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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Cyber Physical Production Systems (CPPS) provide a huge amount of data. Simultaneously, operational decisions are getting ever more complex 
due to smaller batch sizes, a larger product variety and complex processes in production systems. Production engineers struggle to utilize the 
recorded data to optimize production processes effectively because of a rising level of complexity. This paper shows the successful 
implementation of an autonomous order dispatching system that is based on a Reinforcement Learning (RL) algorithm. The real-world use case 
in the semiconductor industry is a highly suitable example of a cyber physical and digitized production system. 
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1. Introduction 

The productivity of manufacturing systems and thus their 
economic efficiency depends on the performance of 
production control mechanisms. Because of an increasing 
global competition and high customer demands, the optimal 
use of existing resources is ever more important. Optimizing 
production control is therefore a central issue in the 
manufacturing industry.  

Depending on the industry, companies are additionally 
facing complex manufacturing processes due to high product 
diversity, lot size reduction and high quality requirements. In 
the example of semiconductor industry complexity arises 
through a high number of manufacturing processes and their 
precision on a nanometer level [1].  Planning and 
coordinating processes is hence a challenging task and 
requires a suitable control method. 

Moreover production control deals with a dynamic and 
non-deterministic surrounding and thus has to handle 
uncertainty and unexpected incidents [2]. Established 
approaches for production control, such as mathematical 
programming, heuristics and dispatching rules are not able to 
meet these needs [3].  

Through the integration of manufacturing components, 
enhanced process monitoring and data collection, Cyber 

Physical Production Systems (CPPS) provide real time data 
such as order tracking data, machine breaks and inventory 
levels. This makes it possible to apply data-driven 
techniques, such as Machine Learning (ML), that are able to 
adjust to the current system state by analyzing the available 
data in real time. The potential of ML in production control 
to create decentralized and autonomous systems has been 
evaluated by several researchers such as [3,4,5]. This paper 
describes and evaluates the implementation of an 
autonomous agent-based control system for order 
dispatching in a real-world use case in the semiconductor 
industry. 

1.1. The order dispatching problem 

Order dispatching is a task of operational production 
control. It describes the allocation problem of processing n 
single-stage orders O = {O1, O2 …, On} with time duration  
T = {t1, t2, …, tn} on a set of m machines M = {M1, M2, …, 
Mm}. Each machine can handle one order at a time. The 
objective is to allocate the orders in a way as to optimize a set 
of k performance measures F = {F1, F2, …, Fk} such as 
workload, throughput time or tardiness [2,6,7]. Depending on 
the production environment a valid solution has to consider 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2018) 000–000   

     www.elsevier.com/locate/procedia 

   

 

 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18 

Autonomous order dispatching in the semiconductor industry using 
reinforcement learning 

 Andreas Kuhnlea,*, Nicole Röhriga, Gisela Lanzaa  
a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76137 Karlsruhe, Germany 

  
* Corresponding author. Tel.: +49-721-608-46166; fax: +49-721-608-45005. E-mail address: andreas.kuhnle@kit.edu 

Abstract  

Cyber Physical Production Systems (CPPS) provide a huge amount of data. Simultaneously, operational decisions are getting ever more complex 
due to smaller batch sizes, a larger product variety and complex processes in production systems. Production engineers struggle to utilize the 
recorded data to optimize production processes effectively because of a rising level of complexity. This paper shows the successful 
implementation of an autonomous order dispatching system that is based on a Reinforcement Learning (RL) algorithm. The real-world use case 
in the semiconductor industry is a highly suitable example of a cyber physical and digitized production system. 
© 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 
 
Keywords: Production planning; Reinforcement learning; Semiconductor industry
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The productivity of manufacturing systems and thus their 
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production control mechanisms. Because of an increasing 
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production control is therefore a central issue in the 
manufacturing industry.  
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facing complex manufacturing processes due to high product 
diversity, lot size reduction and high quality requirements. In 
the example of semiconductor industry complexity arises 
through a high number of manufacturing processes and their 
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Moreover production control deals with a dynamic and 
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Through the integration of manufacturing components, 
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Physical Production Systems (CPPS) provide real time data 
such as order tracking data, machine breaks and inventory 
levels. This makes it possible to apply data-driven 
techniques, such as Machine Learning (ML), that are able to 
adjust to the current system state by analyzing the available 
data in real time. The potential of ML in production control 
to create decentralized and autonomous systems has been 
evaluated by several researchers such as [3,4,5]. This paper 
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dispatching in a real-world use case in the semiconductor 
industry. 
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the production environment a valid solution has to consider 
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additional constraints such as machine-allocation constraints 
(𝑂𝑂 → 𝑀𝑀) or buffer capacities (𝑀𝑀𝑖𝑖 → ℝ+). 

The static order dispatching problem described above is 
NP-hard [6]. In real-world use cases non-deterministic 
events, such as machine break downs and dynamic processes, 
such as new order arrivals, present an additional challenge for 
production control [3]. Furthermore, most problems are 
multi-criterial. Whilst predefined decision rules or 
mathematical optimization methods can hardly perform 
effectively under such circumstances [5] agent-based, 
learning control mechanisms can react flexible to changes in 
their environment. An agent-based and decentralized 
architecture also has benefits with regard to the complexity, 
as it allows splitting the problem into sub-problems that can 
be solved by independent agents [7]. 

