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ABSTRACT
The increasing number of recorded energy time series calls for
an automated operation of smart grid applications such as load
forecasting and load management. While these applications require
anomaly-free data to perform well, the recorded data often contains
anomalies. The numerous methods to detect these anomalies are
typically applied directly to the recorded data. However, for other
tasks such as forecasting, promising performance has been achieved
when directly applying methods to a meaningful feature space of
the data, i.e., the latent space data representation. We, therefore,
propose a novel approach to generally enhance anomaly detection
methods for energy time series by taking advantage of their latent
space representation. We create latent space data representations
using a conditional Invertible Neural Network (cINN) and a condi-
tional Variational Autoencoder (cVAE) and directly apply existing
supervised and unsupervised detection methods to this representa-
tion. We evaluate the latent space data representation qualitatively
by visualizing the separation of anomalies and non-anomalous data.
We also quantitatively evaluate our approach by applying super-
vised and unsupervised detection methods to real-world load data

∗Also with Institute for Automation and Applied Informatics, Karlsruhe Institute of
Technology.

e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9397-3/22/06.
https://doi.org/10.1145/3538637.3538851

containing two groups of artificially inserted anomalies: technical
faults and unusual consumption. We show that our approach gener-
ally improves the anomaly detection performance of the considered
methods while only moderately increasing computational cost.
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1 INTRODUCTION
The transition to renewable energy sources in energy supply goes
hand in hand with the implementation of the so-called smart grid
[20]. In the smart grid, one key element is digital metering, where
smart meters and sensors record power or energy consumption
and generation as time series [1]. Due to the growing number of
installed smart meters, the number of recorded time series increases,
calling for an automated operation of smart grid applications such
as customer profiling, load analysis, load forecasting, and load
management [30, 38]. Since these applications use the recorded
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time series as input, their performance depends on input data that
accurately reflects the typical behavior of the underlying system.

However, these recorded time series mostly contain anomalies
[38]. Anomalies are patterns that deviate from "awell defined notion
of normal behavior" [5, p. 15:2] and can arise for many causes such
as atypical user behavior [25], smart meter failures [37], and energy
theft [40]. These deviations can result in data points or patterns in
the time series that represent wrong or misleading information and
may be especially problematic for down-stream applications [38].
For example, anomalies such as positive or negative spikes violate
the underlying distribution corresponding to normal behavior and
thus can have a great impact. Data containing these anomalies
may result in incorrect forecasts, leading to inappropriate energy
schedules and ultimately affecting energy system stability in an
automated smart grid setting. Therefore, detecting anomalies in
recorded time series is an important recent issue in energy sys-
tems [12]. To detect anomalies of various types, a large variety of
methods, often categorised as supervised or unsupervised methods,
are employed [12]. These methods are typically applied directly or
after scaling to the data containing anomalies.

However, for other tasks, machine learning methods recently
demonstrated promising performance when directly applied to the
so-called latent space representation of the data. This latent space
is an abstract multi-dimensional space containing a meaningful rep-
resentation of features that is often not directly interpretable. Such
latent space data representations have been successfully applied in
forecasting [14, 24], offline reinforcement learning [29], photo up-
sampling [22], path planning [13], and trajectory adjustment [19].
Furthermore, with regards to anomaly detection, there is evidence
for a medical application that the latent space better separates the
representation of anomalies and non-anomalous data [28].

In order to separate anomalous and non-anomalous data in en-
ergy time series, a latent space that follows a known and traceable
latent space distribution could be particularly useful. If this distri-
bution has clearly defined mathematical properties, as is the case
with the Gaussian distribution, these properties will help define
how anomalies are represented. Given these considerations, we
can use the representation of data in the latent space to enhance
anomaly detection.

The present paper, therefore, proposes a novel approach to gen-
erally enhance anomaly detection methods for energy time series
by taking advantage of their latent space representation. For this ap-
proach, we first train a generative method to learn a mapping from
the original data to the latent space. Given the learned mapping, the
generative model is used to create the latent space representation
of an input time series containing anomalies. The resulting latent
space data representation serves then as an input for an arbitrary
existing supervised or unsupervised anomaly detection method.

To evaluate the proposed approach, we firstly qualitatively ex-
amine its benefit by visualizing how latent space data representa-
tions and common data representations separate anomalies and
non-anomalous data. Secondly, we quantitatively evaluate how the
proposed approach improves the detection performance. For this
purpose, we apply a selection of existing supervised and unsuper-
vised detection methods to real-world load data, where we insert
artificial anomalies of two groups. Anomalies of the first group
represent technical faults derived from real-world data that violate
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Input
time series
for training

Calendar
and statistical
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Figure 1: To train the generative method in the proposed ap-
proach, samples of an input time series as well as calendar
and statistical information are used.

the underlying distribution corresponding to normal behavior and
can be easily recognized by a human. Anomalies of the second
group comprise unusual consumption that remain in the underly-
ing distribution and are hard to recognize. By generally improving
the detection performance of arbitrary existing detection methods,
the proposed approach helps to provide high-performance anomaly
detection in automated settings.

The remainder of the present paper is organized as follows. Sec-
tion 2 introduces the proposed approach to enhance anomaly detec-
tion method by directly using the latent space data representation
created with a generative model. In Section 3, we describe the ex-
perimental setting of the performed evaluation. In Section 4, we
then report the evaluation results. Finally, we discuss the proposed
approach in Section 5 and conclude the paper in Section 6.

2 ANOMALY DETECTION USING LATENT
SPACE DATA REPRESENTATIONS

This section explains how latent space data representations can be
used to enhance anomaly detection methods1. First, we describe
how latent space data representations of time series can be created
with a generative method and how this method is trained in both
supervised and unsupervised anomaly detection settings. We then
present how the trained generative method is applied to detect
anomalies contained in a time series.

2.1 Create Latent Space Data Representations
With a Generative Method

To create a latent space representation of a time series z ∈ Z, we
need to realize a mapping 𝑓 : X→ Z from the original realization
space X to the latent space Z. To ensure this mapping represents a
known and tractable latent space distribution 𝑃𝑍 in the latent space,
it should be realized with either a Variational Autoencoder (VAE)
[17] or an Invertible Neural Network (INN) [16]. Both methods can
be extended with a conditioning mechanism to a conditional VAE
(cVAE) [32] or a conditional INN (cINN) [2], allowing them to pro-
cess conditional inputs. With calendar and statistical information
as conditional inputs, these methods can consider typical properties
of energy time series, i.e., daily, weekly, and yearly patterns. While
1https://github.com/KIT-IAI/EnhancingAnomalyDetectionMethods
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Figure 2: In the proposed approach, the previously trained generative method uses samples of an input time series containing
anomalies as well as calendar and statistical information as inputs. Based on these inputs, the trained generative method
provides the latent space representation of the samples. Using this latent space data representation, an arbitrary anomaly
detection method detects the samples of the considered time series that contain anomalies.

both methods realize the mapping 𝑓 , they differ in their structure.
cVAEs consist of a jointly trained encoder and decoder with the
encoder realizing the mapping 𝑓 and the generator reconstruct-
ing the original representation of the time series, i.e., the mapping
𝑔 : Z → X. In contrast, cINNs only comprise a single bijective
mapping 𝑓 −1 = 𝑔 that realizes both the encoding and decoding.

