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Abstract

The application of structure from motion (SfM) photogrammetry for digital elevation

model (DEM) and orthophoto generation from visible imagery enjoys ever-growing

popularity in geomorphological research. Photogrammetry experts, however, urge

that a rigorous approach is a prerequisite for reliable results—a requirement that may

conflict with real-world survey. We present a method that unites the two disciplines,

using the example of a challenging SfM photogrammetric survey at a Scottish river.

Using simultaneous geometric pre-calibration of a multi-sensor remotely piloted air-

craft system (RPAS), the method facilitates time-efficient topography mapping and

the integration of other wavelengths to create orthophotos providing additional sur-

face information. The approach utilizes an on-site 3D structure—for example, a build-

ing, as calibration object, by extracting coordinates of natural features from lidar

scans and sensor imagery. We assess the workflow with specialized calibration soft-

ware (VMS) and widely applied commercial SfM photogrammetric software (AM),

using a DJI Phantom optical and a Workswell thermal sensor. We achieved calibra-

tion accuracies below one-third (optical) and one-quarter (thermal) of a pixel. Subse-

quently, we transfer the sensor parameters to pre-calibrate the SfM application and

compare the results to a self-calibrated workflow. In a systematic experiment using

the optical river survey dataset, we assess the effectiveness of pre-calibration,

oblique imagery, scale variation and masking to mitigate systematic DEM errors.

Opposing trends show between the calibration strategies. Decreasing network com-

plexity (i.e., flying heights/view angles) improves pre-calibrated but compromises

self-calibrated scenarios. Pre-calibrating (VMS) imagery from a single height (30 m

nadir) yielded the best results. This finding could have implications for geomorpho-

logical surveys, in which single-scale datasets are widespread practice, despite the

literature’s urge towards more complex imaging networks. The self-calibrated results

legitimise this insistence: The same dataset resulted in pronounced dome-shaped

DEM distortion, indicating systematic errors, whereas additional flying heights and

angles significantly improved the results.
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1 | INTRODUCTION

The rise of user-friendly photogrammetric applications (Chandler,

1999) over the last 30 years and the availability of off-the-shelf

remotely piloted aircraft systems (RPAS) has led to a democratization

of photogrammetry. Integration of computer vision and machine

learning into photogrammetric workflows has opened this technology

to a wider range of users. What used to be an expensive technology

reserved for skilled experts has evolved into a tool requiring little prior

knowledge (James et al.2019).

Consequently, structure from motion (SfM) photogrammetry, typ-

ically using visible imagery, has become a widely used tool in geomor-

phological research. Areas of application include measuring mass and

soil movements (e.g., Eichel et al., 2020), coastal erosion (e.g., James &

Robson, 2012), fluvial morphology (e.g., Mandlburger, 2019; Woodget

et al., 2019), aeolian (e.g., Hugenholtz et al., 2013) and glacial pro-

cesses (e.g., Piermattei et al., 2015), hydro- and morphodynamic

modelling (e.g., Entwistle et al., 2018), flow velocimetry (e.g., Eltner

et al., 2021) and erosion monitoring (e.g., Eltner et al., 2015). The rea-

sons for its success are manifold and include cost efficiency, repeat-

ability, image resolution and opening impassible or dangerous terrain.

Additionally, geomorphological applications (e.g., Eltner et al.,

2021) often adopt several sensors with complementary spectral prop-

erties for orthophoto generation to be used for surface mapping and

image classification. Thermal imagery can provide valuable informa-

tion about surface properties but is less suitable for mapping topogra-

phy because of its low dynamic range and image resolution

(Javadnejad et al., 2020; Maes et al., 2017). The different reflective

properties result in inconsistent levels of contrast between visible and

thermal images: for example, on overgrown areas borders appear less

pronounced, making image matching challenging. There are manifold

examples for use cases of multi-sensor RPAS: Vegetation indices are

used for ecosystem (e.g., Antarctic moss: Lucieer et al., 2012) or crop

(e.g., vineyards, beets, forest: Maes et al., 2017; Pádua et al., 2020)

monitoring. Erenoglu et al. (2017) used thermal, multispectral and

RGB imagery to explore different aspects of a heritage site, and Biass

et al. (2019) combined thermal and RGB sensors to monitor volume

and temperature of lava flows.

Several recent publications (e.g. Eltner & Sofia, 2020; Peppa et al.,

2019; Remondino et al., 2017) have pointed out that a certain level of

expertise and process understanding is required to apply SfM photo-

grammetry appropriately. The ease of access to this technology allows

results to be generated quickly and can create the illusion that the

produced products are meaningful. In this context, authors such as

James et al. (2019) and Remondino et al. (2017) denounce the reliabil-

ity of some recent studies in the field of geomorphology. As a conse-

quence, recent photogrammetric publications have highlighted the

importance of rigorous approaches and data quality assessment.

These articles propose guidelines and suggestions for good practice

in the application of SfM photogrammetry in geomorphology

(e.g., Eltner & Sofia, 2020; James et al., 2019). Survey design and

imaging network geometry play a major role in this. Classical photo-

grammetry from manned aircraft applied pre-calibrated metric sensors

with high geometric stability. Nadir imaging—that is, cameras facing

vertically downwards, from a uniform flying height—was common

practice. However, such a classical approach does not directly trans-

late to working with RPAS. The rigorous application of non-metric,

off-the-shelf imaging sensors in modern SfM photogrammetry appli-

cations is founded on the incorporation of self-calibrating bundle

adjustment (also referred to as ‘on-the-job self-calibration’). This pro-
cess simultaneously determines the internal (lens and sensor geome-

try) and external (position and orientation) sensor parameters. The

predominant approach to determine the external sensor parameters

uses ground control points (GCPs)—that is, visible features of known

coordinates. Typically, these are placed targets or permanent land-

marks for which position is acquired with centimetre accuracy using

survey equipment—for example, global navigation satellite system

(GNSS) (real-time kinematic (RTK) or post-processed) or total stations.

Sufficient number, distribution and accuracy of GCPs are key to miti-

gate errors in scaling, rotation and translation (Carbonneau &

Dietrich, 2017). Alternative approaches apply direct georeferencing

using the orientation and corrected (RTK or post-processed) GNSS

position of the sensor at the time of image acquisition (Carbonneau &

Dietrich, 2017). The bundle adjustment can reach its limits if the geo-

metric networks are insufficiently rigorous—for example, exclusively

parallel or nadir view directions and flat surface geometry (Griffiths &

Burningham, 2019). Unsatisfactory bundle adjustment has been dem-

onstrated to result in systematic camera calibration errors that cause

dome or bowl-shaped digit5al elevation model (DEM) deformations

(e.g., James et al., 2020; Sanz-Ablanedo et al., 2020).

When non-metric sensors are applied, a rigorous survey network

design can mitigate systematic error. Therefore, data acquisition must

be optimized for convergent image geometry by including sufficient

overlap and variation in view angle and height to achieve a reliable

self-calibrating bundle adjustment (Cramer et al., 2017; Przybilla et al.,

2015; Wackrow & Chandler, 2008).

Previous research suggests inclusion of oblique imagery

to strengthen the network (e.g., Harwin et al.2015; James &

Robson, 2014); however, there are certain application scenarios in

which it is not feasible. For example, nadir-only designs are applied in

bathymetric through-water SfM photogrammetry to minimize light

refraction angles at the water surface (e.g., Javernick et al., 2014;

Slocum et al., 2020; Woodget et al., 2015). This optical offset can

counteract robust bundle adjustment. The use of nadir-only surveys is

ideal for orthophoto generation and has a history in classic airborne

photogrammetry (Cramer et al., 2017). Time constraints can be

another decisive aspect. Adding oblique imagery to surveys can multi-

ply the flight and processing time (Meinen & Robinson, 2020), making

it less economically viable for commercial providers. Some RPAS

(e.g., fixed wing) feature permanent sensor mounts and may thus be

restricted to nadir surveys. For these reasons, single-scale nadir

surveys remain the quasi-standard for environmental mapping

(Griffiths & Burningham, 2019).

