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Abstract—Realizing desired properties ‘“by construction” is a
highly appealing goal in the design of safety-critical embedded
systems. As verification and validation tasks in this domain are
often both challenging and time-consuming, the by-construction
paradigm is a promising solution to increase design productivity
and reduce design errors. In the XANDAR project, partners
from industry and academia develop a toolchain that will
advance current development processes by employing a model-
based X-by-Construction (XbC) approach. XANDAR defines a
development process, metamodel extensions, a library of safety
and security patterns, and investigates many further techniques
for design automation, verification, and validation. The developed
toolchain will use a hypervisor-based platform, targeting future
centralized, Al-capable high-performance embedded processing
systems. It is co-developed and validated in both an avionics use
case for situation perception and pilot assistance as well as an
automotive use case for autonomous driving.

Index Terms—X-by-Construction, Model-based development,
Real-time systems, Safety-critical systems, Hypervisors

I. INTRODUCTION

The next generation of networked embedded systems has
caused the need for software technologies that combine high
performance with a sufficient degree of resilience from both
a safety and a security perspective. However, current trends
such as the steadily increasing importance of Machine Learn-
ing (ML) and Artificial Intelligence (AI) functions turn the
design of trustworthy systems into a challenging endeavor.

A prominent example of this is the domain of autonomous
driving, where malfunctions and security vulnerabilities can
lead to serious incidents causing physical harm to humans or
their environment. Therefore, approaches to minimize the risk
caused by faults of such intelligent systems while minimizing

development costs are essential in order to maintain vital
services and public confidence in them.

The XANDAR project tackles these challenges by lever-
aging the X-by-Construction paradigm for the model-based
development of embedded software systems.

The project consortium consists of eight universities, re-
search institutions, and companies across Europe: Karlsruhe
Institute of Technology as developer of the dynamic modeling
extension and automatic system software/service generation
considering non-functional requirements and coordinator of
the project; the University of Peloponnese as designer of sys-
tem architecture and compiler-level transformations; AVN In-
novative Technology Solutions Limited as provider of the con-
tinuous integration/deployment platform; Queen’s University
of Belfast as reference center for the design and development
of the platform security architecture; Vector Informatik GmbH
as major supplier of software tools for the automotive mar-
ket; fentISS as major supplier of virtualization solutions of
highly critical embedded systems in space applications; and,
finally, Bayerische Motoren Werke (BMW) and the German
Aerospace Center (DLR) as executors of use cases in the
automotive and avionics domain, respectively.

This article gives an overview of the project and its first
progress after successfully completing the initial planning
stage. Since it is still early in the project timeline, this con-
tribution focuses on the big picture and presents the pursued
approach in a concise manner. It does not intend to provide a
detailed description of the achieved technical progress. Instead,
it will serve as a reference for future publications treating
individual topics in detail.
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II. BACKGROUND

Multicore architectures are becoming an essential building
block of modern embedded systems [1]. Issues caused by
concurrent execution on such computing platforms have been
intensively researched and, over the years, resulted in various
new approaches to develop software for such architectures.
Increasingly powerful parallelizing compilers, which automate
crucial steps of this process, have been introduced and reduce
the potential for manual design errors significantly. Especially
in safety-critical domains, where tasks are often subject to hard
real-time requirements, nondeterminism caused by interleaved
execution is highly critical. Therefore, tools and approaches
used in such a context need to be validated and qualified
in order to guarantee that implementations they generate are
correct. This means that it is necessary to consider imple-
mentation details such as hardware properties, tasks schedules,
and the potential for interferences on communication channels.
Approaches to tackle this such as [2] and [3] exist, but
they usually focus on low-level code transformations and do
not consider the system design from a requirement-driven
perspective. Furthermore, they are often concerned with timing
and do not deal with other non-functional properties such as
safety, security or performance.

Model-based development at the system level has also
gained significant traction and impact during the past years.
For example, MathWorks provides a toolchain for the design
of DO-178C-compliant systems by enhancing their modeling
framework with capabilities for coverage analysis, model con-
formance checks, Model-in-the-Loop (MiL) functional testing
as well as automatic code generation. However, the possibility
to specify non-functional requirements at a high level of
abstraction and to automatically transform them into suit-
able implementation artifacts is often lacking in such tools.
Furthermore, they usually do not provide desired flexibility
without vendor lock-in and have a limited support for AI/ML
components, which is a major focus of XANDAR.