The structure of the paper is as follows: Section 2 
describes the theoretical concepts of agent-based production 
control and Reinforcement Learning (RL). Those are used in 
Section 3 to implement the components of an agent-based 
production control. The control system is tested and 
evaluated in Section 4. As a benchmark, the simulation 
results of the agent-based solution is compared to a heuristic 
rule-based algorithm in a real-world scenario. 

2. Reinforcement Learning agents 

One main idea of agent-based control is to split up the 
control task into several subtasks that can be solved on a local 
level. The resulting decentralized structure is flexible [7] and 
furthermore allows a reduction of computation time through 
the parallelization of decisions. Operational production 
control for example requires an order release decision, order 
dispatching decision and a single-machine dispatching 
decision. The responsibility for the subtask can be assigned 
to independent agents, then acting on a local level in the 
production environment. The role of an agent as a decision-
making entity is defined in the following.  

2.1. Agent definition 

Agents are an essential concept of intelligent computing 
and distributed system design [5]. On a functional level, an 
agent is a computational system that [5,8]: 

• Interacts with a dynamic environment  
• Is able to perform autonomous actions 
• Acts with regard to a specific objective 

To achieve this behavior [9] proposes an agent 
architecture that has three key components: For the 
interaction with its environment the agent needs sensors to 
perceive aspects of its surrounding and actuators to execute 
its actions. To generate autonomous and objective-driven 
actions, a third component, the so-called “agent function” is 
required [8].  

In this model, the agent function is the key component for 
defining the agent’s behavior. It determines how the 
perceived information is processed to decide on actions that 
lead to a “good” performance with regard to the objective. At 

the same time, it compromises the agent’s experiences 
captured in its surrounding. This is crucial to learn the 
consequences of the agent’s decisions. Eventually, the “agent 
function” represents a learned model of the environment. 

The (production control) system can consist of several 
agents with overlapping environments. In that case it is called 
a multi-agent system [3].  

This agent definition describes a general approach to 
design systems that solve a particular problem. However, to 
specify the interaction process and the components additional 
techniques are required. This paper proposes the application 
of an RL algorithm for that purpose. 

2.2. Reinforcement Learning 

RL applies the ideas of a learning agent-based approach to 
optimization problems. Because the learning capability is 
based on repeated interaction with the environment it is often 
referred to as “trial and error” learning [10]. 

Despite the existence of many different RL algorithms that 
vary in the concrete realization of the learning functionality, 
they follow the same steps in the agent-environment 
interaction, see Fig. 1. 

The agent perceives the actual state of the environment as 
a vector St. In order to decide on an action At the information 
is processed in the agent function that stores the current 
policy  

 
𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠) =  ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎 |𝑆𝑆𝑡𝑡 = 𝑠𝑠)         (1) 

 
After the action is performed in the environment the agent 
perceives the new state St+1 and a reward signal Rt+1. Note that 
the environmental transformation is associated to a Markov 
Decision Process (MDP). According to the received 
feedback, the agent adapts its policy. [10] 

These steps are repeated in an iterative procedure. As a 
result, the agent optimizes its behavior in a way to find a 
policy 𝜋𝜋  maximizing the long-term reward – therefore a 
policy that corresponds best to the agent’s objectives. [10] 

Finding an optimal policy is a dynamic process. In each 
iteration, the current policy 𝜋𝜋𝑡𝑡 is adapted depending on the 
latest experiences. There are two main techniques to 
determine the new policy: (i) value-based approaches and (ii) 
policy-based approaches. A summary of the update functions 
and the instructions for both cases can be found in Table 1, 
where 𝛼𝛼 is the learning rate and 𝜂𝜂 an evaluation rate for the 
current policy representation. 

 

Fig. 1. Agent-environment interaction, derived from [9,10]. 
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Table 1. Policy and value approximation, derived from [10]. 

 Policy approximation Value approximation 

Update 
function 

policy function  
𝜋𝜋𝑡𝑡 = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠) 

action-value function 
𝑄𝑄𝜋𝜋 = 𝔼𝔼[ Rt|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎] 

Update rule 𝜃𝜃𝑡𝑡+1⃗⃗⃗⃗⃗⃗ ⃗⃗    ← 𝜃𝜃𝑡𝑡⃗⃗  ⃗ + 𝛼𝛼 𝛻𝛻𝛻𝛻(𝜃𝜃𝑡𝑡)̂  𝜃𝜃𝑡𝑡+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ←  𝜃𝜃𝑡𝑡⃗⃗  ⃗ + 𝛼𝛼  [𝑄𝑄𝜋𝜋−𝑄𝑄𝑡𝑡] 𝛻𝛻 𝜃𝜃𝑡𝑡⃗⃗⃗⃗  𝑄𝑄𝑡𝑡 

 
The main difference between both approaches is that value 

approximation learns the action-value function during the 
interaction instead of directly learning a policy 𝜋𝜋. The value 
function 𝑄𝑄𝜋𝜋 = 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)  defines the expected long-term 
return when choosing an action a in state s following policy 
𝜋𝜋. The policy is then derived from the estimated value of all 
possible actions in each state. Policy approximation, on the 
other hand, directly updates the policy function 𝜋𝜋𝑡𝑡 =
 𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠). 

