
A LASSO-based approach to sample sites for

phylogenetic tree search

Noa Ecker1, Dana Azouri1,2, Ben Bettisworth3,4, Alexandros Stamatakis3,4,

Yishay Mansour5, Itay Mayrose2,* and Tal Pupko 1,*

1The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv

69978, Israel, 2School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978,

Israel, 3Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany, 4Institute

of Theoretical Informatics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and 5The Blavatnik School of Computer

Science, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

*To whom correspondence should be addressed.

Abstract

Motivation: In recent years, full-genome sequences have become increasingly available and as a result many
modern phylogenetic analyses are based on very long sequences, often with over 100 000 sites. Phylogenetic
reconstructions of large-scale alignments are challenging for likelihood-based phylogenetic inference programs
and usually require using a powerful computer cluster. Current tools for alignment trimming prior to phylogenetic
analysis do not promise a significant reduction in the alignment size and are claimed to have a negative effect on
the accuracy of the obtained tree.

Results: Here, we propose an artificial-intelligence-based approach, which provides means to select the optimal
subset of sites and a formula by which one can compute the log-likelihood of the entire data based on this
subset. Our approach is based on training a regularized Lasso-regression model that optimizes the log-likelihood
prediction accuracy while putting a constraint on the number of sites used for the approximation. We show that
computing the likelihood based on 5% of the sites already provides accurate approximation of the tree likelihood
based on the entire data. Furthermore, we show that using this Lasso-based approximation during a tree search
decreased running-time substantially while retaining the same tree-search performance.

Contact: talp@tauex.tau.ac.il or itaymay@tauex.tau.ac.il

Availability and implementation: The code was implemented in Python version 3.8 and is available through GitHub
(https://github.com/noaeker/lasso_positions_sampling). The datasets used in this paper were retrieved from Zhou
et al. (2018) as described in section 3.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic tree inference is a fundamental challenge in evolution-
ary research. Phylogenetic trees can be statistically inferred from a
multiple sequence alignment (MSA), a set of DNA/protein sequen-
ces, for which homology was inferred at the single residue reso-
lution. Advanced phylogenetic inference methods are based on the
phylogenetic likelihood function, which is the probability of observ-
ing the sequence data given a phylogenetic tree under a probabilistic
model of sequence evolution. It was previously shown that identify-
ing the tree that maximizes the likelihood is NP-hard (Chor and
Tuller, 2005), and thus applying heuristic-search strategies to ex-
plore the vast tree space is required to infer hopefully near-optimal
trees (Felsenstein, 2004). Most heuristic maximum-likelihood (ML)
search strategies rely on a hill-climbing optimization technique.
Employing this technique requires an iterative evaluation of possible
modifications to the current tree, which are termed neighboring

trees. The search can start from a random tree, or more commonly
from a tree generated by fast algorithms, e.g. the distance-matrix
method or parsimony (Felsenstein, 1981). The search terminates
when reaching a local maximum, i.e. when the current tree has no
neighbors with a higher likelihood score.

There are several variants of the hill-climbing search. For ex-
ample, there are several alternative definitions of neighboring trees,
including the nearest neighbor interchange (NNI) (Moore et al.,
1973; Robinson, 1971), which is used in, for example, IQ-TREE
(Nguyen et al., 2015), the lazy subtree pruning and regrafting (SPR)
(Felsenstein, 2004), which is used in RAxML-NG (Kozlov et al.,
2019) and in PhyML (Guindon et al., 2010) and the tree bisection
and regrafting (TBR) (Allen and Steel, 2001), which provides a com-
prehensive set of neighbors but is not widely used due to its compu-
tational complexity induced by the large number of neighbors. In
addition, due to the possibility of reaching local optima, the search
for the most likely tree usually starts from multiple initial trees. For

VC The Author(s) 2022. Published by Oxford University Press. i118

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i118–i124

https://doi.org/10.1093/bioinformatics/btac252

ISCB/ISMB 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022

https://orcid.org/0000-0001-9463-2575
https://github.com/noaeker/lasso_positions_sampling
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/


example, RAxML starts with random trees as well as trees recon-
structed based on the maximum parsimony criterion, while IQ-
TREE (Nguyen et al., 2015) starts with both maximum parsimony-
based trees and Neighbor-Joining-based trees (Saitou and Nei,
1987). Additional suggested search strategies include genetic algo-
rithms (Helaers and Milinkovitch, 2010; Lewis, 1998) and simu-
lated annealing (Stamatakis, 2005). Furthermore, it was previously
shown that it is beneficial not to compute the likelihood of neigh-
boring trees whose estimated sum of branch lengths highly deviates
from that of the current tree (Hordijk and Gascuel, 2005). We have
recently shown that machine-learning algorithms can be efficiently
utilized to accurately rank neighboring trees without computing
their likelihood, thus potentially increasing the computational effi-
ciency of tree inference (Azouri et al., 2021).

Regardless of the specific search strategy, the most time-consuming
operation in ML-based tree search is the evaluation of the log-
likelihood of neighboring trees (including branch-length optimization)
using the so-called phylogenetic likelihood function. To facilitate effi-
cient likelihood computations, a main assumption of all widely used
models is that evolution at different sites is independent, conditioned
on the tree. It follows that the likelihood of each site can be computed
independently, and that the log-likelihood of a tree is the sum of the
per-site log-likelihoods over all MSA sites. Therefore, the running time
of the likelihood evaluation on a given tree is theoretically linear in the
number of sites in the MSA. However, in practice, programs that per-
form phylogenetic analysis save computational effort by avoiding re-
petitive calculations across different sites. For example, one
straightforward technique employed by popular programs such as
PhyML (Guindon et al., 2010), RAxML (Stamatakis, 2014) or
MrBayes (Ronquist et al., 2012) is to remove duplicated columns from
the MSA and assign appropriate weights to the remaining unique col-
umns. RAxML-NG (Kozlov et al., 2019) further optimizes the running
time by implementing a technique known as site repeats, in which iden-
tical site patterns are detected at each subtree, resulting in runtime
improvements of 10–60% (Kobert et al., 2017).

