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Abstract. In the last years, x-ray computed tomography (CT) has gained more and 
more importance in metrology. However, computed tomography is a complex and 
indirect measurement procedure. Many factors contribute to the measurement result, 
which makes it difficult for the user to relate cause and effect. For example, the user-
set scan parameters significantly influence the measurement result. However, the 
selection of scan parameters is still based on the experience of the CT user, while the 
influence of the parameter choice on the measurement result cannot be quantified. 
This leads to diverging and non-optimal scan results. The quality of the CT scan can 
only be evaluated afterwards, e.g. by visual inspection of the reconstructed volume. 
Taking into account that the process chain of CT measurements is highly complex, 
the very first step is the generation of reliable high quality projections that can then 
be fed into the reconstruction. The quality of these projections can be described 
quantitatively by image quality measures.  Thus, in this paper, an approach regarding 
projection based evaluation of CT image quality in micro computed tomography is 
presented. By performing a set of experiments, the influence of projection image 
quality on the reconstructed volume and respectively on the measurement result is 
evaluated. A derived model relates the projection quality measures to the actual 
measurement error of the CT scan.  
Hence, the proposed approach defines a reliable, combined quality measure, which is 
based on a small number of projections acquired before the actual scan. An algorithm 
evaluates the quality of those projection for every workpiece that has to be measured. 
Based on the evaluation, it varies the scan parameters, until an optimal projection 
quality is reached and a reduced measurement error in the CT scan is achieved.   
 

1. Introduction  

In the last years, x-ray computed tomography (CT) has gained more and more importance in 
metrology. Its property of displaying and measuring outer and inner structures non-
destructively makes it an interesting alternative to well established technology, such as tactile 
coordinate measuring machines (CMM) or optical measurement systems. However, 
computed tomography is a complex and indirect measurement procedure. Many factors 
contribute to the measurement result [1, 2], making it difficult for the user to relate cause and 
effect. For example, the user-set scan parameters significantly influence the measurement 
result [3-7]. The user can, for example, choose orientation and position of the workpiece, 
current and tube voltage as well as integration time. However, this choice is based on his 
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personal experience – at the moment, no objective measure for the parameter selection is 
available. In industrial practice, this leads to diverging scan results [8].  

2. State of the Art 

The planning of scan parameters in CT has thus been an emerging field of research. Some 
methods rely on prior knowledge for the optimization of scan parameters: Giedl-Wagner et 
al. [9] use neuronal networks based on radial basis functions for the optimization of scan 
parameters. The neuronal network has to be trained with similar exemplary data with known 
optimal parameter. Niggemann [10] developed a knowledge-based system for user support 
in their choice of optimal scan parameters. The approach uses similarity criteria between 
workpieces to find the respective scan parameters from a database of previous scans. 
Reiter et at. [11] developed a simulation environment which can be used for the evaluation 
of different combinations of scan parameters. Also Reisinger et al. [12] use a ray-tracing 
simulation for the determination of optimal scan parameters for a set measurand. For 
optimization, part position and orientation as well as prefilter thickness and tube voltage is 
evaluated in a hierarchical manner with respect to the image quality measures defined in [2], 
but these recommendations stemming from non-destructive testing applications have been 
criticized in literature as not sufficient for a real optimization [13]. The standards just suggest 
a minimal requirement.  
Hence, some research has been done on the relation between the image quality of the 
reconstructed volume and the resulting measurement error.  Hiller et al. [14] investigated the 
influence of noise and resolution on the coordinate measurement with simulated data. 
Fleßner et al. [15] developed a “Local Quality Value (LQV)”, which assigns a value for the 
accuracy of the local surface determination to every determined surface voxel. The value is 
based on local grayvalue variations normal to the determined surface. Another local quality 
measure is suggested by Schönfeld et al. [16], which can be used for a quality-dependent 
weighting of surface points in the reconstructed volume.  The Shannon entropy of the 
greyvalues is investigated by Xue et al. [17] as well as Schienlein et al. [18, 19], who uses 
this measure to simulatively optimize the orientation of the specimens during the scan.  A 
similar measure, the so-called Q-value, is suggested by Reiter et al. [20] and can serve as a 
first overview of the quality of the performed scan after reconstruction.  
In summary, it can be found that the current research approaches dealing with optimization 
of scan parameters rely either on objectified prior knowledge or on simulation studies. These 
studies are nowadays quite accurate and give a first insight in the resulting scan, but they 
require the use of a special software and are still time-consuming.  An evaluation of the image 
quality of the reconstructed volume is possible, but can only be applied in hindsight after the 
actual scan is performed.  
Thus, the research approach presented in this article focusses on determining optimal scan 
parameters in a fast and reliable way already before the actual scan is started.   