Most real-world problems deal with continuous action and 
state spaces. Storing and updating the policy or value 
function in a table is therefore computationally inefficient 
and requires lots of memory space.  Therefore, the original 
policy or value function has to be stored approximatively. 
Artificial neural networks are widely used for that purpose, 
as they are capable of approximating complex functional 
relationships via the weights within the network and allow to 
adapt those weights dynamically during the learning process 
[10]. As a result, neural networks reduce the computational 
effort by updating a set of weight parameters 𝜃𝜃𝑡𝑡⃗⃗  ⃗ instead of the 
values for each state-action pair in each iteration, see Table 
1. 

Depending on the dimension and the characteristics of the 
problem, different learning approaches might lead to good 
results. In recent years new kinds of RL algorithms such as 
PPO [11], TRPO [12] and DQN [13] were developed to deal 
with complex problems in different domains. They can be 
regarded as advanced policy or value approximation 
algorithms that are optimized with regard to an efficient and 
stable learning process together with neural networks. The 
solution to the order dispatching problem, presented in this 
paper, builds on these RL algorithms 

2.3. Applications of Reinforcement Learning agents in the 
manufacturing industry 

Because of the iterative learning process (see section 2.2), 
RL algorithms are suitable methods in dynamic 
environments in which complete information cannot be 
provided entirely from the beginning. The generality of the 
concepts allows the application of RL for decision problems 
in various industrial applications. Next to the purpose of 
production control, other successful implementations of RL 
agents exist for example in board games (e.g. chess), robotics 
or process engineering. 

Games, such as strategy games or Atari games, are used 
by many researchers to design and test new algorithms. 
Results presented in [13] and [12] show that modern RL 
algorithms already exceed human performance in specific 
domains. The design of autonomous robotic systems is 

another field of application to learn coordinating movements 
to fulfill a certain task [14,15]. 

Other industrial applications are found in process 
engineering. In [16] an actor-critic RL algorithm is 
implemented to control the process parameter laser power in 
a welding process. The experimental results for a particular 
setup show that RL generates stable solutions and is suitable 
for a real-time and dynamic control mechanism. 

In the context of production control, other authors 
investigated the usage of RL methods for order scheduling. 
The scheduling approaches differ in their overall 
architecture. The system proposed in [2] and [3], for 
example, focuses on a highly distributed form of RL, where 
each resource and each order are considered as agents. In this 
kind of architecture resources bid for the allocation of an 
order depending on the estimated processing cost when being 
selected. To reduce computational complexity a RL solution 
is presented to estimate the benefit of allocating a job to a 
specific resource. The implemented RL algorithm uses a 
table-representation in a single-objective problem. 

The work of [7] and [17] apply Q-learning to a single-
machine scheduling problem and a layout with several 
process steps. The order scheduling within each machine and 
the order release in [17] are performed by RL agents. In both 
cases, a table is used to store the value function. 

The solution developed in this paper is an autonomous, 
single-agent dispatching system. In contrast to previous RL 
applications for order scheduling, the work presents an 
implementation that is based on function approximation with 
artificial neural networks. This approach is appropriate for 
continuous action and state spaces and hence a suitable 
approach for real-world situations. 

3. Agent-based approach for the autonomous 
dispatching problem 

The following section specifies the architecture of the 
agent as well as the overall RL algorithm setup that was 
developed to solve the dispatching problem. The main 
features of an agent are a dynamic environment and 
autonomous, objective-driven actions (see section 2.1). In 
the following, the components of the agent design are 
therefore described with regard to those features. The whole 
system is evaluated in exemplary production layout in the 
end of this section. 

3.1. Dynamic production environment 

The environment of the dispatching problem is the 
production system. The layout is defined by the position of 
the resources (e.g. machines) of the system. The dynamic 
process of order processing is modelled as follows:  

Released orders wait in entry buffers until they are 
affected by a decision of the dispatching agent. The agent 
allocates orders to a specific machine whereupon a 
transportation medium moves the orders to the machine’s 
buffer. When a machine has processed an order the order 
waiting longest in the buffer is processed next. Note that 
instead of applying a simple decision rule it is possible to 
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Table 1. Policy and value approximation, derived from [10]. 

 Policy approximation Value approximation 

Update 
function 

policy function  
𝜋𝜋𝑡𝑡 = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠) 

action-value function 
𝑄𝑄𝜋𝜋 = 𝔼𝔼[ Rt|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎] 

Update rule 𝜃𝜃𝑡𝑡+1⃗⃗⃗⃗⃗⃗ ⃗⃗    ← 𝜃𝜃𝑡𝑡⃗⃗  ⃗ + 𝛼𝛼 𝛻𝛻𝛻𝛻(𝜃𝜃𝑡𝑡)̂  𝜃𝜃𝑡𝑡+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ←  𝜃𝜃𝑡𝑡⃗⃗  ⃗ + 𝛼𝛼  [𝑄𝑄𝜋𝜋−𝑄𝑄𝑡𝑡] 𝛻𝛻 𝜃𝜃𝑡𝑡⃗⃗⃗⃗  𝑄𝑄𝑡𝑡 

 
The main difference between both approaches is that value 

approximation learns the action-value function during the 
interaction instead of directly learning a policy 𝜋𝜋. The value 
function 𝑄𝑄𝜋𝜋 = 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)  defines the expected long-term 
return when choosing an action a in state s following policy 
𝜋𝜋. The policy is then derived from the estimated value of all 
possible actions in each state. Policy approximation, on the 
other hand, directly updates the policy function 𝜋𝜋𝑡𝑡 =
 𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠). 

