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Abstract: In this study, we further develop the processing of ground-based interferometric radar
measurements for the application of bridge monitoring. Applying ground-based radar in such
complex setups or long measurement durations requires advanced processing steps to receive accu-
rate measurements. These steps involve removing external influences from the measurement and
evaluating the measurement uncertainty during processing. External influences include disturbances
caused by objects moving through the signal, static clutter from additional scatterers, and changes
in atmospheric properties. After removing these influences, the line-of-sight displacement vectors,
measured by multiple ground-based radars, are decomposed into three-dimensional displacement
components. The advanced processing steps are applied exemplarily on measurements with two
sensors at a prestressed concrete bridge near Coburg (Germany). The external influences are success-
fully removed, and two components of the three-dimensional displacement vector are determined.
A measurement uncertainty of less than 0.1 mm is achieved for the discussed application.

Keywords: ground-based interferometric radar; remote measurement; structural health monitor-
ing (SHM); three-dimensional displacement; multiple radar sensors

1. Introduction

Critical transport infrastructures like bridges require a periodic assessment of their
condition to ensure safe operation. One part of the assessment is monitoring the bridges’
behaviour over time, since changes in this behaviour can indicate damages or deteriorations
in the building structure. Depending on the type of load, the monitoring differs with
respect to the observed bridge properties. The monitoring of static loads focuses on
the displacement of the bridge caused by a known weight. With dynamic loads, the
induced weight is generally unknown, since the measurements occur under the regular
operation of the bridge. The observed properties are usually displacement or frequency
parameters of the decaying vibration after a load on the bridge deck. These parameters
are highly dependent on external influences, such as the induced force or the structure’s
temperature [1]. Thus, a large number of measurements in different load and weather
situations have to be made to receive a reliable estimate of the properties of the bridge.

Traditionally, strain gauges, accelerometers, and other directly contacting sensors are
used to monitor the dynamic properties. Since these sensors are mounted directly on the
bridge underside, their application can be complicated or even impossible, depending
on the bridge’s construction. The installation can also interfere with the regular bridge
operation and have a significant setup time (e.g., [2]). In recent years, remote sensing
techniques such as ground-based interferometric radar (GBR) have become more common
for infrastructure monitoring. GBR is able to measure the displacements of several points
with precision in the sub-millimetre range at a sampling frequency of up to 200 Hz [3].
Contactless measurement is achieved by using naturally reflective features at the bridge
underside, such as corners or edges, for the reflection of the GBR signal. This measurement
type reduces setup time, and the regular operation of the bridge is not disturbed.
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1.1. Related Work to Infrastructure Monitoring with GBR

GBR can operate in real or synthetic aperture mode. Real aperture mode enables the
previously mentioned dynamic displacement monitoring of several points in a structure.
It is successfully applied to the monitoring of different infrastructures such as wind tur-
bines [4], buildings [5], towers [6], and bridges [7]. Synthetic aperture mode, by contrast,
has a very low sampling frequency, since the sensor head moves along a linear rail or
rotates in the horizontal plane. This movement enables an additional azimuth resolution
of the observed scene and is used for landslide monitoring [8–10], static load tests of
bridges [11], or monitoring of large structures such as dams [12,13] or walls [14]. Besides
GBR, other remote sensing techniques are applied in the context of bridge monitoring. For
example, terrestrial laser-scanning monitors static [15] and dynamic displacements [16]. It
offers high spatial resolution but has lower precision compared to GBR. Alternatively, total
stations achieve higher accuracy than terrestrial laser scanning but are limited to pointwise
measurement [17].

Remote sensing techniques generally require yhr consideration of external and sensor-
specific influences on the measurement. One typical external influence to GBR is the change
in atmospheric properties. Several approaches for removal of the introduced atmospheric
phase are already used for terrain [18–20] or dam monitoring [13]. They can also be
applied in bridge monitoring [21]. Unwanted reflections from static clutter can cause
further influence on the measurement. The resulting systematic deviation can be estimated
and removed [20,22]. Since the GBR always measures displacements in the line of sight
(LOS), a projection to a Cartesian coordinate system has to be applied. The components
of the displacement vector can be determined with multiple simultaneous measurements
from different positions, as discussed by Li et al. [23]. Monti-Guarnieri et al. [24] apply the
principle in a laboratory setting with two GBRs. Instead of deploying more than one sensor,
Miccinesi and Pieraccini [25] use a monostatic/bistatic approach to monitor the three-
dimensional displacement vector of a bridge. In a different approach, two components of
the displacement vector are determined with a multiple input, multiple output (MIMO)
GBR [26]. The principle is also implemented in the synthetic aperture mode [27].

GBR’s most significant advantage over other remote sensing techniques is its high
precision. The precision is evaluated in laboratory environments [3,28]. Additionally,
comparisons to other sensors such as accelerometers [15], terrestrial laser scanners [29],
and displacement transducers [30] are performed.

1.2. Objective and Contributions

Our study is motivated by the processing of GBR displacement measurements, es-
pecially in the context of complex measurement setups. Complex setups can entail, for
example, the use of multiple GBRs or longer measurement durations over several hours.
These setups require advanced processing steps that are not usually applied during con-
ventional GBR processing. They are, however, necessary to receive comparable results to
the traditionally used sensors. We expand the conventional processing in three main ways:

• Removal of external influences such as disturbances to the signal, static clutter, and
changes in atmospheric properties;

• Projection of the displacement vectors measured in LOS by multiple GBR to a Carte-
sian coordinate system;

• Assessment of the measurement uncertainty.