An alternative strategy, if survey or terrain proves too challenging

for the self-calibrating bundle adjustment, is to reduce the number of

variables by decoupling interior from exterior camera parameters

(Cramer et al., 2017). In such a pre-calibrated workflow, the bundle

adjustment only solves external parameters while the camera model

remains fixed.

Although numerous publications have highlighted its potential,

there is a general lack of studies investigating methods and effective-

ness of sensor pre-calibration for geomorphological applications

(Oniga et al., 2018). Specialized photogrammetric pre-calibration

approaches are often not suitable for geomorphological applications,
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for several reasons. Most critically, the inherent geometric instability

of low-cost commercial sensors can invalidate long-term calibration.

Vibrations, temperature and pressure changes potentially affect the

sensor geometry and may rule out transport between calibration

laboratory and field site (e.g., Cramer et al., 2017; Elias et al., 2020;

Sanz-Ablanedo et al., 2020). Therefore, we assume it is critical to per-

form the calibration on-site, immediately before or after each survey.

In situ sensor calibration often applies portable calibration frames or

2D checkerboards (Griffiths & Burningham, 2019). However, when

the calibration is carried out at survey scale (i.e., same distance as

survey height) to maintain focus settings, as emphasized by Lichti

et al. (2008), such calibration structures may not be suitable for all

sensors due to the feature size. Moreover, analogous to self-

calibration on flat surfaces (Sanz-Ablanedo et al., 2020), the geometry

of the calibration structure is critical for building a strong image

network by reducing the correlation of the camera parameters

(Remondino & Fraser, 2006). Samper et al. (2013) and Oniga

et al. (2018) have demonstrated that 3D calibration structures result

in approximately 50% higher accuracies compared to 2D planar

calibration fields.

Oniga et al. (2018) created a 3D test field on a lawn and a façade

that allows calibration at scale. However, the calibration and survey

sites were spatially and temporally separated. Harwin et al. (2015) set

up a calibration field on-site and included some degree of three-

dimensionality by placing survey targets on tripods. The downside of

portable calibration structures with survey targets is the workload

resulting from the required set-up and surveying for every repetition.

In the case of multi-temporal surveys this can be especially time

demanding.

Additional challenges arise from the application of multi-sensor

systems. Few publications investigate pre-calibration of thermal sen-

sors (Conte et al., 2018) and none of the approaches attempts simul-

taneous calibration of multi-sensor systems. Using the same structure

for visible and thermal sensors would be the most efficient, but their

dynamic properties are not necessarily compatible and hence require

suitable targets (Conte et al., 2018). When investigating thermal sen-

sors, previous studies have applied active (e.g., light bulbs) (Luhmann

et al., 2013) or passive targets (e.g., holes in aluminium plate (Bison

et al., 2012) or black velvet and silver heat protection foil (Westfeld

et al.2015)), subsets of the survey imagery (Conte et al., 2018), 2D

calibration planes (Bison et al.2012; Westfeld et al., 2015) and 3D

calibration frames (Eltner et al., 2021; Luhmann et al.2013).

Most of these approaches use short sensor–object distances and

calibration structures that cannot be scaled up for a calibration on sur-

vey scale. Moreover, the previous approaches do not account for

(field-) time-efficiency or cannot be performed on-site. The approach

presented by Senn et al. (2020) meets the criteria but has not yet

been applied to pre-calibrate a survey.

1.1 | Aim and objectives

The overarching research reported in this paper is one such geomor-

phological case where the requirements of the survey do not readily

allow for sufficient self-calibration. We conducted a multi-temporal

SfM photogrammetric survey using a multi-sensor RPAS to monitor

geomorphic changes induced by artificially added in-channel log jams,

designed to help restore habitat for Atlantic salmon (Salmo salar), on

the River Gairn in Aberdeenshire within the Cairngorms National Park,

Scotland. We derived topographical information from visible imagery

and used orthophotos to map the surfaces of the survey site. Supple-

mentary thermal orthophotos provide a valuable addition to aid sur-

face classification.

A pre-calibration method aimed at geomorphological applications

was described by Senn et al. (2020) and was designed as an applicable

addition that can fit into restricted fieldwork schedules. It overcomes

the shortcomings of previous, typically lab-based, calibration

workflows, most prominently scale, workload and suitability for differ-

ent sensors. The pre-calibration approach utilizes distinct features on

a building present in the survey site instead of survey targets. The cal-

ibration dataset is generated by manual localization of features as 3D

coordinates from terrestrial laser scans for reference, and 2D image

coordinates for the calibration.

Following up on Senn et al. (2020), this paper reports on the

effectiveness of sensor pre- and self-calibration, as well as other error

mitigation strategies, on the accuracy of results achieved with SfM

photogrammetry in a full topographic survey of wetted and dry areas

in a river corridor. To this end, we conducted a systematic experiment

in which we used all combinations of calibration strategy (pre-

calibration in vision measurement system (VMS), pre-calibration in

Agisoft MetaShape (AM) and self-calibration in AM), flight altitudes

and viewing angles, as well as masking out error-prone areas. Further-

more, we evaluate a simplified scan set-up for pre-calibration refer-

ence data using a single scan instead of a registered point cloud

acquired from multiple different perspectives. In addition, we demon-

strate the multi-sensor applicability by creating thermal orthophotos.

The objectives of the study were to:

1. assess the impact of the scan set-up and software choice on pre-

calibration accuracy;

2. compare the performance of sensor pre- and self-calibration and

additional error mitigation strategies in a geomorphological survey

scenario;

3. evaluate the applicability of the methods with regard to a real-

world survey on the River Gairn.

Ultimately, our aim is to make an informed recommendation for

sensor calibration in geomorphological research. In contrast to

photogrammetry-centred research, our emphasis is to balance

photogrammetric accuracy and geomorphological applicability. We

appreciate that factors such as streamlined software implementation

(e.g., compatible file formats), software availability and time require-

ment can be critical in deciding whether to implement additional

processing steps to the workflow. The calibration method is specifi-

cally designed to minimize on-site time requirement, being aware that

the cost–benefit consideration ultimately determines whether a

method is adopted or not.

2 | METHODOLOGY AND DATASETS

The methods are decomposed into sensor pre-calibration and applica-

tion to the real-world scenario of a geomorphological survey

(Figure 1). Visible imagery was captured using the built-in sensor of a
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DJI Phantom 4 Pro (resolution 5472 � 3648 pixels, pixel size 2.41 μm,

nominal focal length 8.8 mm) with a polarization filter. Thermal imag-

ery was captured using a Workswell WIRIS Pro sensor (resolution

640 � 512 pixels, pixel size 17 μm, nominal focal length 13 mm)

mounted on a DJI Matrice M600 RPAS. The calibration flights were

conducted immediately prior to the survey flights with both RPAS.

The first part (Section 2) presents an updated workflow

(Figure 1) of the pre-calibration method presented by Senn

et al. (2020), which describes in detail aspects of the methodology

and are therefore only briefly summarized. Further details are pro-

vided wherever adaptations and new procedures were applied. The

key changes in the approach were to derive the calibration refer-

ence from a single terrestrial laser scan instead of a point cloud

merged from multiple scans, as well as refining the criteria for target

feature definition. The results in both publications are based on the

same raw primary data.

The second part (Section 2) describes the survey data collection

and SfM photogrammetric processing, for which we followed the

guidelines provided by James et al. (2019). All datasets were collected

on 12 September 2019 on the River Gairn in alternating sunny and

cloudy weather conditions. The River Gairn (150 km2) is an upland

stream and tributary of the River Dee (2104 km2). The catchment area

of the study site is 44 km2 and we measured a discharge of 1.31 m3/s

on 12 September 2019 at 12:00 GMT. The landscape is dominated by

managed heather moorlands with recent tree plantations along the

streams. No mature trees or taller vegetation are present along

the surveyed section; it is therefore well suited for the SfM survey.