Most real-world problems deal with continuous action and 
state spaces. Storing and updating the policy or value 
function in a table is therefore computationally inefficient 
and requires lots of memory space.  Therefore, the original 
policy or value function has to be stored approximatively. 
Artificial neural networks are widely used for that purpose, 
as they are capable of approximating complex functional 
relationships via the weights within the network and allow to 
adapt those weights dynamically during the learning process 
[10]. As a result, neural networks reduce the computational 
effort by updating a set of weight parameters 𝜃𝜃𝑡𝑡⃗⃗  ⃗ instead of the 
values for each state-action pair in each iteration, see Table 
1. 

Depending on the dimension and the characteristics of the 
problem, different learning approaches might lead to good 
results. In recent years new kinds of RL algorithms such as 
PPO [11], TRPO [12] and DQN [13] were developed to deal 
with complex problems in different domains. They can be 
regarded as advanced policy or value approximation 
algorithms that are optimized with regard to an efficient and 
stable learning process together with neural networks. The 
solution to the order dispatching problem, presented in this 
paper, builds on these RL algorithms 

2.3. Applications of Reinforcement Learning agents in the 
manufacturing industry 

Because of the iterative learning process (see section 2.2), 
RL algorithms are suitable methods in dynamic 
environments in which complete information cannot be 
provided entirely from the beginning. The generality of the 
concepts allows the application of RL for decision problems 
in various industrial applications. Next to the purpose of 
production control, other successful implementations of RL 
agents exist for example in board games (e.g. chess), robotics 
or process engineering. 

Games, such as strategy games or Atari games, are used 
by many researchers to design and test new algorithms. 
Results presented in [13] and [12] show that modern RL 
algorithms already exceed human performance in specific 
domains. The design of autonomous robotic systems is 

another field of application to learn coordinating movements 
to fulfill a certain task [14,15]. 

Other industrial applications are found in process 
engineering. In [16] an actor-critic RL algorithm is 
implemented to control the process parameter laser power in 
a welding process. The experimental results for a particular 
setup show that RL generates stable solutions and is suitable 
for a real-time and dynamic control mechanism. 

In the context of production control, other authors 
investigated the usage of RL methods for order scheduling. 
The scheduling approaches differ in their overall 
architecture. The system proposed in [2] and [3], for 
example, focuses on a highly distributed form of RL, where 
each resource and each order are considered as agents. In this 
kind of architecture resources bid for the allocation of an 
order depending on the estimated processing cost when being 
selected. To reduce computational complexity a RL solution 
is presented to estimate the benefit of allocating a job to a 
specific resource. The implemented RL algorithm uses a 
table-representation in a single-objective problem. 

The work of [7] and [17] apply Q-learning to a single-
machine scheduling problem and a layout with several 
process steps. The order scheduling within each machine and 
the order release in [17] are performed by RL agents. In both 
cases, a table is used to store the value function. 

The solution developed in this paper is an autonomous, 
single-agent dispatching system. In contrast to previous RL 
applications for order scheduling, the work presents an 
implementation that is based on function approximation with 
artificial neural networks. This approach is appropriate for 
continuous action and state spaces and hence a suitable 
approach for real-world situations. 

3. Agent-based approach for the autonomous 
dispatching problem 

The following section specifies the architecture of the 
agent as well as the overall RL algorithm setup that was 
developed to solve the dispatching problem. The main 
features of an agent are a dynamic environment and 
autonomous, objective-driven actions (see section 2.1). In 
the following, the components of the agent design are 
therefore described with regard to those features. The whole 
system is evaluated in exemplary production layout in the 
end of this section. 

3.1. Dynamic production environment 

The environment of the dispatching problem is the 
production system. The layout is defined by the position of 
the resources (e.g. machines) of the system. The dynamic 
process of order processing is modelled as follows:  

Released orders wait in entry buffers until they are 
affected by a decision of the dispatching agent. The agent 
allocates orders to a specific machine whereupon a 
transportation medium moves the orders to the machine’s 
buffer. When a machine has processed an order the order 
waiting longest in the buffer is processed next. Note that 
instead of applying a simple decision rule it is possible to 
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implement agents for the single-machine dispatching 
problem. However, for reasons of simplicity the proposed 
implementation uses a rule-based approach in this step. After 
being processed the order is stored in the buffer again until 
the dispatching agent decides to move it to one of the final 
exit stock for finished goods.  

Machines might differ in their tools and their capabilities. 
Similar machines are assigned to the same machine group. 
Orders arrive dynamically and contain information about 
their work content and their processing times. Work content 
and processing times are stochastically distributed. 
According to the work content, all machines of one specific 
machine group can process the order. Therefore, the 
dispatching agent has to decide on the allocation within that 
group. Stochastic events in the environment occur due to 
machine failure. They lead to a limited availability of the 
machines. 

