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Abstract: Previous studies have shown that a thermomechanical treatment (TMT) consisting of
cyclic plastic deformation in the temperature range of dynamic strain aging can increase the fatigue
limit of quenched and tempered steels by strengthening the microstructure around non-metallic
inclusions. This study considers the influence of a TMT on the shape, size and position of crack-
initiating inclusions as well as on the internal crack propagation behavior. For this, high cycle fatigue
tests on specimens with and without TMT were performed at room temperature at a constant stress
amplitude. The TMT increased the average lifetime by about 40%, while there was no effect of the
TMT on the form or size of critical inclusions. Surprisingly, no correlation between inclusion size
and lifetime could be found for both specimen types. There is also no correlation between inclusion
depth and lifetime, which means that the crack propagation stage covers only a small portion of the
overall lifetime. The average depth of critical inclusions is considerably higher for TMT specimens
indicating that the strengthening effect of the TMT is more pronounced for near-surface inclusions.
Fisheye fracture surfaces around the critical inclusions could be found on all tested specimens. With
increasing fisheye size, a transition from a smooth to a rather rough and wavy fracture surface could
be observed for both specimen types.

Keywords: non-metallic inclusion; thermomechanical treatment (TMT); inclusion area; inclusion
shape; inclusion depth; fisheye formation; crack initiation

1. Introduction

Since fatigue crack initiation and growth is one of the significant causes of structural
failure in engineering applications, there is a considerable demand for steels with high
fatigue strength in the industry [1,2]. SAE4140 quenched and tempered steel is one of
the most favorable steels for applications involving cyclic loading due to its high fatigue
strength [3]. It is well-known that the lifetime of quenched and tempered steels in the
high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes are limited by crack
initiation at internal inhomogeneities and non-metallic inclusions [4–7]. Normally, frac-
ture surfaces of HCF and VHCF failures exhibit not only crack initiation at non-metallic
inclusions but also fisheye formation around these critical inclusions [7,8]. Fisheye-forming
cracks propagate in a vacuum until the free surface of the component or the specimen is
reached and then surface crack propagation under the influence of the ambient atmosphere
takes place [9]. The fisheye formation may take place in two stages forming a fine granular
area (FGA) around the crack initiating inclusion and a neighboring smooth area (SA).
Results of Stanzl-Tschegg et al. show that the smooth area of a fisheye may be followed by
a rougher fracture surface indicating a more ductile fracture mode [10,11]. The crack propa-
gation stage forming the rougher fracture surface was identified as the Paris regime [10].
However, it is noticeable that FGA formation may not necessarily be detectable for internal
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crack initiation [12]. There are several studies about steel cleanliness and control of non-
metallic inclusions to minimize the negative influence of critical inclusions and improve
the fatigue strength [13,14]. In addition, the study of non-metallic inclusions, in particular
with respect to their type, area, shape and position, is of high interest in order to predict
the fatigue strengths of engineering steels and allow for safe design [1,15–19]. Besides
approaches to enhance the purity of steels and minimizing critical inclusion formation
during steel production, a thermomechanical treatment (TMT) in the temperature range of
maximum dynamic strain aging (DSA) is another approach to increase the fatigue strength
of steels by strengthening the microstructure around the inclusions after the steel produc-
tion [20,21]. Increasing the fatigue limits of SAE4140 in the HCF and VHCF regimes by a
TMT was recently shown in [22]. It is assumed that during the TMT, plastic deformation in
the temperature range of DSA introduces a more stable dislocation structure around the
non-metallic inclusions, which delays or prevents crack initiation thus resulting in higher
HCF lifetimes and increased fatigue strengths [20]. However, the detailed mechanisms
occurring in the vicinity of inclusions during a TMT are still unknown. Further, it is unclear
whether the shape, area and position relative to the surface (e.g., depth) of an inclusion
influence the effectiveness of a TMT or whether a TMT may affect the shape, area and
position of critical crack-initiating inclusions. The shape, size and inclusion depth of crack-
initiating non-metallic inclusions were investigated and analyzed by other researchers.
However, these investigations are mostly simulation-based [15,23]. There are experimental
investigations reporting no correlation between the areas of critical non-metallic inclusions
or inclusion depth and lifetime (N f ) [9,24,25]. However, other studies showed that the
area and inclusion depth of critical inclusions decreases with increasing lifetime [18,26]. In
order to analyze the influence of non-metallic inclusions on the fatigue behavior, various
parameters such as type, shape, area, distribution and applied stress should be taken
into account and this makes the fatigue behavior analysis rather complex [17,27]. In this
study, we systematically investigate the influence of shape, area and position of critical
non-metallic inclusions on the high cycle fatigue lifetime of the steel SAE4140 in a quenched
and tempered state. In a second step, we study whether a TMT, which increases the fatigue
limit and the fatigue lifetime in the HCF regime [22], affects the shape, area and position
of critical inclusions and whether the effectiveness of the TMT is influenced by these pa-
rameters. The goal of the study is to gain a better understanding of how the TMT and the
inclusion parameters interact. For this, stress-controlled high cycle fatigue tests at room
temperature were conducted on round specimens of quenched and tempered specimens
and on additionally thermomechanically treated specimens of SAE4140. In order to rule
out the influence of load amplitude, all fatigue tests were conducted with a constant stress
amplitude. Fracture surfaces, fisheyes and inclusions were investigated using scanning
electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).