The riverbanks are mostly covered by grass or heather and partly

undercut. The riverbed and several exposed bank sections and gravel

bars along the stream consist of coarse gravel and cobbles with one

area of exposed granite bedrock at the bend next to cross-section 2

(Figure 3). The channel features riffles and pools up to approximately

1.5 m in depth and its width varies between 8 and 22 m. At the time

of the survey the tree trunks for the log jam construction were already

placed on the banks but not yet installed.

2.1 | Pre-calibration

For the sensor pre-calibration any 3D structure present on-site can be

utilized as a calibration structure. This could be either natural

(e.g., boulders or rock formations) or artificial (e.g., bridges, buildings

or stone walls) stable structures. In our case study the sensor pre-

calibration was carried out using a stone building as the calibration

structure (Figure 2). Imagery from a thermal and an RGB sensor taken

with varying perspectives and distances serve as the calibration

dataset, and terrestrial laser scans provide the reference dataset. Con-

jugate features clearly visible in both imagery and point cloud were

used as calibration targets. The following paragraphs provide more

detail on the preparation of the reference data, preparation of the cal-

ibration data and generation of the sensor parameters.

We adopted the close-range photogrammetry software VMS

(version 8.8) (Shortis & Robson, 2015) as the calibration benchmark

and AM (version 1.7.2) (Agisoft LLC, 2021) as a potentially more appli-

cable and widely adopted alternative. VMS is established as calibra-

tion software (James et al., 2020; Shortis & Luhmann, 2018) wherein

the photogrammetric procedure is transparent, comprehensible and

highly customizable. However, the operation requires precise knowl-

edge and can be somewhat cumbersome, especially when utilizing

large datasets.

2.1.1 | Reference dataset (3D feature coordinates)

The reference dataset was derived from a point cloud captured using

a Leica ScanStation P40 terrestrial laser scanner operating from a

sensor–object distance of 20 m with a resolution setting of 3.1 mm,

at a distance of 10 m. The raw scans were processed using Leica

Cyclone (version 9.2.1). The point cloud was not georeferenced and

the calibration was performed using a local coordinate system.

The multi-scan approach described in Senn et al. (2020) covered

the calibration structure from 360� to optimize network stability and

F I GU R E 1 Workflow of the calibration and photogrammetric method [Color figure can be viewed at wileyonlinelibrary.com]
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to avoid bending from systematic errors. Here we test a single-scan

set-up that uses only one scan covering two façades. In this way we

intend to remove any error induced from the multi-scan point cloud

registration into the calibration, as well as speeding up the field-

surveying procedure. Additionally, it facilitates a stable convergent

network with fewer images and thus fewer target features that

require manual identification. Moreover, high noise levels in the

absence of direct incident solar irradiation (e.g., north-facing façade)

make identifying features in thermal imagery challenging. Therefore, it

is advantageous to use façades with more favourable lighting condi-

tions. 104 target features distributed over the south- and west-facing

façades were manually extracted from the single-scan point cloud

using the open-source software CloudCompare (version 2.20.2

Zephyrus; GPL Software, 2019) (Figure 2). In this context, a feature is

defined as a precisely determinable individual point position—for

example, the corner of a stone.

Further adaptations to the previous workflow were made in the

selection of target features. To qualify as a suitable target, a feature

must be visible in terrestrial laser scanning and all imaging sensors.

This eliminates building outlines, corners and window openings, which

are often not clearly recognizable in the thermal imagery. We found

individual stones to be more clearly recognizable, albeit more chal-

lenging to precisely locate in the terrestrial laser scanner point cloud.

2.1.2 | Calibration dataset (2D feature coordinates)

The sensors were used to capture a total of 158 thermal and 101 visi-

ble images flying in circular patterns triggering at a set interval of 3 s.

The distances between features and sensors range between 8.2 and

32.4 m for the RGB sensor, and between 20.8 and 37.5 m for the

thermal sensor. To ensure the reliability of the calibration by

eliminating outliers, a sufficient level of redundancy in the dataset

(i.e., number of images and observations) is necessary (Shortis, 2019).

Adding more images does not indefinitely improve the calibration but

leads to increasing computational time (Eltner et al., 2016) and manual

work. All images were imported and aligned in AM to allow for selec-

tion of suitable calibration subsets. An ideal calibration dataset

features a convergent network with a variety of distances and per-

spectives, sufficient overlap, and covers the entire sensor area

(e.g., Eltner & Sofia, 2020; Kenefick, 1972; Oniga et al., 2018;

Sanz-Ablanedo et al., 2020; Shortis, 2019). This minimizes the param-

eter correlations and ensures that the calibration accurately repre-

sents the physical model (Kenefick, 1972; Shortis, 2019). Senn

et al. (2020) yielded suitable root mean square error (RMSE) values

(Table 1) for subsets of 16 images using the multi-scan set-up, and

Hieronymus (2012) state that a subset of 8–12 images can be suffi-

cient. Given the increased overlap, and thus redundancy, in the

single-scan set-up we concluded that a subset of 16 images provided

the ideal dataset size. The feature observations were created by plac-

ing markers in AM and exported using a script for the built-in Python

console. We have deliberately avoided coded targets that could be

automatically recognized. Using natural features instead allows the

survey to be repeated based on the same terrestrial laser scan (and

feature coordinates) without having to repeat the target placement

and surveying. Moreover, a higher accuracy was achieved by manu-

ally placing markers, rather than using the AM automatic Refine

Markers tool.

F I GU R E 2 The building utilized as calibration structure. (a) Marker definition in the terrestrial laser scanner point cloud in CloudCompare;
(b) marker placement on visible image in AM; (c) tie points and camera locations of the thermal sensor; (d) calibration process in the software VMS
[Color figure can be viewed at wileyonlinelibrary.com]
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2.1.3 | Determining calibration parameters

The reference data were split into independent check and control

points for validation. The exported 3D reference feature coordinates

and the 2D observation coordinates were used to determine the

benchmark pre-calibration in VMS by solving the collinearity equation

(Brown, 1971) as described in Senn et al. (2020). In parallel, we per-

formed a second pre-calibration in AM by importing the 3D reference

feature coordinates to generate camera parameters by self-calibrating

bundle adjustment (Figure 1). As suggested by Shortis and Luhmann

(2018), the parameters were initially fixed and subsequently released

iteratively, beginning with the radial distortion parameters (k1, k2 and

k3) and the principal point offsets (xp and yp) to the tangential distor-

tion (p1, p2) to the affinity and orthogonality terms (b1, b2). The AM

version used does not allow a marker-based calibration; hence the

photogrammetric tie points could not be excluded from the calibra-

tion, unlike the procedure presented by Senn et al. (2020). We believe

a strictly marker-based calibration would facilitate the exclusion of

unwanted image-based optimization in the AM software ‘black-box‘
and at the same time allow a better comparability with VMS (Harwin

et al.2015).

We selected suitable values for image accuracy based on

James, Robson, et al. (2017) and Harwin et al. (2015): 0.5 pixels in

both software packages and 1 pixel for the tie points in AM. Marker

accuracy was set to 3 mm according to the observation provided by

the terrestrial laser scans.

2.2 | Real-world application: river survey

Having successfully pre-calibrated the sensors, the subsequent step

was to transfer the camera parameters to the river survey dataset.

The focus of our application was on DEM generation using visible

imagery. Thermal imagery, on the other hand, was utilized for the cre-

ation of orthophotos to be applied for water surface detection. The

survey was conducted on a 1 km reach of the upper River Gairn, cov-

ering a total area of 0.7 km2. The area was split into a west and an

east section, with separate take-off and landing sites to avoid

exceeding the legal flying distances. The optical dataset consists of a

total of 922 images from three different flying heights and view

angles:

• 30 m nadir, 504 images (overlap: forward 60%, lateral 60%);

• 40 m oblique, 256 images (forward 50%, lateral 40%);

• 90 m nadir, 162 images (forward 80%, lateral 60%).