3. Evaluation of CT image quality in dimensional metrology for the optimization 
of scan parameters 

3.1 Overview of the methodoloy 

The approach aims at supporting the user with an optimal set of scan parameters for each 
individual workpiece with different measurands in order to assure a high scan quality and 
reduce the user influence on the scan result. The goal is to provide parameter sets such that 
the measurement error is reduced and the reproducibility of the scans is increased. The scan 
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parameters are optimized automatically. This is done based on a small number of projection 
images, which are taken before the actual scan is started.  
The methodology consists of three consecutive steps, as depicted in Fig. 1.  

 

 

Fig. 1. Overview of the proposed methodology 

In the first step, suitable image quality measures are defined to describe the quality of the 2D 
projection images. These image quality measures are then set into a relation with the resulting 
measurement error of the 3D volume’s features after reconstruction and surface 
determination. In order to gain the necessary data for the development of a suitable model, 
systematic experiments with test bodies, as developed in [21], are performed. If the influence 
of the projection quality on the measurement error is known, this model thus serves as basis 
for the optimization, which is performed individually for each workpiece to measure. An 
algorithm choses suitable scan parameters and takes a small number of projections which are 
then evaluated with respect to their image quality. If the quality is not satisfactory, the 
algorithm iteratively searches for the optimal projection quality by varying the scan 
parameters until the best possible configuration is achieved. 
In the following, the three steps of the methodology are described in detail.  

3.2 Definition of quantitative image quality measures 

In the course of a CT scan, several hundred individual projection images are taken, each 
representing a different angular position of the scanned object. Among others, scan 
parameters have an influence on the appearance of the projection image, which can be 
characterized by image quality parameters, such as contrast, noise, resolution and image 
sharpness. These quality parameters can be quantitatively described by image quality measures, 
such as the contrast-to-noise ratio, which is for example used to judge image quality in non-
destructive testing. However, no such measures exist for assessing the quality of 2D projections 
for applications in metrology.The challenge is to find those measures that influence the 
resulting measurement error of the reconstructed volume. It hence has to be taken into 
account how the used reconstruction software uses filter algorithms to e.g. suppress noise. 
Some quality measures might not have a great influence after reconstruction, even though 
their values are prominent on the 2D image acquired during the scan.   
Some of the quality measures are interrelated and correlated. In a two-step approach, the 
possible measures are classified and reduced. Reference-free global and local image quality 
measures can be applied to projection images [22]. These measures comprise, for example, 
variance-based, histogram-based, gradient-based and autocorrelation-based measures. The 
first step is to identify qualitative relationships of the image quality measures to scan 
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parameters. Second, the remaining measures have to be checked for their influence on the 
measurement error at test specimens with simple geometries, which are calibrated beforehand 
with a tactile CMM [23]. The so filtered measures then are used for the development of the 
experimental model.    

3.3 Experimental Model 

In the second step, the relation between the image quality of the individual projections and 
the measurement error of the reconstructed volume is modeled. Based on experimental 
design, systematic measurements with differing image quality are performed. For the 
measurements, more complex test bodies that show similarity to real industrial components 
are used [21]. For test bodies that are not rotatory symmetric, the evaluated projections are 
chosen such that both the projections with the lowest and highest penetration length of the 
test body is considered.  
All measurements are performed with an industrial CT scanner, using a FDK-reconstruction 
algorithm [24]. The scanner is situated in an air conditioned metrology laboratory with a 
temperature range of +/-0.5 K. In addition, the scanner is positioned on a vibration isolated 
base, such that external environmental influences on the measurement can be neglected. 
Before the experiments are started, the tube is warmed up to ensure stable conditions in terms 
of temperature. The temperature inside the CT is monitored with temperature sensors with 
an accuracy of +/-0.1 K to check for possible temperature rise, e.g. if multiple scans are 
performed consecutively.  
To ensure traceability, the test bodies are calibrated with high accuracy micro coordinate 
metrology, using a tactile coordinate measuring machine. Multiple measurements with the 
micro coordinate system are performed, such that the mean values of the measured features 
can be used as a reference and the respective calibration uncertainty is calculated according 
to ISO 15530-3 [25]. Also the CT measurements are repeated under the same conditions. The 
evaluation of the performed measurements is done according to a standardized semi-
automated procedure in the software VGStudio Max, such that an influence of the user during 
the data evaluation can be ruled out.  
For each feature, the mean measured value of the repeated CT scans is taken for the 
comparison to the tactile reference measurement and the deviation between both values is 
considered the resulting measurement error. Dimensional and geometric features are 
evaluated separately and treated individually in the model. At the moment, systematic 
measurements for a deduction of the model are performed at wbk Institute of Production 
Science.   
The model describing the relation between the measurement error and the image quality is 
derived from the measurement data by statistical analysis. In the development of the model, 
it has to be considered that some of the image quality measures are correlated, such that 
suitable regularization has to be integrated in the regression analysis.  

