
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 79 (2019) 391–396

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.
10.1016/j.procir.2019.02.101

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018,
Gulf of Naples, Italy

© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Autonomous order dispatching in the semiconductor industry using
reinforcement learning

 Andreas Kuhnlea,*, Nicole Röhriga, Gisela Lanzaa
a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76137 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-46166; fax: +49-721-608-45005. E-mail address: andreas.kuhnle@kit.edu

Abstract

Cyber Physical Production Systems (CPPS) provide a huge amount of data. Simultaneously, operational decisions are getting ever more complex
due to smaller batch sizes, a larger product variety and complex processes in production systems. Production engineers struggle to utilize the
recorded data to optimize production processes effectively because of a rising level of complexity. This paper shows the successful
implementation of an autonomous order dispatching system that is based on a Reinforcement Learning (RL) algorithm. The real-world use case
in the semiconductor industry is a highly suitable example of a cyber physical and digitized production system.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Keywords: Production planning; Reinforcement learning; Semiconductor industry

1. Introduction

The productivity of manufacturing systems and thus their
economic efficiency depends on the performance of
production control mechanisms. Because of an increasing
global competition and high customer demands, the optimal
use of existing resources is ever more important. Optimizing
production control is therefore a central issue in the
manufacturing industry.

Depending on the industry, companies are additionally
facing complex manufacturing processes due to high product
diversity, lot size reduction and high quality requirements. In
the example of semiconductor industry complexity arises
through a high number of manufacturing processes and their
precision on a nanometer level [1]. Planning and
coordinating processes is hence a challenging task and
requires a suitable control method.

Moreover production control deals with a dynamic and
non-deterministic surrounding and thus has to handle
uncertainty and unexpected incidents [2]. Established
approaches for production control, such as mathematical
programming, heuristics and dispatching rules are not able to
meet these needs [3].

Through the integration of manufacturing components,
enhanced process monitoring and data collection, Cyber

Physical Production Systems (CPPS) provide real time data
such as order tracking data, machine breaks and inventory
levels. This makes it possible to apply data-driven
techniques, such as Machine Learning (ML), that are able to
adjust to the current system state by analyzing the available
data in real time. The potential of ML in production control
to create decentralized and autonomous systems has been
evaluated by several researchers such as [3,4,5]. This paper
describes and evaluates the implementation of an
autonomous agent-based control system for order
dispatching in a real-world use case in the semiconductor
industry.

1.1. The order dispatching problem

Order dispatching is a task of operational production
control. It describes the allocation problem of processing n
single-stage orders O = {O1, O2 …, On} with time duration
T = {t1, t2, …, tn} on a set of m machines M = {M1, M2, …,
Mm}. Each machine can handle one order at a time. The
objective is to allocate the orders in a way as to optimize a set
of k performance measures F = {F1, F2, …, Fk} such as
workload, throughput time or tardiness [2,6,7]. Depending on
the production environment a valid solution has to consider

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Autonomous order dispatching in the semiconductor industry using
reinforcement learning

 Andreas Kuhnlea,*, Nicole Röhriga, Gisela Lanzaa
a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76137 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-46166; fax: +49-721-608-45005. E-mail address: andreas.kuhnle@kit.edu

Abstract

Cyber Physical Production Systems (CPPS) provide a huge amount of data. Simultaneously, operational decisions are getting ever more complex
due to smaller batch sizes, a larger product variety and complex processes in production systems. Production engineers struggle to utilize the
recorded data to optimize production processes effectively because of a rising level of complexity. This paper shows the successful
implementation of an autonomous order dispatching system that is based on a Reinforcement Learning (RL) algorithm. The real-world use case
in the semiconductor industry is a highly suitable example of a cyber physical and digitized production system.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Keywords: Production planning; Reinforcement learning; Semiconductor industry

1. Introduction

The productivity of manufacturing systems and thus their
economic efficiency depends on the performance of
production control mechanisms. Because of an increasing
global competition and high customer demands, the optimal
use of existing resources is ever more important. Optimizing
production control is therefore a central issue in the
manufacturing industry.

Depending on the industry, companies are additionally
facing complex manufacturing processes due to high product
diversity, lot size reduction and high quality requirements. In
the example of semiconductor industry complexity arises
through a high number of manufacturing processes and their
precision on a nanometer level [1]. Planning and
coordinating processes is hence a challenging task and
requires a suitable control method.

Moreover production control deals with a dynamic and
non-deterministic surrounding and thus has to handle
uncertainty and unexpected incidents [2]. Established
approaches for production control, such as mathematical
programming, heuristics and dispatching rules are not able to
meet these needs [3].

Through the integration of manufacturing components,
enhanced process monitoring and data collection, Cyber

Physical Production Systems (CPPS) provide real time data
such as order tracking data, machine breaks and inventory
levels. This makes it possible to apply data-driven
techniques, such as Machine Learning (ML), that are able to
adjust to the current system state by analyzing the available
data in real time. The potential of ML in production control
to create decentralized and autonomous systems has been
evaluated by several researchers such as [3,4,5]. This paper
describes and evaluates the implementation of an
autonomous agent-based control system for order
dispatching in a real-world use case in the semiconductor
industry.

1.1. The order dispatching problem

Order dispatching is a task of operational production
control. It describes the allocation problem of processing n
single-stage orders O = {O1, O2 …, On} with time duration
T = {t1, t2, …, tn} on a set of m machines M = {M1, M2, …,
Mm}. Each machine can handle one order at a time. The
objective is to allocate the orders in a way as to optimize a set
of k performance measures F = {F1, F2, …, Fk} such as
workload, throughput time or tardiness [2,6,7]. Depending on
the production environment a valid solution has to consider

392 Andreas Kuhnle et al. / Procedia CIRP 79 (2019) 391–396
 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

additional constraints such as machine-allocation constraints
(𝑂𝑂 → 𝑀𝑀) or buffer capacities (𝑀𝑀𝑖𝑖 → ℝ+).