Increasing the number of independently evolving loci in an
MSA is expected to improve the reliability and robustness of phylo-
genetic inference (Pamilo and Nei, 1988), although this can also
lead to biases in tree inference, e.g. due to discordance between in-
dividual gene trees (Degnan and Rosenberg, 2009; Knowles, 2009).
In recent years, full-genome sequences have become increasingly
available and as a result many modern phylogenetic analyses are
based on increasingly longer sequences, often exceeding 100 000
sites (Jarvis et al., 2014; Shen et al., 2020). This trend is expected to
become more prominent in the near future with projects such as
The Earth BioGenome Project (Lewin et al., 2018) that aims to se-
quence and assemble the genomes of over 1 000 000 eukaryotic
species. The shift toward phylogenetic reconstruction of large-scale
MSAs seems promising for increasing inference reliability (Gee,
2003), but at the same time presents a computational challenge to
phylogenetic inference methodologies. The common practice of
trimming unreliably aligned sites from an MSA prior to phylogenet-
ic reconstruction can potentially contribute to running time reduc-
tion. However, it has been argued that on average, trimming an
MSA using popular tools has a slightly negative effect on the accur-
acy of the obtained tree (Tan et al., 2015). Moreover, it has been
claimed that this negative effect increases with the number of sites
being removed by the trimming process, implying that reducing
running time in this manner comes at the cost of reduced accuracy.
In light of the issues with current trimming techniques, the ClipKIT
tool (Steenwyk et al., 2020) implements a new method for MSA
trimming whose strategy is to retain all parsimony-informative sites
(i.e. sites that contain at least two characters that appear in at least
two taxa)—even if these contain many gaps—and possibly retain-
ing constant sites. Although ClipKIT is claimed to be relatively
harmless with respect to tree inference accuracy compared to popu-
lar trimming programs, the expected decrease in running-time
might be insufficient when working with MSAs with a large pro-
portion of parsimony-informative sites.

Here, we propose a new approach to select a subset of MSA sites
as a means to reduce the running time of likelihood-based inference,

with minimal reduction in inference accuracy. Our methodology is
based on the artificial-intelligence paradigm and utilizes the Lasso-
based regression. This approach is based on our observation that for
a given MSA, the log-likelihood of different sites across trees is high-
ly correlated. Such correlations can be utilized to identify a represen-
tative set of sites and corresponding weights that enable predicting
the overall log-likelihood of any given tree.

2 New approach

We regard the problem of MSA trimming as a variable-selection
task, where each MSA site is considered as a variable and the aim is
to choose the smallest set of variables that is sufficient for represent-
ing the entire alignment. Our methodology is based on Lasso regres-
sion (Tibshirani, 1996), which tends to select only one predictor
from any set of highly correlated predictors (Zou and Hastie, 2005).
We apply the Lasso regression in order to detect a subset of sites and
their associated weights. These sites and weights are used to ap-
proximate the log-likelihood of the entire MSA for any given tree. In
other words, the Lasso approach provides a sample of sites and a
formula by which one can compute the log-likelihood of the entire
data based on this sample. Let LLi Tjð Þ be the log-likelihood of site i
given tree Tj, representing both the tree topology and its associated
branch-lengths. LLi Tjð Þ are computed based on a specified Markov
substitution model (see Section 3 below), which can be any of the
widely used nucleotide or amino-acid replacement models.
Assuming independence among MSA sites, the log-likelihood of the
MSA given Tj satisfies:

LL Tjð Þ ¼
Xm
i¼1

LLiðTjÞ (1)

where m is the number of sites in the MSA. We next express LL Tjð Þ
as a linear combination of the log-likelihood values of the individual
sites LLi Tjð Þ; 1 � i � m:

LL Tjð Þ ¼
Xm
i¼1

biLLiðTjÞ (2)

Clearly, setting all beta values to 1 will be optimal in terms of ac-
curacy. However, to reduce computation time we aim to zero some
of the beta values, while retaining a good approximation of the like-
lihood function. Thus, our goal is to find a small set of s sites
(s� m) i1; . . . ; is, encompassing all sites whose weight is not zero,
such that LL Tjð Þ �

Ps
k¼1 b ikð ÞLLik Tjð Þ.

The detection of the subset of sites is conducted in a training
phase, which is performed as an initial analysis for a given dataset.
In this training phase, we generate a set of g trees, and for each tree
we compute the exact per-site log-likelihoods. These g trees are ran-
domly selected from the set of all possible trees (see section generat-
ing random trees in Section 3). The computed log-likelihoods of
these trees are provided to the Lasso regressor, which provides the
list of s sites and their associated weights. These sites and weights
are then used in the following ML tree-search phase using standard
search heuristics. Specifically, the log-likelihoods of the g trees used
for training can be expressed in a matrix form:

LLðT1Þ
LLðT2Þ

..

.

LLðTgÞ

0
BBB@

1
CCCA ¼

LL1 T1ð Þ � � � LLm T1ð Þ
..
. . .

. ..
.

