
Assessing Word Similarity Metrics For
Traceability Link Recovery

Bachelor’s Thesis of

Kevin Werber

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Anne Koziolek

Second reviewer: Prof. Dr. Ralf Reussner

Advisor: Jan Keim, M.Sc.

Second advisor: Tobias Hey, M.Sc.

27. January 2022 – 27. May 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Abstract

The software development process usually involves different artifacts that each describe

different parts of the whole software system. Traceability Link Recovery is a technique

that aids the development process by establishing relationships between related parts from

different artifacts. Artifacts that are expressed in natural language are more difficult for

machines to understand and therefore pose a challenge to this link recovery process. A

common approach to link elements from different artifacts is to identify similar words

using word similarity measures. ArDoCo is a tool that uses word similarity measures to

recover trace links between natural language software architecture documentation and

formal architectural models. This thesis assesses the effect of different word similarity

measures on ArDoCo. The measures are evaluated using multiple case studies. Precision,

recall, and encountered challenges for the different measures are reported as part of the

evaluation.

i

Zusammenfassung

Der Softwareentwicklungsprozess involviert oft verschiedene Artefakte, welche jeweils

verschiedene Aspekte eines Softwaresystems beschreiben. Traceability Link Recovery ist

ein Verfahren, das diesen Entwicklungsprozess unterstützt, indem es verwandte Teile aus

verschiedenen Artefakten verbindet. Artefakte, die in natürlicher Sprache ausgedrückt

werden, sind schwierig für Maschinen zu verstehen und stellen damit eine besondere

Herausforderung für die Traceability Link Recovery dar. Hierfür werden für gewöhnlich

Wortähnlichkeitsmetriken eingesetzt, um unterschiedliche Wörter mit gleicher Bedeutung

als Synonyme zu identifizieren. ArDoCo ist eine Software, die Wortähnlichkeitsmetriken

zum Wiederherstellen von Trace Links zwischen textueller Softwarearchitekturdokumen-

tation und formalen Architekturmodellen einsetzt. Diese Arbeit befasst sich mit dem

Einfluss verschiedener Wortähnlichkeitsmetriken auf ArDoCo. Die Wortähnlichkeitsme-

triken werden mit mehreren Fallstudien evaluiert. Dazu werden die Metriken Präzision

und Sensitivität als auch besondere Herausforderungen der einzelnen Wortähnlichkeits-

metriken als Teil der Evaluation präsentiert.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Foundations 3
2.1 Traceability Link Recovery . 3

2.2 Word Similarity . 5

2.3 ArDoCo . 6

3 RelatedWork 9
3.1 Relevant Word Similarity Measures . 9

3.1.1 Lexical similarity measures . 9

3.1.2 Knowledge-based similarity measures 10

3.1.3 Corpus-based similarity measures 11

3.1.4 Hybrid measures . 12

3.2 Related Traceability Link Recovery Work 12

4 Implementation 15
4.1 Choosing Word Similarity Metrics . 15

4.2 Architecture . 17

5 Evaluation 19
5.1 Methodology . 19

5.2 Case studies . 20

5.3 Baselines . 20

5.4 Results . 21

5.5 Discussing the results . 30

5.5.1 Overview . 30

5.5.2 Accuracy . 31

5.5.3 Reliability . 31

5.5.4 Validity . 32

5.5.5 Scope . 32

6 Conclusion and Future Work 33

Bibliography 35

v

List of Figures

1.1 Example of a textual SAD (left) and an architectural model (right) 1

1.2 Example trace links between textual SAD and an architectural model . . 2

2.1 Trace links between textual SAD and an architectural model 4

2.2 Word Similarity Measure Categories from Pradhan et al. [7] 5

2.3 ArDoCo pipeline . 7

4.1 The main classes of ArDoCo’s WSM architecture 17

5.1 Jaro Winkler evaluation graph . 22

5.2 The precision and recall pairs of all evaluated Levenshtein configurations 23

5.3 Comparing different values of 𝑛 for Kondrak’s N-gram WSM 24

5.4 N-gram evaluation graphs for 𝑛 = 3 . 24

5.5 SEWordSim evaluation graphs . 25

5.6 Comparison of different fastText models 26

5.7 fastText cc.en.300 evaluation graphs . 26

5.8 Comparison of WordNet algorithms . 27

5.9 Comparison of the GloVe vector embeddings 28

5.10 GloVe evaluation graphs using the 300 dimensional WIGI embeddings . . 28

5.11 Nasari evaluation graph . 29

5.12 Comparison of all WSMs . 30

5.13 Extended Jaro Winkler Evaluation Graph 31

vii

List of Tables

5.1 General statistics about the used case studies 20

5.2 Evaluation results for the first baseline 20

5.3 Evaluation results for the second baseline 21

ix

1 Introduction

When developing software, different views are usually involved that each describe a

part of the desired software system. Different views emphasize different aspects of the

software. For example, an architectural model of a system describes how different software

components are connected and the source code provides implementation details for each

component. Additionally, some views are more structured than others. While any element

in a formal model follows a specification defined for that model, textual documentation

is usually less strict and subject to fewer rules. Figure 1.1 shows an example of a textual

software architecture documentation (SAD) on the left and an architectural model on the

right.

RestAPI

Queue

Dispatcher

DataStore

The system consists of four main
components. The REST-API deals with
incoming HTTP requests and passes
them to one of the other components.
One of these components is the queue.

It temporarily holds requests for
future processing. The dispatcher
takes these requests, processes them
and passes the results to the DataStore
for persistent storage. At regular
intervals, the contents of the storage
are deleted to limit used disk space.

Figure 1.1: Example of a textual SAD (left) and an architectural model (right)

A problem that can occur when different views cover the same parts of a system is

that inconsistencies might occur between these views. Therefore, special care needs to be

taken, so that no inconsistencies occur whenever a view is changed. The research project

ArDoCo [1] was created to assist in identifying such inconsistencies. It accomplishes this

by utilizing Traceability Link Recovery (TLR). The TLR process in ArDoCo creates trace

links between elements from an architectural model and sentences from the textual SAD

when both refer to the same software component. By automatically linking these parts

from different views, circumstances where inconsistencies might occur are found and

possibly automatically recognized as inconsistent (cf. Keim et al. 2021 [2]). Figure 1.2

shows possible trace links from the previous example. One such trace link connects the

term REST-API from the textual SAD to the RestAPI component in the model. Since they

both refer to the same component, a link is established.

1

1 Introduction

RestAPI

Queue

Dispatcher

DataStore

The system consists of four main
components. The deals with
incoming HTTP requests and passes
them to one of the other components.
One of these components is the .

 temporarily holds requests for
future processing. The
takes these requests, processes them
and passes the results to the
for persistent storage. At regular
intervals, the contents of the
are deleted to limit used disk space.

REST-API

queue
It

dispatcher

DataStore

storage

Figure 1.2: Example trace links between textual SAD and an architectural model

In order for ArDoCo to understand that two terms refer to the same thing, it utilizes

word similarity measures (WSMs). It uses these WSMs by letting them compute a sense of

similarity between the names of architectural models and terms occuring in the textual

SAD. If the computed similarity passes a certain threshold, the elements are linked. As

is the nature of written text, different terms in the textual SAD might refer to the same

thing. Using the previous example, both the terms DataStore and storage refer to the same

software component. But since the actual name of the component is DataStore, ArDoCo

would fail to link this component to the term storage without the usage of WSMs. By

utlizing WSMs, ArDoCo can determine that both terms are similar enough that they most

likely refer to the same component. Another problem in textual SAD is the occurence of

coreferences. In Figure 1.2, the link between the word “It” and the Queue component is

missed. However, since this problem cannot be solved with the usage of word similarity

measures, it is not relevant for this thesis.

There are many different WSMs in the field of word similarity and their potential impact

on TLR performance between natural language SAD and formal architectural models is

yet unexplored. To the best of my knowledge, no existing work in the literature focuses

on the effects of WSMs on TLR. Instead, WSMs are often only mentioned in passing as

an extension to the actual TLR approaches. This thesis aims to investigate the effect of

WSMs by attempting to answer a series of research questions:

• How do state-of-the-art word similarity measures affect the performance of TLR

between natural language SAD and formal architectural models?

• What kinds of problems are encountered when utilizing WSMs for TLR?

• Which kinds of WSMs are particulary effective or ineffective when used for TLR?

To answer these questions, various WSMs are implemented in ArDoCo and their perfor-

mance impact is evaluated using multiple case studies. The rest of this thesis is structured

as follows: The upcoming chapter establishes the foundations for this thesis. Chapter 3

presents existing work that is related to this thesis. Chapter 4 describes the implementa-

tion work for this thesis and Chapter 5 presents the evaluation results. Lastly, Chapter 6

summarizes and concludes the results of this thesis.

2

2 Foundations

The work of this thesis is based on the field of traceability link recovery and the field

of word similarity. The foundations for these two research fields are explained in the

upcoming sections 2.1 and 2.2. Section 2.3 provides an overview of ArDoCo and its relevant

parts.

2.1 Traceability Link Recovery

Traceability is concerned with the “degree to which a relationship can be established

between two or more products of the development process, especially products having a

predecessor-successor or master-subordinate relationship to one another [3]”. The idea

behind Traceability Link Recovery (TLR) is to recover links between related elements

from certain software artifacts. A TLR process can be thought of as a function that, given

two or more software artifacts, provides a set of trace links between these artifacts. Each

trace link connects an element from one artifact to an element from another artifact and

indicates a relationship between these elements. The trace links can then be used to assist

the software development process in different ways:

• Linked elements can provide additional information and reasoning about the design

of an inspected element. For example, the requirements linked to a part of the source

code explain that code’s purpose.

• The established links can be used to identify places in software artifacts where

inconsistencies might occur. Developers can therefore check these places to ensure

that no inconsistencies exist.

• The absence of links to a specific artifact can indicate that the artifact is incomplete.