At first, we discuss the conventional GBR processing, as it is already applied for dif-
ferent monitoring tasks. We then expand this processing, with detection and removal
algorithms for external influences to the GBR signal. There are three types of influ-
ence to consider. At first, disturbances to the displacement measurements caused by
objects passing through the signal are detected and removed. Afterwards, a systematic
influence from unwanted reflections is estimated. We modify the principle described in
Rödelsperger et al. [20] or Coppi et al. [22] to achieve a more robust estimation, which is
especially relevant for long measurement durations over several hours. The third type of
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external influence is changes in the atmospheric properties, which can severely affect the
displacement measurements. To remove these effects, we discuss two approaches, known
from the context of ground-based interferometric synthetic aperture radar [18,20], which
are applied during the measurement. We also propose a third approach that handles the
removal in a post-processing step.

As the GBR always measures displacements in LOS, a projection to a Cartesian coor-
dinate system is needed. The projection is expanded from the one-dimensional approach
in the conventional GBR processing to a generalised three-dimensional approach with
multiple GBRs [23].

Usually, assessments of GBR’s accuracy are only given in the context of laboratory
setups or as comparisons with other sensors. Therefore, we aim to improve the estimation
of measurement uncertainty by considering the influence from the applied processing
steps. In particular, we consider the uncertainty propagation from the three-dimensional
projection. Finally, an application of the GBR processing is shown at a measurement
campaign of a pre-stressed concrete bridge.

2. Methodology
2.1. Fundamentals of GBR

Commercially available GBRs, like IBIS-FS (IDS, Pisa, Italy), are frequency-modulated
continuous-wave radars in the Ku-band. By modulating the frequency, the GBR is able to
discriminate individual targets by their range. The bandwidth of the frequency modulation
determines the minimum distance between two targets, called the range resolution. IBIS-FS
achieves a range resolution of 0.75 m with a bandwidth of 200 MHz [3]. The displacement of
a target within a range-resolution cell is determined by measuring the phase differences in
the received signal between consecutive timepoints. In the context of bridge monitoring, the
GBR is angled at a bridge underside, as shown in Figure 1, which enables the simultaneous
measurement of multiple targets. The targets can only be discriminated by their range,
since the GBR has no cross-range resolution.

GBR

Bridge

Δd

Δdp

Figure 1. Horizontal view of the measurement principle of GBRs at a bridge underside with LOS-
displacement ∆d and projected displacement ∆dp.

Processing of the raw measurements is needed to receive comparable displacement
measurements between different range cells and measurement setups. The GBR measures
the in-phase and quadrature components (IQ) of the received signal in the time-frequency
domain (see Figure 2). With an Inverse Discrete Fourier Transform (IDFT), these com-
ponents are transformed to the time-range domain. The amplitude and wrapped inter-
ferometric phase are calculated by the absolute and the argument of the transformed IQ
components. The wrapped phase has values in the interval [−π, π], leading to jumps
when the interval is exceeded. Unwrapping the phase removes these jumps by adding or
subtracting 2π when the difference between consecutive samples is greater than π. The
displacement ∆d in the LOS of the GBR

∆d =
λ

4π
· ϕuw (1)
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results from the unwrapped phase ϕuw and the GBR wavelength λ. The displacement
measured in LOS is usually projected to the vertical axis in bridge monitoring. The projected
displacement ∆dp

∆dp =
R
h
·∆d (2)

depends on the vertical distance h of the GBR to the bridge and the distance R to the target.
Finally, we can estimate the measurement uncertainty from the signal to noise ratio (SNR)
of the amplitude. The SNR results from the amplitude variation [22]

SNR =
m2

a
2σ2

a
(3)

where ma is the mean and σa is the standard deviation of the amplitude. An estimate of the
displacement uncertainty is then achieved by [20]

σ∆d =
λ

4π
· 1√

2 SNR
(4)

The described conventional GBR processing is sufficient for most monitoring sit-
uations, where the measurement duration is short, and the setup of the instrument is
uncomplicated.

IQ
(time-

frequency)

IQ
(time-
range)

Amplitude

Phase

SNR

∆d Projection

IDFT

unwrap

Figure 2. GBR processing of complex raw measurements to projected displacements.

However, longer monitoring durations exacerbate the effects of external influences on
the GBR signal. Additionally, complex measurement setups, as described in Section 3.1,
introduce further external influences, which require advanced processing steps for the
detection and removal of these effects.

2.2. Overview of Advanced Processing Steps

As shown in Figure 3, the proposed advanced processing steps extend the conventional
GBR processing in several ways. Starting with the LOS displacements, the first step is
detecting and removing disturbances caused by objects moving through the GBR signal.
The removal of the two main types of disturbance, phase jumps and broadband noise, is
discussed in Section 2.3. The next step removes clutter from static targets in the same range
cells as the monitored bridge targets. The underlying principle of estimating the static
clutter is explained, for example, by Rödelsperger et al. [20] or Coppi et al. [22]. We propose
a modified circle fit algorithm in Section 2.4 to mitigate the influence of long measurement
durations over several hours on the estimation.

∆d Disturbance
detection

Clutter
removal

Atmospheric
correction

Projection

Uncertainty
estimation

Figure 3. Advanced GBR processing of LOS-displacements.

With long durations, the influences of changes in the atmospheric properties should
also be considered. To correct these influences, two approaches are discussed in the
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context of ground-based InSAR [18]. The approaches rely on determining the atmospheric
influences with additional sensors or a stable reference target. Section 2.5 discusses their
implementation for GBR and an alternative post-processing approach.