However, since we are only interested in the latent space repre-
sentation and not the reconstructed representation, we only focus
on learning the mapping 𝑓 . To this means, we use a cVAE or cINN
to create this latent space representation using the mapping

𝑓 : X→ Z, x ↦→ 𝑓 (x; d, s, \ ) = z, (1)

where x ∈ X is the time series with arbitrary but fixed length 𝐿, d
is calendar information of length 𝐿, s is statistical information of
arbitrary but fixed length, and \ is the set of all trainable parameters.

2.2 Training of the Generative Method
As shown in Figure 1, the training of the selected generative method
is based on samples of an input time series as well as calendar
and statistical information. The training process itself differs for
supervised and unsupervised anomaly detection as follows:

Supervised anomaly detection. For supervised anomaly detection,
we take advantage of the labeled anomalies and train the selected
generative method with fixed-length samples of an anomaly-free
time series. For each fixed-length sample, we calculate the loss L𝑖 ,
which varies depending on the generative method selected. For
a cINN, we use a maximum likelihood optimization based on the
change of variable formula. This results in the maximum likelihood
loss for a sample x𝑖 defined as

L𝑖 =
∥ 𝑓 (x𝑖 ; d𝑖 , s𝑖 , \ ) ∥22

2
− log | 𝐽𝑖 |, (2)

where 𝐽𝑖 = det(𝜕𝑓 /𝜕x|x𝑖 ) is the determinant of the Jacobian evalu-
ated for the i-th sample [2]. For a cVAE, we use a reconstruction
loss with regularization, resulting in the loss for a sample x𝑖

L𝑖 = E
[
(x̂𝑖 − x𝑖 )2

]
+ KL (xi, 𝑃𝑍 ) , (3)

where x̂𝑖 is the reconstructed time series sample from the cVAE
and KL is the Kullback-Leibler divergence [18]. This loss function

L𝑖 ensures that the generative methods learn a standard normal
distribution of a non-anomalous time series as latent space distri-
bution 𝑃𝑍 . Therefore, when applying to a time series containing
anomalies, anomalies are likely to be mapped to the outer regions
of the latent space distribution and thus are easy to detect.

Unsupervised anomaly detection. For unsupervised anomaly de-
tection, the training process of the selected generative method has
to cope with non-existent anomaly labels for the data points. This
is realized on the fair assumption that the minority of the used
training data is anomalous and that the training errors are higher
for anomalous data points than for non-anomalous data points. We
take advantage of these expected higher errors for anomalies by
defining a contamination 𝑐 for the training process. The contam-
ination 𝑐 represents the assumed share of anomalous data points
in the considered time series and is used to calculate the threshold
quantile Q𝑐 for the training errors of each sample of a batch in
the training process. Each sample with a training error above this
threshold quantile Q𝑐 is excluded from the loss function L𝑖 . The
resulting adapted loss for a sample 𝑥𝑖 is

L′
𝑖 =

{
L𝑖 , 𝑓 (x𝑖 ; d𝑖 , s𝑖 , \ ) < Q𝑐

0, else
, (4)

whereL𝑖 is the loss from Equation (2) or Equation (3), depending on
the generativemethod used. Using this loss ensures that the selected
generative model is also capable of learning an anomaly-free latent
space data representation with the latent space distribution 𝑃𝑍 in
an unsupervised manner.

2.3 Detecting Anomalies in Time Series Using
the Latent Space Data Representation

Given the trained generative method, anomalies contained in a time
series are detected as shown in Figure 2. Firstly, from an input time
series containing anomalies, a sampler draws samples which serve
as input for the trained generative method. As additional inputs, the
trained generative method uses calendar and statistical information
associated with this time series. Secondly, given these inputs, the
trained generative method creates a latent space representation
of the input time series’ samples. Thirdly, an arbitrary anomaly
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detection method is directly applied to the created latent space data
representation to detect the samples that contain anomalies.

This approach differs for supervised and unsupervised anomaly
detectionmethods. For a supervised anomaly detectionmethod, two
steps are involved: Firstly, it is trained on the created latent space
data representation using a training set with labeled anomalies.
Secondly, it classifies the samples from a test set. An unsupervised
anomaly detection methods, however, is applied to a complete data
set without labeled anomalies.

3 EXPERIMENTAL SETTING
In this section, we present how we evaluate the proposed approach.
After describing the data set and the inserted artificial anomalies,
we introduce the used generative models, the compared data repre-
sentations, and the applied anomaly detection methods. Finally, we
describe the evaluation criteria and the hard- and software.

3.1 Data Set and Inserted Anomalies
For the evaluation, we select the publicly available "Electricity-
LoadDiagrams20112014 Data Set"2 from the UCI Machine Learning
Repository [8]. This data set has a quarter-hourly temporal resolu-
tion and contains electrical load time series of 370 clients, which
are mostly available for the period from the beginning of 2011 until
the end of 2014. To cover the complete period of four years and to
consider the electrical load of a typical client, we select the time
series MT_200 for the evaluation (see Figure 3a).

Since the selected time series does not contain labeled anomalies,
we insert artificial anomalies of two groups (see e.g., Figure 3b),
namely technical faults in the metering infrastructure and unusual
consumption. In the following, we briefly introduce the anomaly
types of each group (see Figure 4 and Equations (6) to (13) in Ap-
pendix A).

As anomalies of the first group, we select the four types of anom-
alies that are identified in real-world load time series in [34] and
that violate the underlying distribution corresponding to normal
behavior. While the values of anomaly types 1 and 3 are not in the
valid range, anomaly types 2 and 4 comprise values from the valid
range that are not part of typical patterns in load time series.

• Anomaly type 1 refers to a negative power spike followed
by zero power values and a positive spike (see Figure 4a).
This characteristic can be based on a load time series whose
values are derived from an energy time series containing
missing values due to a communication error.

• Anomaly type 2 comprises several zero power values fol-
lowed by a positive spike (see Figure 4b). This characteristic
can be a result of an interruption in the transmission of
power values from smart meters.

• Anomaly type 3 is a negative power spike (see Figure 4c). It
could be caused by external recalibration of a smart meter
reading so that, together with the readings of other smart
meters, the meter reading matches a certain amount of load.

• Anomaly type 4 is a positive power spike (see Figure 4d). It
may be due to, for example, the change from daylight saving
time to standard time, where power values of five time steps
are recorded as the value of one time step.