• After changing a certain part of an artifact, the developer can quickly check all

elements from other artifacts that are linked to the changed part to see if they have

introduced inconsistencies.

Cleland-Huang et al. [4] provide an introduction and overview into the field of TLR.

3

2 Foundations

RestAPI

Queue

Dispatcher

DataStore

The system consists of four main
components. The deals with
incoming HTTP requests and passes
them to one of the other components.
One of these components is the .

 temporarily holds requests for
future processing. The
takes these requests, processes them
and passes the results to the
for persistent storage. At regular
intervals, the contents of the
are deleted to limit used disk space.

REST-API

queue
It

dispatcher

DataStore

storage

Figure 2.1: Trace links between textual SAD and an architectural model

Figure 2.1 serves as an example of TLR between two different artifacts. In this example,

the textual SAD would be incomplete if a developer would add another component to the

model on the right but forget to add the respective description of that component to the

artifact on the left. This problem would then be noticed since the model component has

no outgoing trace links.

There are manual, semi-automated, and fully automated approaches for TLR. Semi-

automated approaches usually work by suggesting possible links to a human who then

either approves or declines the suggestion. Human involvement is always slow and costly.

This effect is exaggerated when dealing with very big or frequently changing artifacts.

A different way to classify TLR approaches is by looking at the involved artifacts.

Commonly involved artifacts are source code, software requirements, formal architectural

models, use cases, test cases, bug reports and user documentation [5]. A general problem of

TLR is that different kinds of artifacts exist at different levels of granularity, are structured

differently and contain different information. While source code reveals the inner workings

of a software system, requirements exist at a higher layer of abstraction and describe

a more general purpose of a system. Additionally, artifacts written in natural language

are more difficult for automated processes to understand, compared to more structured

artifacts that follow strict specifications.

4

2.2 Word Similarity

2.2 Word Similarity

The field of natural language processing has developed many different methods to measure

the similarity of two words. Navigli and Martelli [6] provide a formal definition of a word

similarity measure (WSM) that applies to all methods:

𝑠𝑖𝑚 : I × I −→ R

A similarity function 𝑠𝑖𝑚 is defined, where I is the set of all relevant words. The output
of a similarity function usually lies between 0 and 1 or between −1 and 1. The larger

the output number, the more similar the input words. Another way to formalize word

similarity is to instead determine how different words are, by defining a distance function:

𝑑𝑖𝑠𝑡 : I × I −→ R+

In this case, smaller output numbers imply that words are more similar and greater

numbers imply that the words are more different. Both definitions can be applied to any

WSM since one definition can always be transformed into the other.

There are many different ways of approaching the word similarity problem. Pradhan et

al. [7] classifies different WSMs into the categories seen in Figure 2.2.

Word Similarity

Lexical Similarity Semantic Similarity

Knowledge-based Similarity Corpus-based Similarity

Figure 2.2: Word Similarity Measure Categories from Pradhan et al. [7]

Lexical similarity measures determine similarity by looking at the characters of the

words. These kinds of WSMs are good at identifying words that look similar and especially

at identifying typos. However, these measures do not work well in cases where the words

do not look similar, despite having the same meaning. For example, the words answer
and reply are synonymous but look very different. Since the only used information comes

from the characters themselves, lexical measures have no way of knowing that answer
and reply are similar.

Semantic similarity measures determine similarity by attempting to gauge the actual

meaning of a word. The two main types of semantic similarity measures are knowledge-

based and corpus-based measures.

As defined by Pradhan et al. [7], knowledge-based similarity measures utilize informa-

tion gained from semantic networks. These networks establish relations between word

senses and provide ways for machines to understand the meaning of words. An example

for one such relation would be the so called is-a relation which exists between two words

𝑤1 and𝑤2, if𝑤1 is a special instance of𝑤2, like in the case of car and vehicle. A problem

5

2 Foundations

of knowledge-based approaches is that the construction of such semantic networks is

difficult and often requires manual labor.

Corpus-based similarity measures try to utilize information gathered from huge corpora.

The idea behind this is that the meaning of a word can be derived just by looking at

the contexts of where the word is used. Approaches of this kind analyze corpora and

convert words from the corpora into numerical vectors that can be used to compare the

words. The procedure that converts words into such vectors is called a word embedding. A

common word embedding approach is word co-occurence where vectors are constructed

by analyzing which words occur around a word. The idea here is that two words are

deemed similar if their surrounding words are similar. Once vector representations for

words are constructed, their similarity can be calculated with vector similarity measures.

One such vector similarity measure is cosine similarity which treats the cosine of the angle

between vectors as a measure of similarity.

The benefit of the corpus-based approach compared to knowledge-based similarity is

that accessing and analyzing huge corpora is easier than manually constructing semantic

networks. This is because a corpus can be just a body of natural language text. However,

word senses that rarely occur in written text are at risk of not being sufficiently understood.

For example, to learn the meaning of the word “cloud” in the context of software engi-

neering, the WSM must analyze a sufficiently large amount of corpora from the software

engineering domain. This means that problems arise when corpus-based WSMs have

to compute word similarity in very specific domains where gathering huge amounts of

written text related to that domain is infeasable. In cases where huge amounts of relevant

corpora are available, the greater amount of words along with their contexts means that

corpus-based WSMs are able to understand more unique words than knowledge-based

approaches.

Another challenge that all WSMs deal with is the problem of polysemy. The fact that a

single word can have multiple meanings necessitates that, in order to truly gauge the real

meaning of a word, the context of where that word occurs needs to be taken into account.

Lexical measures have no way of utilizing contextual information since they only look

at the characters of a given word. Knowledge-based measures can utilize context to find

the appropriate word sense in a semantic network and then use the relationships within

the network to further compute similarity. Corpus-based measures must provide ways to

construct vectors using words combined with their respective context.

2.3 ArDoCo

ArDoCo [1] is a research project started by the research group Modelling for Continuous

Software Engineering at the Karlsruhe Institute for Technology. The goal of this project

is to provide consistency analyses between textual SAD written in natural language and

formal architectural models. The core framework of ArDoCo [8] is an open-source project

written in Java. This framework implements the TLR process described by Keim et al. [2].

To assess the performance impact of WSMs on this TLR process, various WSMs from all

categories were implemented and evaluated in ArDoCo. The TLR approach for ArDoCo

aims to automatically create trace links between sentences from textual SAD and elements

6

2.3 ArDoCo

from architectural models. A link is created between a sentence and an element of a

model, when a word from the sentence and the model element refer to the same software

component.

ArDoCo’s consistency analysis is realized through a multi-stage process where each

stage uses the results of the previous stage to gain new information. Figure 2.3 shows

all stages and how they are connected. Word similarity measures are used at multiple

stages in this process. The extraction stage is tasked with locating words in the SAD

that could possibly represent names or types of model elements. Words that refer to the

same name or type are grouped together as so-called noun mappings. WSMs are used for

this by grouping together words that are deemed similar enough. The recommendation

stage attempts to reconstruct the model using information from the SAD and metamodel.

Model elements that are constructed during this stage are called recommended instances.

Before constructing a new recommended instance, WSMs are used to find out if any

similar recommended instances already exist. The connection stage is where trace links

are created. During this stage, WSMs are used to find noun mappings and words that are

similar to model elements. Additionally, similarity comparisons are made between model

elements and recommended instances.

Architecture

Documentation

Text Extraction

Model Extraction

Recommendation

Stage

Connection

Stage

Architecture

Trace

Links

Extraction Stage

Figure 2.3: ArDoCo pipeline

7

3 RelatedWork

This chapter covers existing work that is related to this thesis. As for explicitly evaluating

multiple WSMs on TLR, no similar work has been found in the literature. Section 3.1

presents relevant word similarity measures and Section 3.2 covers work related to the field

of TLR.

3.1 Relevant Word Similarity Measures

Several works from the literature provide an overview over word similarity measures.

Navigli andMartelli [6] provide an introduction and overview into the problem of word sim-

ilarity. Pradhan et al. [7] also provide an overview over existing WSMs. Chandrasekaran

and Mago provide “a comprehensive view of existing systems in place for new researchers

to experiment and develop innovative ideas to address the issue of semantic similarity [9]”.

The following subsections cover the most popular and relevant measures for each WSM

category.

3.1.1 Lexical similarity measures

This subsection presents measures that rely on lexical similarity for word comparisons.

N-Gram by Kondrak [10] is a family of lexical similarity measures. For each member of

this family, the author provides a distance-based and a similarity-based variant. The idea

behind this approach is identifying substrings of a specific length 𝑛 (so-called 𝑛-grams)

for each input string and comparing these 𝑛-grams with each other to calculate similarity

or distance. Special members of this family are the Levenshtein distance and the longest

common subsequence measure.

Levenshtein distance [11] is a distance function that, given two input words, calculates

how many characters have to be added, moved or removed from the first word to turn

it into the second word. The more modifications are necessary, the less similar the two

words are. This measure is also sometimes called EDIT-Distance in the literature.

Longest common subsequence (LCS) is a similarity function that finds the longest subse-

quence that occurs in both of the input words and treats the length of that subsequence as

the similarity score. In this context, a subsequence of a string 𝑋 is a series of characters

𝑐1𝑐2 . . . 𝑐𝑘 that occur in 𝑋 in that exact order. The characters however do not need to be

right next to each other. For example, one subsequence of 𝑋 = "similarity" is "imat".

The LCS of 𝑋 = "similarity" and 𝑌 = "family" is "mily". The longer the LCS of two

words 𝑋 and 𝑌 , the more similar the words are.

Jaro Similarity [12, 13] is a similarity function that counts howmanymatching characters

both words share. Two characters match if they are the same characters from different

9

3 Related Work

words and their positions differ by less than half the length of the shorter word. This

prevents mistakes where characters are swapped from negatively affecting similarity. This

measure also takes into account the order of matching characters by decreasing similarity

when the order of matching characters in one word is different in the other word. For

example, the words "socket" and "aspect" have four matching characters. Since the

matching characters occur in different orders, the similarity is slightly decreased.