Finally, the processed LOS-displacements are projected to a Cartesian coordinate system
with a generalised approach, proposed in Li et al. [23] and Monti-Guarnieri et al. [24]. With
the application of additional GBRs, the components of the three-dimensional displacement
vector can be separated. The projection and its influence on measurement uncertainty
depending on the GBR setup is discussed in Section 2.6.

2.3. Removal of Disturbances

Most of the following GBR processing steps are based on the assumption that the
measurements only contain undisturbed bridge displacements. Any disturbances in the
GBR signal have to be removed beforehand, in order to not influence the subsequent pro-
cessing steps. The most common cause of a disturbance is a person, vehicle, or other object
passing through the signal at the same range as the target. The GBR cannot distinguish this
passing object from the actual measurement target if they are in the same range cell, since
the GBR has no cross-range resolution. The passing object is usually moving quickly and is
non-deterministic, which leads to broadband noise being superimposed on the phase and
amplitude time series. Additionally, a jump in the unwrapped phase time series can occur.
Removal of the disturbances changes the variance of the amplitude time series. Therefore
the SNR and measurement uncertainty have to be estimated again after the removal.

2.3.1. Phase Jumps

In the detection and removal steps, we separate the disturbances with phase jumps
from the disturbances without jumps. Phase jumps are usually caused by a phase unwrap-
ping error. As mentioned in Section 2.1, the unwrapping process removes jumps caused by
exceeding the phase interval. A value of 2π is added or subtracted if the phase difference
between consecutive samples is greater than π. A disturbance can also cause a difference
greater than π without exceeding the phase interval. This is then falsely corrected with
2π during unwrapping, resulting in a jump. The jumps are detected by looking for rapid
changes in the unwrapped phase, applying a median filter window, and differencing the
resulting values once. Jumps are easily identified by a threshold calculated as a multiple
of the standard deviation of the differenced median values. It is important to choose a
suitable window length for the median filter. The window length should not be greater
than the time between two jumps, as this could mask the individual jumps. Simultaneously,
a shorter window can introduce too much noise to the median values. False positives occur
if the window length approaches the duration of a vehicle passage.

2.3.2. Broadband Noise

Disturbances without phase jumps can generally be characterised as broadband noise.
Typically, the frequency range for displacements of bridges or other large structures is very
low. Therefore, a high-pass filter with a cut-off frequency of around 15 Hz eliminates the
mostly deterministic components in the low-frequency range. Thus, only sensor noise and
the broadband disturbances remain. As the sensor noise can usually be characterised as
white noise and is smaller than the noise caused by the disturbances, a threshold is used
to detect the disturbances. Ideally, the threshold would be determined as a multiple of
the sensor noise standard deviation. However, since the calculation of the standard devia-
tion includes the disturbances, the threshold value is likely too high and false negatives
occur. Therefore, the removal of the disturbances is implemented as an iterative process.
Every iteration recalculates the standard deviation, thus reducing the threshold until it
converges. The final threshold value determines the smallest detectable disturbance for a
given standard deviation.
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2.4. Clutter Removal

The measurement can be influenced by unwanted targets in the same range cell as the
measurement target, since the GBR always measures the sum of the complex IQ compo-
nents. This clutter can be removed if it results from static targets that have a systematic
influence on the measurement [20,22]. The effect is best shown in a phasor plot of the com-
plex signal (see Figure 4). A moving target’s phasor plot shows a circular arc with a radius
R corresponding to the signal amplitude and a central angle ϕ corresponding to the signal
phase. Static clutter increases the signal amplitude but has no effect on the phase. Therefore
it adds a systematic deviation to the origin of the arc, and the phase and amplitude of
the moving target are over- or underestimated with ϕ̂ and R̂. Since the measurement
uncertainty is dependent on the mean value of the amplitude, it is over- or underestimated
as well. In the following Section 2.4.1, we propose a combination of two circle fit algorithms
already used in various other disciplines to estimate the true origin (xm, ym) of the arc. The
combination of two algorithms is necessary because bridge displacements usually do not
produce a full circle, only a circular arc with a small central angle. The proposed combined
approach estimates the origin more reliably. Section 2.4.2 addresses further challenges in
circle estimation. For example, we introduce a weight matrix to compensate for an uneven
distribution of datapoints, resulting in a more reliable estimation.

(xm, ym)

Real

Im
ag

R
R

Figure 4. Phasor plot of the circular arc of a moving target with radius R and central angle ϕ

superimposed with a static target. The static target adds a systematic deviation to the origin (xm, ym)

of the circular arc.

2.4.1. Circle Fit Algorithms

Most of the commonly applied circle fitting algorithms use the least squares ap-
proaches to determine the circle parameters. The non-linear circle equation

F(L, X) = (x− xm)
2 + (y− ym)

2 − R2 = 0 (5)

is a function of the measured values L = (x, y) and the model parameters X = (xm, ym, R)
of the circle. Least squares minimises the error distances between the measured values and
the parameters. The approaches differ with respect to the type of error distances that are
minimised. In an algebraic fit, the error distances are derived from an implicit equation [31].
As this equation is linear, the fit is easy to compute but only delivers an approximation
of the circle parameters. Alternatively, a geometric fit defines the error distances as the
orthogonal distances from the measured values to the model [32]. The circle parameters are
updated iteratively with a linearisation of the non-linear equations. Since the linearisation
depends on approximate values for the first iteration, we combine both approaches.
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First the algebraic fit determines approximate values for the circle parameters. We
introduce a substitution in Equation (5)

x2 + y2 = 2 x xm + 2 y ym − x2
m − y2

m + R2 (6)

z = a · x + b · y + c (7)

In this substitution, the measured values x and y are treated as constants, so that
the function is linear and only depends on the substitute parameters a, b, and c, which
are estimated in linear least squares. The origin and radius of the circle result from a
resubstitution of these parameters.