LL1 Tgð Þ � � � LLm Tgð Þ

0
BB@

1
CCA

b1
b2

..

.

bm

0
BBB@

1
CCCA (3)

If one considers the beta vector as unknown, using the least-
square approach we search for the beta vector that minimizes:

Xg

j¼1

�
LL Tjð Þ � b0 �

Xm
i¼1

biLLiðTjÞ
 !2

(4)

b0 is the intercept of the regression line (the value of b0 may be
ignored during the tree search, as it does not affect the ranking of

Lasso-based site sampling i119

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022



alternative tree topologies). Setting b0 ¼ 0 and b1 ¼ b2 ¼ � � � bm ¼ 1
would make this error expression equal zero. Our goal is to obtain
low errors, with fewer than m non-zero beta values. To this end, we

apply the Lasso criterion (Tibshirani, 1996), namely, we add a pen-
alty term

Pm
j¼1 jbjj � k where k is a tuning parameter of the Lasso

methodology. We thus aim to minimize:

Xg

j¼1

ðLL Tjð Þ � b0 �
Xm
i¼1

biLLi Tjð Þ
 !2

þ
Xm

j¼1
jbjj � k (5)

The higher the value of k, the fewer the sites that will be selected,

i.e. a larger number of beta values will be set to zero. In our case,
selecting more sites is expected to improve prediction accuracy.
Hence, the value of k controls the trade-off between prediction ac-

curacy and running time. We thus search for k values that corres-
pond to a fixed percentage of positions, which we denote by f (e.g.

1% or 5% of the sites).

3 Materials and methods

3.1 Data used for evaluation
In order to evaluate our approach, we used six very large amino-
acid MSAs (NagyA1, ShenA9, StruA5, WickA3, YangA8 and
MisoA2) from Zhou et al. (2018). From each amino-acid MSA, we

generated nine datasets by randomly selecting 15, 30 and 60 sequen-
ces and trimmed the first 20 000, 40 000 and 80 000 positions, after

removing fully undetermined columns from the obtained datasets.
Additional analyses were performed on four DNA MSAs (WickD3a,
PrumD6, MisoD2a, WickD3b) also from Zhou et al. (2018), which

were trimmed to 30 taxa and 20 000 positions.

3.2 Computing exact site-specific log-likelihoods
The computations of the site-specific log-likelihood values and the
log-likelihood value of a given tree based on Lasso weights were per-

formed using RAxML-NG (Kozlov et al., 2019), under the
WAGþGAMMA model (Whelan and Goldman, 2001).

3.3 Generating a set of random trees
To generate a set of random trees for each dataset, we first generated

a set of random topologies T1; :;Tg
� �

, using the sequential random-
ized stepwise addition order algorithm, as implemented in RAxML-
NG (Kozlov et al., 2019). Branch-lengths were then drawn from an

exponential distribution with a mean of 0.1.

3.4 Lasso computations
In order to fit a Lasso model for various values of k, we used the im-
plementation of lasso_path in the Sklearn library (Pedregosa et al.,
2011) in Python version 3.8 that generates the Lasso path with co-
ordinate descent.

The grid of penalty parameters is chosen, by default, such that
the maximum value in the grid is the minimal penalty which forces
all coefficients to equal exactly zero. Here, we used 100 grid points

on a log scale such that the ratio between the largest penalty to the
minimal penalty equals 1� 10�7. In order to find a Lasso solution

for a given percentage of non-zero coefficients (f), we iterated over
the penalty grid until finding a solution matching this criterion. We
note that sampling large fractions of the data based on this method

is not possible, since this fraction is limited from above by the frac-
tion of the data obtained by the minimal value of the grid. Due to

technical and mathematical limitations (RAxML-NG only accepts a
site weight vector with positive weights as input), we restricted the
Lasso coefficients to be positive. We note that as part of finding the

beta vector, the columns of the regression design matrix were nor-
malized by subtracting the column mean and dividing each value by
the L2-norm so that selection will be scale-free.

3.5 Analyzing the effect of various features on the Lasso

performance
The analysis was performed using the nlme package (Pinheiro et al.,
2020) for the R software, version 4.0.3, treating the empirical MSA
as a random effect after applying logit transformation on the
response variable:

y ¼ log
1� r2ð Þ

1� 1� r2ð Þ

 !
¼ log

1� r2ð Þ
r2

� �
(6)

The coefficient of determination (R2) was evaluated using the
rsq package (Zhang, 2021) for the R software, version 2.2, consider-
ing fixed effects only.

3.6 Evolutionary rate analysis
We used Rate4Site (Pupko et al., 2002) to compute standardized
site-specific evolutionary rates. Rate4Site was run with maximum
parsimony trees with ML-optimized branch-lengths computed using
RAxML-NG. Rates were computed based on the empirical Bayes
method.

3.7 Tree search algorithm
We implemented a tree-search algorithm, inspired from the speed-
ups introduced in RAxML (Stamatakis et al., 2007). At each iter-
ation, all SPR neighbors of the current tree within a rearrangement
distance of five nodes are evaluated (without branch-lengths opti-
mization). Once a better tree is found (a tree with a higher log-
likelihood value by at least 0.1 log-likelihood points), the search is
immediately repeated starting from that neighbor. In case that none
of the proposed neighbors is better than the current tree, full
branch-lengths optimization is performed on the 50 best SPR neigh-
bors according to the previous evaluation. Again, once a better tree
is found, the search immediately continues from that tree. The
search ends when none of the proposed neighbors is better than the
current tree.