Jaro Winkler is an extension of the Jaro measure [14]. It provides an additional increase

in similarity when both words share a common prefix.

3.1.2 Knowledge-based similarity measures

This subsection covers measures that use semantic networks for similarity comparison.

WordNet [15] is one of the most popular semantic networks. In this network, synonym

sets (synsets) of specific word senses are nodes in a graph and edges between nodes

represent semantic relationships. One such semantic relationship in this graph is the

hyponymy relationship. It conveys that one synset is a type-of another synset, like in

the case of “vehicle” and “bicycle”. With this semantic relationship, the WordNet graph

becomes a tree structure where the root node is the “entity” synset. Aside from edges,

WordNet also provides a textual definition (gloss) for each synset. Meng et al. [16] provide a

review on several measures that work withWordNet and put them into different categories.

Some of these measures will be mentioned in the following paragraphs. Banu et al. [17]

and Goyal [18] performed an evaluation on the most common WordNet measures.

BabelNet is a multilingual semantic network that is automatically constructed by com-

bining several existing resources like WordNet and Wikipedia. Each concept in BabelNet

has a reference to at least one if not more counterparts from other resources. For example,

the BabelNet concept “car” (bn:00007309n) is linked to the WordNet synset car%1:06:00::

and to the Wikipedia page wikipedia.org/wiki/Car. Each BabelNet concept can also have

semantic relations to other concepts in the same way that WordNet synsets have semantic

relationships. All of these concepts and relationships are automatically imported from

multiple different resources. To avoid having duplicate concepts, BabelNet maps concepts

from different sources together, like in the case of the previously mentioned “car” concept.

The following measures all utilize information from the WordNet graph. Many of these

measures actually calculate the similarity between synsets and not between words. A

common way to turn these measures into WSMs is to calculate the maximum similarity

max

𝑠1∈𝑆 (𝑤1),𝑠2∈𝑆 (𝑤2)
𝑠𝑖𝑚(𝑠1, 𝑠2)

where 𝑆 (𝑤𝑖) is the set of all synsets that contain the word𝑤𝑖 .

Path [19] is one of the earliest WordNet measures. It calculates the length of the shortest

path from one synset to another synset in the WordNet graph. The idea being, that synsets

are less similar the farther away they are from each other.

Leacock & Chodorow [20] is an extension of the Path algorithm. It also calculates the

shortest distance between synsets but normalizes this distance by the maximum depth of

the WordNet hierarchy. The depth of a node in this context refers to the distance between

the node and the root “entity” synset using the hyponymy edges.

10

3.1 Relevant Word Similarity Measures

Wu & Palmer [21] utilizes depth information and the least common subsumer (LCS) of

both synsets. The LCS of two synsets is the lowest synset in the WordNet hierarchy that

both input synsets have as a hypernym. This measure uses the ratio between the depth of

the LCS and the sum of the depth of both synsets respectively.

Jiang & Conrath [22] uses the concept of information content (IC). The information

content of a synset is related to the probability that a random word is an instance of that

synset. The approach by Jiang & Conrath uses the IC from both input synsets and the IC

of their LCS to calculate similarity.

Extended Lesk [23] utilizes all relations in WordNet that are of lexical-semantic nature

and the concept of gloss overlap. The gloss overlap of two synsets 𝑠1, 𝑠2 is the amount

of words that occur in the textual definition of both synsets. To calculate similarity of

synsets, this measure takes into account the gloss overlap of each synset that is adjacent

to one of the input synsets.

Ezzikouri et al. [24] determines the similarity of synsets by counting how many words

occur in both input synsets and how many words their glosses share.

3.1.3 Corpus-based similarity measures

This subsection presents WSMs that utilize information gained from analyzing corpora.

SEWordSim [25] is a word similarity database which was constructed by analyzing

information from StackOverflow pages. The analysis utilizes the concept of word co-

occurence and positive pointwise mutual information (PPMI) to convert words into vectors.

Cosine similarity is then used to calculate similarity between vectors. Since all analyzed

words come from StackOverflow posts, the inferred meanings and similarities of words are

most useful when utilized in the domain of software engineering and less useful anywhere

else.

word2vec [26] is the most popular way to construct vectors from words. A neural

network analyses surrounding words (local context) for each occurence of a word in a

corpus. There are two different training processes defined for this neural network. One of

them, called the continuous bag of words (CBOW) process, is training the neural network

to guess the most likely context of an input word. The other training process, called

skip-gram, trains the network by having it guess the word that best fits a given input

context.

fastText [27] is an extension of word2vec. Unlike word2vec, each word is represented

as an unordered collection of n-grams. An n-gram of a word is just a fragment of that

word with n characters. For example, both “bi” and “cy” are bigrams of the word “bicycle”.

The vector representation of a word can then be calculated by combining the vector

representations of all n-grams that make up that word. This allows turning words into

vectors that were previously unknown as long as these words are concatenations of

previously known n-grams.

GloVe [28] is another popular vector construction algorithm. Whereas word2vec trains

its model solely by utilizing the local context of words, GloVe utilizes both local context and

global corpus statistics. It trains its model to minimize a certain loss function. Minimizing

this loss function results in the dot product between two word vectors 𝑤 and 𝑤̃ being

roughly equal to the logarithm of the co-occurence count between the words.

11

3 Related Work

3.1.4 Hybrid measures

This subsection covers measures that utilize information from both corpora and semantic

networks.

Nasari [29, 30] is a hybrid approach that utilizes both corpus-based word embeddings

and lexical networks for similarity computation. For each BabelNet synset 𝑏, relevant

Wikipedia pages are collected. The contents of these pages are then combined into a

single unordered collection of words𝑊 (𝑏). The authors describe three different ways
to construct vectors from these word collections. One of them being the embed vector

representation technique which requires an existing vector embedding 𝐸. The embed

vector of a given BabelNet synset 𝑏 is the weighted sum

∑
𝑤𝑖∈𝑊 (𝑏) 𝑓𝑖 ∗ 𝐸 (𝑤𝑖) where 𝐸 (𝑤𝑖)

is the embedded word vector of a given word𝑤𝑖 and 𝑓𝑖 is that word’s assigned weight.

DeConf [31] is another hybrid approach utilizing existing knowledge-based and corpus-

based techniques. The idea behind DeConf is to deconflate a word into its different

meanings. This tackles the problem of two occurences of the same word being deemed

similar, even though they each refer to a different meaning of the word. Deconf works

by utilizing an existing word embedding and an existing semantic network. For example,

word2vec and WordNet could be used for this purpose. The semantic network is used

to calculate a set of so-called sense biasing words for each word sense. The idea behind

these kinds of sets is that they “can effectively pinpoint the semantics of individual synsets

[31].” The word embedding allows representing these biasing words as numeric vectors.

Each word sense can then be represented as a weighted sum of each biasing word vector.

Compared to Nasari, which uses Wikipedia as its corpus-based source, Deconf can utilize

any corpus. This allows for a greater number of unique words and also types of words

that are usually not represented as pages on Wikipedia, like verbs and adjectives.

3.2 Related Traceability Link Recovery Work

Several literature reviews regarding TLR were performed covering works from 1999 to

2016 [5, 32, 33]. These reviews show that the most common TLR techniques are based on

Information Retrieval (IR). IR is concerned with providing relevant documents given a

search query. Documents in IR are often represented as an unordered collection of words

[5]. The field of TLR can utilize IR techniques by treating artifacts as documents and

queries.

Most TLR techniques are based on one of the following approaches: Vector Space

Models, Latent Semantic Indexing, and probabilistic models. Vector Space Models (VSMs)

transform documents and queries into numeric vectors. Each component of a vector

represents a unique term that either occurs or does not occur in the document. The value

of a vector component represents a weight that reflects the importance of that term to the

document. To find the relevant documents for a given query, the vector representation of

the query is compared to the vector representations of the documents. This comparison

involves calculating how many terms occur in both the query and the document while

also taking into account specific weights for each term. The idea behind this approach is

that the most relevant documents for a query will have vector representations that are

12

3.2 Related Traceability Link Recovery Work

the most similar to the query vector. Latent Semantic Indexing (LSA) [34] is an extension

of VSM. With this technique, documents and queries are also transformed into vectors.

The difference here is, that the dimension of the used vector space is reduced and each

individual dimension represents something that can be interpreted as a concept rather than

a specific term. Consequently, similar terms are grouped into the same concept and thus

the same dimension. Therefore, instead of dealing with individual terms when comparing

documents with the query, this technique calculates how many concepts occur in both

the query and the document. Probabilistic Models work by calculating the probability of

how relevant a certain document is to a given query. To do this, they utilize probabilistic

models that allow calculating P(𝐷𝑖 | 𝑄) which is the probability that the document 𝐷𝑖 is

related to the query 𝑄 .

For further improvements in performance, TLR approaches often use so-called enhance-

ment strategies in addition to the approaches mentioned above. Borg et al. [5] mention the

most popular enhancement strategies. One strategy is the use of a thesaurus to assist in

the synonymy problem. A thesaurus is a resource that acts like a word similarity measure

by providing synonyms and related terms for a given word. Settimi et al. [35] assess the

usage of a thesaurus in their TLR technique. Their evaluation showed overall slightly

worse results using a thesaurus which, according to the authors, might be caused “by

the thesaurus not being able to capture context-specific concepts” [35]. Hayes et al. [36]

and Leuser et al. [37] also assess the effects of utilizing a thesaurus and report better

results with the usage of a thesaurus. Guo et al. [38] uses deep learning techniques and

the skip-gram word embedding for TLR between requirements and design artifacts. The

skip-gram word embedding is trained over a large set of domain specific documents to

specifically learn the meanings of words in the context of the relevant domain.

