
Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-022-01786-z

V‑FPGAs: Increasing Performance with Manual Placement, Timing
Extraction and Extended Timing Modeling

Johannes Pfau1  · Peter Wagih Zaki2  · Jürgen Becker1 

Received: 1 October 2021 / Revised: 26 February 2022 / Accepted: 20 June 2022
© The Author(s) 2022

Abstract
Virtual FPGAs (V-FPGAs) are used as vendor-independent virtualization layers, to retrofit features which are not available
on the host FPGA and to prototype novel FPGA architectures. In these usecases, the achievable clock frequencies of V-FPGA
user applications are a major concern. The abstraction layer inherently induces overhead, but this aspect is reinforced by
nonuniformity effects: When V-FPGA cells perform worse locally, basic architecture modeling generalizes these worst-case
path delays to the whole device, limiting applications to a lower frequency than theoretically achievable. We propose three
approaches to attenuate these effects: First we introduce uniformity metrics and manual V-FPGA placement strategies for
more uniform placement, improving achievable frequency by 16 %. Second, we propose a framework for automated timing
extraction, enabling individual characterization of each V-FPGA design. Third, after evaluating Vivado synthesis strategies,
we extend the timing model for non-uniform timings, achieving improvements of up to 28 %.

Keywords  FPGA · EDA · Placement · Virtual FPGA

1  Introduction

In recent years, virtual Field Programmable Gate Array
(FPGA) architectures (V-FPGAs) have been been introduced
in academia [1]. Unlike common commercial and academic
FPGAs, the V-FPGA is an FPGA architecture layered onto a
base FPGA architecture: A commercial host FPGA architec-
ture is synthesized for a silicon chip target, and the V-FPGA
layer is synthesized for that host FPGA architecture. The vir-
tual layer is implemented as a bitstream to be programmed
onto the host FPGA. User applications are synthesized using
a custom toolchain for the V-FPGA layer and the result-
ing application bitstream is programmed onto it. V-FPGA

architectures have been applied for three main use cases:
First, as an abstraction layer, providing a common bitstream
format independent of commercial FPGA architectures. This
allows using features such as partial dynamic reconfigura-
tion on FPGAs which do not natively support this [2]. Sec-
ond, V-FPGAs can be used for FPGA architecture research:
Novel ideas can be integrated in the architecture and tested
on a hardware implementation, which can provide additional
insight compared to simulation. This becomes especially
useful when investigating heterogeneous System-on-Chip
(SoC) solutions, which may combine processing systems
and reconfigurable logic [1, 3]. Third, using the V-FPGA as
a basic FPGA architecture: Here it is realized using stand-
ard synthesis approaches for silicon targets and can be used
to evaluate the usage of different logic cell technologies in
FPGAs [4, 5].

V-FPGA architectures have to address various issues and
limitations, some inherent in the very idea of a virtualization
layer, such as e.g. overhead of various kinds caused by the
virtualization layer. One example is area overhead of placed
user applications, comparing total area required on the host
FPGA including the virtualization layer to direct placement
on the host FPGA. Some of the difference is caused by dif-
ferent synthesis tools for the host FPGA and the V-FPGA:
Whereas commercial vendor tools are used for host FPGAs,

 *	 Johannes Pfau
	 pfau@kit.edu

	 Peter Wagih Zaki
	 peterwzaki@gmail.com

	 Jürgen Becker
	 becker@kit.edu

1	 Institute for Information Processing Technologies, Karlsruhe
Institute for Technology, Engesserstraße 5, Karlsruhe 76131,
Baden‑Württemberg, Germany

2	 German University in Cairo, El Tagamoa El Khames,
New Cairo City 11835, Cairo, Egypt

http://orcid.org/0000-0003-1087-1814
http://orcid.org/0000-0002-3100-7956
http://orcid.org/0000-0002-5082-5487
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01786-z&domain=pdf

	 Journal of Signal Processing Systems

1 3

V-FPGA architectures commonly use the open source tool
Versatile Place and Route (VPR). Area overhead is further
caused by the structures of the V-FPGA itself, especially the
configuration logic. This logic, which is used to configure
the application bitstream onto the V-FPGA and to store the
configuration for the V-FPGA Lookup Tables (LUTs), is
usually implemented in host FPGA user logic. It therefore
doesn’t make use of the explicit configuration logic of the
host FPGA, increasing the amount of normal LUT resources
used. Although making use of host FPGA configuration
resources is possible, it will cause the V-FPGA architecture
to resemble the host FPGA very closely, therefore impeding
many of the common V-FPGA use cases. Because of this,
there is a trade-off between the achievable grade of abstrac-
tion from the host FPGA and the overhead caused by the
virtualization, which has to be considered carefully.

Similar considerations apply for the maximum achiev-
able frequency of a user application targeting the V-FPGA.
Whereas an application directly placed onto the host FPGA
can make use of commercial vendor tools, for V-FPGAs the
applications will have to be synthesized with custom tools.
VPR requires an architecture description to provide informa-
tion about the V-FPGA, including the logical structure of
the V-FPGA, aspects such as LUT size, Configurable Logic
Block (CLB) structure, how individual blocks are connected
in the interconnect and more. Whereas this information is
easy to obtain or already given by design decisions made
during development of the V-FPGA architecture, the sec-
ond class of information, the timing information, is more
difficult to acquire. To properly determine the frequency
a user design can be clocked at, the placement tool VPR
needs to know about the delays of all logical elements of the
V-FPGA architecture. These logical elements often map to
multiple elements on the host FPGA. In addition, the delay
encountered for one element at one location of the V-FPGA
is usually different from the delay of a logically equivalent
element at a different location. As an example, the delay of a
LUT at location (1, 1) may be different from the one at loca-
tion (4, 4) due to irregularities in the placement and routing
of the V-FPGA onto the host FPGA.