The static order dispatching problem described above is
NP-hard [6]. In real-world use cases non-deterministic
events, such as machine break downs and dynamic processes,
such as new order arrivals, present an additional challenge for
production control [3]. Furthermore, most problems are
multi-criterial. Whilst predefined decision rules or
mathematical optimization methods can hardly perform
effectively under such circumstances [5] agent-based,
learning control mechanisms can react flexible to changes in
their environment. An agent-based and decentralized
architecture also has benefits with regard to the complexity,
as it allows splitting the problem into sub-problems that can
be solved by independent agents [7].

The structure of the paper is as follows: Section 2
describes the theoretical concepts of agent-based production
control and Reinforcement Learning (RL). Those are used in
Section 3 to implement the components of an agent-based
production control. The control system is tested and
evaluated in Section 4. As a benchmark, the simulation
results of the agent-based solution is compared to a heuristic
rule-based algorithm in a real-world scenario.

2. Reinforcement Learning agents

One main idea of agent-based control is to split up the
control task into several subtasks that can be solved on a local
level. The resulting decentralized structure is flexible [7] and
furthermore allows a reduction of computation time through
the parallelization of decisions. Operational production
control for example requires an order release decision, order
dispatching decision and a single-machine dispatching
decision. The responsibility for the subtask can be assigned
to independent agents, then acting on a local level in the
production environment. The role of an agent as a decision-
making entity is defined in the following.

2.1. Agent definition

Agents are an essential concept of intelligent computing
and distributed system design [5]. On a functional level, an
agent is a computational system that [5,8]:

• Interacts with a dynamic environment
• Is able to perform autonomous actions
• Acts with regard to a specific objective

To achieve this behavior [9] proposes an agent
architecture that has three key components: For the
interaction with its environment the agent needs sensors to
perceive aspects of its surrounding and actuators to execute
its actions. To generate autonomous and objective-driven
actions, a third component, the so-called “agent function” is
required [8].

In this model, the agent function is the key component for
defining the agent’s behavior. It determines how the
perceived information is processed to decide on actions that
lead to a “good” performance with regard to the objective. At

the same time, it compromises the agent’s experiences
captured in its surrounding. This is crucial to learn the
consequences of the agent’s decisions. Eventually, the “agent
function” represents a learned model of the environment.

The (production control) system can consist of several
agents with overlapping environments. In that case it is called
a multi-agent system [3].

This agent definition describes a general approach to
design systems that solve a particular problem. However, to
specify the interaction process and the components additional
techniques are required. This paper proposes the application
of an RL algorithm for that purpose.

2.2. Reinforcement Learning

RL applies the ideas of a learning agent-based approach to
optimization problems. Because the learning capability is
based on repeated interaction with the environment it is often
referred to as “trial and error” learning [10].

Despite the existence of many different RL algorithms that
vary in the concrete realization of the learning functionality,
they follow the same steps in the agent-environment
interaction, see Fig. 1.

The agent perceives the actual state of the environment as
a vector St. In order to decide on an action At the information
is processed in the agent function that stores the current
policy

𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠) = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎 |𝑆𝑆𝑡𝑡 = 𝑠𝑠) (1)

After the action is performed in the environment the agent
perceives the new state St+1 and a reward signal Rt+1. Note that
the environmental transformation is associated to a Markov
Decision Process (MDP). According to the received
feedback, the agent adapts its policy. [10]

These steps are repeated in an iterative procedure. As a
result, the agent optimizes its behavior in a way to find a
policy 𝜋𝜋 maximizing the long-term reward – therefore a
policy that corresponds best to the agent’s objectives. [10]

Finding an optimal policy is a dynamic process. In each
iteration, the current policy 𝜋𝜋𝑡𝑡 is adapted depending on the
latest experiences. There are two main techniques to
determine the new policy: (i) value-based approaches and (ii)
policy-based approaches. A summary of the update functions
and the instructions for both cases can be found in Table 1,
where 𝛼𝛼 is the learning rate and 𝜂𝜂 an evaluation rate for the
current policy representation.

Fig. 1. Agent-environment interaction, derived from [9,10].

 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

Table 1. Policy and value approximation, derived from [10].

 Policy approximation Value approximation

Update
function

policy function
𝜋𝜋𝑡𝑡 = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠)

action-value function
𝑄𝑄𝜋𝜋 = 𝔼𝔼[Rt|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎]

Update rule 𝜃𝜃𝑡𝑡+1⃗⃗⃗⃗⃗⃗ ⃗⃗ ← 𝜃𝜃𝑡𝑡⃗⃗ ⃗ + 𝛼𝛼 𝛻𝛻𝛻𝛻(𝜃𝜃𝑡𝑡)̂ 𝜃𝜃𝑡𝑡+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ← 𝜃𝜃𝑡𝑡⃗⃗ ⃗ + 𝛼𝛼 [𝑄𝑄𝜋𝜋−𝑄𝑄𝑡𝑡] 𝛻𝛻 𝜃𝜃𝑡𝑡⃗⃗⃗⃗ 𝑄𝑄𝑡𝑡

The main difference between both approaches is that value

approximation learns the action-value function during the
interaction instead of directly learning a policy 𝜋𝜋. The value
function 𝑄𝑄𝜋𝜋 = 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) defines the expected long-term
return when choosing an action a in state s following policy
𝜋𝜋. The policy is then derived from the estimated value of all
possible actions in each state. Policy approximation, on the
other hand, directly updates the policy function 𝜋𝜋𝑡𝑡 =
 𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠).