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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(b) With 20 inserted anomalies of each of the four types.

Figure 3: Overview of the selected data without inserted
anomalies and with inserted anomalies of all four types of
the first group.

As artificial anomalies of the second group, we insert four types
of anomalies representing unusual behavior: Anomaly types 5 and
7 represent unusually low power consumption, while anomaly
types 6 and 8 illustrate unusually high consumption. These four
anomaly types comprise values from the valid range and represent
in themselves typical patterns.

• Anomaly type 5 is an abrupt small temporary reduction in
the power values (see Figure 4e). This characteristic can be
caused by a large device temporarily shutting down, result-
ing directly in lower consumption.

• Anomaly type 6 is an abrupt small temporary increase in the
power values (see Figure 4f). This characteristic can be the
result of switching on a rarely used large device for a short
period of time.

• Anomaly type 7 is also a period of temporary reduction in
the power values, however with a gradual start and end (see
Figure 4g). It could be caused by a large device in an unusual
operating mode gradually requiring less power for a period
of time, before slowly returning to its usual performance.

• Anomaly type 8 is a again small temporary increase in the
power values, however with a gradual start and end (see Fig-
ure 4h). Similar to anomaly type 7, it may be due to a device
in an unusual operating mode that gradually requires more
power, before slowly returning to its usual performance.

For the evaluation, we insert 10, 20, 30, 40, and 50 anomalies of
each anomaly type into the selected time series. This corresponds
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(a) Anomaly type 1: negative
power spike followed by zero
values and positive spike.
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(b) Anomaly type 2: zero power
values followed by a positive
spike.
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(c) Anomaly type 3: negative
power spike.
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(d) Anomaly type 4: positive
power spike.
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(e) Anomaly type 5: abrupt
small temporary reduction in
the power values.

0 100 200
0

500

1,000

1,500

Time

El
ec
tr
ic
al
lo
ad

in
kW

(f) Anomaly type 6: abrupt small
temporary increase in the power
values.

0 100 200
0

500

1,000

1,500

Time
El
ec
tr
ic
al
lo
ad

in
kW

(g) Anomaly type 7: small tempo-
rary reduction in the power val-
ues with a gradual start and end.
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(h) Anomaly type 8: small tem-
porary increase in the power val-
ues with a gradual start and end.

Figure 4: Examples of the anomaly types 1 to 4 from the technical faults (top row) and anomaly types 5 to 8 from the unusual
consumption (bottom row) that we insert as artificial anomalies into the selected data.

to 3, 5, 8, 10, and 12 % of the data for the technical faults and 6, 11,
16, 21, and 26 % of the data for the unusual consumption.

3.2 cINN and cVAE as used Generative Models
Since cINNs and cVAEs can be used as generative method in the
proposed latent space-based approach, we perform the evaluation
with a representative from both generative methods. After intro-
ducing the selected cINN and the selected cVAE, we describe the
input data used for both generative models.

cINN. The selected cINN consists of 10 GLOW coupling layers
[16] that implement a type of generative flow. Each of them is
followed by a random permutation and contains a subnetwork
that allows the coupling layer to learn. We use a fully connected
network as subnetwork. To account for conditional information, we
use a conditioning network as proposed by [2]. The conditioning
network processes the conditional information and is also a fully
connected network as proposed in [11] (see Table 3 in Appendix A).
For the training of the cINN, we apply a batch size of 512, the Adam
optimizer [15], and a maximum of 50 epochs.

cVAE. The selected cVAE comprises an encoder and a decoder.
Both are fully connected networks (for details, see Table 4 in Ap-
pendix A). For the training of the cVAE, we use a batch size of 512,
the Adam optimizer [15], and maximum of 100 epochs.

Input data. To train both generative methods, we use the first
15000 data points of the selected time series. We standardize these
data points, before creating samples with a size of 96. We also use
the information contained in the time stamps of the considered time

series as calendar information. It comprises the hour of the day, the
month of the year, and the weekday. As statistical information, we
choose the mean of the considered time series sample.

3.3 Data Representations for Comparison
Using the selected time series, we compare the two latent space
representations generated by the cINN and the cVAE as proposed
in our approach with two benchmark data representations. The two
benchmark data representations stand for the common approach
of directly applying anomaly detection methods to the given data.

The first latent space data representation is from the cINN. For
this, we standardize the selected time series and create overlapping
samples with a size of 96. These samples serve as an input for
the trained cINN that generates the resulting latent space data
representation. The second latent space data representation is from
the cVAE. It is created in the same way as for the cINN.

For the first benchmark data representation, we standardize the
selected time series to obtain a scaled data representation, before
creating overlapping samples with a size of 96. For the second
benchmark data representation, we use the unaltered time series as
an unscaled data representation, from which we create overlapping
samples with a size of 96.

3.4 Applied Anomaly Detection Methods
For the evaluation of our approach, we select existing anomaly
detection methods and apply them to the four data representations
to detect anomalous and non-anomalous data. To consider different
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learning assumptions, i.e., inductive biases [23], we select seven su-
pervised and four unsupervised anomaly detection methods, which
we briefly present below including their application.

Supervised methods. The selected supervised methods consider
anomaly detection as a binary classification problem, where each
data point is assigned the label anomaly or non-anomalous data.

As first supervised detection method, we select the Logistic Re-
gression (LR). In the LR for binary outcomes, the posterior proba-
bilities of the outcomes are modeled with a logistic function [9].

The second method we choose is the Gaussian Naïve Bayes
(NB). The NB estimates a conditional probability by assuming the
conditional independence of the input features, given the prior
probability of the output variable [8, 33].

As third method, we select the Random Forest (RF). The RF
uses bagging to reduce the variance of an estimated prediction by
combining the predictions of multiple decision trees [3, 9, 33].

We select XGBoost as the fourth method because it is effective
and widely used in various machine learning competitions. More
specifically, XGBoost is a gradient boosting machine and optimizes
a regularized objective function using gradient decent [6].

As fifthmethod, we choose the k-Nearest Neighbor (kNN)method.
It uses a proximity measure to classify a test sample based on the
similarity of training instances [7].

We select the Multi-Layer Perceptron (MLP) as the sixth method.
As an Artificial Neural Network, it approximates an arbitrary func-
tion through multiple hidden layers of interconnected nodes and
applying activation functions between the layers [e.g. 23, 39].

As seventh method, we choose a Support Vector Machine for
classification (SVC) that maximizes the hyperplane between the
binary classes to classify test samples [36].

Unsupervised methods. The selected unsupervised methods ana-
lyze the data to uncover the underlying normal behavior and then
identify anomalous data points that violate this behavior.