The environment is implemented in Python using the 
discrete-event simulation provided by the library simpy. 
Hence, simulation data instead of real-world data is used for 
the training in order to have a proper “trial and error” 
interaction with the environment of the agent. When a 
dispatching decision is required, the simulation transfers the 
environments state to the learning agent and performs the 
action selected and returned by the agent. A decision results 
in a movement of the transportation resource with or without 
an order. Thus, the dispatching agent can be associated with 
the transportation resource. 

3.2. Objective-driven action determination 

Objective-driven actions require a feedback from the 
environment to the agent. This feedback has to be a numeric 
signal that is transferred to the agent after each decision. 
Therefore a reward function is composed with the values of 
k performance measures F = {F1, F2, …, Fk} for its multiple  
objectives. Each performance measure Fi is represented in a 
reward ri = f(Fi) ∈ [0,1]. The total reward r is then calculated 
as the weighted sum of the single rewards. The single reward 
functions have to be defined depending on the values of the 
performance measures in the particular problem. 

 A reward of zero is given when the agent decides on an 
action that cannot be executed by the transportation resource, 
for example due to machine failure or a buffer overflow. The 
low value indicates that the agent should avoid such kind of 
actions, whereas a high value makes the agent behave 
similarly in the future. 

3.3. Autonomous decision-making 

The capability of performing autonomous actions requires 
learning from the experience from preceding interactions 
with the environment. For a RL agent this means defining the 
way the agent adapts its strategy. For the implementation of 
this characteristic, the paper utilizes the TRPO algorithm 
[12] provided by the RL Python library tensorforce. These 
algorithms have predefined interfaces for the information 
transmission between learning agents and their environment. 

In order to match the specific problem they have to be 
customized with a set of learning parameters. 

However, independent from a specific algorithm, the 
input for the algorithm is a state representation and a reward 
signal, whereas the output is an action. Therefore, an action 
and a state representation have to be defined. 

Each action Ai results in a movement of the transportation 
resource between the sources, exit stocks and machines. 
They are represented as a positive integer Ai ∈ ℕ+. For the 
dispatching problem there are three types of actions:  

• AAloc: Allocating an unprocessed order to a machine, 
which results in the transportation to that machine 

• ATransport: Transporting a processed order from a machine 
to one of the exit stocks 

• AEmpty: Changing the location of the transportation 
resource without affecting any order 

The state representation St needs to contain all decision-
relevant information from the production environment. It 
includes information about: 

• Location of the transportation resource. 
• For each machine Mi: One binary value composed of the 

machine’s current availability and the buffer filling state 
to indicate whether an action AAloc ending at machine Mi 
is possible or not. A second binary value based on the 
existence of a processed order in the buffer indicating 
whether an action ATransport starting machine Mi is 
possible or not. Two floats value for the sum of 
processing times of unprocessed orders and waiting 
times of processed orders. 

• For each entered order: One float value for the waiting 
time of the longest waiting order. A second float 
indicates on which machines the longest waiting order 
can be processed. 

3.4. Proof of concept 

In order to prove that the RL algorithm architecture is 
suitable to solve the described dispatching problems, the 
functionality is tested in a simple exemplary production 
layout. The chosen scenario is a system with three similar 
machines with an availability of 100% and equal order 
processing times. All production parameters are determined 
in such a way that it allows a constant maximum workload 
of 100% when performing the correct actions in the correct 
order. A human can determine the trivial correct order. In a 
simulation run the concept can be verified where the action-
sequence found by the dispatching agent matches the known 
optimal solution. With a proper agent configuration, i.e. the 
algorithm is not stuck in one of the local optima, the (global) 
optimal solution is computed after 5000 to 10000 simulation 
iterations. 

4. Real-world use case from the semiconductor industry 

The architecture presented in the previous section is 
applied to a real-world use case from semiconductor 
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industry. The Python implementation of the environment is 
therefore instantiated with the layout data from the use case. 
Additionally, the action representation, the state 
representation and the reward function are customized to 
match the specific problem. This section gives a detailed 
description of the use case as well as the experimental results. 
The agent’s performance is evaluated in comparison with a 
heuristic dispatching rule serving as a benchmark. 
Furthermore, the impact of varying specific model 
parameters is investigated. 

4.1. Use case description 

In order to simulate the production system of the use case 
scenario the implementation of the dynamic environment as 
well as the reward function and the action and state 
representation (see section 3.3) are adapted.  

In the use case there are eight machines {M1, M2, …, M8} 
and three sources for order entry {L1, L2, L3}. The sources 
also represent the exit stocks of the production system. The 
buffer capacities vary between two and four orders per 
machine. The stochastic machine failures are defined by the 
parameters Mean Time Between Failure (MTBF) and Mean 
Time To Repair (MTTR).  

As illustrated in Fig. 2, the eight machines are arranged in 
three areas and one source is assigned to each area. 
Furthermore, similar machines are grouped as followed: G1 
= {M1}, G2 = {M2, M3, M4, M5} and G3 = {M6, M7, M8}. 
Depending on the work content, incoming orders are 
assigned to the source of an area containing at least one 
machine that is able to process that order. L1 for example 
provides orders for G1 and G2 but not for G3.  

 
Besides the production environment, the reward function 

is defined with the two performance measures workload WL 
= F1 of the machines, i.e. utilization, and the throughput time 
TPT = F2 of the processed orders. The rewards r1 and r2 are 
modeled as linear functions of the performance measure 
values. 