Most real-world problems deal with continuous action and
state spaces. Storing and updating the policy or value
function in a table is therefore computationally inefficient
and requires lots of memory space. Therefore, the original
policy or value function has to be stored approximatively.
Artificial neural networks are widely used for that purpose,
as they are capable of approximating complex functional
relationships via the weights within the network and allow to
adapt those weights dynamically during the learning process
[10]. As a result, neural networks reduce the computational
effort by updating a set of weight parameters 𝜃𝜃𝑡𝑡⃗⃗ ⃗ instead of the
values for each state-action pair in each iteration, see Table
1.

Depending on the dimension and the characteristics of the
problem, different learning approaches might lead to good
results. In recent years new kinds of RL algorithms such as
PPO [11], TRPO [12] and DQN [13] were developed to deal
with complex problems in different domains. They can be
regarded as advanced policy or value approximation
algorithms that are optimized with regard to an efficient and
stable learning process together with neural networks. The
solution to the order dispatching problem, presented in this
paper, builds on these RL algorithms

2.3. Applications of Reinforcement Learning agents in the
manufacturing industry

Because of the iterative learning process (see section 2.2),
RL algorithms are suitable methods in dynamic
environments in which complete information cannot be
provided entirely from the beginning. The generality of the
concepts allows the application of RL for decision problems
in various industrial applications. Next to the purpose of
production control, other successful implementations of RL
agents exist for example in board games (e.g. chess), robotics
or process engineering.

Games, such as strategy games or Atari games, are used
by many researchers to design and test new algorithms.
Results presented in [13] and [12] show that modern RL
algorithms already exceed human performance in specific
domains. The design of autonomous robotic systems is

another field of application to learn coordinating movements
to fulfill a certain task [14,15].

Other industrial applications are found in process
engineering. In [16] an actor-critic RL algorithm is
implemented to control the process parameter laser power in
a welding process. The experimental results for a particular
setup show that RL generates stable solutions and is suitable
for a real-time and dynamic control mechanism.

In the context of production control, other authors
investigated the usage of RL methods for order scheduling.
The scheduling approaches differ in their overall
architecture. The system proposed in [2] and [3], for
example, focuses on a highly distributed form of RL, where
each resource and each order are considered as agents. In this
kind of architecture resources bid for the allocation of an
order depending on the estimated processing cost when being
selected. To reduce computational complexity a RL solution
is presented to estimate the benefit of allocating a job to a
specific resource. The implemented RL algorithm uses a
table-representation in a single-objective problem.

The work of [7] and [17] apply Q-learning to a single-
machine scheduling problem and a layout with several
process steps. The order scheduling within each machine and
the order release in [17] are performed by RL agents. In both
cases, a table is used to store the value function.

The solution developed in this paper is an autonomous,
single-agent dispatching system. In contrast to previous RL
applications for order scheduling, the work presents an
implementation that is based on function approximation with
artificial neural networks. This approach is appropriate for
continuous action and state spaces and hence a suitable
approach for real-world situations.

3. Agent-based approach for the autonomous
dispatching problem

The following section specifies the architecture of the
agent as well as the overall RL algorithm setup that was
developed to solve the dispatching problem. The main
features of an agent are a dynamic environment and
autonomous, objective-driven actions (see section 2.1). In
the following, the components of the agent design are
therefore described with regard to those features. The whole
system is evaluated in exemplary production layout in the
end of this section.

3.1. Dynamic production environment

The environment of the dispatching problem is the
production system. The layout is defined by the position of
the resources (e.g. machines) of the system. The dynamic
process of order processing is modelled as follows:

Released orders wait in entry buffers until they are
affected by a decision of the dispatching agent. The agent
allocates orders to a specific machine whereupon a
transportation medium moves the orders to the machine’s
buffer. When a machine has processed an order the order
waiting longest in the buffer is processed next. Note that
instead of applying a simple decision rule it is possible to

 Andreas Kuhnle et al. / Procedia CIRP 79 (2019) 391–396 393
 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

additional constraints such as machine-allocation constraints
(𝑂𝑂 → 𝑀𝑀) or buffer capacities (𝑀𝑀𝑖𝑖 → ℝ+).

The static order dispatching problem described above is
NP-hard [6]. In real-world use cases non-deterministic
events, such as machine break downs and dynamic processes,
such as new order arrivals, present an additional challenge for
production control [3]. Furthermore, most problems are
multi-criterial. Whilst predefined decision rules or
mathematical optimization methods can hardly perform
effectively under such circumstances [5] agent-based,
learning control mechanisms can react flexible to changes in
their environment. An agent-based and decentralized
architecture also has benefits with regard to the complexity,
as it allows splitting the problem into sub-problems that can
be solved by independent agents [7].

The structure of the paper is as follows: Section 2
describes the theoretical concepts of agent-based production
control and Reinforcement Learning (RL). Those are used in
Section 3 to implement the components of an agent-based
production control. The control system is tested and
evaluated in Section 4. As a benchmark, the simulation
results of the agent-based solution is compared to a heuristic
rule-based algorithm in a real-world scenario.

2. Reinforcement Learning agents

One main idea of agent-based control is to split up the
control task into several subtasks that can be solved on a local
level. The resulting decentralized structure is flexible [7] and
furthermore allows a reduction of computation time through
the parallelization of decisions. Operational production
control for example requires an order release decision, order
dispatching decision and a single-machine dispatching
decision. The responsibility for the subtask can be assigned
to independent agents, then acting on a local level in the
production environment. The role of an agent as a decision-
making entity is defined in the following.

2.1. Agent definition

Agents are an essential concept of intelligent computing
and distributed system design [5]. On a functional level, an
agent is a computational system that [5,8]:

• Interacts with a dynamic environment
• Is able to perform autonomous actions
• Acts with regard to a specific objective

To achieve this behavior [9] proposes an agent
architecture that has three key components: For the
interaction with its environment the agent needs sensors to
perceive aspects of its surrounding and actuators to execute
its actions. To generate autonomous and objective-driven
actions, a third component, the so-called “agent function” is
required [8].