As first unsupervised detection method, we select the Local
Outlier Factor (LOF). The LOF measures the distances of a sample to
its k-nearest neighbors to estimate the local density. By comparing
the local density to the local densities of its neighborhood, the LOF
is able to identify samples as non-anomalous or anomalous [4].

The secondmethod is the Isolation Forest (iForest). It is an ensem-
ble of isolation trees that randomly partitions samples in randomly
selected features. The averaging path length of samples in different
isolation trees serves as the indicator for anomalous data [21].

As third method, we choose an autoencoder (AE). It learns a
mapping to the latent representation of data and a mapping back
to the reconstruction of the input [31].

The fourth method is a variational autoencoder (VAE). The VAE
learns the probability distribution of the data in the latent space to
reconstruct its input [17].

Application. To apply the unsupervised detection methods, we
use the complete selected data with inserted anomalies. To apply
the supervised detection methods, however, we split the selected
data with inserted anomalies to obtain a training and a test set. We
use the first 5000 data points as training set. As test set, we use all
data points except the first 15000 data points because these 15000
data points are used for the training of the generative models.

To both sets, we apply the selected supervised detection methods
with default hyperparameters, i.e., the hyperparameters set as de-
fault in the available implementation, and with the best performing
hyperparameters. To determine the best performing hyperparame-
ters, we choose hyperparameters and select corresponding values
for each method (see Table 5 in Appendix C). Over the resulting
hyperparameter grid, we perform a cross-validated grid search on
the training set. We choose the parameters that yield the best F1-
Score (5) for a data representation and group of anomalies as best
performing hyperparameters for this data representation and group
of anomalies (see Tables 6 to 17 in Appendix D).

3.5 Evaluation Criteria
To quantitatively evaluate the selected anomaly detection methods
on the four data representations, we use three evaluation criteria.

The first evaluation criterion is the detection performance of the
methods. For this criterion, we choose the commonly used F1-Score
as metric, which is the harmonic mean of precision and recall. It is
calculated on the samples and defined as

F1-Score =
TP

TP + 1
2 · (FP + FN)

, (5)

where 𝑇𝑃 are the true positives, 𝐹𝑃 the false positives, and 𝐹𝑁 the
false negatives in relation to the inserted artificial anomalies. In the
calculation of the F1-Score, a sample is considered as an anomaly
as soon as one of its data points is an inserted artificial anomaly.

The second evaluation criterion is the robustness of the meth-
ods’ detection performance. To assess the detection robustness, we
calculate the F1-Score for different shares of inserted anomalies.

The third evaluation criterion is the computational cost of the
detection. To assess the computational cost, we measure run-times.
For the supervised anomaly detection methods, we measure the
run-times for training the supervised cINN and cVAE, finding the
methods’ best hyperparameters, and for training them given the
best performing hyperparameters. Similarly, for the unsupervised
anomaly detection methods, we determine the run-times for train-
ing the unsupervised cINN and cVAE and fitting the methods.

3.6 Hard- and Software
For a better comparability of the results, we use the same hard-
ware throughout the evaluation, namely a 48 core system with 256
GB RAM, where each core has 2.1 GHz. Furthermore, all selected
detection methods are implemented in Python. More specifically,
for XGBoost, we use its available implementation [6]; for all oth-
ers, Scikit-learn [27]. The cINN is implemented with FrEIA3 and
PyTorch [26] and the cVAEwith PyTorch [26]. To automate the eval-
uation with these implementations, we additionally use pyWATTS4
[10].

4 RESULTS
To qualitatively evaluate the benefit of using the latent space data
representation in anomaly detection, we first visualize how the four
data representations separate anomalies and non-anomalous data.

3https://github.com/VLL-HD/FrEIA
4https://github.com/KIT-IAI/pyWATTS
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Figure 5: t-SNE visualizations of 300 random samples without anomalies (blue) and 300 random samples with anomalies (or-
ange) in the cINN’s latent space, the cVAE’s latent space, and the unscaled data representations with 20 inserted anomalies of
technical faults (top row) and unusual consumption (bottom row).

Second, we report the quantitative evaluation criteria when apply-
ing supervised and unsupervised anomaly detection methods to the
data representations containing inserted artificial anomalies. Since
the scaled and unscaled data representations perform similarly, we
focus on the scaled data representation in the following.

4.1 Visualization of Anomalies in Data
Representations

To analyze how the four data representations separate anomalies
and non-anomalous data, we randomly choose 300 samples without
anomalies and 300 samples with anomalies from the test set of the
supervised detection methods. We visualize the cINN latent space,
cVAE latent space, scaled, and unscaled data representations of the
chosen samples with a t-distributed stochastic neighbor embed-
ding (t-SNE) [35] using two dimensions. For an optimal anomaly
detection, samples with anomalies and samples without anomalies
should be clearly separated without overlapping.

Figure 5 shows the resulting t-SNE visualization of samples with
anomalies of technical faults and unusual consumption and samples
without anomalies for three of the four data representations for
the sake of graphical clarity (see Figure 11 in Appendix E for the
unscaled). For both groups of anomalies, the t-SNE visualizes less
overlap between samples with anomalies and samples without
anomalies for the cINN latent space data representation than for
the scaled data representation. Furthermore, for the cINN latent
space data representation, the samples with anomalies are grouped
around the main cluster of samples without anomalies.

4.2 Data Representations in Supervised
Anomaly Detection

Detection performance. We evaluate the detection performance
of the supervised anomaly detection methods with both default and
best-performing hyperparameters for technical faults and unusual
consumption. For both groups of anomalies, we insert 20 anomalies
of each type belonging to this group. Figure 6a and Figure 6b show
the resulting F1-Scores for the technical faults and Figure 6c and
Figure 6d for the unusual consumption. For each unsupervised
method, the bars indicate the average F1-Score for the cINN latent
space, cVAE latent space, scaled, and unscaled data representations.
The gray error bars show the best and the worst observed F1-Scores
in multiple runs using varying random initialization for the cINN,
cVAE, and the detection methods.

With default hyperparameters, all evaluated methods yield the
best F1-Scores for both groups of anomalies when using a latent
space data representation. Compared to the scaled data representa-
tion, the F1-Scores of the cINN latent space representation are 21 %
better on average, ranging from 1 % for the MLP to 52 % for the
RF. The F1-Scores of the cVAE latent space representation are 23 %
better on average, ranging from 1 % for the MLP to 55 % for the RF.
Note that, despite the general improvement through using a latent
space data representation, the F1-Scores strongly vary between
the evaluated methods. For example, considering the cINN latent
space data representation and the technical faults, the LR yields a
F1-Score of 0.69, while the NB achieves a F1-Score of 0.97.

With the best performing hyperparameters, all evaluated meth-
ods also perform best using the latent space data representation for
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(c) Unusual consumption with default hyperparameters.

kN
N LR

M
LP N
B RF

SV
C

XG
Bo

os
t0

0.5

1

F1
-S
co
re

(d) Unusual consumption with best performing hyperparameters.