In a second step, the geometric fit uses these approximate values to iteratively calculate
the final circle parameters. The orthogonal distances are defined as the residuals e between
the radii r of the measured values and the circle radius R (see Figure 5):

e = R− r (8)

As proposed in Niemeier [33], the radii of the points

r =
√
(x− xm)2 + (y− ym)2 (9)

are treated as measured values in Equation (8). This means that the function to be min-
imised is only dependent on the parameters. As the function is non-linear, the equations
have to be linearised at the approximate values X0 = (x0

m, y0
m, r0) of the parameters

∂e
∂xm

∣∣∣∣
X0

=
x− x0

m
r0 (10)

∂e
∂ym

∣∣∣∣
X0

=
y− y0

m
r0 (11)

∂e
∂R

∣∣∣∣
X0

= 1 (12)

The measured values are reduced by the approximate circle radius R0

l = r− R0 (13)

With the Jacobi-matrix A containing the partial derivatives from Equations (10) to (12),
the least squares is set up

l + e = A ·∆X (14)

The solution ∆X is updated iteratively with the approximate parameters X0, until
it converges.

R
ri

ei
Pi (xi, yi)

(xm, ym)

Figure 5. The orthogonal distances ei are defined as the residuals between the radii ri of the points Pi

and the circle radius R.
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2.4.2. Challenges in Circle Estimation

The estimation of a circle or circular arc depends on several factors. Most importantly,
it is influenced by the central angle of the arc. The approximate radius from the algebraic
fit is underestimated with a decreasing angle, which usually leads to the geometric fit
converging to a local minimum. Consequently, the estimated origin deviates from the true
origin, which induces a systematic deviation in the resulting displacement measurement.

Another important influence is disturbances that are not detected by the proposed
algorithms in Section 2.3. The broadband noise superimposed on the complex radar signal
acts as outliers to the circle estimation, resulting in a poor fit. Remaining disturbances or
other kinds of outliers can be handled in an outlier detection or with a robust modification
of the circle estimation.

The distribution of the datapoints within the circular arc can also have an influence on
the estimation. Generally, most datapoints are concentrated around the (arbitrarily defined)
zero phase, especially for low frequencies of vehicle passages. This leads to a poor fit at the
outer points of the arc, because the circle radius is over- or underestimated. We can reduce
this effect by introducing a weight matrix P in Equation (14) of the geometric fit

l + e = A · P ·∆X (15)

The diagonal of the weight matrix contains the phase value for every datapoint so
that the outer points are weighted higher than the points near zero phase.

2.5. Atmospheric Influence

Changes in the atmospheric refractive index can have severe effects on microwave
measurements. The microwave propagation delay leads to an additive term in the interfer-
ometric phase measurement [18]. This additive term is the atmospheric phase

ϕatmo =
4π

λ
· R∆n (16)

which is dependent on the distance R to the target and the change in the refractive index
∆n. A correction of the atmospheric phase is especially important for longer measurement
durations and can be achieved with different methods. One approach is to calculate
the refractive index with empiric formulas and measured atmospheric properties; most
importantly, humidity and temperature [34]. For this, the atmospheric properties need to
be mostly homogenous on the whole measurement path, which can only be reasonably
assumed for distances under a couple of hundred metres.

A second approach uses a stable measurement target for the correction of the atmo-
spheric phase. If the displacement of this target is zero, the measured phase can be wholly
attributed to changes in the atmospheric properties (and sensor noise) [20]. The phase of
this stable target then reduces the other target’s phase. To keep the influence of noise and
the inhomogeneity of the atmosphere low, the stable target should have an SNR that is
equal to or higher than the other targets, and should be in close proximity to them.

We propose a third approach, which relies on post-processing of the displacement
measurements. This can be applied if certain conditions are met: the traffic intensity is low,
so that, in a given time frame, the duration of vehicle passages is shorter than the duration
of no passages. Additionally, the duration of a vehicle passage should only be a few
seconds. Assuming the atmospheric properties are only changing slowly, the atmospheric
phase can be removed by subtracting a moving median of the displacement measurements.
With a window length of 15 s to 60 s, the long-wave atmospheric phase is removed without
influencing the measurements of the vehicle passages.

2.6. Three-Dimensional Projection

Since the GBR always measures displacements in LOS, a projection to a Cartesian co-
ordinate system is needed to generate comparable results between different measurement
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setups. Additionally, the measurements in LOS may contain displacement components
from more than one bridge axis. In general, bridges have the highest displacement ampli-
tude in the vertical axis. Displacements in the direction of the transversal or longitudinal
axis are smaller, but can still influence the measurement in the vertical axis depending on
the setup [11]. By using more than one GBR simultaneously, it is possible to separate the
displacement components for different axes.