The Lasso-based tree search was implemented in two phases.
When sampling based on the Lasso, instead of computing the log-
likelihood based on the entire set of positions, the log-likelihoods
were computed based on the positions sampled by the Lasso, multi-
plying the log-likelihood of each position by its associated weight,
which is also given as output by the Lasso approximation. During
the first phase, the Lasso-based log-likelihood approximation was
used, with the first phase terminating once reaching a local max-
imum. In the second phase, a second SPR search starts from the final
tree of the first phase, while using the Lasso-based log-likelihood ap-
proximation for evaluating the log-likelihood of all SPR candidates
(without branch-lengths optimization) and using the full MSA to
perform branch-lengths optimization on the resulting 50 best trees.
The Lasso-based log-likelihood approximation was obtained based
on f¼5% of the MSA sites, and the training-size (g) was set to 2000
and 4000, for MSAs with 15 sequences and MSAs with either 30 or
60 sequences, respectively.

4 Results

4.1 Lasso performance evaluation on an example

dataset
We first demonstrated the Lasso learning process on the NagyA1
dataset (see Section 3), which was trimmed to have 30 amino-acid
sequences and m ¼ 80 000 sites. We assumed the WAG amino-acid
replacement model (Whelan and Goldman, 2001) with among-site-
rate variation modeled by a discrete gamma distribution with four
rate categories and an alpha parameter of 0.93, inferred using ML
assuming the most parsimonious tree reconstructed by RAxML-NG.

For the training phase, we first generated a training set of per-
site log-likelihood values based on g ¼ 4000 random tree topologies
whose branch-lengths were drawn from an exponential distribution
with scale parameter 0.1. For the Lasso modeling, we selected a pen-
alty parameter such that approximately f¼5% of the MSA sites

i120 N.Ecker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022



(4048 sites) have non-zero coefficients. To evaluate the accuracy of
the Lasso approximation on the training data, we compared the full
log-likelihoods of the training trees to the log-likelihoods estimated
based on the Lasso approximation (note, for these comparisons we
did not optimize the branch lengths or any specific model parame-
ters). Table 1A shows the exact and approximated log-likelihoods of
five randomly selected trees used for learning. As can be seen, all
errors are below 0.009% and the differences between the exact and
approximated log-likelihood values are substantially smaller than
the differences among the scores of the distinct tree topologies.

We then tested the performance of the approximation on 100
additional random trees that had not been used for training the
model (test data). While the branch lengths of the trees used for
training were drawn from an exponential distribution, the branch-
lengths of the trees used for testing were ML estimated based on all
MSA positions. Table 1B shows the same comparison as above, for
five randomly selected trees from these test data (full results are
available in Supplementary Table S1). To better quantify the per-
formance, we computed the squared correlation coefficient (Pearson
r2) between the approximated and the exact log-likelihoods (Fig. 1)
and observed very high performance on the training and test data-
sets (r2 > 0.999 for training set and r2 ¼ 0.998 on the test set).
Moreover, the relative order of the log-likelihoods of the examined
trees with the Lasso approximation was nearly identical to that with
the full set of MSA positions (Spearman q > 0.999 on the training
set, q ¼ 0.998 on the test set).

The above results were obtained when the Lasso procedure was
trained on g ¼ 4000 random trees and setting the percentage of
sampled positions (f) to 5%. In order to estimate the effect of both g
and f on prediction accuracy, we trained the Lasso model several
times based on different combinations of g (500, 1000, 2000, 4000)
and f (1%, 2.5%, 5%, 10%), and assessed the respective accuracy
on the test set. As expected, the best result is obtained when using
the largest training size (g ¼ 4000) and the largest sample percentage
(f¼10%), with r2 ¼ 0.9985 (Fig. 2). However, using the same

training size (g ¼ 4000) and only f¼5% of the positions provides
very close accuracy (r2 ¼ 0.9983). In addition, the overall perform-
ance of training sizes 2000 and 4000 along the different sample per-
centages was relatively similar. For the smallest sample percentage
(f¼1%) having larger training-size did not improve test accuracy.
However, with increasing sample percentage the advantage of hav-
ing a larger training size became substantial (Fig. 2). To gain further
insights into the robustness of the Lasso-based sampling approach,
we followed the same procedure as described above, running on 54
different alignments: six different empirical MSAs, which were ran-
domly trimmed to include 15, 30 or 60 sequences, with alignment
lengths of either 20 000, 40 000 or 80 000 positions. For each of
these 54 datasets, we tested the accuracy as a function of four values
of g: 500, 1000, 2000, 4000, and four f values: 1%, 2.5%, 5%,
10%. The prediction accuracy was evaluated on a random sample
of 100 trees, whose branch-lengths were ML-optimized using the
full MSA. In most cases, the error rates were lower than 5%, and
the increase in accuracy when moving from f¼5% to f¼10% was
negligible (full results are available in Supplementary Table S2,
Supplementary Fig. S1).

4.2 Factors affecting the Lasso performance
We used a linear mixed-effect model to describe the relationship be-
tween the unexplained variance on the test set (1� r2) and the fol-
lowing explanatory variables: sequence divergence, percentage of
constant sites in the MSA, the alpha parameter of the gamma distri-
bution, number of sequences and alignment length (see Section 3 for
details). Our analysis obtained an R2 of 0.86 and suggested that the
most important factors affecting accuracy are the MSA length, the
number of sequences and the alpha parameter: both longer align-
ments and larger alpha parameters (less rate heterogeneity among
sites) lead to reduced errors while increasing the number of sequen-
ces increases the error. Specifically, adding ten sequences to the
MSA has an opposite effect on the error as adding 10 000 new sites
or increasing the alpha parameter by 0.25. Sequence divergence and
percentage of invariant sites had a non-significant effect on accuracy
(full results are available in Supplementary Table S3).