Figure 6: The F1-Scores of the seven supervised detection methods applied to 20 anomalies of each type from the technical
faults and unusual consumption. For each method, the bars indicate the average F1-Score for the cINN latent space, cVAE
latent space, scaled, and unscaled data representations. The gray error bars show the best and the worst observed F1-Scores.

both groups of anomalies. Compared to the scaled data representa-
tion, the F1-Scores of the cINN latent space representation for the
technical faults are 21 % better on average, ranging from 6 % for
the MLP to 52 % for the RF. The F1-Scores of the cVAE latent space
representation are 34 % better on average, ranging from 4 % for the
MLP to 92 % for the LR. Note that we again observe highly varying
F1-Scores across all evaluated methods.

Detection robustness. Regarding different shares of anomalies, we
examine the kNN, MLP, and NB as the three best methods when us-
ing best performing hyperparameters determined for 20 anomalies
of each type from technical faults. For the sake of brevity, we only
consider the cINN latent space and the scaled data representations.
The detection robustness for different shares of anomalies is shown
in Figure 7a for the technical faults and in Figure 7b for the unusual
consumption (for all other methods see Figure 13 in Appendix E).
For the technical faults, the F1-Scores based on the cINN latent
space data representation are consistently higher than those for the
scaled data representation across all shares of anomalies. Further-
more, all anomaly detection methods perform more consistently
when using the cINN latent space data representation, showing

less variation than the scaled data representations. For unusual
consumption, the F1-Scores when using the cINN latent space data
representation are noticeably better for the MLP when compared
to the scaled data representation, and similar for the kNN and NB.

Computational cost. Concerning the computational cost reported
in Table 1, we first compare the run-times required to train the
supervised cINN and cVAE with the run-times to find the best
performing hyperparameters and to train the supervised methods
given selected hyperparameters. Afterward, we compare the run-
times of the hyperparameter optimization and of the training of the
supervised methods with respect to the four data representations.

The supervised training of the used cINN and cVAE takes con-
siderably less time than the hyperparameter optimization of the
MLP, SVC, and XGBoost, about the same as the hyperparameter
optimization of the kNN, and more time than the hyperparameter
optimization of the LR and RF. Compared to the training of the
methods on all data representations, the supervised training of the
cINN and cVAE, however, generally requires some more time.

The hyperparameter optimization itself requires different amounts
of time depending on the data representation. On the cINN latent

215



Enhancing Anomaly Detection Methods for Energy Time Series Using Latent Space Data Representations e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA

2 4 6 8 10 12 14

0.7

0.8

0.9

1

Share of anomalies in %

F1
-S
co
re

kNN latent cINN MLP latent cINN NB latent cINN
kNN scaled MLP scaled NB scaled

(a) Technical faults

5 10 15 20 25

0.4

0.5

0.6

0.7

Share of anomalies in %

F1
-S
co
re

(b) Unusual consumption

Figure 7: The F1-Scores of the three best performing super-
vised detectionmethods applied to different shares of anom-
alies from technical faults and unusual consumption using
the best performing hyperparameters. For eachmethod, one
line each indicates the resulting F1-Score for the cINN latent
space and scaled data representations.

space data representation and compared to the scaled data repre-
sentation, the optimization takes noticeably less time for the MLP,
about the same for the kNN, LR, and RF, and more time for the
SVC and XGBoost. On the cVAE latent space data representation,
the optimization takes less time for the kNN, SVC, and XGBoost,
about the same time for the LR and RF, and longer for the MLP.
Note, however, that the run-time required for the hyperparameter
optimization varies greatly across the methods.

The run-times for training the supervised methods also depend
on the data representation. Using the latent space data representa-
tions for the training requires less or about the same time as using
the scaled data representation for most supervised methods.

Table 1: The required run-times in seconds to train the su-
pervised cINN and cVAE, to find the best performing hy-
perparameters of the supervised detection methods, and to
train them given the best performing hyperparameters for
the four data representations.

cINN cVAE Scaled Unscaled

Supervised training 60.77 22.24 0 0

Detection
method’s
hyperparameter
optimization

kNN 44.43 10.46 42.56 41.25
LR 6.29 2.55 6.35 12.61
MLP 2694.54 9116.88 9286.41 3125.75
RF 6.04 3.71 5.20 5.00
SVC 5906.27 4.86 899.70 11863.58
XGBoost 1912.33 1048.95 1631.59 1631.59

Detection
method’s
training

kNN 0.00 0.00 0.00 0.00
LR 0.66 0.91 0.66 0.84
MLP 3.24 7.37 7.58 1.64
RF 0.83 0.51 0.86 0.86
SVC 0.11 0.13 0.29 0.30
XGBoost 1.48 1.10 1.47 1.70

4.3 Data Representations in Unsupervised
Anomaly Detection

Detection performance. To evaluate the detection performance
of the unsupervised anomaly detection methods, we first use latent
space data representations from an unsupervised cINN and cVAE
trained with a contamination of 0.05 for the technical faults and 0.1
for the unusual consumption. Afterwards, we examine the effect of
different contamination values for both groups of anomalies.

For the unsupervised cINN and cVAE using data with 20 inserted
anomalies of each type from an anomaly group, Figure 8 presents
the F1-Scores of the unsupervised detection methods. For each
method, the bars indicate the average F1-Score for the cINN latent
space, cVAE latent space, scaled, and unscaled data representations.
The gray error bars show the best and the worst observed F1-Scores.

We observe that unsupervised detection methods perform differ-
ently when using the cINN and cVAE latent space data representa-
tions. Compared to the scaled data representation, the F1-Scores for
the technical faults and the cINN latent space data representation
show an improvement for the iForest, a similar performance for the
AE and VAE, and a worse performance for the LOF. Furthermore,
for the unusual consumption, the cINN and cVAE latent space data
representations results in similar or lower F1-Scores than those
from unsupervised anomaly detection methods using the scaled
data representation.

For a contamination of 0.05, 0.1, 0.15, 0.2, and 0.25, Figure 9a and
Figure 9b shows the F1-Scores on the cINN and cVAE latent space
data representations of the detection methods for the technical
faults and unusual consumption respectively.

For technical faults, the detection methods achieve varying F1-
Scores across the different contamination values, with the best
F1-Scores for all models, except for LOF, occurring with a contami-
nation of 0.05. The performance for unusual consumption varies
more, with the best F1-Scores being achieved with a contamination
of 0.05, 0.1, or 0.15, depending on the considered method.
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Figure 8: The F1-Scores of the four unsupervised detection
methods applied to 20 anomalies of each type from techni-
cal faults and unusual consumption. For each method, the
bars indicate the average F1-Score for the cINN latent space,
cVAE latent space, scaled, and unscaled data representations.
The gray error bars show the best and the worst F1-Scores.