In this model, the agent function is the key component for
defining the agent’s behavior. It determines how the
perceived information is processed to decide on actions that
lead to a “good” performance with regard to the objective. At

the same time, it compromises the agent’s experiences
captured in its surrounding. This is crucial to learn the
consequences of the agent’s decisions. Eventually, the “agent
function” represents a learned model of the environment.

The (production control) system can consist of several
agents with overlapping environments. In that case it is called
a multi-agent system [3].

This agent definition describes a general approach to
design systems that solve a particular problem. However, to
specify the interaction process and the components additional
techniques are required. This paper proposes the application
of an RL algorithm for that purpose.

2.2. Reinforcement Learning

RL applies the ideas of a learning agent-based approach to
optimization problems. Because the learning capability is
based on repeated interaction with the environment it is often
referred to as “trial and error” learning [10].

Despite the existence of many different RL algorithms that
vary in the concrete realization of the learning functionality,
they follow the same steps in the agent-environment
interaction, see Fig. 1.

The agent perceives the actual state of the environment as
a vector St. In order to decide on an action At the information
is processed in the agent function that stores the current
policy

𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠) = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎 |𝑆𝑆𝑡𝑡 = 𝑠𝑠) (1)

After the action is performed in the environment the agent
perceives the new state St+1 and a reward signal Rt+1. Note that
the environmental transformation is associated to a Markov
Decision Process (MDP). According to the received
feedback, the agent adapts its policy. [10]

These steps are repeated in an iterative procedure. As a
result, the agent optimizes its behavior in a way to find a
policy 𝜋𝜋 maximizing the long-term reward – therefore a
policy that corresponds best to the agent’s objectives. [10]

Finding an optimal policy is a dynamic process. In each
iteration, the current policy 𝜋𝜋𝑡𝑡 is adapted depending on the
latest experiences. There are two main techniques to
determine the new policy: (i) value-based approaches and (ii)
policy-based approaches. A summary of the update functions
and the instructions for both cases can be found in Table 1,
where 𝛼𝛼 is the learning rate and 𝜂𝜂 an evaluation rate for the
current policy representation.

Fig. 1. Agent-environment interaction, derived from [9,10].

 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

Table 1. Policy and value approximation, derived from [10].

 Policy approximation Value approximation

Update
function

policy function
𝜋𝜋𝑡𝑡 = ℙ(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠)

action-value function
𝑄𝑄𝜋𝜋 = 𝔼𝔼[Rt|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎]

Update rule 𝜃𝜃𝑡𝑡+1⃗⃗⃗⃗⃗⃗ ⃗⃗ ← 𝜃𝜃𝑡𝑡⃗⃗ ⃗ + 𝛼𝛼 𝛻𝛻𝛻𝛻(𝜃𝜃𝑡𝑡)̂ 𝜃𝜃𝑡𝑡+1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ← 𝜃𝜃𝑡𝑡⃗⃗ ⃗ + 𝛼𝛼 [𝑄𝑄𝜋𝜋−𝑄𝑄𝑡𝑡] 𝛻𝛻 𝜃𝜃𝑡𝑡⃗⃗⃗⃗ 𝑄𝑄𝑡𝑡

The main difference between both approaches is that value

approximation learns the action-value function during the
interaction instead of directly learning a policy 𝜋𝜋. The value
function 𝑄𝑄𝜋𝜋 = 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) defines the expected long-term
return when choosing an action a in state s following policy
𝜋𝜋. The policy is then derived from the estimated value of all
possible actions in each state. Policy approximation, on the
other hand, directly updates the policy function 𝜋𝜋𝑡𝑡 =
 𝜋𝜋𝑡𝑡(𝑎𝑎|𝑠𝑠).

Most real-world problems deal with continuous action and
state spaces. Storing and updating the policy or value
function in a table is therefore computationally inefficient
and requires lots of memory space. Therefore, the original
policy or value function has to be stored approximatively.
Artificial neural networks are widely used for that purpose,
as they are capable of approximating complex functional
relationships via the weights within the network and allow to
adapt those weights dynamically during the learning process
[10]. As a result, neural networks reduce the computational
effort by updating a set of weight parameters 𝜃𝜃𝑡𝑡⃗⃗ ⃗ instead of the
values for each state-action pair in each iteration, see Table
1.

Depending on the dimension and the characteristics of the
problem, different learning approaches might lead to good
results. In recent years new kinds of RL algorithms such as
PPO [11], TRPO [12] and DQN [13] were developed to deal
with complex problems in different domains. They can be
regarded as advanced policy or value approximation
algorithms that are optimized with regard to an efficient and
stable learning process together with neural networks. The
solution to the order dispatching problem, presented in this
paper, builds on these RL algorithms

2.3. Applications of Reinforcement Learning agents in the
manufacturing industry

Because of the iterative learning process (see section 2.2),
RL algorithms are suitable methods in dynamic
environments in which complete information cannot be
provided entirely from the beginning. The generality of the
concepts allows the application of RL for decision problems
in various industrial applications. Next to the purpose of
production control, other successful implementations of RL
agents exist for example in board games (e.g. chess), robotics
or process engineering.

Games, such as strategy games or Atari games, are used
by many researchers to design and test new algorithms.
Results presented in [13] and [12] show that modern RL
algorithms already exceed human performance in specific
domains. The design of autonomous robotic systems is

another field of application to learn coordinating movements
to fulfill a certain task [14,15].

Other industrial applications are found in process
engineering. In [16] an actor-critic RL algorithm is
implemented to control the process parameter laser power in
a welding process. The experimental results for a particular
setup show that RL generates stable solutions and is suitable
for a real-time and dynamic control mechanism.