The choice of rather tightly dimensioned overlaps was due to the

high redundancy afforded by flying three different heights. The varia-

tion in scale and view angles was used to maximize the convergence

of the geometric network (James & Robson, 2014). High redundancy

was chosen to allow isolating the effect of individual error mitigation

strategies while maintaining sufficient information.

The GNSS ground reference consists of a network of GCPs and

additional reference point measurements. The 14 GCPs were distrib-

uted along the river corridor at varying distances from the river

(Figure 3). The narrow-spaced survey design was chosen based on the

requirements of the river focused survey. The GCPs were marked

using custom-made circular 1 m diameter tarpaulin targets with black

vinyl sectors so as to be recognizable in both the thermal and visible

spectrum. During the survey they were pegged down, and the centre

point was underfilled with large stones for stabilization of target ele-

vation. In addition, 1021 reference point measurements classified into

the surface classes GRS (grass and low vegetation, 158 points), GRV

(gravel by the stream, 156 points), ROA (road/gravel track, 160 points),

SHR (shorelines, water boundary, 245 points), SUR (water surface,

31 points) and WET (wet riverbed, 217 points), were recorded

(Figure 3). In contrast to the GCPs, the point measurements are not

related to visible features. Instead, they serve for assessing vertical

offsets related to distorted DEMs. The GNSS reference was recorded

using two Leica GS18 rovers recording in static and kinematic mode

measuring each of the GCPs twice for 3 min (pole + bi-pod) and the

point measurements for 3 s (hand-held pole). At the same time, a set

of two Leica GS10 receivers were set up as on-site GNSS base

stations.

The raw data were post-processed using Leica Infinity (version

2.4.1). In the first step, the base stations were processed with a

T AB L E 1 Overview of the datasets and resulting metrics of the sensor pre-calibration (multi-scan set-up results from Senn et al. 2020)

Reference
RMSE (pix)

set-up Sensor Software Dataset Images Observations Control Check

Multi-scan Thermal VMS subset 12 317 0.48

add6 17 404 0.53

AM subset 14 331 0.81 0.54

add6 20 432 0.88 0.73

rgb VMS subset 15 609 0.88

add6 21 752 1.02

AM subset 16 630 0.92 0.71

add6 21 773 1.19 1.31

Single-scan Thermal VMS subset 16 989 0.21

AM subset 16 0.44 0.34

rgb VMS subset 16 1046 0.32

AM subset 16 0.54 0.54
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baseline from the local OSNet station in the nearby town of Braemar

(BRAE), which is located 13 km away. The software has achieved a

sub-millimetre accuracy for the base stations in post-processing. Sub-

sequently, the raw data acquired by the rovers were processed with a

baseline from the fixed coordinates of the local base stations. The

high measurement accuracy at the base stations ensured a corre-

spondingly high relative accuracy at the reference points (1 mm) and

GCP (0.1 mm) measurements, based on metric ‘CQ 3D’ provided in

the Leica Infinity output. However, this metric appears to be overly

optimistic. Typically, the accuracy is estimated as an average over

repeated measurements at the same location, which is not always fea-

sible due to time constraints in the field. The reference data were

exported from Leica Infinity and imported into R (R Core Team, 2020)

for further filtering and quality assessment. Due to a faulty battery

not all GNSS reference points could be successfully post-processed;

therefore, the spatial distribution is not ideal.

To isolate the effect of different levels of error mitigation, the vis-

ible imagery and the GCPs were processed in AM following 12 differ-

ent predefined cases, as shown in Table 2.

Cases B1, B2 and B3 use water masks during the bundle adjust-

ment to remove the effect of light refraction at the water surface. For

consistency between cases, we generated a mask for every individual

image beforehand. The masks can be generated efficiently from a

mesh and do not require centimetre accuracy. For this, a self-

calibrating bundle adjustment was run on the full visible dataset

(Align Photos, Accuracy: Medium) and subsequently Build

Mesh was run using the sparse point cloud with Face Count set to

high. The mesh was displayed in colours and all vertices containing

water were manually removed. Finally, the masks were created by

backward projection from the survey coordinates into image coordi-

nates using the Import Masks tool, selecting the method from

model. The masks were visually inspected and exported for applica-

tion in all cases that use masks.

The cases were set up in sets of a pre-calibrated pair and a com-

plementary self-calibrated case. The cases B1, B2 and B3 use the full

set of error mitigation strategies. With each subsequent set, another

element of the error mitigation strategy is omitted (Figure 1). We

removed the water masks from C1, C2 and C3, 40 m oblique imagery

from D1, D2 and D3 and the 90 m nadir imagery that provides a sec-

ond scale from E1, E2 and E3. The E cases only use the 30 m nadir

imagery.

2.2.1 | DEM generation of the river survey dataset

The following workflow was applied for the DEM generation in

AM. The first step was an initial rough camera alignment to aid the

marker (GCP observation in AM) placement. Overexposed marker

observations were omitted and blurry images were discarded. Masks

were imported if required. For pre-calibrated cases the camera

F I GU R E 3 Locations of the GNSS reference points, GCPs, orthophotos (based on the presented dataset) and calibration building on the River
Gairn study reach. The reference points are classified as GRS (grass and low vegetation, ), GRV (gravel by the stream), ROA (road/gravel track),
SHR (shorelines, water boundary), SUR (water surface) and WET (wet riverbed) [Color figure can be viewed at wileyonlinelibrary.com]
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parameters were imported and all parameters were set to fixed. The

AM pre-calibrated camera parameters were imported in the proprie-

tary xml format. For the parameters generated in VMS we used the

AM import tool to convert them from mm units to pixels before sav-

ing them as xml for consistency. For all cases the bundle adjustment

(Align Photos) was run with Accuracy set to High, with a marker

accuracy of 5 mm (based on the GNSS survey precision values) and

the image coordinate accuracies set to 0.5 pixels for the markers and

1 pixel for the tie points (Harwin et al., 2015; James, Robson,

et al., 2017). All GCPs were used as control to maximize the network

stability, while the relevant validation and detection of systematic

errors was undertaken using the GNSS point reference measurements

that manifest in Z-errors. For the self-calibrated cases we calibrated

the sensors by iteratively releasing parameters (xp, yp, k1, k2, k3, p1, p2,

b1, b2) using the Optimise Cameras function. To ensure model

accuracy, the sparse point clouds were filtered using the Gradual

Selection tool, removing all tie points with fewer than three obser-

vations and reprojection errors above 0.5 pixels. The water masks

were removed before building the dense cloud (Quality: High,

Depth filtering: Moderate). Finally, the DEMs were created

(default settings), resampled (pixel size 5 cm) and trimmed to a uni-

form resolution and boundary extent. The DEMs were then exported

for analysis in R (R Core Team, 2020). In R the GNSS reference

dataset was used to extract raster values from the DEMs and to illus-

trate the z-offsets in plots. The DEM showing the lowest errors

(E3) was selected as reference case and used to calculate DEM of dif-

ference (DoD) by pairwise subtraction. Furthermore, the calibration

parameters of the self-calibrated cases were exported (see Appendix

Table A1) and plotted as distortion profiles alongside the pre-

calibrated results (see Appendix Figure A1).

2.2.2 | Thermal imaging

We implemented an additional self-calibrating bundle adjustment

using the thermal sensor to complement the experiment and as a

proof of concept. The ‘best-case scenario’ with imagery from all three

heights and angles was used, and no water masks were applied. The

retrieved calibration parameters were exported (Table A.1) and plot-

ted as distortion profiles alongside the pre-calibrated results

(Figure A.1).