Detection robustness. Regarding the analysis of different shares
of anomalies from technical faults and unusual consumption, we
again only consider the cINN latent space and the scaled data repre-
sentations. Figure 10 shows the F1-Scores of the detection methods
for these data representations. For each share of anomalies, a corre-
sponding contamination is used for the training of the cINN.

Compared to the scaled data representation, the F1-Scores of
the cINN latent space data representation for technical faults are
higher for the iForest, similar for the AE and VAE, and lower for
the LOF. When considering unusual consumption, the latent space
data representation results in lower F1-Scores across all shares of
anomalies.

Computational cost. Regarding the four data representations, the
run-times required to train the unsupervised cINN and cVAE and
to fit the unsupervised methods are reported in Table 2.

The unsupervised training of the cINN and cVAE requires con-
siderably more time than the fitting of most of the unsupervised
methods. Additionally, fitting the AE and VAE is quicker, the iForest
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Figure 9: The F1-Scores of the four unsupervised detection
methods applied to the latent space data representations cre-
ated by an unsupervised cINN and cVAE with different con-
tamination values. The data contains 20 anomalies of each
type from technical faults and unusual consumption.

Table 2: The required run-times in seconds to train the un-
supervised cINN and cVAE and to fit the unsupervised detec-
tion methods regarding the four data representations.

cINN cVAE Scaled Unscaled

Unsupervised training 632.96 510.22 0 0

Detection method’s
fitting

iForest 16.21 3.84 29.53 23.33
LOF 370.23 269.11 207.98 206.81
AE 443.71 99.76 579.79 320.27
VAE 856.12 76.00 4555.05 416.99
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Figure 10: The F1-Scores of the four unsupervised detection
methods applied to different shares of anomalies from tech-
nical faults and unusual consumption. For eachmethod, one
line each indicates the resulting F1-Score for the cINN la-
tent space, scaled, andunscaled data representations. For the
latent space data representation, the unsupervised cINN is
trained with a contamination corresponding to the share of
anomalies in the data.

is similar, and the LOF is slower on the latent space compared to
the scaled data representation.

5 DISCUSSION
In this section, we discuss the reported results and the benefits
of the proposed approach to enhance anomaly detection methods.
First, we focus on the visualization of anomalies in different data
representations, before considering the three evaluation criteria
for the supervised and unsupervised anomaly detection methods.
Finally, we discuss the overall benefits of the proposed approach.

From the initial t-SNE visualization of anomalies in different
data representations in Figure 5, we conclude that the latent space

data representation helps to better separate anomalies and non-
anomalous data. This separation is clearer for technical faults, but
still noticeable for unusual consumption. The visualization thus
confirms that using the latent space data representation as in the
proposed approach is beneficial.

The detection performance and robustness of the selected su-
pervised and unsupervised detection methods also supports this
observation. For the evaluated detection methods, the results show
that directly using the latent space data representation improves su-
pervised anomaly detection methods for both technical and unusual
consumption, and partly improves unsupervised anomaly detec-
tion methods when considering technical faults. For the supervised
methods, this improvement occurs even without performing hyper-
parameter optimization and is independent of the share of inserted
artificial anomalies. For unsupervised methods, the improvement
is only partly noticeable for technical faults, with unusual con-
sumption performing similarly or worse. However, since the used
anomalies of unusual consumption are similarly shaped and diffi-
cult to detect even for a human, better detection performance for
such anomalies might only be possible with a label. Furthermore,
the LOF performs worse on the latent space data representation for
both technical faults and unusual consumption. This suggests that
the latent space data representation may not be suited for density
based anomaly detection methods and this phenomenon should be
investigated further in future work.

With regards to computational time, for some supervised detec-
tion methods, the proposed anomaly detection method reduces the
time required for hyperparameter optimization and the methods’
training. At the same time, for the unsupervised detection methods,
the proposed anomaly detection method does not reduce the fitting
time. Therefore, the proposed anomaly detection method can also
be beneficial for the hyperparameter optimization and the methods’
training.

Nevertheless, these improvements in the detection performance
come with computational cost for the required trained cINN or
cVAE. For the supervised cINN or cVAE, the required training time
is considerably smaller than the time needed for hyperparameter
optimization for some supervised detection methods; for the others,
the time needed is in the same order of magnitude. For the unsuper-
vised cINN or CVAE, the training takes noticeably longer than the
fitting of the evaluated unsupervised detection methods, possibly
due to the calculation of the quantile and the filtering of the errors
for each batch. Additionally, unlike the supervised cINN and cVAE,
the unsupervised cINN and cVAE are trained on all available data.
Furthermore, since all available data are used, we must choose a
suitable contamination to enable the cINN and cVAE to provide a
beneficial data representation for unsupervised detection methods.

Considering the mentioned aspects, applying supervised detec-
tion methods without hyperparameter optimization directly on
the latent space data representation as proposed is advantageous.
For these methods, the training time of the cINN or cVAE is often
considerably shorter than the time required to optimize their hyper-
parameters. At the same time, their detection performance remains
high, even without hyperparameter optimization.

Overall, the proposed approach provides several benefits. The
most important one is that it generally considerably enhances the
detection performance of supervised and unsupervised detection

218



e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA Turowski et al.

methods. This way, the latent space data representation created
by a cINN or cVAE can serve as a beneficial input for any existing
detection method at only moderate computational cost. This perfor-
mance improvement is particularly noticeable for technical faults
in both supervised and unsupervised anomaly detection methods;
for unusual consumption only in supervised methods. However, the
used technical faults are assumed to have more impact on down-
stream applications and thus should be prioritized in an automated
setting. Therefore, the high performance for technical faults and
improved supervised performance for unusual consumption im-
ply that our approach is suitable to enhance anomaly detection
methods in an automated setting.

6 CONCLUSION
The present paper proposes the direct use of latent space data
representation to enhance anomaly detection methods. We qualita-
tively examine the latent space data representation created with a
cINN and cVAE by visualizing the separation of anomalies and non-
anomalous data. We also quantitatively evaluate anomaly detection
performance using this latent space data representation by applying
selected supervised and unsupervised anomaly detection methods
to real-world load data containing inserted artificial anomalies of
two groups, namely technical faults and unusual consumption.

Our evaluation shows that the latent space data representation
enhances anomaly detection, since it results in a clearer separation
between time series samples with anomalies and samples with-
out anomalies. Furthermore, the proposed approach generally im-
proves the detection performance of the selected supervised detec-
tion methods for both technical faults and unusual consumption
with only moderate additional computational cost. We also show
that this benefit is mostly observable regardless of the share of
anomalies in the considered time series. For unsupervised anomaly
detection methods, our approach partially improves anomaly detec-
tion methods for technical faults, but has difficulties with unusual
consumption.