The action and state representation are adapted as follows. 
In total, there are 37 possible actions (12 actions AAloc, 24 
actions AEmpty and 11 actions AEmpty). The system state is 
described in a vector with 47 elements. 

 
 

 
Fig. 2. Schema of the production layout. 

4.2. Experimental setup 

In order to apply the dispatching agent on the use case the 
use case production system is simulated in a series of 
experiments. Each simulation run has a duration of three 
million iterations. During one simulation run the reward, the 
throughput time and the workload are recorded and analyzed. 
The results of mainly three simulation experiments are 
presented hereinafter: 
• Comparing the autonomous agent-based dispatching 

with a rule-based benchmark 
• Modifying the weights of the two different performance 

measures (while keeping the sum of the weights 
constant) 

• Performance evaluation of the agent in a slightly 
modified scenario with different buffer capacities 

As a benchmark, a rule-based heuristic is implemented: The 
two layered decision rule prioritizes orders with regard to 
their waiting time (FIFO) and then selects the machine with 
the least workload. 

4.3. Experimental results 

The reward values and the two performance measures are 
shown in Fig. 3. For the first simulation experiment (see 
section 4.2), the course of the reward signal shows an overall 
successful learning process. It results from a strategy 
improvement with regard to the defined objectives.  A further 
evaluation of the agent’s self-learned strategy requires a 
closer look at the performance measures WL and TPT. In 
comparison with the benchmark heuristic, the agent achieves 
better results to the end of the learning process for both 
objectives and thus reaches a higher performance. 

In many dispatching problems, the task includes 
conflictive objectives. To a certain extent, WL and TPT are 
conflictive objectives, too. A maximum workload usually 
results in a maximum exploitation of existing buffer 
capacities to ensure a constant supply of the machines. 
However, this leads to increasing order waiting times and 
therefore longer throughput times.  

 
In the next 
simulation 
experiment, 
the 
correlation 
between 
WL and 
TPT is 
analyzed by 
modifying 
the weights 
of the two 
rewards 
within the 
reward 
function. 
Fig. 3 
shows the 
resulting 
average 
throughput 
time and 
the average 
workload 
for 
different 
weights. 
TPT:WL 

WL TPT [s] 
100 : 0 0.87  
80 : 20 0.89  
60 : 40 0.90  
40 : 60 0.91  
20 - 80 0.90  
0 : 100 0.89  
heuristic 0.85  

Fig. 3: Reward signal (top-left), workload (bottom-left), throughput 
time (bottom-right) and variations of the reward weights (top-right). 
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implement agents for the single-machine dispatching 
problem. However, for reasons of simplicity the proposed 
implementation uses a rule-based approach in this step. After 
being processed the order is stored in the buffer again until 
the dispatching agent decides to move it to one of the final 
exit stock for finished goods.  

Machines might differ in their tools and their capabilities. 
Similar machines are assigned to the same machine group. 
Orders arrive dynamically and contain information about 
their work content and their processing times. Work content 
and processing times are stochastically distributed. 
According to the work content, all machines of one specific 
machine group can process the order. Therefore, the 
dispatching agent has to decide on the allocation within that 
group. Stochastic events in the environment occur due to 
machine failure. They lead to a limited availability of the 
machines. 

The environment is implemented in Python using the 
discrete-event simulation provided by the library simpy. 
Hence, simulation data instead of real-world data is used for 
the training in order to have a proper “trial and error” 
interaction with the environment of the agent. When a 
dispatching decision is required, the simulation transfers the 
environments state to the learning agent and performs the 
action selected and returned by the agent. A decision results 
in a movement of the transportation resource with or without 
an order. Thus, the dispatching agent can be associated with 
the transportation resource. 

3.2. Objective-driven action determination 

Objective-driven actions require a feedback from the 
environment to the agent. This feedback has to be a numeric 
signal that is transferred to the agent after each decision. 
Therefore a reward function is composed with the values of 
k performance measures F = {F1, F2, …, Fk} for its multiple  
objectives. Each performance measure Fi is represented in a 
reward ri = f(Fi) ∈ [0,1]. The total reward r is then calculated 
as the weighted sum of the single rewards. The single reward 
functions have to be defined depending on the values of the 
performance measures in the particular problem. 

 A reward of zero is given when the agent decides on an 
action that cannot be executed by the transportation resource, 
for example due to machine failure or a buffer overflow. The 
low value indicates that the agent should avoid such kind of 
actions, whereas a high value makes the agent behave 
similarly in the future. 

3.3. Autonomous decision-making 

The capability of performing autonomous actions requires 
learning from the experience from preceding interactions 
with the environment. For a RL agent this means defining the 
way the agent adapts its strategy. For the implementation of 
this characteristic, the paper utilizes the TRPO algorithm 
[12] provided by the RL Python library tensorforce. These 
algorithms have predefined interfaces for the information 
transmission between learning agents and their environment. 

In order to match the specific problem they have to be 
customized with a set of learning parameters. 

However, independent from a specific algorithm, the 
input for the algorithm is a state representation and a reward 
signal, whereas the output is an action. Therefore, an action 
and a state representation have to be defined. 