Thermal imagery is not highly suitable for DEM creation due to

its low resolution and dynamic range, but it has significant potential in

orthophoto creation (Maes et al., 2017). For this purpose, the SfM

software (AM) requires a surface on which the imagery can be

mapped. Most applications rely on DEMs from other sources—for

example, lidar or SfM point clouds from visible imagery (e.g., Harvey

et al., 2016; Lewis et al.2020; Maes et al., 2017).

We demonstrated the orthophoto generation workflow based on

the DEM adopted from the visible dataset (case E3) in AM.

Analogously to the workflow of the visible dataset, we imported

the 90 m nadir thermal imagery and fixed the camera parameters to

the VMS pre-calibration parameters. The images were then aligned

provisionally to aid marker placements on the GCP observations. Sub-

sequently, the images were finally aligned using the highest accuracy

setting. At this point the method deviates from the visible: Instead of

building the dense cloud and deriving the DEM from thermal imagery,

we imported the previously created DEM from visible imagery. Finally,

we created the orthophotos using Build Orthomosaic.

3 | RESULTS

3.1 | Pre-calibration results

Table 1 aggregates the results and quality metrics of the pre-

calibrations from both scan set-ups. The image observation RMSE

values of the single-scan set-up were approximately 50% lower than

those found in the multi-scan set-up reported in Senn et al. (2020).

The standard deviations are 0.23 (thermal) and 0.22 pixels (visible) in

VMS and 0.11 (thermal) and 0.17 pixels (visible) in AM. The reduction

from three to one scans reduced the errors by approximately 50%, on

average. In accordance with the multi-scan set-up, the lowest values

were achieved by the VMS calibration and the visible resulted in

higher values than the thermal sensor. Table A1 (Appendix) contains

all calibration parameters of the pre- and self-calibration cases. The

T AB L E 2 Processing set-up cases using different levels of error mitigation and calibration strategies

Nadir
Oblique

Case Calibration Software 30 m 90 m 40 m Mask

B1 pre AM x x x x

B2 self x x x x

B3 pre VMS x x x x

C1 pre AM x x x

C2 self x x x

C3 pre VMS x x x

D1 pre AM x x

D2 self x x

D3 pre VMS x x

E1 pre AM x

E2 self x

E3 pre VMS x
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corresponding distortion profiles for radial and tangential distortions

can be seen in Figure A1 (Appendix). The pre-calibrated profiles of the

RGB sensor followed a similar course for both software packages. In

the case of the thermal sensor, less uniform profiles were calculated.

The self-calibrated RGB distortion profiles from processing the differ-

ent cases of the survey dataset form a highly similar group and run

parallel to the AM pre-calibration. The self-calibrated thermal camera

parameters show a profile more similar to the AM pre-calibration.

3.2 | DEM error analysis of the river survey
dataset

The different processing cases (Table 2) were applied in AM to pro-

duce a series of DEMs. The Z-values were extracted from the DEMs

using the xy-coordinates of the GCPs and GNSS reference points to

assess the height offsets using R (R Core Team, 2020).

Figure 4 shows boxplots of the offsets between the GCPs and

the DEMs. Overall, the smallest GCP offsets were calculated using the

VMS pre-calibration, the AM pre-calibration yielded the largest errors

(lower for E1) and the self-calibration is in between the two (with a

trend towards higher errors with less error mitigation). The largest

errors were found for the D cases that use nadir imagery from two

flying heights. Only for the single-scale nadir case E did the AM pre-

calibration result in smaller errors at the GCPs.

The reference point classes GRV and ROA are the least suscepti-

ble to distortion or noise and are therefore used to evaluate DEM

quality (Figure 5). This is reflected in the relatively small offset values

and variation of these two dry surface classes compared to the other

classes (Figure A4 in the Appendix). The higher levels of error in the

other classes are caused by the surface characteristics—for example,

turbulent flow and the refraction at the water surface (WET and SUR),

obstruction by vegetation (GRS) and visually ambiguous water edges

due to overhanging banks (SHR).

For self-calibrated cases, the errors show a rough trend of

increasing values with the incremental omission of error mitigation

strategies (Table 3 and, in Appendix, Figure A2). This trend is not only

visible in the RMSE values but also in the deviation of errors, as indi-

cated by the larger inner quartile ranges in the boxplots (Figure 5) and

the standard deviations (Appendix Table A2 and Figure A3). Similarly

low errors (0.2, 0.3 m) were calculated for both of the self-calibrated

cases using oblique imagery with (B2) and without (C2) masking of

water bodies. The nadir-only self-calibrated cases with multi- (D2) and

single-scale (E2) show the largest errors and standard deviations.

The pre-calibrated cases behave in the opposite manner, with the

offsets reducing with fewer error mitigation strategies in place. The

AM pre-calibrated cases show similar errors and standard deviations

for the multi-scale cases (B1, C1 and D1) and slightly lower for the

single-scale nadir-only case E1. Pre-calibration using VMS resulted in

errors approximately half of the AM pre-calibration. However, the

standard deviations reflect a similar level of precision. The smallest

errors overall were found for case E3 with RMSE of 0.02 and 0.01 m.

Both pre-calibrations resulted in slightly higher errors for the two-

scale nadir case D.

The other surface classes, which were primarily measured for the

validation of the bathymetric survey, also show interesting results and

therefore warrant a brief mention here. The overhanging or opaque

vegetation and riverbank structures of the classes GRS and SHR result

in systematically positive DEM offset values (Appendix Figure A4).

The two wet classes, SUR and WET, show opposing patterns: slightly

negative offsets for SUR and positive for WET, as DEMs contain only

one value per raster cell and thus represent either surface or

river bed.

F I GU R E 4 Boxplots of the z-offsets between GNSS
measurement and the calculated DEMs at the GCPs [Color figure can

be viewed at wileyonlinelibrary.com]

F I G U R E 5 Boxplots of the z-offsets between the GNSS
measurement and the calculated DEMs at the reference points of the
dry classes GRV and ROA [Color figure can be viewed at
wileyonlinelibrary.com]

T AB L E 3 RMSE (m) values of the z-offsets between the GNSS
measurement and the calculated DEMs at the reference points. See
Figure A2 (Appendix) for visualization as barplot

DEM case GRS GRV ROA SHR SUR WET

B1 0.14 0.04 0.05 0.19 0.10 0.20

B2 0.16 0.02 0.03 0.18 0.10 0.21

B3 0.17 0.02 0.02 0.18 0.09 0.20

C1 0.14 0.04 0.05 0.19 0.09 0.20

C2 0.16 0.02 0.03 0.18 0.10 0.19

C3 0.18 0.02 0.02 0.18 0.09 0.19

D1 0.13 0.04 0.07 0.19 0.11 0.20

D2 0.13 0.05 0.15 0.22 0.08 0.27

D3 0.16 0.02 0.04 0.18 0.11 0.19

E1 0.16 0.03 0.05 0.17 0.13 0.16

E2 0.11 0.07 0.21 0.21 0.08 0.27

E3 0.15 0.02 0.01 0.16 0.13 0.16
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Based on the literature, it is to be expected that insufficient sen-

sor calibration leads to systematic errors that result in characteristic

spatial error patterns (e.g., James et al., 2020; Sanz-Ablanedo et al.,

2020). To detect such DEM distortions, we plotted the z-offsets

between GNSS reference points and DEMs of the relevant dry sur-

face classes (GRV and ROA) on a map (Figure 6), as well as between

the GCPs and the DEMs (Appendix Figure A5). Red shades indicate

DEM elevations higher than the corresponding GNSS measurements,

and blue shades correspondingly show lower values. A number of ref-

erence points could not be post-processed due to a faulty base station

battery; hence the spatial coverage of the reference points is not

ideal. Nevertheless, there are signs of tilting or dome-shaped distor-

tion indicating systematic errors. These errors are particularly pro-

nounced in the self-calibrated nadir-only cases D2 and E2 (Figure 6).