In the context of production control, other authors
investigated the usage of RL methods for order scheduling.
The scheduling approaches differ in their overall
architecture. The system proposed in [2] and [3], for
example, focuses on a highly distributed form of RL, where
each resource and each order are considered as agents. In this
kind of architecture resources bid for the allocation of an
order depending on the estimated processing cost when being
selected. To reduce computational complexity a RL solution
is presented to estimate the benefit of allocating a job to a
specific resource. The implemented RL algorithm uses a
table-representation in a single-objective problem.

The work of [7] and [17] apply Q-learning to a single-
machine scheduling problem and a layout with several
process steps. The order scheduling within each machine and
the order release in [17] are performed by RL agents. In both
cases, a table is used to store the value function.

The solution developed in this paper is an autonomous,
single-agent dispatching system. In contrast to previous RL
applications for order scheduling, the work presents an
implementation that is based on function approximation with
artificial neural networks. This approach is appropriate for
continuous action and state spaces and hence a suitable
approach for real-world situations.

3. Agent-based approach for the autonomous
dispatching problem

The following section specifies the architecture of the
agent as well as the overall RL algorithm setup that was
developed to solve the dispatching problem. The main
features of an agent are a dynamic environment and
autonomous, objective-driven actions (see section 2.1). In
the following, the components of the agent design are
therefore described with regard to those features. The whole
system is evaluated in exemplary production layout in the
end of this section.

3.1. Dynamic production environment

The environment of the dispatching problem is the
production system. The layout is defined by the position of
the resources (e.g. machines) of the system. The dynamic
process of order processing is modelled as follows:

Released orders wait in entry buffers until they are
affected by a decision of the dispatching agent. The agent
allocates orders to a specific machine whereupon a
transportation medium moves the orders to the machine’s
buffer. When a machine has processed an order the order
waiting longest in the buffer is processed next. Note that
instead of applying a simple decision rule it is possible to

394 Andreas Kuhnle et al. / Procedia CIRP 79 (2019) 391–396
 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

implement agents for the single-machine dispatching
problem. However, for reasons of simplicity the proposed
implementation uses a rule-based approach in this step. After
being processed the order is stored in the buffer again until
the dispatching agent decides to move it to one of the final
exit stock for finished goods.

Machines might differ in their tools and their capabilities.
Similar machines are assigned to the same machine group.
Orders arrive dynamically and contain information about
their work content and their processing times. Work content
and processing times are stochastically distributed.
According to the work content, all machines of one specific
machine group can process the order. Therefore, the
dispatching agent has to decide on the allocation within that
group. Stochastic events in the environment occur due to
machine failure. They lead to a limited availability of the
machines.

The environment is implemented in Python using the
discrete-event simulation provided by the library simpy.
Hence, simulation data instead of real-world data is used for
the training in order to have a proper “trial and error”
interaction with the environment of the agent. When a
dispatching decision is required, the simulation transfers the
environments state to the learning agent and performs the
action selected and returned by the agent. A decision results
in a movement of the transportation resource with or without
an order. Thus, the dispatching agent can be associated with
the transportation resource.

3.2. Objective-driven action determination

Objective-driven actions require a feedback from the
environment to the agent. This feedback has to be a numeric
signal that is transferred to the agent after each decision.
Therefore a reward function is composed with the values of
k performance measures F = {F1, F2, …, Fk} for its multiple
objectives. Each performance measure Fi is represented in a
reward ri = f(Fi) ∈ [0,1]. The total reward r is then calculated
as the weighted sum of the single rewards. The single reward
functions have to be defined depending on the values of the
performance measures in the particular problem.

 A reward of zero is given when the agent decides on an
action that cannot be executed by the transportation resource,
for example due to machine failure or a buffer overflow. The
low value indicates that the agent should avoid such kind of
actions, whereas a high value makes the agent behave
similarly in the future.

3.3. Autonomous decision-making

The capability of performing autonomous actions requires
learning from the experience from preceding interactions
with the environment. For a RL agent this means defining the
way the agent adapts its strategy. For the implementation of
this characteristic, the paper utilizes the TRPO algorithm
[12] provided by the RL Python library tensorforce. These
algorithms have predefined interfaces for the information
transmission between learning agents and their environment.

In order to match the specific problem they have to be
customized with a set of learning parameters.

However, independent from a specific algorithm, the
input for the algorithm is a state representation and a reward
signal, whereas the output is an action. Therefore, an action
and a state representation have to be defined.

Each action Ai results in a movement of the transportation
resource between the sources, exit stocks and machines.
They are represented as a positive integer Ai ∈ ℕ+. For the
dispatching problem there are three types of actions:

• AAloc: Allocating an unprocessed order to a machine,
which results in the transportation to that machine

• ATransport: Transporting a processed order from a machine
to one of the exit stocks

• AEmpty: Changing the location of the transportation
resource without affecting any order

The state representation St needs to contain all decision-
relevant information from the production environment. It
includes information about:

• Location of the transportation resource.
• For each machine Mi: One binary value composed of the

machine’s current availability and the buffer filling state
to indicate whether an action AAloc ending at machine Mi
is possible or not. A second binary value based on the
existence of a processed order in the buffer indicating
whether an action ATransport starting machine Mi is
possible or not. Two floats value for the sum of
processing times of unprocessed orders and waiting
times of processed orders.

• For each entered order: One float value for the waiting
time of the longest waiting order. A second float
indicates on which machines the longest waiting order
can be processed.

3.4. Proof of concept

In order to prove that the RL algorithm architecture is
suitable to solve the described dispatching problems, the
functionality is tested in a simple exemplary production
layout. The chosen scenario is a system with three similar
machines with an availability of 100% and equal order
processing times. All production parameters are determined
in such a way that it allows a constant maximum workload
of 100% when performing the correct actions in the correct
order. A human can determine the trivial correct order. In a
simulation run the concept can be verified where the action-
sequence found by the dispatching agent matches the known
optimal solution. With a proper agent configuration, i.e. the
algorithm is not stuck in one of the local optima, the (global)
optimal solution is computed after 5000 to 10000 simulation
iterations.