Each action Ai results in a movement of the transportation 
resource between the sources, exit stocks and machines. 
They are represented as a positive integer Ai ∈ ℕ+. For the 
dispatching problem there are three types of actions:  

• AAloc: Allocating an unprocessed order to a machine, 
which results in the transportation to that machine 

• ATransport: Transporting a processed order from a machine 
to one of the exit stocks 

• AEmpty: Changing the location of the transportation 
resource without affecting any order 

The state representation St needs to contain all decision-
relevant information from the production environment. It 
includes information about: 

• Location of the transportation resource. 
• For each machine Mi: One binary value composed of the 

machine’s current availability and the buffer filling state 
to indicate whether an action AAloc ending at machine Mi 
is possible or not. A second binary value based on the 
existence of a processed order in the buffer indicating 
whether an action ATransport starting machine Mi is 
possible or not. Two floats value for the sum of 
processing times of unprocessed orders and waiting 
times of processed orders. 

• For each entered order: One float value for the waiting 
time of the longest waiting order. A second float 
indicates on which machines the longest waiting order 
can be processed. 

3.4. Proof of concept 

In order to prove that the RL algorithm architecture is 
suitable to solve the described dispatching problems, the 
functionality is tested in a simple exemplary production 
layout. The chosen scenario is a system with three similar 
machines with an availability of 100% and equal order 
processing times. All production parameters are determined 
in such a way that it allows a constant maximum workload 
of 100% when performing the correct actions in the correct 
order. A human can determine the trivial correct order. In a 
simulation run the concept can be verified where the action-
sequence found by the dispatching agent matches the known 
optimal solution. With a proper agent configuration, i.e. the 
algorithm is not stuck in one of the local optima, the (global) 
optimal solution is computed after 5000 to 10000 simulation 
iterations. 

4. Real-world use case from the semiconductor industry 

The architecture presented in the previous section is 
applied to a real-world use case from semiconductor 
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industry. The Python implementation of the environment is 
therefore instantiated with the layout data from the use case. 
Additionally, the action representation, the state 
representation and the reward function are customized to 
match the specific problem. This section gives a detailed 
description of the use case as well as the experimental results. 
The agent’s performance is evaluated in comparison with a 
heuristic dispatching rule serving as a benchmark. 
Furthermore, the impact of varying specific model 
parameters is investigated. 

4.1. Use case description 

In order to simulate the production system of the use case 
scenario the implementation of the dynamic environment as 
well as the reward function and the action and state 
representation (see section 3.3) are adapted.  

In the use case there are eight machines {M1, M2, …, M8} 
and three sources for order entry {L1, L2, L3}. The sources 
also represent the exit stocks of the production system. The 
buffer capacities vary between two and four orders per 
machine. The stochastic machine failures are defined by the 
parameters Mean Time Between Failure (MTBF) and Mean 
Time To Repair (MTTR).  

As illustrated in Fig. 2, the eight machines are arranged in 
three areas and one source is assigned to each area. 
Furthermore, similar machines are grouped as followed: G1 
= {M1}, G2 = {M2, M3, M4, M5} and G3 = {M6, M7, M8}. 
Depending on the work content, incoming orders are 
assigned to the source of an area containing at least one 
machine that is able to process that order. L1 for example 
provides orders for G1 and G2 but not for G3.  

 
Besides the production environment, the reward function 

is defined with the two performance measures workload WL 
= F1 of the machines, i.e. utilization, and the throughput time 
TPT = F2 of the processed orders. The rewards r1 and r2 are 
modeled as linear functions of the performance measure 
values. 

The action and state representation are adapted as follows. 
In total, there are 37 possible actions (12 actions AAloc, 24 
actions AEmpty and 11 actions AEmpty). The system state is 
described in a vector with 47 elements. 

 
 

 
Fig. 2. Schema of the production layout. 

4.2. Experimental setup 

In order to apply the dispatching agent on the use case the 
use case production system is simulated in a series of 
experiments. Each simulation run has a duration of three 
million iterations. During one simulation run the reward, the 
throughput time and the workload are recorded and analyzed. 
The results of mainly three simulation experiments are 
presented hereinafter: 
• Comparing the autonomous agent-based dispatching 

with a rule-based benchmark 
• Modifying the weights of the two different performance 

measures (while keeping the sum of the weights 
constant) 

• Performance evaluation of the agent in a slightly 
modified scenario with different buffer capacities 

As a benchmark, a rule-based heuristic is implemented: The 
two layered decision rule prioritizes orders with regard to 
their waiting time (FIFO) and then selects the machine with 
the least workload. 

4.3. Experimental results 

The reward values and the two performance measures are 
shown in Fig. 3. For the first simulation experiment (see 
section 4.2), the course of the reward signal shows an overall 
successful learning process. It results from a strategy 
improvement with regard to the defined objectives.  A further 
evaluation of the agent’s self-learned strategy requires a 
closer look at the performance measures WL and TPT. In 
comparison with the benchmark heuristic, the agent achieves 
better results to the end of the learning process for both 
objectives and thus reaches a higher performance. 

In many dispatching problems, the task includes 
conflictive objectives. To a certain extent, WL and TPT are 
conflictive objectives, too. A maximum workload usually 
results in a maximum exploitation of existing buffer 
capacities to ensure a constant supply of the machines. 
However, this leads to increasing order waiting times and 
therefore longer throughput times.  