While these works all cover the effects of word similarity measures on TLR, they either

don’t explicitly mention which measures or resources are used, or they only cover one

measure or resource each. In contrast, this thesis aims to cover a wide range of WSMs and

focuses on the effects of the WSMs on TLR performance.

13

4 Implementation

This chapter explains how and which word similarity measures were implemented in

ArDoCo. The following section explains the decision process behind choosing WSMs from

literature and implementing them in ArDoCo. Section 4.2 presents the part of ArDoCo’s

architecture that allows the inclusion of multiple WSMs in the TLR process.

4.1 Choosing Word Similarity Metrics

The following criteria were taken into account when choosing which word similarity

measures should be implemented and evaluated.

• Variability: Different categories of WSMs have different strengths and weaknesses.

For example, while lexical measures can identify typos very well, they are unable

to identify semantic relatedness between different looking words as well as corpus-

based or knowledge-based WSMs can. A wide variety of WSMs should be chosen to

benefit from the strengths of all types of WSMs while minimizing the weaknesses.

• Popularity: WSMs that are well known in the literature probably perform better than

unpopular WSMs since their effectiveness is likely the reason they are well known to

begin with. Popular WSMs also tend to have better availability when it comes to use-

ful artifacts like pre-trained data sets or implementations in programming languages.

Therefore, WSMs that are often mentioned in literature should be preferred.

• Modernity: Newer WSMs have various potential advantages over older measures.

They are able to rectify flaws of their precedessors, make use of increased processing

power and take advantage of more data and knowledge in the field of natural language

processing.

Using these criteria, the following word similarity measures were chosen to be imple-

mented and evaluated:

• Levenshtein distance [11]: This measure was already part of ArDoCo’s TLR process

prior to this thesis’s work. No additional implementation work was required.

• Jaro Winkler [14]: This measure was also already part of ArDoCo’s TLR process.

• 𝑁 -Gram by Kondrak [10]: Kondrak’s measure establishes a family of lexical WSMs

with one member of this family being the Levenshtein distance. Since Kondrak’s

evaluation indicates other members of this family to be superior, it could potentially

replace Levenshtein and improve the TLR process in ArDoCo.

15

4 Implementation

• SEWordSim [25]: SEWordSimDB is a corpus-based WSM that was constructed by

analyzing data from StackOverflow posts. This allows the WSM to find word pairs

that can only be identified as similar in the context of the software engineering

domain. While other measures were trained on general purpose text, this focus on

the domain of software engineering might provide a unique strength.

• fastText [27]: Since fastText is a corpus-based measure that is trained on n-grams,

it could potentially provide vector embeddings and thus similarity scores for word

pairs that were not in the training corpus.

• GloVe [28]: Another corpus-based measure that, in contrast to the local context-

based training of fastText, uses global co-occurence information to compute word

similarity.

• NASARI [29, 30]: The only hybrid measure evaluated in this thesis. NASARI is both

knowledge-based and corpus-based and gives an idea of how well hybrid measures

can perform.

• WordNet [39]: Being the only semantic network in this thesis, WordNet gives an idea

of how lexical networks can aid the TLR process. The following WordNet algorithms

were chosen:

– Leacock & Chodorow [20]: Bases its similarity score on the distance between

two synsets on the WordNet graph.

– Jiang & Conrath [22]: Uses the concept of information content of two synsets

to compute their similarity.

– Extended Lesk [23]: Calculates the gloss overlap between the neighbourhood of

two synsets.

– Ezzikouri [24]: A more modern measure that, in addition to utilizing gloss

overlap, also uses the words in the synsets themselves to calculate similarity.

Since the authors have not performed an evaluation for this measure, it would

be interesting to see how it compares to the other WordNet algorithms.

All of these measures are different in that they utilize different kinds of information

that is present in the WordNet graph.

16

4.2 Architecture

4.2 Architecture

The complete architecture of ArDoCo’s TLR process is described in further detail in Keim

et al. [2] and the current state of it can be viewed on the public GitHub repository [8]. The

part that is relevant for this thesis mainly consists of the classes seen in Figure 4.1.

<<interface>> WordSimMeasure

+ areWordsSimilar(ctx: ComparisonContext): boolean

<<interface>> ComparisonStrategy

+ areWordsSimilar(ctx: ComparisonContext, measures: List<WordSimMeasure>): boolean

AtleastOneStrategy

+ areWordsSimilar(ctx: ComparisonContext, measures: List<WordSimMeasure>): boolean

ComparisonContext

+ firstString:

+ secondString:

+ firstWord:

+ secondWord:

+ lemmatize:

String

String

IWord

IWord

boolean

+ firstTerm():

+ secondTerm():

String

String

SimilarityUtils

- MEASURES:

- STRATEGY:

List<WordSimMeasure>

ComparisonStrategy

+ setMeasures(measures: Collection<WordSimMeasure>)

+ setStrategy(strategy: ComparisonStrategy)

+ areWordsSimilar(ctx: ComparisonContext, strategy: ComparisonStrategy):

+ areWordsSimilar(firstWord: String, secondWord: String):

+ areWordsSimilar(firstWord: IWord, secondWord: IWord):

+ areWordsSimilar(firstWord: String, secondWord: IWord):

...

boolean

boolean

boolean

boolean

Figure 4.1: The main classes of ArDoCo’s WSM architecture

A ComparisonContext is meant to contain all necessary information to recognizewhether

two words are similar. Instances of the IWord class provide additional information like the

corresponding sentence, a word’s lemma or its part of speech tag. Since not all comparisons

involve IWord instances, the fields firstWord and secondWord are nullable. WSMs can

utilize this additional information in cases where one of these fields is set. A Comparison-

Strategy determines how the verdicts of multiple WSMs regarding a specific comparison

are combined. The AtleastOneStrategy works by treating a word pair as similar when

at least one of the used WSMs considers the word pair as similar. The SimilarityUtils

class is the main access point for word similarity comparison. It provides multiple static

methods that allow easy comparison between strings or IWord instances. This class allows

17

4 Implementation

customizing how it performs its comparisons, by either passing a custom strategy to

one of its methods, or by setting the privately stored strategy and measures with the

setMeasures() and setStrategy() methods. Calls to the SimilarityUtils class happen

throughout various points in ArDoCo’s TLR process. Any calls for word comparisons

without a specified strategy, will default to the already stored strategy. For each call, the

class passes its stored WSMs to the appropriate ComparisonStrategy.

This architecture allows dynamically changing which WSMs are involved and how

they are combined. Each implemented WSM can additionally be configured through a

configuration file. This configuration file provides individual settings for each WSM and

allows enabling or disabling any WSM for the TLR process.

18

5 Evaluation

This chapter covers the evaluation performed on the variousWSMs that were implemented

in ArDoCo. The goal of this evaluation is to answer the research questions stated in the

introduction:

• How do word similarity measures affect the performance of TLR between natural

language SAD and formal architectural models?

• Which kinds of WSMs are particulary effective or ineffective when used for TLR?

• What kinds of problems are encountered when utilizing WSMs for TLR?

The first section of this chapter explains how this evaluation was approached. It

establishes the metrics used to quantify the effects of WSMs that are used to answer

the first and second research questions. The second and third sections present the case

studies and baselines that were used. Section 5.4 presents the results of each evaluated

WSM along with any encountered problems. The final section provides an overview of the

results by comparing the evaluated WSMs against each other. This overview provides an

answer to the second research question. Additionally, the final section discusses various

aspects of this evaluation, such as additional metrics, reliability, validity, and scope.

5.1 Methodology

To assess the impact of word similarity measures on TLR performance, several case studies

are utilized. Each case study contains a model, textual SAD and a gold standard with all

correct trace links between these two artifacts. The gold standards allow us to classify

found trace links as true positives or false positives, depending on whether the found link

exists in the gold standard. Missing trace links are classified false negatives if they exist in

the gold standard, or as true negatives if they don’t. Using this classification scheme, the

metrics precision, recall, and 𝐹1-Score can be calculated. A single evaluation for a specific

WSM consists of running ArDoCo’s TLR process on each case study, only having the

relevant WSMs enabled. Afterwards, the sums of all true positives, false positives, true

negatives, and false negatives from all case studies are calculated to determine the 𝐹1-Score,

precision, and recall for the evaluated WSM. This is effectively a weighted average of the

𝐹1, precision, and recall scores from all case studies where case studies with more sentences

and model elements have a bigger impact on the final score. As for the comparison strategy,

the AtLeastOne strategy was used for all evaluations (cf. Section 4.2).

19

5 Evaluation

5.2 Case studies

There are four existing case studies for ArDoCo:

• Mediastore (MS): A web-based software system that acts as a store where music can

be uploaded, downloaded and bought [40].

• Teammates (TM): A cloud-based tool for sharing feedback between students and

teachers [41].

• TeaStore (TS): A micro-service web store for tea and tea supplies [42].

• BigBlueButton (BBB): A web conferencing system for online learning [43].

These case studies can be found on the public GitHub repository for ArDoCo [8]. Each

of them have different numbers of words, sentences, and model instances. Table 5.1 shows

some of the differences between the case studies.∑
BBB MS TM TS

#Model Instances 45 12 14 8 11

#Sentences 363 85 37 198 43

#Words 2030 705 330 1107 416

#Trace Links 192 50 29 84 29

Table 5.1: General statistics about the used case studies

5.3 Baselines

There are two baselines for this evaluation.

The first baseline (BASE1) represents the TLR process in ArDoCo where only equality

comparisons between words are performed. No word similarity measure is used for this

baseline. Since this thesis aims to assess the impact a WSM has on the TLR process, no

other WSM should interfere with this impact analysis during evaluation. Evaluating the

first baseline yields the results shown in Table 5.2.