4. Real-world use case from the semiconductor industry

The architecture presented in the previous section is
applied to a real-world use case from semiconductor

 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

industry. The Python implementation of the environment is
therefore instantiated with the layout data from the use case.
Additionally, the action representation, the state
representation and the reward function are customized to
match the specific problem. This section gives a detailed
description of the use case as well as the experimental results.
The agent’s performance is evaluated in comparison with a
heuristic dispatching rule serving as a benchmark.
Furthermore, the impact of varying specific model
parameters is investigated.

4.1. Use case description

In order to simulate the production system of the use case
scenario the implementation of the dynamic environment as
well as the reward function and the action and state
representation (see section 3.3) are adapted.

In the use case there are eight machines {M1, M2, …, M8}
and three sources for order entry {L1, L2, L3}. The sources
also represent the exit stocks of the production system. The
buffer capacities vary between two and four orders per
machine. The stochastic machine failures are defined by the
parameters Mean Time Between Failure (MTBF) and Mean
Time To Repair (MTTR).

As illustrated in Fig. 2, the eight machines are arranged in
three areas and one source is assigned to each area.
Furthermore, similar machines are grouped as followed: G1
= {M1}, G2 = {M2, M3, M4, M5} and G3 = {M6, M7, M8}.
Depending on the work content, incoming orders are
assigned to the source of an area containing at least one
machine that is able to process that order. L1 for example
provides orders for G1 and G2 but not for G3.

Besides the production environment, the reward function

is defined with the two performance measures workload WL
= F1 of the machines, i.e. utilization, and the throughput time
TPT = F2 of the processed orders. The rewards r1 and r2 are
modeled as linear functions of the performance measure
values.

The action and state representation are adapted as follows.
In total, there are 37 possible actions (12 actions AAloc, 24
actions AEmpty and 11 actions AEmpty). The system state is
described in a vector with 47 elements.

Fig. 2. Schema of the production layout.

4.2. Experimental setup

In order to apply the dispatching agent on the use case the
use case production system is simulated in a series of
experiments. Each simulation run has a duration of three
million iterations. During one simulation run the reward, the
throughput time and the workload are recorded and analyzed.
The results of mainly three simulation experiments are
presented hereinafter:
• Comparing the autonomous agent-based dispatching

with a rule-based benchmark
• Modifying the weights of the two different performance

measures (while keeping the sum of the weights
constant)

• Performance evaluation of the agent in a slightly
modified scenario with different buffer capacities

As a benchmark, a rule-based heuristic is implemented: The
two layered decision rule prioritizes orders with regard to
their waiting time (FIFO) and then selects the machine with
the least workload.

4.3. Experimental results

The reward values and the two performance measures are
shown in Fig. 3. For the first simulation experiment (see
section 4.2), the course of the reward signal shows an overall
successful learning process. It results from a strategy
improvement with regard to the defined objectives. A further
evaluation of the agent’s self-learned strategy requires a
closer look at the performance measures WL and TPT. In
comparison with the benchmark heuristic, the agent achieves
better results to the end of the learning process for both
objectives and thus reaches a higher performance.

In many dispatching problems, the task includes
conflictive objectives. To a certain extent, WL and TPT are
conflictive objectives, too. A maximum workload usually
results in a maximum exploitation of existing buffer
capacities to ensure a constant supply of the machines.
However, this leads to increasing order waiting times and
therefore longer throughput times.

In the next
simulation
experiment,
the
correlation
between
WL and
TPT is
analyzed by
modifying
the weights
of the two
rewards
within the
reward
function.
Fig. 3
shows the
resulting
average
throughput
time and
the average
workload
for
different
weights.
TPT:WL

WL TPT [s]
100 : 0 0.87
80 : 20 0.89
60 : 40 0.90
40 : 60 0.91
20 - 80 0.90
0 : 100 0.89
heuristic 0.85

Fig. 3: Reward signal (top-left), workload (bottom-left), throughput
time (bottom-right) and variations of the reward weights (top-right).

L1 M1

Transportation paths
Working areas

M2

M6 M8 M7

M4
M5

M3 L3

L2

 Andreas Kuhnle et al. / Procedia CIRP 79 (2019) 391–396 395
 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

implement agents for the single-machine dispatching
problem. However, for reasons of simplicity the proposed
implementation uses a rule-based approach in this step. After
being processed the order is stored in the buffer again until
the dispatching agent decides to move it to one of the final
exit stock for finished goods.

Machines might differ in their tools and their capabilities.
Similar machines are assigned to the same machine group.
Orders arrive dynamically and contain information about
their work content and their processing times. Work content
and processing times are stochastically distributed.
According to the work content, all machines of one specific
machine group can process the order. Therefore, the
dispatching agent has to decide on the allocation within that
group. Stochastic events in the environment occur due to
machine failure. They lead to a limited availability of the
machines.

The environment is implemented in Python using the
discrete-event simulation provided by the library simpy.
Hence, simulation data instead of real-world data is used for
the training in order to have a proper “trial and error”
interaction with the environment of the agent. When a
dispatching decision is required, the simulation transfers the
environments state to the learning agent and performs the
action selected and returned by the agent. A decision results
in a movement of the transportation resource with or without
an order. Thus, the dispatching agent can be associated with
the transportation resource.