 
In the next 
simulation 
experiment, 
the 
correlation 
between 
WL and 
TPT is 
analyzed by 
modifying 
the weights 
of the two 
rewards 
within the 
reward 
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Fig. 3 
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resulting 
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time and 
the average 
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for 
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Fig. 3: Reward signal (top-left), workload (bottom-left), throughput 
time (bottom-right) and variations of the reward weights (top-right). 
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Table 2. Performance results of different buffer capacities. 

 WL agent WL heuristic  TPT Agent TPT Heuristic 

Small Buffers 0.79 0.79 93.6 s 97.9 s 

Large Buffers 0.94 0.90 145.5 s 155.2 s 

 
In order to show that the presented RL architecture is a 

suitable approach to solve problems in a dynamic 
environment the agent is tested in a modified scenario. In this 
simulation experiment, a production system layout with 
changing buffer capacities is investigated. In this scenario, 
smaller buffer capacities result in smaller performance 
differences between the agent and the heuristic with regard 
to both performance measures (see Table 2). This is due to 
the fact, that larger buffers lead to more decision options in 
each iteration while smaller buffers limit the number of 
options within the problem. Therefore, the agent that always 
considers all options achieves overall better results than the 
heuristic when increasing the buffer capacities. 

 5. Conclusion 
The implementation of an autonomous order dispatching 

agent in a real-world production environment shows that a 
RL agent is able to outperform an existing benchmark 
heuristic. As the architecture of RL agents is autonomous, 
self-developing and adaptive to changes it is a promising 
response to the current demands for flexible production 
systems and a real-time capable as well as adaptive 
production control.  

Based on the implementation and experiments in this 
paper further research in modified scenarios is possible. The 
proposed architecture can be extended to a multi-agent 
production system by adding for example another 
dispatching agent that is referred to a second transportation 
resource. Another agent-based system could be designed for 
a learning-based and autonomous order release mechanism 
or even for predictive maintenance.  

The architecture described in this paper still requires 
customization effort to the particular dispatching scenario, 
for example when defining the state and action 
representation or the reward function. A generic formulation 
of these components and variable would be an important step 
to reduce the implementation effort of autonomous control 
mechanisms. 

Acknowledgments 

We extend our sincere thanks to the German Federal 
Ministry of Education and Research (BMBF) for supporting 
this research project 02P14B161 “Empowerment and 
Implementation Strategies for Industry 4.0”. 

References 

[1] Mönch  L, Fowler JW, Mason SJ. Production planning and control for 
semiconductor wafer fabrication facilities. 1st ed. New York: Springer; 
2013. 

[2] Monostori L, Csáji BC, Kádár B. Adaptation and Learning in 
Distributed Production Control. CIRP Annals 2004;53:349-352. 

[3] Csáji BC, Monostori L, Kádár B. Reinforcement learning in a distributed 
market-based production control system. Advanced Engineering 
Informatics 2006;20:279-288. 

[4] Waschneck B, Altenmüller T, Bauernhansl T, Kyek A. Production 
Scheduling in Complex Job Shops from an Industry 4.0 Perspective. 
CEUR Workshop Proceedings 2016;1793:12-24. 

[5] Monostori L, Váncza J, Kumara SRT. Agent-Based Systems for 
Manufacturing. CIRP Annals 2006;55:697-720. 

[6] Lawler EL, Lenstra JK, Kan AHR, Shmoys DB. Sequencing and 
Scheduling: Algorithms and Complexity. Handbooks in operations 
research and management science 1993;4:445-522. 

[7] Wang YC, Usher JM. Application of reinforcement learning for agent-
based production scheduling. Engineering Applications of Artificial 
Intelligence 2005;18:73-82. 

[8] Luck M, McBurney P. Agent Technology Roadmap. 1st ed. 
Southampton: AgentLink; 2005. 

[9] Russel S, Norvig P. Artificial intelligence. 3rd ed. Malaysia: Pearson 
Education Limited; 2016. 

[10] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 1st 
ed. Cambridge: MIT press; 1998. 

[11] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal 
Policy Optimization Algorithms. arXiv preprint:1707.06347, 2017. 

[12] Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P. Trust Region 
Policy Optimization. International Conference on Machine Learning 
2015;1889-1897. 

[13] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra 
D, Riedmiller M. Playing Atari with Deep Reinforcement Learning. 
arXiv preprint:1312.5602, 2013. 

[14] Kormushev P, Calinon S, Caldwell DG. Robot motor skill coordination 
with EM-based Reinforcement Learning. Intelligent Robots and 
Systems 2010; 3232-3237. 

[15] Philip T, Michael B, Antonie vdB, Kathleen J. Application of the 
Actor-Critic Architecture to Functional Electrical Stimulation Control 
of a Human Arm. Proc Innov Appl Artif Intell Conf. 2009;165-172. 

[16] Günther J, Pilarski PM, Helfrich G, Shen H, Diepold K. Intelligent laser 
welding through representation, prediction, and control learning. 
Mechatronics 2016;34:1-11. 

[17] Stegherr F. Reinforcement Learning zur dispositiven 
Auftragssteuerung in der Varianten-Reihenproduktion. Herbert Utz 
Verlag, 1st ed. 2000. 