4.3 Lasso performance under other evolutionary

models
The above results were obtained under the WAG replacement ma-
trix. To test the performance of our approach under alternative pro-
tein evolutionary models, we applied the Lasso procedure (using
g ¼ 4000 random trees) under the JTT and LG models on the above
six empirical amino-acid MSAs trimmed to 20 000 positions and 30
taxa. The absolute difference in accuracy (measure by r2 between
the true and inferred log-likelihoods) using WAG and using either
JTT or LG were always lower than 0.016, suggesting that the Lasso
approach is insensitive to the choice of the protein model. We also
tested the performance of the Lasso procedure on four DNA

Table 1. Performance of the Lasso approximation

A.

Training random

tree index

Log-likelihood with

site sampling

Log-likelihood

with all sites

Percentage of

error (%)

1 �2 521 335.5 �2 521 360.5 0.001

2 �2 492 529.8 �2 492 400.3 0.005

3 �2 682 862.6 �2 683 107.8 0.009

4 �2 491 174.8 �2 491 191.2 0.001

5 �2 463 169.9 �2 463 143.8 0.001

B.

Testing random

tree index

Log-likelihood with

site sampling

Log-likelihood

with all sites

Percentage

of error (%)

1 �2 186 578.4 �2 182 258.2 0.198

2 �2 177 328.9 �2 172 830.6 0.207

3 �2 201 897.4 �2 198 910 0.136

4 �2 137 834.4 �2 132 177.7 0.265

5 �2 174 970 �2 170 486.8 0.207

Note: Performance of the Lasso approximation on five trees selected from

the training set (A) and five trees selected from the test set (B). The training

and test sets included 4000 and 100 trees, respectively. The Lasso method-

ology selected 4048 sites from a total of 80 000 sites (i.e. around 5%). The

percentage of error is calculated as the absolute of the difference between the

true and approximated log-likelihoods divided by the true log-likelihood. The

mean percentage of error and the standard deviation across 4000 trees used as

a training set are 0.0035 and 7.6e-06, respectively. The mean percentage of

error and the standard deviation across 100 trees used as a test set are 0.17

and 0.0019, respectively.

Fig. 1. Scatter plot of predicted versus exact log-likelihoods (LL). Each dot repre-

sents one random tree. The blue line is the linear regression line. (A) Results on

training data; (B) results on test data

Lasso-based site sampling i121

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data


alignments by applying the Lasso procedure assuming the GTRþG
model (using g ¼ 4000, 20 000 positions, 30 taxa). The accuracy
was still very high (mean r2 ¼ 0.97 using f ¼ 5% of the positions),
albeit slightly inferior to that obtained when analyzing the protein
datasets (full results for all protein and DNA models are available in
Supplementary Table S4).

4.4 The evolutionary rate of sampled positions
We hypothesized that the positions selected by the Lasso are not a
random sample of all MSA positions. To test this hypothesis, we
next quantified the site-specific evolutionary rates of all MSA posi-
tions (See Section 3). Figure 3 shows the distributions of evolution-
ary rates for the entire alignment against that of the sampled
positions for the NagyA1 dataset with 30 sequences and 80 000
positions. This comparison suggests that the Lasso algorithm tends
to select positions with relatively high evolutionary rate: while the
average rate across all positions is normalized to have a mean of
zero, the average rate of selected positions was 0.61 (P<2.2E–16; t-
test). This suggests that the Lasso approximation relies on the more
variable sites, which are phylogenetically informative, on account of
the more conserved sites, which are highly correlated to each other.
Similar results were obtained for other datasets and other combina-
tions of f and g (see Supplementary Fig. S2).

4.5 Applying the Lasso approximation to partitioned

data
The above results were obtained under the assumption of a single
evolutionary model for the entire MSA. However, different genes
may differ in their evolutionary model. To demonstrate the utility of
the Lasso approach under such a scenario, we analyzed the perform-
ance on a partitioned data. Specifically, three empirical datasets
(NagyA1, YangA8 and PrumD6, each dataset trimmed to 30
sequences and 20 000 positions) were used, whereas in each dataset,
at least 12 gene regions (partitions) exist. The Lasso parameters
used were g ¼ 4000 and f ¼ 5%. We compared the performance of
applying the Lasso procedure once for the concatenated alignment
versus applying it to each partition separately. In such a partition
analysis we first fitted a separate model for each gene partition and

then generated training data, such that the log-likelihoods of each
position are computed based on its corresponding model. The Lasso
procedure was then applied to these training data. The accuracy of
the test sets using the concatenation and partition approaches was
very similar for all three datasets (absolute difference in test set ac-
curacy smaller than 0.0015), suggesting that the Lasso approach can
accurately account for model variation among different partitions.

We next examined whether the Lasso methodology tends to se-
lect more positions from fast-evolving genes. First, we observed that
the sampled positions are not distributed as expected if no bias
exists, i.e. in some genes more than 5% of the positions were
sampled, while in others, less (P-value < 1.2�10�11; Chi-square).
Rather, for all three datasets higher sampling percentages were
observed for fast-evolving genes. Specifically, a significant correl-
ation was found between the mean evolutionary rate of each gene
and the sampling fraction (Pearson r¼0.17, 0.73 and 0.14 for the
NagyA1, Yang8, PrumD6 datasets, respectively when using a con-
catenated dataset and r¼0.57. 0.87, 0.33 for the NagyA1, Yang8,
PrumD6 datasets, respectively when using partitioned data).