2. Materials and Experimental Procedure

The investigated material is the steel SAE4140 (according to EN ISO 683-2, German
designation: 42CrMo4) in quenched and tempered state. The chemical composition is given
in Table 1. The material was delivered in soft-annealed state in the form of round bars from
which a near-net-shape geometry of the specimens was machined by turning.

Table 1. Chemical composition of the test material in wt.%.

C Si Mn P S Cr Mo Fe

0.430 0.259 0.743 0.012 0.039 1.060 0.207 Balance

After the quenching and tempering, the specimen geometries were again machined to
avoid dimensional changes after heat treatment. The final specimen geometry for fatigue
testing can be seen in Figure 1.
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The initial heat treatment was conducted in a vacuum furnace and included austeniti-
zation at 840 ◦C for about 20 min, quenching in oil to reach room temperature and finally
tempering at 180 ◦C for 2 h. After the heat treatment, a fully martensitic microstructure was
obtained. In this state, the material exhibits a 0.2% yield strength of about 1500 MPa and
ultimate tensile strength of 1900 MPa [29], which correlates to a hardness of 594 ± 5 HV 0.5.
The hardness reduction due to the TMT, which takes place at 265 ◦C, is not significant [22].
The fatigue tests as well as the TMT were conducted on a servohydraulic push–pull testing
machine with a capacity of 100 kN. The force was measured with a 100 kN force transducer.
The TMT was conducted at a temperature of 265 ◦C, which was identified as temperature
where the DSA effects are most pronounced [22]. The specimens were heated inductively
to this temperature at zero stress and were kept in this state for 15 s soaking time. Then
the cyclic mechanical treatment of the TMT was applied with a sinusoidal waveform at a
frequency of 1 Hz and a gradually increasing stress amplitude according to the procedure
described in [20]. The starting stress amplitude was 600 MPa and the maximum stress
amplitude was 1600 MPa with a step of 100 MPa between individual stress amplitudes.
At each stress amplitude, 5 cycles were applied. The total time of a specimen at 265 ◦C
during the TMT was 70 s. A more detailed description of the TMT can be found in [22].
Specimens with thermomechanical treatment are designated as TMT specimens, while
the specimens after the initial heat treatment served as a reference in the fatigue tests and
are designated as heat treated (HT) specimens. Figure 2 shows micrographs of polished
and etched longitudinal sections of an HT and a TMT specimen in the initial state. Both
specimens exhibit a fully martensitic microstructure. There are no significant differences
between HT and TMT specimens, which was expected since the annealing time of 70 s
during the TMT at 265 ◦C is too short to cause changes that can be observed by light
microscopy.
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Both, TMT specimens and HT specimens were cycled in stress-controlled tests at room
temperature until fracture. For cycling, a sinusoidal waveform with a frequency of 50 Hz
was applied. The stress amplitude for all tests was 775 MPa with a load ratio of R = −1
(fully reversed loading). The stress amplitude of 775 MPa was chosen because it typically
produces internal crack initiation at non-metallic inclusions as well as fisheye formation for
both HT and TMT specimens [22]. The obtained lifetimes were between 1 and 10 million
cycles. An SEM (Carl ZeissAG, Oberkochen, Germany) was used in secondary electron
(SE) mode to analyze the fracture surfaces of specimens. The sizes and depths of inclusions
and the sizes of fisheyes were measured using SEM images and the software KLONK
image measurement (15.1.2.1, Image Measurement Corporation, Cheyenne, WY, USA). The
inclusion depth was defined as minimum distance between the inclusion center and the
surface. EDX (Thermo Fisher Scientific Inc., Waltham, MA, USA) was applied to determine
the chemical composition of the non-metallic inclusions on fracture surfaces.