2.6.1. Principle

The projection uses the principle described by Li et al. [23] and Monti-Guarnieri et al. [24],
who define a transformation of displacements measured in LOS to a three-dimensional
displacement vector in a Cartesian coordinate system. Figure 6 shows the geometry of
the measurement setup with the GBR coordinates Pi = [xi, yi, zi] and the initial target
coordinates P0

T =
[
x0

T , y0
T , z0

T
]
. The target is displaced by the three-dimensional vector

∆PT = [∆xT , ∆yT , ∆zT ] to the new coordinates PT = [xT , yT , zT ]. This displacement is
measured indirectly by the GBRs with the LOS-displacements ∆d. To derive a projection
from ∆d to ∆PT , we define the distance

di =
√
(xi − x0

T)
2 + (yi − y0

T)
2 + (zi − z0

T)
2 (17)

between the i-th GBR (i = 1 . . . 3) and the target. Since the target displacements are
differential, we can linearise the distances d = [d1, d2, d3] at the initial target coordinates P0

T

d(PT) ≈ d(P0
T) +

∂d
∂PT

∣∣∣∣
PT=P0

T

· (PT − P0
T) (18)

d(PT)− d(P0
T) =

∂d
∂PT

∣∣∣∣
PT=P0

T

·∆PT (19)

The difference between the distances are the LOS-displacements ∆d. With the Jacobi-
matrix A composed by the partial derivatives, we can write the projection as

∆d = A ·∆PT (20)

The target displacements in the Cartesian coordinate system result from inverting the
Jacobi-matrix

∆PT = A−1 ·∆d (21)

When using only two GBR, we have to make the assumption that the displacement in
one coordinate axis is zero. The corresponding line and column to this axis is then excluded
from the Jacobi-matrix, and the inversion is possible.

GBR 1 (x1, y1, z1)

GBR 2 (x2, y2, z2)

d1+Δd1

GBR 3 (x3, y3, z3)

d3+Δd3

d2+Δd2

d2

d1

d3

PT (xT, yT, zT)

PT (xT, yT, zT)0 0 0 0

ΔPT

Figure 6. Schema of GBR and target geometry for the transformation of LOS-displacements ∆d to
displacements in a Cartesian coordinate system ∆p.
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2.6.2. Variance Propagation

There are two components to consider when evaluating the influence of the projec-
tion on measurement uncertainty. One component is the propagation of the uncertainty
depending on the GBR and target geometry; the other component is the uncertainty of the
geometry measurement itself. First, the measurement uncertainty σ of all GBRs

Σ∆d = σ∆d · I (22)

is propagated with the Jacobi-matrix A, resulting in the projected measurement uncertainty

Σ∆p = A−1 · Σ∆d · A−1T
(23)

To account for the uncertainty in the geometry measurement, we propose a Monte
Carlo simulation, which models the uncertainties in GBR and target coordinates and shows
their influence on the projection. Generally this influence is small compared to the influence
of the propagation, but it can become significant for certain setups where the target cannot
be clearly identified or localised.

These two considerations enable an a priori review of different measurement setups
regarding their influence on measurement uncertainty. Some examples are discussed in the
following section.

2.6.3. Scenarios

The placement of the GBRs mainly depends on the bridge and the respective mea-
surement situation, but it can also be optimised for different objectives. In this section,
we discuss possible scenarios for the measurement setup and their advantages and dis-
advantages. Figure 7 shows four scenarios for a common bridge type. The bridge has
two longitudinal beams spanning from one pillar to the other, as well as consecutive
orthogonal beams.

Scenario A uses three GBR to determine all components of the three-dimensional dis-
placement vector. The GBRs are placed near one bridge pillar, facing the orthogonal beams
from roughly the same direction, thus maximising the number of measurement targets
equal to all GBRs. There has to be some variation between the positions in at least two
coordinate axes to determine all three displacement components. This scenario is useful
for a monostatic/bistatic configuration, as described by Miccinesi and Pieraccini [25], or in
the case of inaccessible areas under one bridge side. However, due to the proximity of the
GBRs to each other, the projection has a large influence on measurement uncertainty. Addi-
tionally, an orthogonal beam may be entirely contained within one range cell. Torsional
movements could, therefore, not be determined.

Low measurement uncertainty can be achieved with Scenario B, which places two
GBRs directly opposite each other. With this setup, only the vertical and longitudinal displace-
ment components can be determined. It is also not possible to identify torsional movements.

In Scenario C, two GBRs are placed orthogonal to the bridge, enabling the deter-
mination of the vertical and transversal displacement components. The influence of the
projection on measurement uncertainty is also lower, as in Scenario A. However, this setup
significantly decreases the number of measurement targets, since only the two longitudinal
beams reflect the GBR signal.

Scenario D is a compromise specific to our measurement situation described in
Section 3. Since our GBRs operate on the same signal frequency, interference can only
be avoided if they are placed orthogonal to each other. The setup results in the measure-
ments from GBR 1 being composed of both the vertical and longitudinal displacement
components. For the centre of the bridge, the longitudinal component can be assumed to
be negligible. This assumption may not be the case further to the pillars [11].
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GBR 1

GBR 2

GBR 3 Bridge beams
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(a) Scenario A: three GBRs in line with the bridge.

GBR 1

GBR 2
Bridge beamsPillar

(b) Scenario B: two GBR orthogonal to the longitudinal axis.

Bridge beamsPillar

GBR 2GBR 1

(c) Scenario C: two GBR opposite of each other.

Bridge beamsPillar
GBR 2

GBR 1

(d) Scenario D: two GBR orthogonal to each other.

Figure 7. Vertical view of possible measurement setups at a bridge with two longitudinal and consecutive orthogonal beams.

3. Results

To evaluate the advanced processing steps described in the previous sections, we
performed several measurements at a bridge in Schneckenlohe, Germany. The results for
the entire processing workflow of these measurements are shown in the following sections.