Although the above results suggest a bias sampling of the Lasso
approach, favoring positions from fast-evolving genes, we next
tested whether this oversampling affects the ranking of tree topolo-
gies. Specifically, it is possible that any sample of positions from the
entire dataset would bias the ranking of competing tree topologies.
If we observe that the Lasso approximation, which is based on all
partitions, overestimates the log-likelihood of some trees and these
same trees are also overestimated when using only the fast-evolving
genes, we can conclude that the Lasso approximation is biased to-
ward the fast-evolving genes. If, however, possible biases in tree
ranking introduced by the fast-evolving partitions have a small im-
pact on the Lasso approximation, we expect a low, if any associ-
ation between the trees over-estimated by the fast-evolving genes
and trees over-estimated by the Lasso approximation. To determine
if such a bias exists and if so—its magnitude, for each dataset, we
selected the top three fast-evolving genes and used them to evaluate
the log likelihood of 100 test trees. To determine the bias in log-
likelihood estimate we computed the difference between the esti-
mated and true log-likelihood for each tree. We repeated this bias
computation, this time applying the Lasso approach for all genes.
We then computed the correlation between the errors. No signifi-
cant positive correlation was observed, suggesting that the fast-

Fig. 2. The error in log-likelihood estimation as a function of training size and per-

centage of sampled positions. The y axis quantifies the error as the percentage of un-

explained variance (1� r2) obtained on a test set of 100 random trees (r2 denotes

the square Pearson correlation coefficient). Shown are results for four values of

training size and four values of sampling percentage. The analyzed alignment is the

NagyA1 dataset with 30 sequences and 80 000 sites

Fig. 3. Distribution of evolutionary rates for the entire alignment against that of the

sampled alignment. Shown are results on the NagyA1 dataset with 30 sequences

and 80 000 positions using f¼5% of the positions and g ¼ 4 000 trees used for

training. The overlap between the two distribution is shown in dark green

i122 N.Ecker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data


evolving trees and the Lasso approximation do not significantly
overestimate and underestimate the log likelihoods of the same trees.
This suggests that the impact of the fast-evolving trees on the selec-
tion of tree topologies is relatively small, despite the fact that more
positions are sampled from these genes.

4.6 Comparison of the Lasso procedure to naı̈ve

approaches
We compared the performance of the Lasso procedure (using g ¼
4000 random trees) to two alternative naı̈ve procedures: (i) sampling
positions randomly (results were averaged over five iterations); (ii)
Selecting the positions with the highest evolutionary rate. We per-
formed this comparison on the six empirical amino-acid MSAs,
trimmed to 20 000 positions and 30 sequences, using a test set of
100 random trees. Our results indicated that random sampling is
superior to the sampling of the fastest evolving positions and that
both approaches are inferior to the Lasso approximation, particular-
ly when the sampling fraction is low. For example, when 10% of the
positions were sampled, the mean of r2 were 0.82, 0.97 and 0.99 for
the sampling of fast positions, random sampling and Lasso-based
sampling, respectively. These values were 0.57, 0.79 and 0.92, when
using f ¼ 1%. Full results are available in Supplementary Table S5.

4.7 Lasso performance during an SPR search on the

example dataset
We next evaluated the benefit of using this approximation in a hill-
climbing heuristic for finding the ML-tree topology, starting from a
random tree. To this end, we implemented three variants of a greedy
tree-search heuristic: (i) standard: without using Lasso; (ii) Lasso-
only; (iii) two-phase search, in which an additional search phase ini-
tiates from the ending point of the Lasso-only search, but this time
the branch lengths of proposed neighbors are optimized using all
alignment positions (see Section 3 for details). The performance of
the three search strategies on an example MSA (NagyA1), initiating
from the same starting tree (with a log-likelihood of -2 191 145.5)
are summarized in Table 2. The results indicate that the Lasso-only
search (without accounting for the training time) is 47-fold faster
than the standard search, albeit it led to a slightly inferior tree top-
ology. Adding the second search phase resulted in a tree that had a
slightly higher likelihood than the tree obtained using the standard
search, with a 22-fold reduction in running time. Most of the gain in
log-likelihood was obtained during the first phase (Supplementary
Fig. S3). The second phase of the algorithm, which is computational-
ly demanding was required to distinguish between tree topologies
that are near the locally optimal tree. For this distinction, accurate
estimation of branch lengths based on all MSA positions is needed.

In both the Lasso-only and the two-phase searches, the Lasso
weights must be computed prior to running the tree-search algo-
rithm. The above results are based on a single starting tree.
However, state-of-the-art heuristics start with multiple starting
trees, e.g. in RAxML-NG the default number of random starting
trees is 10. Notably, the training phase of the Lasso approximation
needs only to be conducted once for all starting trees. Thus, assum-
ing similar computational times for 10 searches starting from differ-
ent random points, the two-phase algorithm is expected to be 17.02
times faster than the standard search, when accounting for the train-
ing time. When a single starting tree is used, the two-phase algo-
rithm is 5.9 times faster than the standard search (Table 2).