3.2. Objective-driven action determination

Objective-driven actions require a feedback from the
environment to the agent. This feedback has to be a numeric
signal that is transferred to the agent after each decision.
Therefore a reward function is composed with the values of
k performance measures F = {F1, F2, …, Fk} for its multiple
objectives. Each performance measure Fi is represented in a
reward ri = f(Fi) ∈ [0,1]. The total reward r is then calculated
as the weighted sum of the single rewards. The single reward
functions have to be defined depending on the values of the
performance measures in the particular problem.

 A reward of zero is given when the agent decides on an
action that cannot be executed by the transportation resource,
for example due to machine failure or a buffer overflow. The
low value indicates that the agent should avoid such kind of
actions, whereas a high value makes the agent behave
similarly in the future.

3.3. Autonomous decision-making

The capability of performing autonomous actions requires
learning from the experience from preceding interactions
with the environment. For a RL agent this means defining the
way the agent adapts its strategy. For the implementation of
this characteristic, the paper utilizes the TRPO algorithm
[12] provided by the RL Python library tensorforce. These
algorithms have predefined interfaces for the information
transmission between learning agents and their environment.

In order to match the specific problem they have to be
customized with a set of learning parameters.

However, independent from a specific algorithm, the
input for the algorithm is a state representation and a reward
signal, whereas the output is an action. Therefore, an action
and a state representation have to be defined.

Each action Ai results in a movement of the transportation
resource between the sources, exit stocks and machines.
They are represented as a positive integer Ai ∈ ℕ+. For the
dispatching problem there are three types of actions:

• AAloc: Allocating an unprocessed order to a machine,
which results in the transportation to that machine

• ATransport: Transporting a processed order from a machine
to one of the exit stocks

• AEmpty: Changing the location of the transportation
resource without affecting any order

The state representation St needs to contain all decision-
relevant information from the production environment. It
includes information about:

• Location of the transportation resource.
• For each machine Mi: One binary value composed of the

machine’s current availability and the buffer filling state
to indicate whether an action AAloc ending at machine Mi
is possible or not. A second binary value based on the
existence of a processed order in the buffer indicating
whether an action ATransport starting machine Mi is
possible or not. Two floats value for the sum of
processing times of unprocessed orders and waiting
times of processed orders.

• For each entered order: One float value for the waiting
time of the longest waiting order. A second float
indicates on which machines the longest waiting order
can be processed.

3.4. Proof of concept

In order to prove that the RL algorithm architecture is
suitable to solve the described dispatching problems, the
functionality is tested in a simple exemplary production
layout. The chosen scenario is a system with three similar
machines with an availability of 100% and equal order
processing times. All production parameters are determined
in such a way that it allows a constant maximum workload
of 100% when performing the correct actions in the correct
order. A human can determine the trivial correct order. In a
simulation run the concept can be verified where the action-
sequence found by the dispatching agent matches the known
optimal solution. With a proper agent configuration, i.e. the
algorithm is not stuck in one of the local optima, the (global)
optimal solution is computed after 5000 to 10000 simulation
iterations.

4. Real-world use case from the semiconductor industry

The architecture presented in the previous section is
applied to a real-world use case from semiconductor

 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

industry. The Python implementation of the environment is
therefore instantiated with the layout data from the use case.
Additionally, the action representation, the state
representation and the reward function are customized to
match the specific problem. This section gives a detailed
description of the use case as well as the experimental results.
The agent’s performance is evaluated in comparison with a
heuristic dispatching rule serving as a benchmark.
Furthermore, the impact of varying specific model
parameters is investigated.

4.1. Use case description

In order to simulate the production system of the use case
scenario the implementation of the dynamic environment as
well as the reward function and the action and state
representation (see section 3.3) are adapted.

In the use case there are eight machines {M1, M2, …, M8}
and three sources for order entry {L1, L2, L3}. The sources
also represent the exit stocks of the production system. The
buffer capacities vary between two and four orders per
machine. The stochastic machine failures are defined by the
parameters Mean Time Between Failure (MTBF) and Mean
Time To Repair (MTTR).

As illustrated in Fig. 2, the eight machines are arranged in
three areas and one source is assigned to each area.
Furthermore, similar machines are grouped as followed: G1
= {M1}, G2 = {M2, M3, M4, M5} and G3 = {M6, M7, M8}.
Depending on the work content, incoming orders are
assigned to the source of an area containing at least one
machine that is able to process that order. L1 for example
provides orders for G1 and G2 but not for G3.

Besides the production environment, the reward function

is defined with the two performance measures workload WL
= F1 of the machines, i.e. utilization, and the throughput time
TPT = F2 of the processed orders. The rewards r1 and r2 are
modeled as linear functions of the performance measure
values.

The action and state representation are adapted as follows.
In total, there are 37 possible actions (12 actions AAloc, 24
actions AEmpty and 11 actions AEmpty). The system state is
described in a vector with 47 elements.

Fig. 2. Schema of the production layout.

4.2. Experimental setup

In order to apply the dispatching agent on the use case the
use case production system is simulated in a series of
experiments. Each simulation run has a duration of three
million iterations. During one simulation run the reward, the
throughput time and the workload are recorded and analyzed.
The results of mainly three simulation experiments are
presented hereinafter:
• Comparing the autonomous agent-based dispatching

with a rule-based benchmark
• Modifying the weights of the two different performance

measures (while keeping the sum of the weights
constant)

• Performance evaluation of the agent in a slightly
modified scenario with different buffer capacities

As a benchmark, a rule-based heuristic is implemented: The
two layered decision rule prioritizes orders with regard to
their waiting time (FIFO) and then selects the machine with
the least workload.

4.3. Experimental results

The reward values and the two performance measures are
shown in Fig. 3. For the first simulation experiment (see
section 4.2), the course of the reward signal shows an overall
successful learning process. It results from a strategy
improvement with regard to the defined objectives. A further
evaluation of the agent’s self-learned strategy requires a
closer look at the performance measures WL and TPT. In
comparison with the benchmark heuristic, the agent achieves
better results to the end of the learning process for both
objectives and thus reaches a higher performance.