ITII. THE XANDAR APPROACH

The XANDAR project will deliver a holistic toolchain
for the development of future high-performance embedded
systems in safety-critical environments. The toolchain allows
designers to make use of the XANDAR design methodology
and, at the same time, is an implementation of the XANDAR
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Fig. 2. Abstraction levels captured by the XANDAR metamodel

process. This process is shown in Fig. 1 and defines inputs
to be supplied by the toolchain user as well as design steps
that are automatically applied to the initial or a refined version
of this user input. Logically, it can be divided into a model-
based portion at the frontend and an automated backend that
generates implementation artifacts in such a manner that the
desired X-by-Construction guarantees are obtained.

In the model-based frontend of the process, the user in-
teracts with the XANDAR toolchain to describe relevant
requirements and to specify a high-level representation of the
envisaged software system. A key element in this modeling
process is the software component (SWC), which represents
a certain functionality to be implemented in software. When
it comes to the actual code to be executed by a SWC, the
methodology offers full flexibility: the code can be either
generated from behavioral models or it can be provided as
source code. This enables compatibility with legacy code and
frameworks, especially for tasks such as Al algorithms.

Verification and validation (V&V) are firmly embedded
into the whole process, utilizing a behavioral simulation for
dynamic model execution pairing the user model with an
environment model and a test framework.

The toolchain backend will implement the transformations
while considering the semantic preservation and fulfillment of
timing bounds implied by the model.

A. Model-based Design

The model-based frontend of the toolchain is designed to
be used interactively and in an iterative manner. Eventually,
it is expected to provide the backend of the toolchain with a
sufficiently detailed description of the envisaged system, which
will then be processed in the automated analysis and system
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generation steps. Before the backend is triggered, however, the
frontend allows the designer to perform early V&V activities.

The iteratively defined input model spans the abstraction
levels shown in Fig. 2. They are inspired by PREEvision, a
tool for the model-based design of electric/electronic (E/E)
architectures in the automotive or similar domains [4]. For the
purposes of the project, a subset of the abstraction levels cov-
ered by PREEvision was selected, while necessary metamodel
extensions are currently being developed.

At the logical architecture level, the toolchain user captures
an abstract representation of the functions that the system
under development is expected to deliver, for instance by spec-
ifying an activity chain from a sensor via logical functions to
an actuator. Important aspects that the XANDAR metamodel
supports at this level are the annotation of timing requirements
to segments of activity chains, modeling notations for the
behavior of logical functions, and description capabilities for
desired safety and security policies.

The software architecture describes the envisaged system as
a network of SWCs, where each SWC has input and output
ports. Communication channels connect output and input ports
of different SWCs. To facilitate the code specification pro-
cess, the XANDAR toolchain automatically generates a SWC
skeleton for each SWC. The designer is then expected to
populate all such skeletons as shown in Fig. 3. In addition, a set
of execution parameters needs to be specified for each SWC.
These parameters describe envisaged timing properties such
as the trigger period. It is important to note that up until this
point, the model instance is entirely independent of execution
platforms. Especially the execution parameters need to be
interpreted as an idealized description of the desired timing
behavior. Models such as the logical execution time (LET)
paradigm [5] or Ptides [6] are currently under investigation to
capture these parameters.

The target-aware software architecture is comparable to the
software architecture from PREEvision, captures very early
deployment decisions, and is therefore no longer independent
of a target. Finally, the combination of hardware architecture
and network topology captures all on-chip and system-level as-
pects of the utilized execution environment. Most importantly,
this is the level at which each SWC is mapped to a specific
execution platform. Key extensions that the XANDAR project

develops in the context of these target-specific abstraction
levels are capabilities to specify target parameters related to
low-level mechanisms for safety and security as well as to the
timing of executed SWCs.

The following sections give an overview of three specific
toolchain capabilities that build up on the metamodel exten-
sions outlined above.

B. Dynamic Model Execution

One such capability is the dynamic model execution that
the toolchain performs as part of its model-based frontend. In
this step, the dynamic behavior of the described SWC network
is simulated using the Ptolemy II environment [7], which has
been specifically designed to tackle challenges associated with
the modeling of cyber-physical systems [8]. More specifically,
the toolchain uses relevant knowledge of the software archi-
tecture (such as SWC code or specified execution parameters)
to predict its runtime behavior. This allows toolchain users to
perform an early validation or verification of the functional
behavior described in the target-independent model.