 
3.4 Automated optimization of scan parameters  

In each individual scan, the scan parameters have to be adjusted such that a certain projection 
image quality is achieved. To ensure this, an optimization algorithm is implemented. The 
optimization has to be adjusted to the used CT machine, taking into account constraints 
stemming from physical limitations of the machine, such as the available measuring range or 
the maximum power.  
The used image quality measures are those considered relevant through statistical tests in the 
development of the model. Hence, the optimal set of image quality measures can be derived 
from the model. They are determined from the minimum of the model function, i.e. the 
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minimum measurement error, distinguished between dimensional and geometrical features. 
As different scan parameter combinations can show similar results, not only global, but also 
local minima are considered. The quality measures are normalized and weighted according 
to their significance. In order to avoid a multi-criteria problem in the implementation of the 
optimization algorithm, the image quality measures are aggregated to a superordinate 
command variable. 
The first step of the optimization is the adjustment of the magnification of the workpiece. 
The algorithm automatically searches for the position with the highest width of the workpiece 
as projected on the detector. Then, it repositions the workpiece, such that the highest 
magnification of the object is achieved, while the object still is displayed as a whole. In 
addition, a small edge, e.g. of about ten pixels, is left around the workpiece on the detector, 
to avoid the use of edge pixels for the workpiece. This position is chosen as the starting 
position for the optimization and serves as minimum source-object distance for the 
subsequent optimization steps.  
In each iteration of the optimization, the position is checked with the current focal spot size 
of the machine. The positioning is chosen, such that the focal spot size is always smaller than 
the voxel size. Otherwise, additional blurring of the image would occur.  
In order to diminish Feldkamp artifacts, the algorithm checks the orientation of the 
workpiece. If horizontal edges (i.e. edges below a threshold angle to the horizontal, which is 
set between 8° and 10°) are detected, the software suggests a reorientation of the workpiece. 

 

 
Fig. 2. Optimization as iterative process 

 
Now, the actual optimization, as depicted in Fig. 2, can start. The considered scan parameters 
are magnification, tube voltage, gain, current and exposure time. The optimization is done 
with a genetic algorithm. In an iterative process, a small set of projections (around the highest 
and lowest penetration lengths) is taken and their image quality evaluated. If the image 
quality is not satisfactory, the algorithms sets another set of scan parameters and repeats the 
evaluation of image quality, until the optimal conditions are achieved.  
Finally, the minimum number of projections is calculated according to the sampling theorem 
to avoid aliasing. Following [26], as a rule of thumb, it is sufficient to consider: 
 �� = �ℎ (1) 
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Where Np is the required number of projections in 360° and Ph the maximum number of 
(object) pixels in horizontal direction, which in turn can by calculated from the magnification, 
respectively the source-detector and source-object distance.  
The setting of the number of the projections is the last step of the projection based 
optimization and the complete scan with now optimal parameters is started.  

4. Conclusion  

Despite the fact that computed tomography is getting more and more important for 
metrological applications, the acquisition of reliable and reproducible CT scans remains 
challenging. Due to the complex measurement procedure, the user cannot quantify if the 
selected scan parameters are a good choice.  
Hence, the proposed approach aims at closing this gap by defining a reliable, combined 
quality measure, which is based on a small number of projections acquired before the actual 
scan. By an experimental model, the quality measure is related to the actual measurement 
error of the CT scan.  
With this underlying model, an algorithm evaluates the quality of a small number of 
projection for every workpiece that has to be measured. Based on the evaluation, it sets the 
scan parameters, until an optimal projection quality is reached and a reduced measurement 
error is achieved.  
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