Metric Overall BBB MS TM TS

Precision 91.39% 87.87% 100.00% 89.02% 100.00%

Recall 72.63% 58.00% 58.62% 87.95% 67.85%

𝐹1 80.93% 69.87% 73.91% 88.48% 80.85%

Table 5.2: Evaluation results for the first baseline

The second baseline (BASE2) represents the TLR process in ArDoCo with Levenshtein

distance and Jaro Winkler utilized for similarity comparisons. These two measures were

already implemented into ArDoCo before the work for this thesis was performed. The in-

formation gained with this baseline is of interest for the continued improvement of ArDoCo

20

5.4 Results

itself. Both measures were used with their default configuration values: threshold=0.9, min-

Length=2, maxDistance=1. These configuration values are explained in Subsection 5.4.1

and Subsection 5.4.2. The evaluation for the second baseline yields the results shown in

Table 5.3.

Metric Overall BBB MS TM TS

Precision 90.53% 85.71% 100.0% 89.02% 100.0%

Recall 80.52% 84.00% 62.06% 87.95% 71.42%

𝐹1 85.23% 84.84% 76.59% 88.48% 83.33%

Table 5.3: Evaluation results for the second baseline

The upcoming evaluation results are mostly concerned with the first baseline but will

also mention how the implemented measures fare against Levenshtein distance and the

Jaro Winkler measure. All 𝐹1, precision, and recall results shown are based on one of

the two baselines. All results based one the first baseline were generated by running

ArDoCo’s TLR process with only the evaluated WSM enabled. All results based on the

second baseline were generated with the evaluated WSM, the Levenshtein measure, and

the Jaro Winkler measure enabled.

5.4 Results

The following subsections present the evaluation results for each implemented word

similarity measure. Some of these WSMs are configurable such that different configuration

values yield different evaluation results. For these circumstances, the relevant configuration

values are mentioned. The results will be presented mostly as graphs but the exact values

are also available on Zenodo [44].

5.4.1 Jaro Winkler

Since Jaro Winkler is part of the second baseline, the evaluation for this measure only

consists of a comparison to the first baseline. The only configurable value for this measure

is the similarity threshold. Whenever the WSM calculates a similarity score for a word pair,

it compares that score with the similarity threshold. If the similarity score is greater than

the threshold, the WSM will recognize the word pair as similar. This similarity threshold

value also exists for most of the subsequent WSMs and affects precision and recall.

Figure 5.1 shows the 𝐹1-Score, precision, and recall values for each similarity threshold

that it was evaluated on. The dashed lines represent the 𝐹1-Score, precision, and recall of

the first baseline.

21

5 Evaluation

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Jaro Winkler, BASE1

𝐹1-Score

Precision

Recall

Figure 5.1: Jaro Winkler evaluation graph

Figure 5.1 shows that this WSM is particulary effective with similarity thresholds above

80% with the 𝐹1-Score reaching its maximum point at a threshold of about 90%. Common

false negatives are coreferences, different looking synonyms, and abbreviations like “DB”.

5.4.2 Levenshtein

Since the Levenshtein measure is also part of the second baseline, the evaluation for this

measure will also only consist of a comparison to the first baseline. This measure has three

configurable values:

1. Max Distance: Word pairs with a Levenshtein distance above this configuration value

will not be considered similar.

2. Min Length: If one of the words is shorter than this configured value, an additional

condition must be met for the word pair to be considered similar. This condition

being that one word must contain the other.

3. Threshold: A number between zero and one that serves as a word-dependent distance

limit. The levenshtein distance between the words must be lower than the threshold

multiplied by the length of the shorter word.

With a max distance and min length both ranging from 0 to 12 and a threshold ranging

from 0.0 to 1.0 with increments of 0.1, all 1859 possible combinations of these three

configuration values were evaluated. The resulting precision and recall pairs can be seen

in Figure 5.2. The dashed lines in this figure represent the precision and recall of the first

baseline. This figure shows that for precision values above 80%, the recall has an upper

limit of 78%. The overall best result with a precision of 91% and a recall of 78% is colored in

22

5.4 Results

red. The results colored in yellow represent the pareto set. Fifteen configurations produced

this result: All configurations with a threshold of 20%, zero min length, and a max distance

greater than one, and all configurations with a threshold of 20%, a min length less than

five, and a distance of two.

0 10 20 30 40 50 60 70 80 90 100

60

70

80

90

100

precision

r
e
c
a
l
l

Levenshtein, BASE1

Figure 5.2: The precision and recall pairs of all evaluated Levenshtein configurations

5.4.3 N-gram

Kondrak’s N-gram measure was evaluated on different values of 𝑛 and with different

similarity thresholds. Kondrak’s evaluation suggests that there is no significant difference

between the distance and similarity variant [10]. Therefore, the distance variant was used

for this evaluation.

Figure 5.3 provides a comparison of Kondrak’s measure with values of 𝑛 ranging from

two to six. It shows that while precision seems to increase with greater lengths of 𝑛,

recall reaches a plateau at a threshold of about 60%. Although no value of 𝑛 performs

significantly better than any other, the precision of the 𝑛 = 2 variant seems to consistently

trail behind the other variants. Optimal precision and recall seem to be at thresholds

around 80%. Figure 5.4 shows a more detailed evaluation of the 𝑛 = 3 case regarding both

baselines.

Comparing it with the second baseline, the inclusion of the N-gram measure seems to

provide little to no improvement. This is most likely because Levenshtein distance and

Jaro Winkler cover most of what lexical WSMs are able to do. As expected with lexical

measures, Ngram is also unable to recover trace links where coreferences, different looking

synonyms or abbreviations are used. Word pairs like “DB” and “database” are missed.

23

5 Evaluation

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Precision

𝑛 = 2

𝑛 = 3

𝑛 = 4

𝑛 = 5

𝑛 = 6

BASE1

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Recall

𝑛 = 2

𝑛 = 3

𝑛 = 4

𝑛 = 5

𝑛 = 6

BASE1

Figure 5.3: Comparing different values of 𝑛 for Kondrak’s N-gram WSM

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

N-gram, 𝑛 = 3, BASE1

𝐹1-Score

Precision

Recall

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

N-gram, 𝑛 = 3, BASE2

𝐹1-Score

Precision

Recall

Figure 5.4: N-gram evaluation graphs for 𝑛 = 3

24

5.4 Results

5.4.4 SEWordSim

For the evaluation of the SEWordSim measure, the same sqlite database from Tian et

al. [25] with 5 636 534 pairs of words was used. Each database entry is a pair of words

combined with a pre-computed similarity score. As with some of the previous measures,

the only configurable value for this WSM is the similarity threshold. Figure 5.5 shows the

evaluation graph for this measure regarding both baselines.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

SEWordSim, BASE1

𝐹1-Score

Precision

Recall

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

SEWordSim, BASE2

𝐹1-Score

Precision

Recall

Figure 5.5: SEWordSim evaluation graphs

Figure 5.5 shows no significant performance improvements compared to either baseline.

This is most likely due to the large number of word pairs with no pre-calculated similarity

score. During a single evaluation, around 92 394 unique word pairs are looked up in the

database. Of those 92,394 word pairs, only 5428 are found. This results in SEWordSim only

being able to have an impact on TLR in five percent of all comparisons.

5.4.5 fastText

The fastText measure was evaluated on three binary models from the official fastText

website [45]:

• wiki-news-300d-1M-subword (WIKI): One million word vectors trained on Wikipedia,

UMBC webbase corpus and statmt.org news dataset.

• crawl-300d-2M-subword (CRAWL): Two million word vectors trained on Common

Crawl.

• cc.en.300 (CC): Word vectors trained on Wikipedia and Common Crawl.

25

5 Evaluation

All of these pre-trained models consist of 300 dimensonal vector embeddings for n-grams

of various lengths. Figure 5.6 provides a comparison of these models.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Precision

CRAWL
CC
WIKI
BASE1

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Recall

CRAWL
CC

WIKI
BASE1

Figure 5.6: Comparison of different fastText models

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

fastText, cc.en.300, BASE1

𝐹1-Score

Precision

Recall

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

fastText, cc.en.300, BASE2

𝐹1-Score

Precision

Recall

Figure 5.7: fastText cc.en.300 evaluation graphs

Figure 5.6 shows that the cc.en.300 (CC) model seems to be the only model providing im-

proved recall at precision scores above 80%. Figure 5.7 presents a more detailed evaluation

of the cc.en.300 model. The highest recall value while maintaning a high precision value

26

5.4 Results

seems to be achieved at a threshold around 65%. No significant improvement regarding

the second baseline can be seen.

5.4.6 WordNet

Four different WordNet based word similarity algorithms were used for this evaluation.

Each of them have a different approach for comparing concept similarity on the WordNet

graph. Figure 5.8 provides a comparison of these algorithms.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Precision

Leacock & Chodorow

Jiang & Conrath

Extended Lesk

Ezzikouri

BASE1

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Recall

Leacock & Chodorow

Jiang & Conrath

Extended Lesk

Ezzikouri

BASE1

Figure 5.8: Comparison of WordNet algorithms

As Figure 5.8 shows, none of the algorithms have a positive effect on TLR performance.

At thresholds above 10%, the algorithms seem to be able to identify word pairs like “CPU”

and “Processor” or pairs like “data” and “information” as similar. At least with the used

gold standards, these kinds of words do not seem to be involved in architectural trace

links. Regarding the second baseline, no improvement of recall or precision is seen either.

5.4.7 GloVe

GloVe was evaluated using the pre-trained vector embeddings provided on the GloVe

website: Common Crawl (CC) with 2.2 million words, Wikipedia + Gigaword (WIGI) with

400 thousand words and Twitter (TWTR) with 1.2 million words. While the CC embeddings

are vectors with 300 dimensions, the other two embeddings are available with multiple

different dimensions. Figure 5.9 provides a comparison of the best performing embeddings.