In many dispatching problems, the task includes
conflictive objectives. To a certain extent, WL and TPT are
conflictive objectives, too. A maximum workload usually
results in a maximum exploitation of existing buffer
capacities to ensure a constant supply of the machines.
However, this leads to increasing order waiting times and
therefore longer throughput times.

In the next
simulation
experiment,
the
correlation
between
WL and
TPT is
analyzed by
modifying
the weights
of the two
rewards
within the
reward
function.
Fig. 3
shows the
resulting
average
throughput
time and
the average
workload
for
different
weights.
TPT:WL

WL TPT [s]
100 : 0 0.87
80 : 20 0.89
60 : 40 0.90
40 : 60 0.91
20 - 80 0.90
0 : 100 0.89
heuristic 0.85

Fig. 3: Reward signal (top-left), workload (bottom-left), throughput
time (bottom-right) and variations of the reward weights (top-right).

L1 M1

Transportation paths
Working areas

M2

M6 M8 M7

M4
M5

M3 L3

L2

396 Andreas Kuhnle et al. / Procedia CIRP 79 (2019) 391–396
 A. Kuhnle et al. / Procedia CIRP 00 (2018) 000–000

Table 2. Performance results of different buffer capacities.

 WL agent WL heuristic TPT Agent TPT Heuristic

Small Buffers 0.79 0.79 93.6 s 97.9 s

Large Buffers 0.94 0.90 145.5 s 155.2 s

In order to show that the presented RL architecture is a

suitable approach to solve problems in a dynamic
environment the agent is tested in a modified scenario. In this
simulation experiment, a production system layout with
changing buffer capacities is investigated. In this scenario,
smaller buffer capacities result in smaller performance
differences between the agent and the heuristic with regard
to both performance measures (see Table 2). This is due to
the fact, that larger buffers lead to more decision options in
each iteration while smaller buffers limit the number of
options within the problem. Therefore, the agent that always
considers all options achieves overall better results than the
heuristic when increasing the buffer capacities.

 5. Conclusion
The implementation of an autonomous order dispatching

agent in a real-world production environment shows that a
RL agent is able to outperform an existing benchmark
heuristic. As the architecture of RL agents is autonomous,
self-developing and adaptive to changes it is a promising
response to the current demands for flexible production
systems and a real-time capable as well as adaptive
production control.

Based on the implementation and experiments in this
paper further research in modified scenarios is possible. The
proposed architecture can be extended to a multi-agent
production system by adding for example another
dispatching agent that is referred to a second transportation
resource. Another agent-based system could be designed for
a learning-based and autonomous order release mechanism
or even for predictive maintenance.

The architecture described in this paper still requires
customization effort to the particular dispatching scenario,
for example when defining the state and action
representation or the reward function. A generic formulation
of these components and variable would be an important step
to reduce the implementation effort of autonomous control
mechanisms.

Acknowledgments

We extend our sincere thanks to the German Federal
Ministry of Education and Research (BMBF) for supporting
this research project 02P14B161 “Empowerment and
Implementation Strategies for Industry 4.0”.

References

[1] Mönch L, Fowler JW, Mason SJ. Production planning and control for
semiconductor wafer fabrication facilities. 1st ed. New York: Springer;
2013.

[2] Monostori L, Csáji BC, Kádár B. Adaptation and Learning in
Distributed Production Control. CIRP Annals 2004;53:349-352.

[3] Csáji BC, Monostori L, Kádár B. Reinforcement learning in a distributed
market-based production control system. Advanced Engineering
Informatics 2006;20:279-288.

[4] Waschneck B, Altenmüller T, Bauernhansl T, Kyek A. Production
Scheduling in Complex Job Shops from an Industry 4.0 Perspective.
CEUR Workshop Proceedings 2016;1793:12-24.

[5] Monostori L, Váncza J, Kumara SRT. Agent-Based Systems for
Manufacturing. CIRP Annals 2006;55:697-720.

[6] Lawler EL, Lenstra JK, Kan AHR, Shmoys DB. Sequencing and
Scheduling: Algorithms and Complexity. Handbooks in operations
research and management science 1993;4:445-522.

[7] Wang YC, Usher JM. Application of reinforcement learning for agent-
based production scheduling. Engineering Applications of Artificial
Intelligence 2005;18:73-82.

[8] Luck M, McBurney P. Agent Technology Roadmap. 1st ed.
Southampton: AgentLink; 2005.

[9] Russel S, Norvig P. Artificial intelligence. 3rd ed. Malaysia: Pearson
Education Limited; 2016.

[10] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 1st
ed. Cambridge: MIT press; 1998.

[11] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal
Policy Optimization Algorithms. arXiv preprint:1707.06347, 2017.

[12] Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P. Trust Region
Policy Optimization. International Conference on Machine Learning
2015;1889-1897.

[13] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra
D, Riedmiller M. Playing Atari with Deep Reinforcement Learning.
arXiv preprint:1312.5602, 2013.

[14] Kormushev P, Calinon S, Caldwell DG. Robot motor skill coordination
with EM-based Reinforcement Learning. Intelligent Robots and
Systems 2010; 3232-3237.

[15] Philip T, Michael B, Antonie vdB, Kathleen J. Application of the
Actor-Critic Architecture to Functional Electrical Stimulation Control
of a Human Arm. Proc Innov Appl Artif Intell Conf. 2009;165-172.

[16] Günther J, Pilarski PM, Helfrich G, Shen H, Diepold K. Intelligent laser
welding through representation, prediction, and control learning.
Mechatronics 2016;34:1-11.

[17] Stegherr F. Reinforcement Learning zur dispositiven
Auftragssteuerung in der Varianten-Reihenproduktion. Herbert Utz
Verlag, 1st ed. 2000.