3.1. Measurement Setup

The pre-stressed concrete bridge is part of the federal road B303 and crosses the district
road KC29 in Schneckenlohe, Germany (see Figure 8b). It is 26 m long and has two parallel
concrete beams in the longitudinal direction (x-axis). Good signal reflection from the
beams can be achieved when the GBR is placed directly orthogonal to them. Consequently,
the measurements in LOS are composed of the vertical (z-axis), but also the transversal
(y-axis) displacement of the bridge. To separate the displacement components, we use an
additional GBR placed under the bridge, in line with the beams. Figure 8a shows a similar
measurement setup to Scenario D from Section 2.6.3. This is a necessary compromise to
avoid interference between the GBRs. To ensure sufficient signal reflection, we install two
corner reflectors at the centre of each beam. The reflectors do not occupy the same range cell
because of the trapezoidal bridge shape. Determining the torsional movement is, therefore,
still possible. Since the two GBRs are independent sensors, their time information needs to
be synchronised. Synchronisation is achieved by cross-correlating the displacement time
series. In the following sections, we discuss the processing of a 3.5 h long measurement,
starting at 12:30 h on 22 October 2019.
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GBR 1

GBR 2

Target 1

Bridge
beams

Target 2

x

y

z

Pillar

(a) Vertical view with two GBR and two corner reflectors. (b) Picture of the bridge.

Figure 8. Measurement setup at Schneckenlohe (Germany) on 22 October 2019.

3.2. Phase Jumps

The signal paths of both GBRs cross the district road, where passing vehicles cause
disturbances in the signal. The disturbances are mostly broadband noise, but they can
also contain phase jumps when the phase is incorrectly unwrapped. Figure 9a shows the
LOS-displacements of Target 1, measured by GBR 1. The clearly visible jumps cause shifts
in the mean values in the order of several millimetres. For detecting these jumps, median
windows with a window size of 10 s are calculated and differenced once, as described in
Section 2.3.1. The resulting values are displayed, together with a threshold determined as a
multiple of their standard deviation in Figure 9b. All jumps are correctly detected by this
threshold and removed from the displacement time series.

–

–

, ,

(a) Raw LOS-displacements with phase jumps.

–

–

, ,

(b) Values of the median windows with jumps detected by the threshold.

Figure 9. Detection of phase jumps in raw LOS-displacements for Target 1 measured by GBR 1.

3.3. Broadband Noise

As discussed in Section 2.3.2, vehicles or other objects passing through the signal
path cause broadband noise to be superimposed on the displacement time series. The
detection and removal of these disturbances are shown in Figure 10a for a section of
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the LOS-displacements of Target 1. The time series contains displacements of the bridge
caused by trucks and cars passing over it, as well as disturbances in the form of broadband
noise. Since the bridge displacements mostly contain low-frequency components which are
smaller than 10 Hz, the disturbances are easily detected by high-pass filtering of the time
series and the application of a threshold calculated as a multiple of the standard deviation
of the filtered time series. Figure 10b shows the LOS-displacements after applying the
high-pass filter with a cut-off frequency of 15 Hz. All disturbances exceed the threshold
and, therefore, are correctly detected.

–

–

(a) LOS-displacements with vehicle passages and disturbances.

–

–

(b) High-pass filtered LOS-displacements with detection threshold.

Figure 10. Section of LOS-displacements for Target 1 measured by GBR 1.

For a more comprehensive evaluation, we assess the proposed algorithm’s detection
accuracy for the entire measurement setup. The disturbances are manually labelled as
ground truth to determine recall and precision. The results for the two GBRs and two
targets are shown in Table 1. About 240 disturbances were detected in the 3.5 h long
measurement. This number is expected to be roughly the same for all four measurements,
since the signal paths of both GBRs cross the district road KC29, which is the primary
source of the disturbances. Generally, almost all disturbances are correctly detected, which
is indicated by the high recall values above 99%. A small number of additional disturbances
are detected that are not present in the displacement measurement. This leads to precision
values ranging from 94% to 98%.

Table 1. Detection results for the displacement measurements in Schneckenlohe on 22 October 2019.

GBR Target Number of
Disturbances Threshold Precision Recall

GBR 1 Target 1 239 0.01 mm 94% 99.2%
GBR 1 Target 2 235 0.08 mm 97.8% 99.6%
GBR 2 Target 1 232 0.02 mm 96.5% 99.1%
GBR 2 Target 2 249 0.01 mm 97.6% 100%
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3.4. Clutter Removal

Moving objects and measurement targets at the bridge cannot be distinguished if they
are in the same range cell. The corresponding parts of the measurement have to be removed,
as discussed in the previous section. However, static targets have a systematic influence
on the measurement, which can be determined by the circle fit algorithm proposed in
Section 2.4. Figure 11a shows the estimation results in a phasor plot of the complex IQ
components. The circle parameters are estimated without a weight matrix (green) and
with a weight matrix (red), as described in Section 2.4.2. For both results, the circle centres
differ slightly from the coordinate system’s origin. Therefore, static clutter is present in the
signal. By subtracting the deviation from the complex signal and reprocessing it, the static
clutter is removed. Figure 11b shows the deviation that is removed from the section of the
displacement time series. It is proportional to the LOS-displacements with values in the
order of 8% for the estimation without a weight matrix (green) and 2% for the estimation
with a weight matrix (red). See also Figure 10a as a comparison.

–
–

(a) Phasor plot of IQ-data and circle estimated with
and without weight matrix.

–

–

–

–

–

(b) Removed displacement deviation caused by static clutter.

Figure 11. Clutter removal for a section of the LOS-displacements for Target 1 measured by GBR 1.

3.5. Atmospheric Correction

For the atmospheric correction, we install atmospheric sensors near GBR 1. The
sensors measure temperature and relative humidity, as shown in Figure 12a. During the
measurement, the humidity rises by about 7%. The temperature varies only minimally
in the order of 1 °C. Figure 12b shows the LOS-displacements with and without the
atmospheric correction (see Section 2.5). A moving median is applied to the graphs, to
better visually compare the drift in both time series. The approximately linear drift is only
partially reduced by the atmospheric correction. To remove the remaining drift, the third
approach discussed in Section 2.5 can be used.
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,

(a) Temperature and relative humidity.