3. Results and Discussion
3.1. Lifetime Results

Figure 3 presents the fatigue lifetimes of all tested specimens (eight HT specimens
and eight TMT specimens) at the constant stress amplitude of 775 MPa. In the considered
lifetime regime, the TMT improved the average lifetime by about 40%, which is assumed to
be a result of stabilization of the dislocation structure around inclusions and is consistent
with the results of previous studies [21,22].
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3.2. Type and Form of Critical Non-Metallic Inclusions on the Fracture Surface

All tested specimens fractured due to cracks that initiated at inclusions in the volume.
Chemical composition analysis using EDX showed that for both TMT and HT specimens
the critical crack initiating inclusions were always oxides of type AlCaO. Figure 4 shows a
representative SEM image of a crack-initiating inclusion along with the appropriate EDX
mapping.
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It was reported elsewhere that AlCaO oxides are typically the most harmful ones for
internal fatigue crack initiation in SAE4140 [30]. Figure 5 shows typical critical inclusions
on fracture surfaces. There are eye-shaped inclusions including sharp edges on one axis,
which are produced during the rolling process [17], and round inclusions without sharp
edges. Both forms of critical inclusions were found on the fracture surfaces of both the HT
and TMT specimens.
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Figure 6 shows two critical inclusions of TMT specimen fracture surfaces, which
cannot be categorized into round or eye-shaped. Instead, these inclusions exhibit rather
angular shapes, but without sharp edges. Nevertheless, also these inclusions were oxides
of type AlCaO.
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3.3. Area, Shape and Maximum Stress Intensity Factor (Kmax,Inc) of Non-Metallic Inclusion

Figure 7 shows the area of critical inclusions of TMT and HT specimens versus the
fatigue lifetime for the constant stress amplitude of 775 MPa. The markers indicate the
form of critical inclusion. For both HT and TMT specimens, the area of critical non-metallic
inclusions scatters considerably. However, for both specimen types, no significant influence
of the inclusion area on the lifetime can be observed. This is somewhat surprising since
one might expect that for the given constant stress amplitude, larger inclusions lead to
earlier crack initiation and thus shorter lifetimes. However, other studies have also shown
that the HCF lifetime of steels after crack initiation at internal inclusions is independent of
the inclusion area [9,24]. The average area of critical inclusions is slightly larger for TMT
specimens than for HT specimens. Since the TMT has no influence on the inclusion size
distribution, this slight effect is presumably due to the scatter of the inclusion sizes in the
specimens. It can be seen that all round and angular-shaped critical inclusions for both
HT and TMT specimens exhibit a square root area greater than about 35 µm. All critical
inclusions with square root areas smaller than about 35 µm are eye-shaped with sharp
edges. Hence, smaller inclusions with sharp edges can be as detrimental as larger ones
without sharp edges, which can be explained by the stress concentration near the sharp
edges [15,16]. Therefore, the area of inclusion is not the only significant parameter, which
determines whether it can become a critical crack initiating inclusion.