In future work, we will evaluate our approach with multivariate
time series. We also plan to integrate the creation of latent space
data representation with the training of the detection methods,
and systematically evaluate hyperparameter optimization in the
latent space. Moreover, we want to improve unsupervised meth-
ods for detecting unusual consumption in the latent space data
representation.
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A INSERTED ARTIFICIAL ANOMALIES
For the evaluation, we create an anomaly 𝑝 𝑗,𝑖 of type 𝑗 with start
index 𝑖 . For each anomaly typementioned above, we list the relevant
parameters and specify the corresponding manipulation in a given
power time series 𝑃 = 𝑝1, 𝑝2, ...𝑝𝑁 with length 𝑁 in the following.
Note that the anomaly types 1 to 4 are based on [34].

A.1 Anomaly Type 1
Parameters:

• Length 𝑙 ∼ U[5,24]
• Random scaling factor 𝑟𝑠 = 2 + 𝑟 · 3 with 𝑟 ∼ U[0,1]

𝑝1,𝑖+𝑛 =


−1 ·𝑚𝑒𝑎𝑛(𝑃) + 𝑟𝑠 · 𝑠𝑡𝑑 (𝑃), 𝑛 = 0
0, 0 < 𝑛 < 𝑙 − 1∑𝑖+𝑙−1
𝑡=1 𝑝𝑡 , 𝑛 = 𝑙 − 1

(6)

A.2 Anomaly Type 2
Parameter:

• Length 𝑙 ∼ U[5,24]

𝑝2,𝑖+𝑛 =

{
0, 0 ≤ 𝑛 < 𝑙 − 1∑𝑖+𝑙−1
𝑡=𝑖 𝑝𝑡 , 𝑛 = 𝑙 − 1

(7)

A.3 Anomaly Type 3
Parameter:

• Random scaling factor 𝑟𝑠 = 0.01 + 𝑟 · 3.99 with 𝑟 ∼ U[0,1]

𝑝3,𝑖 = −𝑟𝑠 ·𝑚𝑒𝑎𝑛(𝑃) (8)

A.4 Anomaly Type 4
Parameter:

• Random scaling factor 𝑟𝑠 = 3 + 𝑟 · 5 with 𝑟 ∼ U[0,1]

𝑝4,𝑖 = 𝑟 ·𝑚𝑒𝑎𝑛(𝑃) (9)

A.5 Anomaly Type 5
Parameters:

• Length 𝑙 ∼ U[48,144]
• Random scaling factor 𝑟 ∼ U[0.3,0.8]

𝑝5,𝑖+𝑛 = 𝑝𝑖 − 𝑟 · 𝑝min, 0 < 𝑛 < 𝑙 − 1, (10)
where 𝑝min = min{𝑝𝑖 , 𝑝𝑖+1, . . . , 𝑝𝑖+𝑙−1}.

A.6 Anomaly Type 6
Parameters:

• Length 𝑙 ∼ U[48,144]
• Random scaling factor 𝑟 ∼ U[0.5,1]

𝑝6,𝑖+𝑛 = 𝑝𝑖 + 𝑟 · 𝑝min, 0 < 𝑛 < 𝑙 − 1, (11)
where 𝑝min = min{𝑝𝑖 , 𝑝𝑖+1, . . . , 𝑝𝑖+𝑙−1}.

A.7 Anomaly Type 7
Parameters:

• Length 𝑙 ∼ U[48,144]
• Random scaling factor 𝑟 ∼ U[0.3,0.8]

𝑝7,𝑖 =


𝑝𝑖 − 𝑟 · 𝑝min · 𝑙

10 · 𝑖, 0 < 𝑛 < 𝑙
10

𝑝𝑖 − 𝑟 · 𝑝min,
𝑙
10 ≤ 𝑛 ≤ 1 − 𝑙

10
𝑝𝑖 − 𝑟 · 𝑝min · 𝑙

10 · (1 − 𝑖), 1 − 𝑙
10 < 𝑛 < 𝑙 − 1

(12)

where 𝑝min = min{𝑝𝑖 , 𝑝𝑖+1, . . . , 𝑝𝑖+𝑙−1}.

A.8 Anomaly Type 8
Parameters:

• Length 𝑙 ∼ U[48,144]
• Random scaling factor 𝑟 ∼ U[0.5,1]

𝑝8,𝑖 =


𝑝𝑖 + 𝑟 · 𝑝min · 𝑙

10 · 𝑖, 0 < 𝑛 < 𝑙
10

𝑝𝑖 + 𝑟 · 𝑝min,
𝑙
10 ≤ 𝑛 ≤ 1 − 𝑙

10
𝑝𝑖 + 𝑟 · 𝑝min · 𝑙

10 · (1 − 𝑖), 1 − 𝑙
10 < 𝑛 < 𝑙 − 1

(13)

where 𝑝min = min{𝑝𝑖 , 𝑝𝑖+1, . . . , 𝑝𝑖+𝑙−1}.
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B IMPLEMENTATION OF CINN AND CVAE AS
USED GENERATIVE MODELS

Table 3: Implementation details of the subnetwork and the
conditioning network 𝑞 in the used cINN.

(a) Subnetwork

Layer Description

Input [Output of previous coupling layer,
conditional information]

1 Dense 32 neurons; activation: tanh
1 Dense horizon units; activation: linear

(b) Conditioning network

Layer Description

Input [Calendar information,
statistical information]

1 Dense 8 neurons; activation: tanh
2 Dense 4 neurons; activation: linear

Table 4: Implementation details of encoder and decoder of
the used cVAE.

(a) Encoder

Layer Description

Input [Normal data, conditional information]
1 Dense 64 neurons; activation: tanh
2 Dense 32 neurons; activation: tanh
3 `: dense latent dimension; activation: linear
4 𝜎 : dense latent dimension; activation: linear

(b) Decoder

Layer Description

Input [Latent data, conditional information]
1 Dense 32 neurons; activation: tanh
2 Dense 64 neurons; activation: tanh
3 Dense horizon units; activation: linear
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C DEFAULT HYPERPARAMETERS

Table 5: Overview of the hyperparameters, their default values, and the evaluated values of all seven selected supervised
anomaly detection methods.