4.8 Lasso performance during the SPR search on

additional datasets
We followed the same pipeline on 18 empirical MSAs, each with a
total of 80 000 positions (six amino-acid datasets, trimmed to in-
clude either 15, 30 or 60 sequences), starting the searches from three
random points. For 15 sequences, the two-phase algorithm con-
verged to a tree with higher log-likelihood compared to the standard
algorithm for one out of the six datasets, and to the same ML trees
for the remaining five datasets. The median fold decrease in compu-
tational time of the two-phases algorithm was 3.72. This modest

running-time factor is due to the relative cost of the training time
compared to the small number of SPR moves required to reach a
local maximum for such a small search space. For MSAs with 30
and 60 species, the running time improvement was substantially
higher (median fold decrease in running time of 7.94 and 19.24, for
30 and 60 sequences, respectively). The accuracy of the two algo-
rithms is comparable, i.e. out of the twelve empirical datasets with
either 30 or 60 sequences, in five of the cases, the two-phase algo-
rithm converged to a tree with higher log-likelihood, in four cases it
converged to a tree with a lower log-likelihood and in the remaining
three cases the two algorithms converged to the same tree (full
results are in Supplementary Table S6).

5 Discussion

In this work, we presented a numerical approach to reduce the com-
putation time required to evaluate the log-likelihood of a phylogen-
etic tree with respect to a given MSA. The underlying assumption in
our approach is that information contained in many of the MSA
sites, especially when large MSA are used, is highly redundant.
Thus, inference based on a small number of sites, when chosen care-
fully, can greatly reduce running times, while maintaining inference
accuracy. Applying this approach on several empirical MSAs, we
have demonstrated that in all cases, using the proposed 5% of the
MSA positions is sufficient to obtain a good approximation of true
log-likelihood values, i.e. log-likelihood values calculated using the
entire MSA. Furthermore, we have shown that using our approxi-
mation during SPR searches can substantially reduce running-time
with little to none effect on inference accuracy.

In our analysis, we have used a fixed percentage of sampled pos-
ition (f) to each empirical dataset and throughout the entire search.
A possible extension of the work presented here would be to fit f to
each dataset, based on its characteristics, e.g. the alignment length,
number of sequences and the extent of among-site rate variability.
Furthermore, it may be beneficial to dynamically adjust f as the
search progresses, i.e. use very low f values for the first steps of the
tree search, and slowly increase the value as we approach local max-
ima. Similarly, we have used a fixed number of random trees for
training (g) for all datasets. However, it is possible that learning
based on a selected set of non-random trees may prove to be more
beneficial, e.g. bootstrap trees. Moreover, it is possible that multiple
training of the Lasso model along the tree search may be beneficial,
e.g. re-training the Lasso based on near-optimal trees in advance
stages of the tree search. Finally, it is possible to train a learning al-
gorithm such as neural network to automatically detect the best
hyper-parameter tuning strategy for a given empirical dataset, based
on a large number of training datasets. We showed that our ap-
proach can be extended to mixed/partitioned analysis simply by
applying it separately on each part of the MSA and sum the corre-
sponding results to obtain an approximation for the entire MSA.
While the application of this approach to codon MSAs is straightfor-
ward, it is important to test how different data characteristics and

Table 2. Performance of different search strategies

Standard Lasso-only Two-phase

Log-likelihood of

final tree

�1 925 986.1 �1 926 169.6 �1 925 950.8

Number of SPR moves 167 153 157

Total CPU time of the

search

133 818 2847 6208

Training CPU time 0 16 502 16 502

Note: Performance of the Standard search, Lasso-only search and Two-

phase search on the NagyA1 MSA with 30 sequences and 80 000 positions.

The Lasso-only search and the Two-phase search are based on Lasso approxi-

mation, which was generated using f¼ 5% of the positions and g ¼ 4000

trees for training. All final log-likelihood scores are computed using all align-

ment sites.

Lasso-based site sampling i123

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac252#supplementary-data


hyperparameters affect performance on this type of data. The Lasso
approach was also recently used in order to select a subset of in-
formative loci for phylogenetic analysis (Kumar and Sharma, 2021).
In that method the regression model did not aim at reducing running
times nor to compute the log-likelihood of alternative trees. When
very large datasets composed of multiple loci are analyzed, these
two approaches can potentially be combined to even further reduce
running time by first selecting a small set of loci, and subsequently
selecting a small set of positions within each locus. Finally, the pro-
posed methodology can potentially reduce the time of Bayesian
approaches in which the log-likelihood computations is a major
time-consuming step.

We note that the Lasso approximation should be valuable also
when other tree-search algorithms are used, e.g. when Nearest
Neighbor Interchange (NNI) moves are used instead of SPR or in
cases were approximate post-SPR log-likelihoods are computed
using local branch-lengths optimization, as is done, for example, in
PhyML (Guindon et al., 2010) and RAxML-NG (Kozlov et al.,
2019).

Funding

N.E. and D.A. were supported in part by a fellowship from the Edmond J.

Safra Center for Bioinformatics at Tel Aviv University. D.A. was supported

by The Council for Higher Education program for excellent Ph.D. students in

Data Sciences and by a fellowship from the Fast and Direct Ph.D. Program at

Tel Aviv University. Y.M. was supported in part by a grant of the Israel

Science Foundation (ISF) 993/17. T.P. was supported by Israel Science

Foundation grants 802/16 and 2818/21.

Conflict of Interest: none declared.

References

Allen,B.L. and Steel,M. (2001) Subtree transfer operations and their induced

metrics on evolutionary trees. Ann. Comb., 5, 1–15.

Azouri,D. et al. (2021) Harnessing machine learning to guide

phylogenetic-tree search algorithms. Nat. Commun., 12, 1–9.

Chor,B. and Tuller,T. (2005) Maximum likelihood of evolutionary trees:

hardness and approximation. Bioinformatics, 21, i97–i106.

Degnan,J.H. and Rosenberg,N.A. (2009) Gene tree discordance, phylogenetic

inference and the multispecies coalescent. Trends Ecol. Evol., 24, 332–340.