With the measured area of the crack-initiating inclusions, the maximum stress intensity
factor for subsurface inclusions can be derived with the following Equation (1):

Kmax,Inc= 0.5× σmax ×
√

π×
√

areainc (1)

For a square root of the inclusion area of 35 µm, Kmax, Inc is about 4.05 MPa.m1/2,
which is apparently the required minimum to induce a fatigue crack from inclusions
without sharp edges. For eye-shaped inclusions featuring sharp edges, the required value
of Kmax, Inc is accordingly lower.



Metals 2022, 12, 995 7 of 12Metals 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 7. Area of critical inclusions for specimens with TMT and HT versus lifetime at 휎  = 775 
MPa. 

3.4. Influence of Inclusion Depth on the Fatigue Lifetime 
Figure 8 compares the lifetimes of three HT specimens, which initiated cracks at in-

clusions of a similar size and form, but at various distances from the surface (inclusion 
depth). Apparently, the inclusion depth does not correlate with the lifetime. It can be as-
sumed that due to the detrimental effect of air moisture, the crack propagation rate is 
much higher for an internal crack that has reached the surface than for a crack that is still 
in the fisheye stadium [11]. Consequently, the lifetime period spent in the crack propaga-
tion stage should be longer when the critical inclusion is located at a larger distance from 
the surface. Since the results indicate no obvious influence of inclusion depth which is in 
good agreement with other investigations in the HCF regime [24,25], we can infer that the 
lifetime is mostly governed by the period before crack initiation and the crack propagation 
stage occupies only a small percentage of the total lifetime. We assume that this is true for 
both HT and TMT specimens. Hence, the observed longer lifetimes for TMT specimens 
(see Figure 3) result presumably from longer periods until crack initiation, which is in 
accordance with the assumed TMT strengthening mechanism of a more stable dislocation 
structure around the inclusions. The parameter, which causes a lifetime scatter of about 
factor three for critical inclusions with almost the same size and form under constant stress 
amplitude and the same specimen state (Figure 8), remains unclear. 

Figure 7. Area of critical inclusions for specimens with TMT and HT versus lifetime at σa = 775 MPa.

3.4. Influence of Inclusion Depth on the Fatigue Lifetime

Figure 8 compares the lifetimes of three HT specimens, which initiated cracks at
inclusions of a similar size and form, but at various distances from the surface (inclusion
depth). Apparently, the inclusion depth does not correlate with the lifetime. It can be
assumed that due to the detrimental effect of air moisture, the crack propagation rate is
much higher for an internal crack that has reached the surface than for a crack that is still in
the fisheye stadium [11]. Consequently, the lifetime period spent in the crack propagation
stage should be longer when the critical inclusion is located at a larger distance from the
surface. Since the results indicate no obvious influence of inclusion depth which is in
good agreement with other investigations in the HCF regime [24,25], we can infer that the
lifetime is mostly governed by the period before crack initiation and the crack propagation
stage occupies only a small percentage of the total lifetime. We assume that this is true for
both HT and TMT specimens. Hence, the observed longer lifetimes for TMT specimens
(see Figure 3) result presumably from longer periods until crack initiation, which is in
accordance with the assumed TMT strengthening mechanism of a more stable dislocation
structure around the inclusions. The parameter, which causes a lifetime scatter of about
factor three for critical inclusions with almost the same size and form under constant stress
amplitude and the same specimen state (Figure 8), remains unclear.

3.5. Fisheye Formation and Inclusion Depth

Fracture surface analyses of both TMT and HT specimens show the formation of
fisheyes around all the critical inclusions. Figure 9 shows typical fracture surfaces of three
specimens. As it can be seen from Figure 9a,b, cracks initiate at the inclusion inside the
volume and the inclusion is surrounded by the fisheye. Both fisheyes exhibit a smooth area
(SA) until reaching the surface and no obvious changes in the fisheye surface structure
can be observed. As soon as the fisheye reaches the surface, oxidation-assisted fatigue
crack growth begins. In this stage, the cracks grow predominantly away from the touching
surface, as can be seen in Figure 9c. Hence, the formation of the nearly round fisheye ends
as soon as the internal crack reaches the surface. The fisheye presented in Figure 9c shows a
transition from smooth (SA) to rougher (RA) fracture surface with a wavy structure of radi-
ally extended peaks and troughs. A similar transition of the fisheye surface characteristics
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was reported by Stanzl-Tschegg et al. [10,11] who found that the transition from smooth to
rough fisheye surface goes along with a significant increase in crack propagation rate [11].