In particular, XANDAR will advance the state of the art
by wrapping Ptolemy II in an orchestration framework that
automatically creates a discrete-event simulation for a given
software architecture and performs test cases the toolchain user
derived from functional requirements. Test cases can target the
open-loop or the closed-loop behavior of the modeled system
and consider the timing of system-level events (such as the
time at which a sensor input is read or two SWCs exchange
information). In the open-loop case, inputs from the environ-
ment must be specified as a time series of values. In the closed-
loop case, the designer has the opportunity to supply a plant
model created in Ptolemy II. Plant models are automatically
connected to the simulation model of the SWC network by the
orchestration framework. In both cases, expected events (such
as an actuator writing a certain output to the environment at
a specific time) can be specified and will be automatically
compared to the simulation results.

This capability guides the toolchain user towards a target-
independent model instance (including suitable SWC code)
that meets functional and system-level timing requirements.
A key property of the XANDAR process is that the behavior
exhibited by such a model instance is entirely deterministic
and that the assumptions that lead to this determinism are
well-defined. In the backend, they serve as requirements that
must be met and are therefore essential in the achievement of
behavioral X-by-Construction guarantees.

C. X-by-Construction Patterns & Transformations

The envisaged XANDAR process utilizes a library of safety
and security patterns, which will be developed as part of
the project and can be annotated during system modeling
as described in Section III-A. Annotated patterns will be
applied to the respective system artifacts throughout the whole
software and system generation process.

The patterns may be annotated to model artifacts such
as SWCs by the toolchain user. In addition, XANDAR will
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also investigate automated policy inference based on specified
requirements. The toolchain will then realize the patterns
by applying transformations, either on model level, on code
level, or on a mapping and configuration level. The rules and
templates needed for these transformations are part of the
pattern in the pattern library.

XANDAR will deliver a set of patterns, ranging from simple
examples such as N-modular redundancy at the hypervisor
level, similar to the approach presented in [9], over the synthe-
sis of runtime mechanisms for the control of information flows
based on [10], anomaly detection through monitors based
on RTLola [11] to security-specific patterns for confidentiality
of data-at-rest and data-in-motion [12], to name a few.

As an example, Fig. 4 shows the application of a triple-
modular redundancy (TMR) safety pattern. In the software
modeling phase of the process, the pattern is annotated
to software component SWCp in the software architecture.
The TMR pattern is applied in the backend of the toolchain
and consists of a model transformation and a code generation
step. First, the toolchain transforms the software architecture
by triplicating SWCp, adding a voter component SWCy (),
and re-routing the inter-SWC communication channels as
shown using dashed lines. Finally, it generates SWC code
for the voter. Additionally, mapping constraints can be added,
enforcing that the redundant SWC instances are mapped to
different cores or execution platforms.

This example shows how the envisaged process, which aims
to close the gap between high-level requirements and the low-
level implementation, can contribute to the fulfillment of safety
and security requirements by design.

D. V&V of Timing Requirements

A main goal of XANDAR is to guarantee non-functional
properties such as safety, security, and performance by con-
struction. In this regard, it is important to note that timing
is considered from both a functional and a non-functional
perspective in the XANDAR project.

As described in Section III-B, we consider high-level
timing aspects during the behavioral simulation performed
in Ptolemy II. This is done to account for the fact that certain
timing properties have a direct impact on the behavior of an
embedded software system.

In addition, timing is considered a non-functional constraint
that is not covered by a specific XbC pattern. However, is
must be thoroughly considered at all abstraction levels shown
in Fig. 2 as well as during the automated steps performed

by the XbC backend. Since the toolchain performs a variety
of model and code transformations, e.g., as part of a safety
pattern application, this treatment is a challenging endeavor.

At the logical architecture level, the toolchain frontend will
enable the user to perform early timing validations (for exam-
ple considering the consistency of time budgets allocated to
parts an activity chain). Furthermore, timing simulations will
give the designer the opportunity to predict how decisions re-
lated to the target-aware software architecture or the hardware
network topology impact the achievable timing characteristics.
To some degree, these target-specific simulations take resource
sharing effects into account and support the designer in the
iterative refinement of the input model. For this purpose,
the project will particularly build up on the TA Tool Suite
developed by Vector Informatik GmbH.