Felsenstein,J. (1981) Journal of molecular evolution evolutionary trees from

DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17,

368–376.

Felsenstein,J. (2004) Inferring Phylogenies. Sinauer Associates, Sunderland,

Mass.

Gee,H. (2003) Ending incongruence. Nature, 425, 782–782.

Guindon,S. et al. (2010) New algorithms and methods to estimate

maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

Syst. Biol., 59, 307–321.

Helaers,R. and Milinkovitch,M.C. (2010) MetaPIGA v2.0: maximum likeli-

hood large phylogeny estimation using the metapopulation genetic algo-

rithm and other stochastic heuristics. BMC Bioinformatics, 11, 379.

Hordijk,W. and Gascuel,O. (2005) Improving the efficiency of SPR moves in

phylogenetic tree search methods based on maximum likelihood.

Bioinformatics, 21, 4338–4347.

Jarvis,E.D. et al. (2014) Whole-genome analyses resolve early branches in the

tree of life of modern birds. Science, 346, 1320–1331.

Knowles,L.L. (2009) Estimating species trees: methods of phylogenetic ana-

lysis when there is incongruence across genes. Syst. Biol., 58, 463–467.

Kobert,K. et al. (2017) Efficient detection of repeating sites to accelerate

phylogenetic likelihood calculations. Syst. Biol., 66, 205–217.

Kozlov,A.M. et al. (2019) RAxML-NG: a fast, scalable and user-friendly tool

for maximum likelihood phylogenetic inference. Bioinformatics, 35,

4453–4455.

Kumar,S. and Sharma,S. (2021) Evolutionary sparse learning for phylogenom-

ics. Mol. Biol. Evol., 38, 4674–4682.

Lewin,H.A. et al. (2018) Earth BioGenome project: sequencing life for the fu-

ture of life. Proc. Natl. Acad. Sci. USA, 115, 4325–4333.

Lewis,P.O. (1998) A genetic algorithm for maximum-likelihood phylogeny in-

ference using nucleotide sequence data. Mol. Biol. Evol., 15, 277–283.

Moore,G.W. et al. (1973) An iterative approach from the standpoint of the

additive hypothesis to the dendrogram problem posed by molecular data

sets. J. Theor. Biol., 38, 423–457.

Nguyen,L.-T. et al. (2015) IQ-TREE: a fast and effective stochastic algorithm

for estimating maximum-likelihood phylogenies. Mol. Biol. Evol., 32,

268–274.

Pamilo,P. and Nei,M. (1988) Relationships between gene trees and species

trees. Mol. Biol. Evol., 5, 568–583.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Pinheiro,J. et al. (2020) nlme: Linear and Nonlinear Mixed Effects Models. R

package version 3.1–151. Available online: http://cran.r-project.org/web/

packages/nlme/nlme.pdf.

Pupko,T. et al. (2002) Rate4Site: an algorithmic tool for the identification of

functional regions in proteins by surface mapping of evolutionary determi-

nants within their homologues. Bioinformatics, 18, S71–S77.

Robinson,D.F. (1971) Comparison of labeled trees with valency three. J.

Comb. Theory Ser. B, 11, 105–119.

Ronquist,F. et al. (2012) Mrbayes 3.2: efficient Bayesian phylogenetic infer-

ence and model choice across a large model space. Syst. Biol., 61, 539–542.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Shen,X.X. et al. (2020) Genome-scale phylogeny and contrasting modes of

genome evolution in the fungal phylum Ascomycota. Sci. Adv., 6,

eabd0079.

Stamatakis,A. (2005) An efficient program for phylogenetic inference using

simulated annealing. In: Proceedings of 19th International Parallel and

Distributed Processing 2005, p. 8.

Stamatakis,A. (2014) RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Stamatakis,A. et al. (2007) Exploring new search algorithms and hardware for

phylogenetics: RAxML meets the IBM cell. J. VLSI Sign. Process. Syst. Sign.

Process, 48, 271–286.

Steenwyk,J.L. et al. (2020) ClipKIT: a multiple sequence alignment trimming

software for accurate phylogenomic inference. PLoS Biol., 18, e3001007.

Tan,G. et al. (2015) Current methods for automated filtering of multiple se-

quence alignments frequently worsen Single-Gene phylogenetic inference.

Syst. Biol., 64, 778–791.

Tibshirani,R. (1996) Regression shrinkage and selection via the lasso.

J. R. Stat. Soc. Ser. B, 58, 267–288.

Whelan,S. and Goldman,N. (2001) A general empirical model of protein evo-

lution derived from multiple protein families using a maximum-likelihood

approach. Mol. Biol. Evol., 18, 691–699.

Zhang,D. (2021) rsq: R-Squared and Related Measures. R package version

2.2. Available online: https://CRAN.R-project.org/package¼rsq

Zhou,X. et al. (2018) Evaluating fast maximum likelihood-based phylogenetic

programs using empirical phylogenomic data sets. Mol. Biol. Evol., 35,

486–503.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via the

elastic net. J. R. Stat. Soc. B, 67, 301–320.

i124 N.Ecker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/Supplem
ent_1/i118/6617489 by D

eutsche Zentralbibliothek fuer M
edizin user on 02 August 2022

http://cran.r-project.org/web/packages/nlme/nlme.pdf
http://cran.r-project.org/web/packages/nlme/nlme.pdf
https://CRAN.R-project.org/package&hx003D;rsq
https://CRAN.R-project.org/package&hx003D;rsq

	tblfn1
	tblfn2