Metals 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 8. Evaluating the effect of inclusion depth on the lifetime for HT specimens at 휎  = 775 
MPa. 

3.5. Fisheye Formation and Inclusion Depth 
Fracture surface analyses of both TMT and HT specimens show the formation of 

fisheyes around all the critical inclusions. Figure 9 shows typical fracture surfaces of three 
specimens. As it can be seen from Figure 9a,b, cracks initiate at the inclusion inside the 
volume and the inclusion is surrounded by the fisheye. Both fisheyes exhibit a smooth 
area (SA) until reaching the surface and no obvious changes in the fisheye surface struc-
ture can be observed. As soon as the fisheye reaches the surface, oxidation-assisted fatigue 
crack growth begins. In this stage, the cracks grow predominantly away from the touching 
surface, as can be seen in Figure 9c. Hence, the formation of the nearly round fisheye ends 
as soon as the internal crack reaches the surface. The fisheye presented in Figure 9c shows 
a transition from smooth (SA) to rougher (RA) fracture surface with a wavy structure of 
radially extended peaks and troughs. A similar transition of the fisheye surface character-
istics was reported by Stanzl-Tschegg et al. [10,11] who found that the transition from 
smooth to rough fisheye surface goes along with a significant increase in crack propaga-
tion rate [11]. 

Figure 10a,b show the fisheye radius and the inclusion depth over the fatigue lifetime, 
respectively. The data points in both diagrams correlate strongly, which confirms that 
fisheyes grow in circular form starting from the critical inclusion until they reach the sur-
face. For both TMT and HT specimens there is no clear relation between inclusion depth 
or fisheye radius and lifetime. As already discussed in Section 3.4, this means that the 
lifetime portion in the crack propagation stage is relatively small. The fisheye sizes and 
the corresponding inclusion depths of TMT specimens are significantly larger than for HT 
specimens. This indicates that the TMT has a better strengthening effect on inclusions near 
the surface compared to the inclusions located deeper in the volume, thus shifting the 
crack initiation site further into the volume. Possibly, the plastic deformation during the 
TMT is more pronounced in near-surface regions because the respective grains have no 
neighboring grains in the direction to the surface. It could also be that a radial temperature 
gradient in the specimen's gauge length occurred during the TMT. The TMT temperature 
of 265 °C was reached by inductive heating and was measured and controlled at the spec-
imen surface. The soaking time at 265 °C before the mechanical loading starts is only 15 s 

Figure 8. Evaluating the effect of inclusion depth on the lifetime for HT specimens at σa = 775 MPa.