To a certain extent, spatial error patterns are also visible in the AM

pre-calibrated multi-scale cases B1, C1 and D1. The distribution of

errors in the cases that showed larger errors in the boxplots is not ran-

dom but displays systematic spatial patterns.

Because of its low errors we selected case E3 as the reference

case for further analysis and applied it to calculate pairwise DoDs

with all other cases (Figure 7). In addition, we extracted and plotted

a set of cross-sections to visualize DEM distortions (Figure 8).

A clear divide between pre- and self-calibration is evident for all

case sets.

The similarities between cases are inherently greater within a cali-

bration strategy and, consequently, using E3 as reference case creates

a certain bias.

The DoDs of the AM pre-calibrated cases B1, C1 and D1 show a

tilting or doming with positive offsets on the southern and negative

values on the northern bank. The effect is slightly more pronounced

in the two-scale nadir case D1. The nadir-only single-scale case E1

shows significantly lower offsets and less pronounced spatial pattern

in the DoD. The three DoDs generated using the VMS pre-calibrated

DEMs are similar, featuring low values and few systematic spatial pat-

terns. The DoD of reference case displays the difference from itself

and thus only zeros.

F I GU R E 6 Spatial distribution of z-offsets between the DEM cases and the dry GNSS reference point classes GRV and ROA [Color figure
can be viewed at wileyonlinelibrary.com]

F I GU R E 7 DoDs between E3 (reference case) and all other cases [Color figure can be viewed at wileyonlinelibrary.com]
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An apparent divide is visible between the self-calibrated cases

with and without oblique imagery. The oblique cases (B2 and C2)

show lower DoD offsets and a less pronounced spatial pattern. The

nadir-only cases (D2 and E2), in contrast, show a clear doming and the

highest positive and negative offsets of all cases. The doming extends

along the river axis and changes into a depression with increasing

distance.

The DoD cross-sections in Figure 8 reveal a certain level of

noise in the DEMs, which is particularly pronounced in the river

sections (highlighted in grey). The doming effect observed in the

DoDs of case D2 and E2 (nadir, two and one flying height) can be

recognized in the run of the orange and green profiles in the centre

pane. The observed tilt or slight doming in the AM pre-calibrated

cases (less pronounced in E1) can be observed in an overall tilt to

the right. Only in the AM pre-calibrated cases of the TR1 transect

is this tilting of the DEM exceeded by the dome-shaped distortion,

which is particularly pronounced towards the eastern end of the

survey area.

3.3 | Application of the thermal dataset

We successfully applied the thermal dataset in a pre- and self-

calibrated bundle adjustment (self-calibrated parameters in Appendix

Table A1 and distortion profiles in Appendix Figure A1). To demon-

strate a potential usage scenario, we mapped the thermal imagery of

the 90 m nadir dataset onto the visible DEM (case E3). The created

thermal orthophoto is shown in Figure 9. The RMSE at the control

points was 1.3 pixels.

4 | DISCUSSION

4.1 | Camera model and calibration parameters

The resulting RMSE values of the AM pre-calibration are close to half-

pixel accuracy (0.44/0.34 for thermal and 0.54/0.54 for visible with

standard deviations of 0.11 and 0.17 pixels) and, thus, according to

F I GU R E 8 DoD cross-sections for all cases, in south–north direction (left to right). Grey sectors indicate the submerged sections. Locations

indicated in Figure 3 [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Thermal orthophoto from VMS pre-calibrated thermal
imagery, projected onto a visible DEM (case E3) [Color figure can be
viewed at wileyonlinelibrary.com]
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the literature, within the range of what can be achieved as a maximum

for manual target measurements (Fraser, 2018; Geomsoft, 2008;

Shortis, 2015; Shortis et al., 1995). The accuracy achieved by VMS is

even better, with RMSE values of 0.21 and 0.30 (thermal, visible)—

that is, below a third/quarter of a pixel and standard deviations of

0.23 and 0.22 pixels (thermal, visible). This indicates that the pre-

calibrated camera calibration parameters are high quality. Further-

more, the low overall RMSE values would justify the use of values

lower than one pixel for the image coordinate accuracy of the tie

points in AM (James, Robson, et al., 2017).

The noticeably higher RMSE values of AM compared to the VMS

benchmark, despite using the same parameters, illustrates the impor-

tance of software choice, an effect likely to be related to the tie

points. Ideally, all tie points would be removed prior to determining

the calibration parameters in AM to exclude the influence of its

‘black-box’ image-matching algorithms (Harwin et al., 2015). How-

ever, the applied software version does not allow for a marker-based

calibration. To test whether the tie point accuracy could be

exploited to decrease the weighting of the tie points in relation to the

markers, we ran the AM pre-calibration with different settings (0.4,

1 and 6, based on James, Robson, et al. (2017), and 100). We found

no significant effect on the RMSE, and therefore kept the initial value

equal to unity. Future research should explore the potential of tie

point masking, filtering or marker-to-tie-point conversion to optimize

the pre-calibration capabilities with AM, as we emphasize great

potential in a single-software solution.

Calibration quality is furthermore reflected in the highly similar

radial and tangential distortion profiles of the RGB sensor in both pre-

calibration scenarios. However, the distortion profiles of the thermal

sensor deviate significantly. The principal point offsets xp and yp (see

Table A1) are nearly identical between the two software packages for

visible, while they are different in the thermal sensor. Both RGB and

thermal sensors show high correlations between the tangential distor-

tion parameters and the principal point offsets (thermal: 0.91 p1–xp,

0.86 p2–yp; and visible: 0.87, 0.72).

The typically high correlation of these parameters (Shortis, 2019)

can indicate over-parametrization, and James, Robson, and

Smith (2017) argue that individual parameters should be discarded if

the error exceeds the parameter value. In our case the values were

acceptable, and we kept the determined parameters for consistency

between the two software solutions. We assume that the different

solutions are related to the internal parameter weighting of the two

software packages. Ultimately, the suitability for pre-calibration must

be assessed by the performance in the SfM survey. For this reason,

we believe a one-software solution could be beneficial. The findings

of Hastedt et al. (2021) indicate that including additional parameters,

such as the Fourier model, can improve the calibration validity, espe-

cially for atypical lens geometries of built-in RPAS sensors. These

parameters are not implemented comparably in the applied software,

so this could not be verified in this study, but should be the subject of

future research.

4.2 | Calibration geometry and scan set-up

A central aim of this study was to test how the simplification of the

scan set-up influences the quality of the sensor pre-calibration. We

found significantly lower RMSE values using the single-scan set-up

compared to the multi-scan set-up reported in Senn et al. (2020). We

believe that several factors have played a role in this improvement in

accuracy. Most importantly, using a single point cloud omits errors in

point cloud registration. The original purpose of the multi-scan set-up

was to encircle the calibration structure and thus to avoid bending

and incorrect angles in the network. Previous researchers suggest the

application of a 3D structure rather than a 2D calibration plane in

order to create a stable geometric network (Harwin et al., 2015; Oniga

et al., 2018). Our results now suggest that the single-scan of two

façades provides sufficient 3D structure for a robust calibration. The

major advantage of a single scan is that less façade area needs to be

covered. Higher overlaps and variation of perspective and scale can

be achieved with the same number of images. Consequently, it is eas-

ier to include odd angles and varying scales to optimize the conver-

gent image network. The improved geometry has reduced the risk of

parameter correlation and outliers can be eliminated more efficiently

due to the higher redundancy (Shortis, 2019). At the same time, fewer

target features need to be defined and manually digitized. Ultimately,

processing time and manual work are limiting factors that have to be

balanced with redundancy.

The single-scan set-up has some improvements that apply espe-

cially to thermal sensors. It allows exclusion of north-facing walls that

are never exposed to direct solar irradiation in Scotland. This results in

a low dynamic range for the imagery (a known issue of thermal sen-

sors in SfM applications (Maes et al., 2017)) and thus makes the rec-

ognition of target features more difficult. Images acquired under

direct solar irradiation provide better contrast and features can be dig-

itized more accurately.