–
,

(b) Moving median with window size 60 s of LOS-
displacements with and without atmospheric correction.

Figure 12. Atmospheric correction with measured atmospheric parameters.

3.6. Two-Dimensional Projection

Since the GBR usually faces the bridge underside at an angle, the LOS-displacements
are not comparable between different bridge targets or if the measurement setup is changed.
Therefore, a projection to a Cartesian coordinate system has to be applied. For most bridges
and our studied bridge in Schneckenlohe, we expect the highest displacement amplitude
in the vertical direction (z-axis, see Figure 8). The applied measurement setup is also able
to determine the displacement component orthogonal to the driving direction (y-axis). The
displacement in the longitudinal axis parallel to the driving direction (x-axis) is assumed to
be zero, as the measurement targets are in the middle of the bridge. This allows us to use
only two GBRs with the previously discussed measurement setup.

Figure 13 shows the projection results for a section of the LOS-displacements. The
vertical displacement is displayed for both targets in Figure 13a. For the two truck passages
at 7 s and 10 s the vertical displacement is higher for Target 1, which indicates that the
trucks are passing over the bridge on the north lane (right-hand traffic). The transversal
displacement shown in Figure 13b is much smaller than the vertical displacement. Addi-
tionally, the truck passages generates positive values for Target 1 and negative values for
Target 2. This means the bridge beams are displaced outwards from the centre, away from
each other. Besides the displacements caused by the trucks, the cars passing over the bridge
only generate small vertical displacements and no significant transversal displacements.

–

–

–

(a) Displacements in z-axis.

Figure 13. Cont.



Sensors 2021, 21, 2172 16 of 20

–

–

–

(b) Displacements in y-axis.

Figure 13. Section of projected displacements for both targets.

3.7. Evaluation of Measurement Uncertainty

Every processing step has an influence on the measurement uncertainty, either through
changes in the amplitude time series or through a propagation. The measurement uncertainty
is initially estimated from the SNR of the amplitude, as discussed in Equations (3) and (4).
Table 2 shows these estimates for the displacement in LOS in a range of 0.02 mm to 0.14 mm.
Removing the disturbances reduces the amplitude variance, which results in lower esti-
mates for the measurement uncertainty. The removal of static clutter influences the mean
value of the amplitude, thus increasing or lowering the uncertainty. After clutter removal,
the uncertainty values are in the range of 0.02 mm to 0.03 mm, except for Target 1 measured
by GBR 1, which has a significantly lower value. These values are now propagated, as
discussed in Section 2.6.2. The resulting uncertainty for the projected displacement in the
y- and the z-axis is lower than 0.1 mm in all cases.

Table 2. Measurement uncertainty of the displacements for the two targets and GBRs.

Target GBR LOS After Removal of
Disturbances

After Clutter
Removal

After Projection to
y-Axis

After Projection to
z-Axis

Target 1 GBR 1 0.019 mm 0.007 mm 0.002 mm 0.045 mm 0.036 mmGBR 2 0.034 mm 0.005 mm 0.033 mm

Target 2 GBR 1 0.142 mm 0.027 mm 0.027 mm 0.036 mm 0.095 mmGBR 2 0.029 mm 0.008 mm 0.019 mm

Additionally, the uncertainties of the coordinate measurements are considered. By
using a total station, the coordinates of the GBRs zero point can be determined very
accurately. However, the target coordinates are much more inaccurate because there is
usually not one exact reflective point, even when using a corner reflector. Therefore, we
estimate the measurement uncertainty after the projection with a Monte Carlo simulation.
The simulation models three normally distributed inputs: the measurement uncertainties
after clutter removal (see Table 2), the GBR coordinate uncertainty estimated with 0.01 m,
and the target coordinate uncertainty σcoord. The inputs are propagated with Equation (21)
using the maximum negative LOS-displacements shown in Figure 10a. Initially, σcoord is
set to zero, confirming the results from the previous variance propagation. We estimate
σcoord to be 0.05 m for a corner reflector and 0.30 m for a natural reflective target like a
bridge beam. Table 3 shows the simulation results. The coordinate uncertainty of a corner
reflector does not significantly increase the measurement uncertainty, except for the z-axis
of Target 1. If, instead, a natural reflective target was used, the measurement uncertainty
would rise substantially. The z-axis of Target 1 again experiences the most significant
increase, to almost ten times the value without a coordinate uncertainty.
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Table 3. Measurement uncertainty of the projected displacements considering the uncertainty of the
target coordinates σcoord.

Target σcoord After Projection to y-Axis After Projection to z-Axis

Target 1 0.05 m 0.046 mm 0.067 mm
0.30 m 0.060 mm 0.342 mm

Target 2 0.05 m 0.037 mm 0.096 mm
0.30 m 0.043 mm 0.124 mm

4. Discussion

In this section, we discuss the results of our proposed processing steps, applied
exemplarily at the measurement campaign in Schneckenlohe, and the influence of each
step on the subsequent processing. We start with the detection and removal of disturbances
from the LOS-displacements.

The main source of disturbances at the bridge in Schneckenlohe is traffic on the district
road crossing the GBR signal. Phase jumps, as one type of disturbance, are caused by phase
unwrapping errors from large disturbances. These usually originate from large vehicles
such as trucks or buses. In our case, the occurrence of these vehicles is rather low, and all
phase jumps were correctly detected. For a higher traffic volume, the window size may
have to be reduced to detect all jumps. However, smaller window sizes can lead to false
positives, since vehicle passages would also be detected as jumps.