27

5 Evaluation

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Precision

CC

TWTR, 200d

WIGI, 300d
BASE1

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Recall

CC

TWTR, 200d

WIGI, 300d
BASE1

Figure 5.9: Comparison of the GloVe vector embeddings

Figure 5.9 shows that the Wikipedia + Gigaword vector embeddings performed the best

although the Common Crawl embeddings perform about the same at higher similarity

thresholds. Evaluating variants of the embeddings with lower dimensions yielded slightly

worse results. Figure 5.10 shows the evaluation results of the WIGI embedding regarding

both baselines.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

GloVe, WIGI, 300d, BASE1

𝐹1-Score

Precision

Recall

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

GloVe, WIGI, 300d, BASE2

𝐹1-Score

Precision

Recall

Figure 5.10: GloVe evaluation graphs using the 300 dimensional WIGI embeddings

28

5.4 Results

5.4.8 NASARI

Nasari was evaluated using two pre-trained word2vec embeddings from the offical Nasari

website [46]: the english embed vectors trained on the Google News dataset containing

100 billion words (NEWS), and word embeddings trained on the UMBC WebBase corpus

containing three billion english words (UMBC). For each input word, the Nasari measure

queries the BabelNet API for a collection of BabelNet synsets that contain the input word.

Synsets from the first word are then compared with synsets from the second word by

calculating the cosine similarity of their respective vector representations. A word pair is

considered similar, if the cosine similarity between one of the compared synsets exceeds

the similarity threshold. Figure 5.11 shows the evaluation results for both embeddings

regarding both baselines. The dotted lines represent the results for the UMBC embedding.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Nasari, BASE1

NEWS

UMBC

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Nasari, BASE2

NEWS

UMBC

Figure 5.11: Nasari evaluation graph

Figure 5.11 shows that the Nasari measure never reaches the 𝐹1 level of either baseline,

regardless of which embedding is used. The Google News embedding seems to have slightly

better precision while the UMBC embedding has slightly better recall. At thresholds below

90%, Nasari seems to regard many unrelated word pairs like “Logic” and “configuration”

(52% similarity) or “Server” and “html5” (76% similarity) as similar. Nasari vectors in general

seem to have a much higher similarity than vectors from aforementioned measures. A

major problem for Nasari is that some very loosely related words receive a similar score of

100%. For example, the words “Driver” and “home” have a similarity score of 100%. This is

because the BabelNet synset bn:17639563n represents the album “Home” by the american

band “Blue October” whose second track is titled “Driver”. The same synset comes up when

querying BabelNet for either of these two words, which is why the resulting similarity is

100%.

29

5 Evaluation

5.5 Discussing the results

This section discusses various aspects of this evaluation. The following subsection provides

an overview of the results of all evaluated WSMs. Subsection 5.5.2 explains why the metric

accuracy did not provide meaningful insight for this evaluation. The last three subsections

discuss reliability, validity, and scope.

5.5.1 Overview

Figure 5.12 provides a comparison between all evaluated WSMs each using their optimal

configuration values
1
. With the exception of WordNet, all evaluated WSMs have managed

to improve the recall relative to the first baseline. These improvements in recall all

come with different amounts of precision loss. Overall, the lexical measures (Jaro Winkler,

Levenshtein, and Ngram) provide the most increase in recall with minimal loss of precision.

The purely knowledge-based measure WordNet seems to have performed the worst while

the at least partially knowledge-based measure Nasari performed a bit better. The corpus-

based measures (SEWordSim, fastText, GloVe) have performed relatively average. GloVe

provides a slight improvement in recall while introducing no decrease in precision.

70 72 74 76 78 80 82 84 86 88 90 92

BASE1

Nasari

GloVe

WordNet

fastText

SEWordSim

Ngram

Levenshtein

Jaro Winkler

𝐹1 Recall Precision

Figure 5.12: Comparison of all WSMs

1
JaroWinkler (threshold=90%), Levenshtein (threshold=20%, minLength=2, maxDistance=2), Ngram (thresh-

old=75%, n=3), SEWordSim (threshold=25%), fastText (threshold=75%), WordNet (threshold=50%, any

algorithm), GloVe (threshold = 60%, WIGI embedding), Nasari (threshold=100%)

30

5.5 Discussing the results

5.5.2 Accuracy

Another recorded metric for this evaluation was accuracy. However, this metric does not

provide any useful information about the TLR performance since the amount of false

positives and true negatives heavily outnumber true positives and false negatives. This

can be seen in Figure 5.13 where the rise in accuracy happens at the same thresholds

where the false positives turn into true negatives. For this evaluation, accuracy nearing

100% does not imply good TLR performance since there are many more true negatives

than true positives.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

similarity threshold

Precision
Recall
Accuracy

0 10 20 30 40 50 60 70 80 90 100

0

1,000

2,000

3,000

similarity threshold

TP
TN
FP
FN

Figure 5.13: Extended Jaro Winkler Evaluation Graph

5.5.3 Reliability

The evaluation process for this thesis consists of executing ArDoCo’s TLR algorithm

for each case study and comparing the results to the previously mentioned baselines.

The algorithm in itself is inherently deterministic and thus its results are reproducible.

Therefore, the exact results should be reproducible if the exact same algorithm, used

libraries, and data sources for the various WSMs are acquired. Herein lies the problem for

this thesis’s reliability.

The exact state of ArDoCo used for this evaluation can be acquired by checking out

the “thesis” branch on the GitHub repository github.com/kwerber/ArDoCo [47]. Detailed

steps to reproduce this evaluation can also be found in the repository.

Some of the investigated WSMs need seperate data sources to function. For example, for

the evaluation of fastText, three different pre-trained binary models were used. These data

sources were downloaded from various sites on the internet and may change or disappear.

To ensure that such events do not impede the reproducibilty of this evaluation, all used

data sources are also stored on Zenodo [44]. The detailed evaluation data and the state of

the GitHub repository is also stored on Zenodo [44, 47].

31

5 Evaluation

5.5.4 Validity

The goal of this thesis was to assess the performance impact of word similarity measures

on ArDoCo’s TLR process. To accomplish this, various WSMs were selected, implemented,

and their performance impact evaluated. Since the implementation of WSMs was the only

change to ArDoCo during the evaluation process, all differences in precision and recall can

only be attributed to the inclusion of the WSMs. Since nothing else could have affected

the results, this thesis’s evaluation should measure exactly what it was meant to measure.

5.5.5 Scope

There are five primary factors that limit the scope of this evaluation:

• Word similarity measures: The evaluation was performed only on a small number

of WSMs. As shown in Section 2.2, modern WSMs can be classified as lexical,

knowledge-based or corpus-based measures. For this evalation, three lexical WSMs,

one knowledge-based, two corpus-based, and one hybrid approach was chosen.

• Case studies: The evaluation was performed on four different case studies. Two of

them are example online stores that see no real use and, apart from TeamMates, all

of the case studies have less than 100 sentences. Additionally, all of the case studies

are web applications. While these case studies all describe software systems, they

might not be representative for the whole range of possible software systems.

• ArDoCo: The only TLR-process evaluated was ArDoCo. Other approaches to TLR

between natural language SAD and architectural models might yield different results.

• Language: All case studies and all pre-trained word models use the english language.

TLR approaches and WSMs for different languages might yield different results.

• Comparison Strategy: All WSMs were evaluated using the AtLeastOne strategy. This

is relevant for the second baseline, since the second baseline involves multiple WSMs

at the same time. Since the first baseline only ever involves a single WSM at a time,

the used strategy is irrelevant for the first baseline. However, other strategies where

multiple WSMs are involved at the same time may produce better results.

32

6 Conclusion and Future Work

This thesis evaluated various word similarity metrics on ArDoCo’s TLR process. The

results of this evaluation show that WSMs provide a noticable but limited improvement

to the TLR performance. Kondrak’s NGram measure had the biggest increase in recall

of about 10% and Nasari had the biggest decrease in precision of about 16%. Overall, the

lexical measures have performed the best. The corpus-based measures performed slightly

worse and the measures using semantic networks performed the worst. When it comes to

the second baseline, whenever a WSM combined with the Levenshtein and Jaro Winkler

measures improved recall, the precision would be considerable worse. Therefore, none of

the second baseline evaluations have shown any improvements.

Different WSMs have encountered different problems. As expected, lexical WSMs are

unable to identify different looking synonyms as similar. WordNet seems to mostly contain

words that have had little effect on the recovery of trace links. Nasari uses BabelNet, which

is a much bigger semantic network than WordNet. This led to the problem that unrelated

words were considered synonymous, when BabelNet concepts exist that contain both

words. This phenomenon can be attributed to the polysemy problem. If the measure would

be able to more accurately guess the appropriate BabelNet concept based on the context

of the word comparison, better results should be possible. The corpus-based measures

seem to lie somewhere between the lexical and knowledge-based ones. While they are

also affected by the polysemy problem, the magnitude of the effect is smaller compared to

Nasari. Another encountered problemwere coreferences. Of the 190 correct trace links that

the gold standards provided, twelve of them could only be resolved through coreference

resolution. However, this problem cannot be solved by word similarity measures. One

possible way to improve the effect of WSMs is to explore different ways to combine

multiple WSMs at the same time. The evaluation in this thesis only used the AtLeastOne

strategy. Other more complex strategies where multiple specific WSMs have to agree

under specific circumstances might yield better results.

33

Bibliography

[1] Jan Keim and Anne Koziolek. “Towards Consistency Checking Between Software

Architecture and Informal Documentation”. In: 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C). Hamburg, Germany: IEEE, Mar. 2019,

pp. 250–253. isbn: 978-1-72811-876-5. doi: 10.1109/ICSA- C.2019.00052. url:

https://ieeexplore.ieee.org/document/8712160/ (visited on 12/11/2021).

[2] Jan Keim et al. “Trace Link Recovery for Software Architecture Documentation”. In:

Software Architecture. Ed. by Stefan Biffl et al. Vol. 12857. Series Title: Lecture Notes

in Computer Science. Cham: Springer International Publishing, 2021, pp. 101–116.

isbn: 978-3-030-86043-1 978-3-030-86044-8. doi: 10.1007/978-3-030-86044-8_7.

url: https://link.springer.com/10.1007/978-3-030-86044-8_7 (visited on

11/30/2021).