Changing the scan set-up also required defining and extracting a

new reference dataset. We updated the conventions of feature selec-

tion based on the lessons learned in the previous approach, where the

selection was mainly based on visible and terrestrial laser scanning.

We found that building outlines tend to be fuzzy in the thermal imag-

ery. Some stones that are clearly visible in thermal and terrestrial laser

scanning cannot be distinguished from the surrounding mortar in the

visible imagery. Overall, the selection convention evolved from cor-

ners and edges towards bricks while carefully assessing the visibility

in all sensors.

The single-scan set-up not only improves the calibration accuracy

but also the required workload. It cuts the time requirements for scans

in the field, point cloud post-processing and registration and number of

target features to manually digitize. Reducing the complexity increases

the applicability and thus the potential applications of the approach.

The importance of calibrating at survey scale (i.e., sensor–object

distance similar to flying height) has been emphasized previously

(Griffiths & Burningham, 2019; Lichti et al., 2008; Roncella &

Forlani, 2021). The sensor–object distances applied are similar to the

nadir 30 m flying height. The scales of the higher flying heights are

not represented in the calibration. Since the depth of field increases

exponentially with increasing object distance, we assume that trans-

ferring calibration parameters generated from 30 m is more suitable

than conventional pre-calibration routines using checkerboards or

portable frames at short distances. Too small calibration objects would

either not sufficiently cover the sensor area (Shortis, 2019) or result in

blurred imagery, when flying closer with consistent focal settings

(Grammatikopoulos et al.2019).
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4.3 | Application in the geomorphological survey

The dry reference point classes GRV and ROA were not evenly dis-

tributed across the survey area, due to gaps in the base station data.

However, we assume that the clustered distribution, with accumula-

tions of points close to the boundaries (ROA) and the centre (GRV), is

sensitive to systematic DEM distortions and thus suitable for the pur-

pose. However, the reference points do not reflect whether the sys-

tematic error pattern shows doming or tilting deformation. This

becomes clearer in our second validation dataset; the DoDs and the

derived cross-sections provide better representation of spatial pat-

terns and thus systematic errors in the camera calibration. However,

the DoDs have to be assessed carefully, as they represent DEM off-

sets relative to a reference case (E3) and can thus be biased. Using

two independent validation datasets compensates for respective

weaknesses and strengthens results that point in the same direction.

The systematic design of our experiment allows us to isolate the

effects of the individual mitigation measures.

4.3.1 | Water masks

The first element (only case B) of the error mitigation strategy was the

water masks. However, in our scenario we did not find any significant

effect of their application. None of the calibration scenarios display

significant differences between cases B and C. The rationale was to

mask out water bodies that are assumed to be particularly prone to

errors due to the light refraction at the surface. The low point cloud

confidence in the river sections of the dense point cloud, further

down the processing chain, confirms this assumption. Only very few

tie points are present in the water areas after the bundle adjustment

without masks. This is most likely due to high tie point uncertainty

after the image matching and their automatic elimination by the soft-

ware. Thus, we conclude masks are not necessary in a turbulent

stream, like the River Gairn, but there might be use cases where mas-

king improves survey results—for example, on sites containing clear

and calm water bodies. Other conceivable applications could be mas-

king out moving grass or error-prone types of vegetation (e.g., Harwin

et al., 2015) or snow cover in thermal imagery (e.g., Webster et al.,

2018). Where the addition proves beneficial our approach can be par-

ticularly valuable because the implemented workflow allows fast and

efficient generation of a global mask dataset.

4.3.2 | Oblique imagery

The second element of the error mitigation strategy was to include

oblique images. The results of the scenarios using self-calibrated bun-

dle adjustment show the biggest difference between the cases with

(B2 and C2) and without (D2 and E2) oblique imagery. Relatively low

RMSE values and spatial error pattern in the DoDs indicate that the

best accuracy was achieved with inclusion of oblique imagery. The

decline in model quality is also reflected in the increasing standard

deviations by factors 4 and 8 at the dry GNSS reference points in the

self-calibrated nadir cases D2 and E2. A convergent image network

proves to be the necessary requirement for solving the self-calibrating

bundle adjustment (James & Robson, 2014). These findings agree with

previous studies using simulation (James & Robson, 2014; James,

Robson, & Smith, 2017) and applied (Nesbit & Hugenholtz, 2019)

datasets that include oblique view angles. Cases D and E, in contrast,

show the largest errors of the self-calibrated cases. The dome-shaped

DEM distortion demonstrates systematic error due to insufficient

geometry of the camera network. The self-calibrating bundle adjust-

ment failed to simultaneously solve the external and internal camera

parameters. For the pre-calibrated cases the inclusion of oblique imag-

ery does not show significant benefit. Little variation can be found in

the results of the pre-calibrated B, C and D cases. Zhou et al. (2019)

even found the highest errors in scenarios combining oblique and

nadir. The oblique imagery aids solving the internal camera parame-

ters in the self-calibrating bundle adjustment, whereas the pre-

calibrated bundle adjustment, when limited to solving the external

camera parameters, does not seem to benefit from the convergent

image network (Zhou et al.2019).

4.3.3 | Variation of scale

In the third error mitigation strategy, variation of scale clearly had an

impact on the pre-calibrated cases. The results show smaller RMSE

values for the cases E1 and E3 that only applied imagery from a single

flying height (30 m). In addition, the DEM tilt that was present in the

multi-scale cases (B1, C1 and D1) using AM does not show in the

single-scale case, E1. The tilt is less prevalent in the VMS pre-

calibrated cases, but the overall RMSE is likewise lowest in E3. Zhou

et al. (2019) state that the focal length has the largest impact on verti-

cal accuracy and is compensated by drifting of the camera position in

the bundle adjustment. However, combining multiple flights (espe-

cially oblique ones) adds constraint to the network (Zhou et al., 2019),

which may prevent it from drifting. Thus, the addition of image scales

to achieve a more convergent image network does not benefit the

pre-calibrated scenarios. For the self-calibrated bundle adjustment, in

contrast, the variation of scale seems to be beneficial. The errors

increase between cases D2 and E2 and also the DEM doming is more

pronounced in E2. This agrees with the findings of Griffiths and

Burningham (2019), who found that pre-calibration works better than

self-calibration when applying single-scale nadir imagery, due to the

lack of convergence.

4.3.4 | Effect of pre-calibration software

The pre-calibration with VMS resulted in the best results overall. This

is in line with the expectation that the dedicated calibration software

produces the most accurate sensor parameters. The similar level of

precision as indicated by the standard deviation confirms that the

larger error in the AM pre-calibration is related to systematic errors.

One aim of the present paper was to evaluate the applied

workflow regarding applicability. In this context a single-software

approach using exclusively AM would be preferable to provide an effi-

cient and streamlined workflow without parameter conversion and

transfer between software packages. The format conversion during

the transfer from VMS to AM and the lack of consistency of internal

parameter weighting have the potential to introduce error. However,

the VMS benchmark dataset resulted in substantially higher DEM
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quality. For the cases including oblique imagery the AM pre-

calibration was even surpassed by the self-calibrated cases. In terms

of efficiency a potential use case for the pre-calibration with AM is

the nadir-only scenario. For this case the difference is smaller, but the

pre-calibration using VMS is still superior. Future research should

investigate alternative calibration software to provide a similar calibra-

tion accuracy to VMS but a more user-friendly implementation and

file compatibility.