Figure 10a,b show the fisheye radius and the inclusion depth over the fatigue lifetime,
respectively. The data points in both diagrams correlate strongly, which confirms that
fisheyes grow in circular form starting from the critical inclusion until they reach the
surface. For both TMT and HT specimens there is no clear relation between inclusion
depth or fisheye radius and lifetime. As already discussed in Section 3.4, this means
that the lifetime portion in the crack propagation stage is relatively small. The fisheye
sizes and the corresponding inclusion depths of TMT specimens are significantly larger
than for HT specimens. This indicates that the TMT has a better strengthening effect on
inclusions near the surface compared to the inclusions located deeper in the volume, thus
shifting the crack initiation site further into the volume. Possibly, the plastic deformation
during the TMT is more pronounced in near-surface regions because the respective grains
have no neighboring grains in the direction to the surface. It could also be that a radial
temperature gradient in the specimen’s gauge length occurred during the TMT. The TMT
temperature of 265 ◦C was reached by inductive heating and was measured and controlled
at the specimen surface. The soaking time at 265 ◦C before the mechanical loading starts
is only 15 s in order to minimize purely thermal effects. Hence, it is possible that the
specimens were not completely heated through when the mechanical loading began. If the
temperature in the specimen center would be significantly lower, the strengthening DSA
effects might be less effective. If that were the case, an even better increase in the fatigue
lifetime and fatigue strength might be possible with a more homogeneous temperature
distribution in the treated volume. This may be reached with a longer soaking time at
the TMT temperature before the mechanical loading begins. Figure 10 also indicates the
fisheye surface structure showing that, for fisheye radii below 300 µm, the fisheye surface
has only a smooth structure, while for radii above 300 µm, a smooth and a rougher, wavy
structure as in Figure 9c could be observed. This is true for both TMT and HT specimens.
With increasing fisheye radius, the roughness and waviness of the fracture surface becomes
more pronounced. The transition from smooth to the rough fisheye structure occurred
always at a radius of about 300 µm. The corresponding stress intensity factor according
to Equation (1) is about 15.8 MPa.m1/2, which may be identified as the transition stress
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intensity factor to the Paris regime [10]. Obviously, if the fisheye reaches the surface before
this value is reached, only a smooth fisheye structure is formed. Hence, it depends mainly
on the inclusion depth whether a fisheye grows in one or two stages. The results indicate
that the TMT has no influence on the fisheye formation and thus on the crack propagation.
This was expected since the TMT is supposed to strengthen the microstructure very close
to the inclusions and not in the bulk.
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Figure 9. Fisheye formation analysis of fracture surfaces at a stress amplitude of 775 MPa. (a) TMT
specimen, inclusion is surrounded by a smooth fisheye (fisheye formation in a single stage,
N f = 4,932,070 cycles, inclusion depth = 125 µm); (b) HT specimen, inclusion is surrounded by a
smooth fisheye (fisheye formation in a single stage, N f = 6,722,705 cycles, inclusion depth = 180.8 µm);
(c) TMT specimen, inclusion is surrounded by a small smooth fisheye around the inclusion and a
bigger rough fisheye around the smooth one (fisheye formation in two stages, N f = 9,706,545 cycles,
inclusion depth = 1.3 mm).
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4. Conclusions

In this study the influence of thermo-mechanical treatment (TMT) on the lifetime,
internal crack initiation and crack propagation behavior under high cycle fatigue loading
at a constant stress amplitude of 775 MPa was investigated. The results can be summarized
as follows:

(1) For the tested stress amplitude, all specimens fractured from cracks that initiated at
oxide inclusions of type AlCaO within the volume. Fisheye fracture surfaces could be
observed in all cases. As expected, the TMT increased the average fatigue lifetime by
about 40% due to plastic deformation in the temperature regime of dynamic strain
aging, which leads to a strengthened dislocation structure around inclusions and
delays crack initiation.

(2) The area of the critical inclusion and the inclusion depth has only an insignificant
influence on the overall fatigue lifetime for both the TMT and HT specimens. Depend-
ing on the shape of critical inclusion, the minimum required inclusion area for the
crack initiation and its corresponding stress intensity factor could change.

(3) The inclusion depth correlates strongly with the fisheye radius. This means internal
cracks grow in fisheye mode until they reach the surface. When the fisheye reaches
a radius of about 300 µm, which corresponds to a stress intensity factor of about
15.8 MPa.m1/2, the fracture surface appearance changes from smooth to a rougher
wavy form, which is presumably the transition to crack propagation in the Paris
regime. TMT had no influence on this behavior.

(4) The TMT increases the average depth of critical inclusions considerably indicating that
the strengthening of the microstructure is more effective in the near-surface regions.
The reason for this might be that there is a radial temperature gradient in the specimen
during the TMT resulting in varying effectiveness of dynamic strain aging effects.
With a more homogeneous temperature distribution, an even better effect of the TMT
might be possible.
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