated with hon-
ors in Electronic Engineering and received the Ph.D.
degree in Control System Engineering from the
University of Bologna, Italy, in 1989 and 1994,
respectively. Currently, he is with the Dipartimento
di Ingegneria dell’Informazione of the University of
Parma as Associate Professor on Industrial Robotics.
He is involved in researches concerning mobile and
industrial robotics.

Marco Faroni received his Bachelor’s and Master’s
degrees in Industrial Automation Engineering from
the University of Brescia in 2013 and 2015, respec-
tively. He received the Ph.D. degree in Mechani-
cal and Industrial Engineering at the University of
Brescia in 2019. He is currently a researcher at the
Italian National Research Council at the Institute of
Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA).

Manuel Beschi received his Bachelor’s and Master’s
degrees in Industrial Automation Engineering from
the University of Brescia in 2008 and 2010, respec-
tively. In 2014, he received the Ph.D. degree in Com-
puter Science, Engineering and Control Systems
technologies at the Department of Mechanical and
Industrial Engineering, University of Brescia. He is
currently an assistant professor at the University of
Brescia, Italy.

Antonio Visioli received the Laurea degree in elec-
tronic engineering from the University of Parma and
the Ph.D. degree in applied mechanics from the
University of Brescia in 1995 and 1999, respectively.
He is currently a full professor of control systems
at the Department of Mechanical and Industrial
Engineering, University of Brescia.