4.3.5 | Application of the thermal dataset

Additionally, we demonstrated an orthophoto generation using a

pre-calibrated thermal sensor and an imported DEM. Thermal

orthophotos can be valuable as an additional band for image classifi-

cation or to calculate indices (e.g., Pádua et al., 2020). Within the

framework of our overarching project, we see particular potential in

the automatic classification of water bodies. Thermal image acquisi-

tion can be carried out on a smaller extent (e.g., less overlap, flying

heights or view angles), as the bundle adjustment does not require

a convergent image network if the internal sensor parameters are

pre-calibrated. We assume that our findings regarding better perfor-

mance of single-scale datasets with pre-calibrated sensors apply to

thermal imagery too. The pre-calibrated bundle adjustment of the

30 m nadir thermal imagery failed to align a sufficient number of

images. Instead, we used the 90 m (higher overlap) nadir dataset,

which aligned immediately. We believe that low dynamic range of

the imagery and the lack of small-scale surface structures on-site

has compromised the image-matching capabilities of the software

(Javadnejad et al., 2020; Maes et al.2017; Webster et al., 2018).

This demonstrates a strength of pre-calibrating thermal sensors:

While the optical properties on-site are often not ideal for image

matching or self-calibration (Javadnejad et al., 2020), a suitable cali-

bration object can be selected. In this context Webster et al. (2018)

demonstrated that direct georeferencing can further aid the results

of thermal SfM.

The orthophoto (Figure 9) shows radiometric irregularities related

to changing solar irradiation conditions during the data collections.

Future research should investigate the effect of more consistent light-

ing conditions and radiometric corrections. We believe that the appli-

cation in this study can serve as a proof-of-concept application for

the use of thermal sensors, but its success also suggests that the

approach can be applied to other sensors—for example, multispectral

and hyperspectral (e.g., Lucieer et al., 2012; Maes et al., 2017). Fur-

thermore, we want to highlight that the method is not limited to SfM

photogrammetry but can be used for other applications that require

pre-calibration—for example, image rectification (Eltner et al., 2021;

Grammatikopoulos et al., 2019) or image fusion to generate thermal

point clouds (Javadnejad et al., 2020).

4.3.6 | Survey design and applicability in
geomorphological research

Survey designs in geomorphological research are determined by the

practical study requirements, and it is not always possible to adhere

to the best practice guidelines for photogrammetric applications.

Time and battery life are significant constraints in RPAS-based

SfM photogrammetry surveys. In this study we had to make the

trade-off between length and width of the areal coverage. From a

geomorphological perspective we were interested in covering the lon-

gest possible section of the river reach. The time-consuming lowest

flights (30 m) determined the total area to be covered and thus the

width of the GCP spacing. However, SfM surveys on linear corridors

(e.g., rivers, roads, coastlines) are known to be prone to systematic

errors (Ferrer-González et al., 2020; James & Robson, 2014). There-

fore, the distribution of GCPs requires a certain level of width to con-

strain the model from rotation along the river/GCP axis in the bundle

adjustment, as described by Dur�o et al. (2018). Moreover, the area of

interest should be contained inside the GCPs to avoid errors in the

unconstrained surrounding areas (Eltner & Sofia, 2020; Jaud et al.,

2016; Oniga et al., 2018). The error patterns in the AM pre-calibrated

cases B1, C1 and D1 and the less-pronounced tilting in the self-

calibrated cases B2 and C2 could be related to the narrow survey

design. The cases using VMS pre-calibration do not display spatial

error patterns. Accordingly, a stable sensor pre-calibration seems to

counteract such errors (James & Robson, 2014).

Furthermore, promising advances in direct georeferencing

might make time-consuming ground surveys increasingly redundant

(Carbonneau & Dietrich, 2017; Eltner & Sofia, 2020; Forlani et al.,

2018; Hugenholtz et al., 2016; Przybilla et al., 2020; Stott et al., 2020;

Turner et al., 2014). Corrected GNSS measurements allow measuring

imaging position with high accuracy; however, determining sensor ori-

entation remains challenging. Stöcker et al. (2017) emphasize that this

imbalance must be met by weighting the parameters accordingly.

Potential errors in the pre-calibration or direct georeferencing propa-

gate into the final model when interior and exterior parameters are

fixed in the bundle adjustment (Cramer et al., 2000). Without exterior

constraint the bundle adjustment can compensate for erroneous pre-

calibration by shifting camera positions (Cramer et al., 2000; Eltner &

Sofia, 2020). The low errors of the single-scale pre-calibrated cases

may be an example where fewer constraints (network geometry and

exterior parameters) lead to better results.

An alternative could be adaptive camera calibration that solves a

highly constrained bundle adjustment and subsequently removes the

constraints to allow the interior parameters to readjust (Zhou et al.,

2019). Further, experiments comparing calibration validity over

short (landing and take-off) and long (site revisit) periods would be

beneficial.

5 | CONCLUSIONS

We have demonstrated an efficient workflow for RPAS-based multi-

sensor on-site pre-calibration in geomorphological research. For DEM

generation from visible imagery we found the largest potential of pre-

calibration in the application of single-scale nadir-only surveys. This

type of survey design is particularly common in geomorphological

applications and can lead to systematic errors if not handled correctly.

Such a dataset (30 m nadir-only) resulted in the largest vertical offsets

when applied in a self-calibrated bundle adjustment. When applied

using the VMS pre-calibrated camera parameters, however, it resulted

in the smallest errors overall. With regard to the application in geo-

morphological surveys, pre-calibrated nadir-only single-scale designs
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can be more efficient in terms of time requirement or area covered.

However, our results are not a comprehensive verdict to dismiss the

use of self-calibration. Sufficiently accurate DEMs were created in the

cases that applied a convergent image network containing varying

scales and oblique imagery.

Additionally, we have demonstrated the efficiency and suitability

of the approach for the simultaneous pre-calibration of multi-sensor

RPAS by creating a thermal orthophoto. Additional spectral bands

(e.g., thermal, multispectral, hyperspectral) can provide valuable infor-

mation for mapping surface properties.

Future work will address the potential to improve AM’s pre-

calibration capabilities, but also broaden the view and conduct

experiments with other calibration software. Our premise was the

geometrical instability of consumer-grade sensors; hence we empha-

sized the in situ calibration. Using repeat surveys, we will test to what

extent the calibration validity deteriorates over time.
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APPENDIX

F I GU R E A 1 Lens distortion profiles of the
DJI Matrice M600 RGB sensor and the Workswell
WIRIS pro thermal sensor for all pre- and self-
calibrated cases [Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E A 2 Bar chart of the RMSE
values of the z-offsets between the GNSS
measurement and the calculated DEMs at
the reference points. See Table 3 for data
[Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E A 3 Bar chart of the
standard deviation in the z-offsets
between DEM and the GNSS reference
points. See Table A2 for raw data [Color
figure can be viewed at wileyonlinelibrary.
com]
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F I GU R E A 4 z-offsets between the
DEM cases and the GNSS reference
points (GRS, GRV, ROA, SHR, SUR and
WET) [Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E A 5 Spatial distribution of z-offsets between the DEM cases and the GCPs [Color figure can be viewed at wileyonlinelibrary.com]
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T AB L E A 2 Standard deviations of the z-offsets between DEM
and the GNSS reference points. See Figure A3 for visualization as bar
chart

DEM case GRS GRV ROA SHR SUR WET

B1 0.09 0.02 0.03 0.19 0.11 0.14

B2 0.09 0.02 0.02 0.19 0.09 0.15

B3 0.09 0.02 0.02 0.19 0.08 0.15

C1 0.09 0.02 0.03 0.19 0.08 0.14

C2 0.09 0.02 0.02 0.20 0.08 0.14

C3 0.09 0.02 0.02 0.19 0.08 0.14

D1 0.09 0.02 0.04 0.19 0.10 0.15

D2 0.10 0.03 0.08 0.18 0.09 0.16

D3 0.09 0.02 0.02 0.19 0.09 0.15

E1 0.08 0.02 0.03 0.20 0.09 0.12

E2 0.12 0.04 0.16 0.19 0.09 0.16

E3 0.10 0.02 0.02 0.20 0.08 0.12
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