[3] “ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary”.

In: ISO/IEC/IEEE 24765:2017(E) (Aug. 2017). ConferenceName: ISO/IEC/IEEE 24765:2017(E),

pp. 1–541. doi: 10.1109/IEEESTD.2017.8016712.

[4] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman, eds. Software and Systems
Traceability. London: Springer London, 2012. isbn: 978-1-4471-2238-8 978-1-4471-
2239-5. doi: 10.1007/978-1-4471-2239-5. url: http://link.springer.com/10.

1007/978-1-4471-2239-5 (visited on 01/03/2022).

[5] Markus Borg, Per Runeson, and Anders Ardö. “Recovering from a decade: a sys-

tematic mapping of information retrieval approaches to software traceability”. In:

Empirical Software Engineering 19.6 (Dec. 1, 2014), pp. 1565–1616. issn: 1573-7616.

doi: 10.1007/s10664-013-9255-y. url: https://doi.org/10.1007/s10664-013-

9255-y (visited on 11/30/2021).

[6] Roberto Navigli and Federico Martelli. “An overview of word and sense similarity”.

In: Natural Language Engineering 25.6 (Nov. 2019), pp. 693–714. issn: 1351-3249,

1469-8110. doi: 10.1017/S1351324919000305. url: https://www.cambridge.org/

core/product/identifier/S1351324919000305/type/journal_article (visited

on 11/30/2021).

[7] Nitesh Pradhan, Manasi Gyanchandani, and Rajesh Wadhvani. “A Review on Text

Similarity Technique used in IR and its Application”. In: International Journal of
Computer Applications 120 (June 18, 2015), pp. 29–34. doi: 10.5120/21257-4109.

[8] ArDoCo Core GitHub. url: https://github.com/ArDoCo/Core (visited on 03/07/2022).

35

https://doi.org/10.1109/ICSA-C.2019.00052
https://ieeexplore.ieee.org/document/8712160/
https://doi.org/10.1007/978-3-030-86044-8_7
https://link.springer.com/10.1007/978-3-030-86044-8_7
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1007/978-1-4471-2239-5
http://link.springer.com/10.1007/978-1-4471-2239-5
http://link.springer.com/10.1007/978-1-4471-2239-5
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1017/S1351324919000305
https://www.cambridge.org/core/product/identifier/S1351324919000305/type/journal_article
https://www.cambridge.org/core/product/identifier/S1351324919000305/type/journal_article
https://doi.org/10.5120/21257-4109
https://github.com/ArDoCo/Core

Bibliography

[9] Dhivya Chandrasekaran and Vijay Mago. “Evolution of Semantic Similarity - A

Survey”. In: ACM Computing Surveys 54.2 (Feb. 18, 2021), 41:1–41:37. issn: 0360-

0300. doi: 10.1145/3440755. url: https://doi.org/10.1145/3440755 (visited on

01/15/2022).

[10] Grzegorz Kondrak. “N-Gram Similarity and Distance”. In: String Processing and
Information Retrieval. Ed. by Mariano Consens and Gonzalo Navarro. Red. by David

Hutchison et al. Vol. 3772. Series Title: Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–126. isbn: 978-3-540-29740-6

978-3-540-32241-2. doi: 10.1007/11575832_13. url: http://link.springer.com/

10.1007/11575832_13 (visited on 12/06/2021).

[11] Vladimir Iosifovich Levenshtein. “Binary codes capable of correcting deletions, inser-

tions, and reversals”. In: Soviet Physics Doklady 10.8 (1965). Doklady Akademii Nauk

SSSR, V163 No4 845-848 1965, pp. 707–710. url: https://www.semanticscholar.

org/paper/Binary-codes-capable-of-correcting-deletions%2C-and-Levenshtein/

b2f8876482c97e804bb50a5e2433881ae31d0cdd (visited on 03/29/2022).

[12] MatthewA. Jaro. “Advances in Record-LinkageMethodology as Applied to Matching

the 1985 Census of Tampa, Florida”. In: Journal of the American Statistical Association
84.406 (June 1, 1989), pp. 414–420. issn: 0162-1459. doi: 10.1080/01621459.1989.

10478785. url: https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.

10478785 (visited on 05/21/2022).

[13] Matthew A. Jaro. “Probabilistic linkage of large public health data files”. In: Statistics
in Medicine 14.5 (1995), pp. 491–498. issn: 1097-0258. doi: 10.1002/sim.4780140510.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140510

(visited on 05/21/2022).

[14] William E. Winkler. String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage. 1990. url: https://eric.ed.gov/?id=
ED325505 (visited on 03/29/2022).

[15] George A. Miller and Walter G. Charles. “Contextual correlates of semantic sim-

ilarity”. In: Language and Cognitive Processes 6.1 (Jan. 1, 1991). Publisher: Rout-

ledge, pp. 1–28. issn: 0169-0965. doi: 10.1080/01690969108406936. url: https:

//doi.org/10.1080/01690969108406936 (visited on 12/02/2021).

[16] Lingling Meng, Runqing Huang, and Junzhong Gu. “A Review of Semantic Similarity

Measures in WordNet”. In: International Journal of Hybrid Information Technology
6.1 (2013), p. 12.

[17] A. Banu et al. “A Survey and Comparison of WordNet Based Semantic Similarity

Measures”. In: IJCST Volume 4 (Issue 2 2013). url: https://www.semanticscholar.

org/paper/A- Survey- and- Comparison- of- WordNet- Based- Semantic- Banu-

Fatima/c9b5b574beb0e522b0df4a1be85a9a5a1b171c36 (visited on 01/15/2022).

[18] Dr. K. Goyal. “Classification of Semantic Similarity Technique between Word Pairs

using Word Net2019”. In: International Journal of Engineering and Advanced Tech-
nology 9 (Jan. 8, 2020), pp. 4397–4402. doi: 10.35940/ijeat.B2961.129219.

36

https://doi.org/10.1145/3440755
https://doi.org/10.1145/3440755
https://doi.org/10.1007/11575832_13
http://link.springer.com/10.1007/11575832_13
http://link.springer.com/10.1007/11575832_13
https://www.semanticscholar.org/paper/Binary-codes-capable-of-correcting-deletions%2C-and-Levenshtein/b2f8876482c97e804bb50a5e2433881ae31d0cdd
https://www.semanticscholar.org/paper/Binary-codes-capable-of-correcting-deletions%2C-and-Levenshtein/b2f8876482c97e804bb50a5e2433881ae31d0cdd
https://www.semanticscholar.org/paper/Binary-codes-capable-of-correcting-deletions%2C-and-Levenshtein/b2f8876482c97e804bb50a5e2433881ae31d0cdd
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1080/01621459.1989.10478785
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478785
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478785
https://doi.org/10.1002/sim.4780140510
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140510
https://eric.ed.gov/?id=ED325505
https://eric.ed.gov/?id=ED325505
https://doi.org/10.1080/01690969108406936
https://doi.org/10.1080/01690969108406936
https://doi.org/10.1080/01690969108406936
https://www.semanticscholar.org/paper/A-Survey-and-Comparison-of-WordNet-Based-Semantic-Banu-Fatima/c9b5b574beb0e522b0df4a1be85a9a5a1b171c36
https://www.semanticscholar.org/paper/A-Survey-and-Comparison-of-WordNet-Based-Semantic-Banu-Fatima/c9b5b574beb0e522b0df4a1be85a9a5a1b171c36
https://www.semanticscholar.org/paper/A-Survey-and-Comparison-of-WordNet-Based-Semantic-Banu-Fatima/c9b5b574beb0e522b0df4a1be85a9a5a1b171c36
https://doi.org/10.35940/ijeat.B2961.129219

[19] R. Rada et al. “Development and application of a metric on semantic nets”. In: IEEE
Transactions on Systems, Man, and Cybernetics 19.1 (Feb. 1989), pp. 17–30. issn:

00189472. doi: 10.1109/21.24528. url: http://ieeexplore.ieee.org/document/

24528/ (visited on 12/18/2021).

[20] Claudia Leacock and Martin Chodorow. “Combining Local Context and WordNet

Similarity for Word Sense Identification”. In:WordNet: An Electronic Lexical Database.
Vol. 49. Jan. 1, 1998, p. 265. isbn: 978-0-262-27255-1. doi: https://doi.org/10.

7551/mitpress/7287.003.0018.

[21] ZhibiaoWu andMartha Palmer. “Verb Semantics and Lexical Selection”. In: arXiv:cmp-
lg/9406033 (June 23, 1994). doi: 10.3115/981732.981751. arXiv: cmp-lg/9406033.
url: http://arxiv.org/abs/cmp-lg/9406033 (visited on 12/18/2021).

[22] Jay J. Jiang and David W. Conrath. “Semantic Similarity Based on Corpus Statistics

and Lexical Taxonomy”. In: arXiv:cmp-lg/9709008 (Sept. 20, 1997). arXiv: cmp-lg/
9709008. url: http://arxiv.org/abs/cmp-lg/9709008 (visited on 12/18/2021).

[23] Satanjeev Banerjee and Ted Pedersen. “Extended Gloss Overlaps as a Measure of

Semantic Relatedness”. In: IJCAI-2003 (May 13, 2003).

[24] Hanane Ezzikouri et al. “A New Approach for Calculating Semantic Similarity

between Words Using WordNet and Set Theory”. In: Procedia Computer Science. The
10th International Conference on Ambient Systems, Networks and Technologies

(ANT 2019) / The 2nd International Conference on Emerging Data and Industry 4.0

(EDI40 2019) / Affiliated Workshops 151 (Jan. 1, 2019), pp. 1261–1265. issn: 1877-

0509. doi: 10.1016/j.procs.2019.04.182. url: https://www.sciencedirect.com/

science/article/pii/S1877050919306490 (visited on 01/14/2022).