Finally, timing-related V&V activities are an essential step
in the XbC backend. Here, these activities must ensure that
derived implementation artifacts meet timing requirements
given by the toolchain user or defined by a previous design
step. This applies particularly to the execution parameters
of SWCs described in Section III-A. They capture an idealized
runtime behavior that must be ensured by the actual target in
order to obtain the desired X-by-Construction guarantees. In
the XbC backend, a fine-grained timing simulation will be
performed to verify that this is the case.

IV. TARGET PLATFORM

The project is specifically considering centralized high-
performance processing platforms, which are expected to
replace the vast amount of controllers in many of today’s
systems. These platforms will contain multiple processing
cores and special hardware accelerators, especially for Al,
hosting many different applications and functions in a mixed-
criticality system. For realizing the safety and security patterns
defined by XANDAR, the underlying platform needs to pro-
vide corresponding capabilities.

A basis for operating such applications is a hypervisor,
acting as a separation kernel. It is used to partition the platform
and to provide guest software with processing resources such
as CPU time, memory, as well as access to I/O components.
The logical containers in which guest software resides are
referred to as partitions. By restricting the access of partitions
to processing resources, hypervisors isolate guest software
from each other and are powerful platforms to provide freedom
from interference between partitions.

In XANDAR, the XtratuM hypervisor [13] will be used.
It is a paravirtualizing type-1 hypervisor providing time
and space isolation between partitions. This is achieved by
leveraging isolation mechanisms provided by the hardware,
or alternatively by paravirtualization. Temporal execution of
partitions follows a time-based activation scheduling policy,
inter-partition communication is provided by sampling-type
and queuing-type communication channels, inspired by the
avionics standard ARINC 653 [14].

To provide isolation between software components, each
component may be mapped to a separate hypervisor parti-
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tion. Consequently, inter-SWC communication will be realized
using the hypervisor’s communication mechanisms. Thereby,
the hypervisor’s isolation features can be used as a base to
fulfill safety and security requirements. Access to platform
resources such as sensor and actuator interfaces and hardware
accelerators can be controlled on an SWC level. The resulting
architecture is outlined in Fig. 5.

Based on the system models defined by the toolchain user
and modified by the pattern-based transformation, the target
platform configuration is derived during the system generation
phase of the XANDAR process. With respect to the envisioned
target platform, central challenges tackled by the XANDAR
project include the generation of implementations exhibiting
the same timing behavior as the simulation. For compatibility
with XANDAR metamodel described above, concepts such
as LET [5] as well as its system-level extension [15], [16] are
investigated as possible approaches.

V. VALIDATION

The development of the XANDAR toolchain is guided by
two use case partners who motivate the development of the
model-based XbC approach and support the consortium in
identifying and eliminating potential shortcomings. The use
cases will serve as validation scenarios for the entire toolchain
at the end of the project. However, concepts developed within
the project will be described in a way that is applicable to
application development in various safety-critical contexts.

The use cases of the project cover the two major fields of
avionics and automotive mobility. The avionics use case is
aimed at urban air mobility concepts, which demand a high
degree of autonomous features with fail-operational and fault-
tolerant requirements. Specifically, flight assistance features
developed with the XANDAR toolchain will be validated on
existing prototypes. The automotive use case is focused on
autonomous driving, including passenger detection and steer-
ing functionality. Both use cases define a set of requirements
towards the toolchain, specifically addressing requirements
about functionality, timing, reliability, safety and security. The
functional requirements are further elaborated on multiple
levels, i.e., at the system, sub-system, software item, hardware,
and the AI/ML level.

VI. CONCLUSION

The XANDAR project will deliver a model-based toolchain
following the X-by-Construction paradigm to reduce cost and
errors in the design of safety-critical systems.

This article describes the results of the initial stage of
the project and gives an overview of the planned activities.
Specifically, the extensions to the utilized metamodel, the
relationship to the MiL framework for dynamic model exe-
cution, X-by-Construction patterns and transformations, and
timing considerations of XANDAR are presented. In future
publications, the consortium will report on specific aspects of
the project in greater detail.
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