The second type of disturbance is broadband noise caused by cars or people cross-
ing the GBR signal. We detect broadband noise with a threshold applied to the high-
pass-filtered displacements. The detection accuracy depends on the threshold. A higher
threshold improves the precision but worsens the recall. Generally, a high recall value is
preferred to a high precision value. Most studies avoid the occurrence of disturbances,
either through their measurement setup or with short measurement durations. To further
establish GBR as an alternative to the traditionally used sensors, it is, however, crucial
to implement the proposed disturbance removal. The subsequent processing steps, such
as clutter removal and the estimation of measurement uncertainty, rely on data without
disturbances or other types of outliers, which is achieved with our high recall value. It
also enables measurements over several hours, which are necessary to reliably estimate the
bridge’s dynamic properties [1].

The next processing step removes static clutter by estimating the centre of a circular
arc in the phasor plot. This estimation is challenging, especially for long measurement
durations. By introducing a weight matrix, the estimation compensates the unequally
distributed datapoints. The results differ significantly between the estimation with and
without a weight matrix, which demonstrates the significant influence a small deviation in
the circle centre has on the LOS-displacements. Therefore, the benefit of removing static
clutter has to be weighed against the uncertainty introduced by the circle estimation. By
compensating the unequally distributed datapoints with the weight matrix, this uncertainty
is significantly reduced, and clutter removal becomes beneficial for GBR processing.

The atmospheric correction with empiric formulas only partially removes the approxi-
mately linear drift from the LOS-displacements, for which tehre can be multiple reasons.
For example, the atmospheric properties may not have been determined accurately enough,
either because of inhomogeneous atmospheric conditions or inaccurate sensors. Effects
unrelated to the atmosphere can also cause drift. The tripod of the GBR, for example,
can slowly settle in the ground over time, causing a positive drift. Additionally, the ex-
pansion of the bridge can also lead to drift. However, since the structure’s temperature
usually lags severely behind the air temperature, we cannot confirm this with our mea-
surements. Removing the remaining drift with the post-processing approach can be useful
for comparisons to other sensors or further processing. The approach is applicable for
most measurement situations where the vehicle passages have a short duration and the
atmospheric properties are changing slowly.
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The last processing step is the projection of the displacements measured in LOS to
a Cartesian coordinate system. Since we use two GBR, we can determine two of the
three displacement components. However, the benefit of this approach is not only the
determination more than one component but also the reduction in the influence from the
longitudinal or transversal component on the vertical component. Without this approach,
the measurements of GBR 2 would be significantly affected by the transversal component.
GBR 1 could still be affected by the longitudinal component, although we assume this to be
insignificant compared to the other two components. This assumption should be confirmed
with an alternate measurement setup, as described with Scenario A or B in Section 2.6.3.
The setup could be implemented with a bistatic approach or a MIMO GBR [25,26].

Lastly, the measurement uncertainty is evaluated. Table 2 shows that every process-
ing step has a significant influence on the measurement uncertainty. The disturbance
removal always leads to an equal or lower uncertainty, since it only removes parts of the
amplitude time series, improving the SNR. Clutter removal can both increase and lower
the amplitude’s mean value, and thus also the uncertainty. The result of the projection’s
variance propagation highly depends on the positions of the GBRs relative to each other.
A consideration of the coordinate uncertainty may not be necessary if the reflective point
of a target is precisely defined with a corner reflector. However, this precise definition is
usually not possible for most natural reflective features leading to a significant influence on
measurement uncertainty. Since these considerations can be performed without real mea-
surement data, it is advisable to analyse the uncertainty prior to a measurement campaign
only by means of the GBR positions. Compared to laboratory environments [3,28], the
achieved uncertainties are plausible. Nevertheless, they might be higher for other bridges
and measurement setups with longer ranges to the targets and without corner reflectors.
Generally, this demonstrates the importance of determining the measurement uncertainty,
since it highly depends on the applied processing and the measurement setup.

5. Conclusions and Outlook

This paper introduces advanced processing steps for GBR measurements in the context
of bridge monitoring. Based on the conventional processing approach, we propose ad-
vanced steps focusing on three main aspects: the removal of external influences, projection
of the displacement vectors measured in LOS to a Cartesian coordinate system, and an as-
sessment of the measurement uncertainty. The proposed steps enable specific measurement
setups, which were not previously possible with conventional GBR processing.

For long measurement durations, it is crucial to remove disturbances, static clutter, and
atmospheric propagation delay. These external influences not only affect the measurement
results, but also the subsequent processing steps. We therefore implement a disturbance
detection with high precision and recall values to remove this influence as much as possible.
Similarly, a stationary object located in the same range cell as the target causes a systematic
deviation. The estimation of this deviation is improved by introducing a weight matrix,
which compensates for unequally distributed datapoints. Lastly, the propagation delay
from changes in the atmospheric properties is removed with atmospheric sensor data, and
an alternative post-processing approach.

In conventional GBR processing, the LOS displacement vector is generally projected
to the vertical axis, thus disregarding the influence from the other two displacement
components. We therefore expand the one-dimensional projection with a generalised
three-dimensional approach to separate the displacement vector components. Finally, we
evaluate the measurement uncertainty from the acquired data itself and in the context of
the applied processing steps.

In future work, we aim to investigate the accuracy of GBR measurements further.
For example, in the clutter removal step, the uncertainty of the estimation itself should
also be considered. Furthermore, the results of the three-dimensional projection should be
validated with a different sensor type.
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