[25] Yuan Tian, David Lo, and Julia Lawall. “SEWordSim: software-specific word simi-

larity database”. In: Companion Proceedings of the 36th International Conference on
Software Engineering. ICSE ’14: 36th International Conference on Software Engi-

neering. Hyderabad India: ACM, May 31, 2014, pp. 568–571. isbn: 978-1-4503-2768-8.

doi: 10.1145/2591062.2591071. url: https://dl.acm.org/doi/10.1145/2591062.

2591071 (visited on 12/03/2021).

[26] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”.

In: arXiv:1301.3781 [cs] (Sept. 6, 2013). doi: 10.48550/arXiv.1301.3781. arXiv:
1301.3781. url: http://arxiv.org/abs/1301.3781 (visited on 12/17/2021).

[27] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In:

Transactions of the Association for Computational Linguistics 5 (Dec. 2017), pp. 135–
146. issn: 2307-387X. doi: 10.1162/tacl_a_00051. url: https://direct.mit.edu/

tacl/article/43387 (visited on 01/08/2022).

[28] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vec-

tors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). EMNLP 2014. Doha, Qatar: Associ-

ation for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-

1162. url: https://aclanthology.org/D14-1162 (visited on 12/17/2021).

37

https://doi.org/10.1109/21.24528
http://ieeexplore.ieee.org/document/24528/
http://ieeexplore.ieee.org/document/24528/
https://doi.org/https://doi.org/10.7551/mitpress/7287.003.0018
https://doi.org/https://doi.org/10.7551/mitpress/7287.003.0018
https://doi.org/10.3115/981732.981751
https://arxiv.org/abs/cmp-lg/9406033
http://arxiv.org/abs/cmp-lg/9406033
https://arxiv.org/abs/cmp-lg/9709008
https://arxiv.org/abs/cmp-lg/9709008
http://arxiv.org/abs/cmp-lg/9709008
https://doi.org/10.1016/j.procs.2019.04.182
https://www.sciencedirect.com/science/article/pii/S1877050919306490
https://www.sciencedirect.com/science/article/pii/S1877050919306490
https://doi.org/10.1145/2591062.2591071
https://dl.acm.org/doi/10.1145/2591062.2591071
https://dl.acm.org/doi/10.1145/2591062.2591071
https://doi.org/10.48550/arXiv.1301.3781
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1162/tacl_a_00051
https://direct.mit.edu/tacl/article/43387
https://direct.mit.edu/tacl/article/43387
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162

Bibliography

[29] José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. “NASARI:

a Novel Approach to a Semantically-Aware Representation of Items”. In: Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Denver, Colorado: Association for

Computational Linguistics, 2015, pp. 567–577. doi: 10.3115/v1/N15-1059. url:

http://aclweb.org/anthology/N15-1059 (visited on 01/09/2022).

[30] José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. “Nasari:

Integrating explicit knowledge and corpus statistics for a multilingual representation

of concepts and entities”. In: Artificial Intelligence 240 (Nov. 2016), pp. 36–64. issn:
00043702. doi: 10 . 1016 / j . artint . 2016 . 07 . 005. url: https : / / linkinghub .

elsevier.com/retrieve/pii/S0004370216300820 (visited on 01/09/2022).

[31] Mohammad Taher Pilehvar and Nigel Collier. “De-Conflated Semantic Represen-

tations”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing. Austin, Texas: Association for Computational Lin-

guistics, 2016, pp. 1680–1690. doi: 10.18653/v1/D16-1174. url: http://aclweb.

org/anthology/D16-1174 (visited on 01/09/2022).

[32] Muhammad Atif Javed and Uwe Zdun. “A systematic literature review of traceability

approaches between software architecture and source code”. In: Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engineering.
EASE ’14. New York, NY, USA: Association for Computing Machinery, May 13, 2014,

pp. 1–10. isbn: 978-1-4503-2476-2. doi: 10.1145/2601248.2601278. url: https:

//doi.org/10.1145/2601248.2601278 (visited on 04/10/2022).

[33] Nasser Mustafa and Yvan Labiche. “The Need for Traceability in Heterogeneous

Systems: A Systematic Literature Review”. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). Vol. 1. ISSN: 0730-3157. July 2017,

pp. 305–310. doi: 10.1109/COMPSAC.2017.237.

[34] Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the
American Society for Information Science 41.6 (1990), pp. 391–407. issn: 1097-4571.
doi: 10.1002/(SICI)1097- 4571(199009)41:6<391::AID- ASI1> 3.0.CO;2- 9.

url: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-

4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9 (visited on

01/04/2022).

[35] R. Settimi et al. “Supporting software evolution through dynamically retrieving

traces to UML artifacts”. In: Proceedings. 7th International Workshop on Principles
of Software Evolution, 2004. Proceedings. 7th International Workshop on Principles

of Software Evolution, 2004. ISSN: 1550-4077. Sept. 2004, pp. 49–54. doi: 10.1109/

IWPSE.2004.1334768.

[36] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. “Advancing candidate link generation

for requirements tracing: the study of methods”. In: IEEE Transactions on Software
Engineering 32.1 (Jan. 2006), pp. 4–19. issn: 1939-3520. doi: 10.1109/TSE.2006.3.

38

https://doi.org/10.3115/v1/N15-1059
http://aclweb.org/anthology/N15-1059
https://doi.org/10.1016/j.artint.2016.07.005
https://linkinghub.elsevier.com/retrieve/pii/S0004370216300820
https://linkinghub.elsevier.com/retrieve/pii/S0004370216300820
https://doi.org/10.18653/v1/D16-1174
http://aclweb.org/anthology/D16-1174
http://aclweb.org/anthology/D16-1174
https://doi.org/10.1145/2601248.2601278
https://doi.org/10.1145/2601248.2601278
https://doi.org/10.1145/2601248.2601278
https://doi.org/10.1109/COMPSAC.2017.237
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://doi.org/10.1109/IWPSE.2004.1334768
https://doi.org/10.1109/IWPSE.2004.1334768
https://doi.org/10.1109/TSE.2006.3

[37] Jörg Leuser and Daniel Ott. “Tackling Semi-automatic Trace Recovery for Large

Specifications”. In: Requirements Engineering: Foundation for Software Quality. Ed.
by Roel Wieringa and Anne Persson. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 2010, pp. 203–217. isbn: 978-3-642-14192-8. doi: 10.1007/978-

3-642-14192-8_19.

[38] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced Software

Traceability Using Deep Learning Techniques”. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 2017 IEEE/ACM 39th International Con-

ference on Software Engineering (ICSE). ISSN: 1558-1225. May 2017, pp. 3–14. doi:

10.1109/ICSE.2017.9.

[39] George A.Miller. “WordNet: a lexical database for English”. In:Communications of the
ACM 38.11 (Nov. 1, 1995), pp. 39–41. issn: 0001-0782. doi: 10.1145/219717.219748.

url: https://doi.org/10.1145/219717.219748 (visited on 12/16/2021).

[40] Media Store - SDQ Wiki. url: https://sdqweb.ipd.kit.edu/wiki/Media_Store
(visited on 05/11/2022).

[41] TEAMMATES Developer Web Site. original-date: 2014-05-02T07:43:00Z. May 10, 2022.

url: https://github.com/TEAMMATES/teammates (visited on 05/11/2022).

[42] TeaStore. original-date: 2017-08-18T06:22:29Z. Apr. 22, 2022. url: https://github.
com/DescartesResearch/TeaStore (visited on 05/11/2022).

[43] BigBlueButton. original-date: 2010-05-25T01:42:41Z. May 11, 2022. url: https://

github.com/bigbluebutton/bigbluebutton (visited on 05/11/2022).

[44] Thesis Evaluation Data. Zenodo. doi: 10.5281/zenodo.6580280. url: https://doi.
org/10.5281/zenodo.6580280 (visited on 05/26/2022).

[45] English word vectors · fastText. url: https://fasttext.cc/index.html (visited on

05/18/2022).

[46] NASARI: a Novel Approach to a Semantically-Aware Representation of Items. url:
http://lcl.uniroma1.it/nasari/#two (visited on 01/09/2022).

[47] Thesis Evaluation Repository. GitHub. doi: 10.5281/zenodo.6583858. url: https:
//github.com/kwerber/ArDoCo/tree/thesis (visited on 05/26/2022).

39

https://doi.org/10.1007/978-3-642-14192-8_19
https://doi.org/10.1007/978-3-642-14192-8_19
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://sdqweb.ipd.kit.edu/wiki/Media_Store
https://github.com/TEAMMATES/teammates
https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore
https://github.com/bigbluebutton/bigbluebutton
https://github.com/bigbluebutton/bigbluebutton
https://doi.org/10.5281/zenodo.6580280
https://doi.org/10.5281/zenodo.6580280
https://doi.org/10.5281/zenodo.6580280
https://fasttext.cc/index.html
http://lcl.uniroma1.it/nasari/#two
https://doi.org/10.5281/zenodo.6583858
https://github.com/kwerber/ArDoCo/tree/thesis
https://github.com/kwerber/ArDoCo/tree/thesis

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Traceability Link Recovery
	Word Similarity
	ArDoCo

	Related Work
	Relevant Word Similarity Measures
	Lexical similarity measures
	Knowledge-based similarity measures
	Corpus-based similarity measures
	Hybrid measures

	Related Traceability Link Recovery Work

	Implementation
	Choosing Word Similarity Metrics
	Architecture

	Evaluation
	Methodology
	Case studies
	Baselines
	Results
	Jaro Winkler
	Levenshtein
	N-gram
	SEWordSim
	fastText
	WordNet
	GloVe
	NASARI

	Discussing the results
	Overview
	Accuracy
	Reliability
	Validity
	Scope

	Conclusion and Future Work
	Bibliography