Detection method Hyperparameter Default value Evaluated values

kNN
n_neighbors 5 1, 3, 5, 7, 10
p 2 1, 2, 3
weights uniform uniform, distance

LR C 1 0.01, 0.1, 1, 10, 100
penalty l2 l1, l2, elasticnet, none
solver lbfgs newton-cg, lbfgs, liblinear, sag, saga

MLP

activation relu logistic, tanh, relu
alpha 0.0001 0.00001, 0.0001, 0.001
batch_size auto 10, 11, 12, 13, 14, 15, 16, 32, 64, 128, 200
hidden_layer_size (100, ) (25,), (50,), (75,), (100,), (125,), (150,), (25, 25), (50, 50), (75, 75),

(100, 100), (125, 125), (150, 150), (25, 25, 25), (50, 50, 50), (75, 75,
75), (100, 100, 100), (125, 125, 125), (150, 150, 150)

NB no hyperparameters

RF criterion gini gini, entropy
max_features auto sqrt, log2

SVC
C 1 0.01, 0.1, 1, 10, 100
gamma scale scale, auto
kernel rbf linear, sigmoid, rbf

XGBoost
booster gbtree gbtree, gblinear, dart
importance_type gain gain, weight, cover, total_gain, total_cover
reg_lambda 1 0, 0.1, 0.5, 1, 2, 4
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D BEST PERFORMING HYPERPARAMETERS

Table 6: The best performing hyperparameters of the kNN
for all data representations for technical faults.

Data n_neighbors p weights

Latent cINN

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance

Latent cVAE 1 2 uniform
1 2 distance

Scaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance
3 3 distance

Unscaled

1 2 uniform
1 2 distance
1 3 uniform
1 3 distance
3 3 distance

Table 7: The best performing hyperparameters of the kNN
for all data representations for unusual consumption.

Data n_neighbors p weights

Latent cINN 1 1 uniform
1 1 distance

Latent cVAE 10 2 distance

Scaled 5 3 uniform
5 3 distance

Unscaled 5 3 uniform
5 3 distance

Table 8: The best performing hyperparameters of the LR for
all data representations for technical faults.

Data C penalty solver

Latent cINN 10 none sag

Latent cVAE

0.01 none newton-cg
0.1 none newton-cg
1 none newton-cg
10 none newton-cg
100 none newton-cg

Scaled 0.1 l1 saga

Unscaled

0.01 none saga
1 l2 sag
10 none sag
100 l2 saga

Table 9: The best performing hyperparameters of the LR
for all data representations for unusual consumption.

Data C penalty solver

Latent cINN 0.01 l1 liblineear

Latent cVAE 100 l1 liblinear

Scaled 0.01 l1 liblinear
0.01 l1 saga

Unscaled

0.01 l1 liblinear
0.01 l1 saga
0.01 l2 lbgfs
0.01 l2 liblinear
0.01 l2 sag
0.01 l2 saga
0.01 none lbgfs
0.01 none sag
0.01 none saga
0.1 l1 saga
0.1 l2 lbgfs
0.1 l2 liblinear
0.1 l2 sag
0.1 l2 saga
0.1 none lbgfs
0.1 none sag
0.1 none saga
1 l1 saga
1 l2 lbgfs
1 l2 liblinear
1 l2 sag
1 l2 saga
1 none lbgfs
1 none sag
1 none saga
10 l1 saga
10 l2 lbgfs
10 l2 liblinear
10 l2 sag
10 l2 saga
10 none lbgfs
10 none sag
10 none saga
100 l1 saga
100 l2 lbgfs
100 l2 liblinear
100 l2 sag
100 l2 saga
100 none lbgfs
100 none sag
100 none saga
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Table 10: The best performing hyperparameters of the MLP
for all data representations for technical faults.

Data activation alpha batch_size hidden_layer
_sizes

Latent cINN relu 0.001 15 (100,)

Latent cVAE relu 0.0001 14 (75,75)

Scaled
relu 0.0001 14 (125,125)
relu 0.001 12 (125,125,125)
relu 0.001 15 (125)

Unscaled relu 0.001 32 (125)

Table 11: The best performing hyperparameters of the MLP
for all data representations for unusual consumption.

Data activation alpha batch_size hidden_layer
_sizes

Latent cINN relu 0.0001 11 (150,)

Latent cVAE relu 0.00001 11 (75. 75)

Scaled relu 0.0001 12 (50,50)

Unscaled relu 0.00001 64 (100,100,100)

Table 12: The best performing hyperparameters of the RF
for all data representations for technical faults.

Data criterion max_features

Latent cINN gini sqrt

Latent cVAE entropy sqrt

Scaled gini sqrt

Unscaled gini sqrt

Table 13: The best performing hyperparameters of the RF
for all data representations for unusual consumption.

Data criterion max_features

Latent cINN gini sqrt

Latent cVAE gini sqrt

Scaled entropy log2

Unscaled entropy log2

Table 14: The best performing hyperparameters of the SVC
for all data representations for technical faults.

Data C gamma kernel

Latent cINN 100 scale rbf

Latent cVAE 100 scale rbf

Scaled 0.1 scale rbf

Unscaled 0.1 scale rbf

Table 15: The best performing hyperparameters of the SVC
for all data representations for unusual consumption.

Data C gamma kernel

Latent cINN 10 auto rbf
100 auto rbf

Latent cVAE 1 scale rbf

Scaled 10 scale rbf

Unscaled 10 scale rbf
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Table 16: The best performing hyperparameters of the
XGBoost for all data representations for technical faults.

Data booster importance_type reg_lambda

Latent cINN

gbtree gain 0.1
gbtree weight 0.1
gbtree cover 0.1
gbtree total_gain 0.1
gbtree total_cover 0.1
dart gain 0.1
dart weight 0.1
dart cover 0.1
dart total_gain 0.1
dart total_cover 0.1

Latent cVAE

gbtree gain 1
gbtree weight 1
gbtree cover 1
gbtree total_gain 1
gbtree total_cover 1
dart gain 1
dart weight 1
dart cover 1
dart total_gain 1
dart total_cover 1

Scaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Unscaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Table 17: The best performing hyperparameters of the
XGBoost for all data representations for unusual consump-
tion.

Data booster importance_type reg_lambda

Latent cINN

gbtree gain 1
gbtree weight 1
gbtree cover 1
gbtree total_gain 1
gbtree total_cover 1
dart gain 1
dart weight 1
dart cover 1
dart total_gain 1
dart total_cover 1

Latent cVAE

gblinear gain 0
gblinear weight 0
gblinear cover 0
gblinear total_gain 0
gblinear total_cover 0

Scaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0

Unscaled

gbtree gain 0
gbtree weight 0
gbtree cover 0
gbtree total_gain 0
gbtree total_cover 0
dart gain 0
dart weight 0
dart cover 0
dart total_gain 0
dart total_cover 0
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E ADDITIONAL RESULTS
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(a) Unscaled data representation for technical faults.
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(b) Unscaled data representation for unusual consumption.

Figure 11: t-SNE visualizations of 300 random samples without anomalies (blue) and 300 random samples with anomalies
(orange) in the unscaled latent space data representation with 20 inserted anomalies of technical faults and unusual consump-
tion.
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Figure 13: The F1-Scores of the four remaining supervised detection methods applied to different shares of anomalies from
technical faults and unusual consumption using the best performing hyperparameters. For each method, one line each indi-
cates the resulting F1-Score for the cINN latent space and scaled data representations.
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