To address these issues, two approaches will be consid-
ered in this publication. The first approach is making the
V-FPGA placement onto the host FPGA more uniform.
As the timing information in a common VPR architecture
considers all elements of one type to have identical delays,
the V-FPGA timing characterization has to use the worst
case, e.g. the maximum delay of all elements of one type in
the V-FPGA. In the example case of LUTs, the maximum
delay of all V-FPGA LUTs would be used to characterize the
LUT in the architecture. With this approach, the maximum
observed delay is most important and outliers anywhere in
the V-FPGA affect all of the V-FPGA elements. Uniformity
of the design is therefore beneficial, as long as it also reduces

the maximum delay. For special use cases, uniformity is fur-
thermore not just a secondary metric, but inherently impor-
tant: Use cases involving relocation of placed logic require
similar delays everywhere on the V-FPGA. Furthermore,
achieving quick tool runtime in VPR requires assumption of
a uniform FPGA architecture, although other solutions are
possible and will be considered in the following. When mod-
eling a uniform architecture, a worst case value may be used,
but it will severely limit the maximum frequency of user
applications. The first part of this work therefore considers
approaches to reduce the number of maximum delay outli-
ers and increase uniformity of observed delays. This part is
an extended version of our previous publication [6], which
provided the initial idea of manual placement. Manual place-
ment tries to customize the placement of V-FPGA resources
onto the host FPGA, trying to achieve more uniform delays
than default placement does. In addition, we follow up on
this work to describe how timing information is extracted
from the design and used to model the architecture in VPR.
The original results have been re-evaluated to be based on
a fixed track width for all V-FPGA sizes compared, avoid-
ing confusion due to multiple parameters changing between
compared designs. We also provide a new comparison of
Vivado synthesis strategies and the influence those have on
the uniformity of the V-FPGA.

We further introduce a new, second approach to address
the described V-FPGA issues: Accepting the non-uniformity
of the V-FPGA, in which we present adjustments in VPR
synthesis flow to handle the non-uniformity: First we obtain
the timing information for each single logic element of
the placed V-FPGA. Then, instead of using the maximum
value as in the basic case, we model each CLB in the VPR
architecture with individual timing information. Whereas
this leads to improved user application frequency, it has
the drawback of being more complex to model, increasing
the VPR runtime and therefore having limited scalability
towards larger V-FPGA designs. For large V-FPGA designs,
increasing the uniformity as shown in our first approach may
prove to be more viable.

2 � Related Work

Regarding previous research in placement algorithms for
FPGA, we differentiate two research areas: Placement algo-
rithms for generic FPGA applications and manually guided
placement for specific applications. Research on generic
placement algorithms has largely been conducted using
academic open source tools. The most-widely used of these
tools is Verilog to Routing (VTR) [7], which consists of
three main tools: Odin II for synthesizing circuits designed
in Verilog into generic LUT resources, ABC for technology-
mapping those resources into architecture specific LUTs,

Journal of Signal Processing Systems	

1 3

and VPR for packing, placement, and routing. Research led
to the introduction of new techniques and algorithms for
placement and packing, focusing on different cost targets
such as timing driven, routing-driven or runtime-driven: [8]
introduces an algorithm named adaptive range-based Simu-
lated Annealing (ARBSA). It provides an adaptive approach
to choose the neighborhood for each block according to the
nets it belongs to. The result shows a 1.78X runtime speed
up, 10 % reduction on wire length and 2 % reduction on the
critical path with timing-driven optimization. Research in
this area proposes general algorithms, trying to find good
solutions regardless of the target application. Results are
usually compared to the VTR algorithms, showing improve-
ments over VPR which do not directly translate to compari-
sons with commercial tools [9].

The second group of research uses the concept of manual
placement, ranging from guidance to completely manually
placed designs. For example, [10] introduced a sea-of-gates
architecture called Triptych. It aims to reduce the signifi-
cant cost paid for routing in standard FPGAs, replacing the
logic blocks with Routing and Logic Blocks (RLBs). RLBs
perform both logic and routing tasks, allowing a tradeoff
between logic and routing resources on a per mapping basis.
Using manual placement made this architecture yield a logic
density improvement of up to a factor of 3.5 over commer-
cial FPGA’s automatic placement. In another example, Shi
et al. analyzed manual placement for their specific FPGA
application [11]. It shows that using manual placement leads
to a compact and optimized design with shorter nets, reduc-
ing propagation delay up to 25 %.

Whereas generic algorithms can be used to implement
the V-FPGA, they have to be reimplemented in the Vivado
implementation flow, as they originally target VPR. In addi-
tion, none of these algorithms takes the regular structure of
the V-FPGA into account. The presented application specific
manual placement methods on the other hand, do not directly
translate to the V-FPGA structure. They need to be heavily
modified to be usable for this application area. In order to

improve net delay in the V-FPGA, we therefore investigate
specific custom placement methods based on similar ideas,
but explicitly considering the V-FPGA architecture and
regularity.

3 � Background

The placement strategies to be introduced make use of the
regular structure of the V-FPGA. As such, they are depend-
ent on both the V-FPGA architecture, as well as on the host
FPGA architecture. The strategies have been designed to
work with a certain parameter variability in these architec-
tures, but certain assumptions have been made.

3.1 � V‑FPGA Architecture

Figure 1a shows the V-FPGA architecture and the arrange-
ment into the common types (1-9) of tiles. In its simplest
configuration, the V-FPGA consists of 9 different tile types,
which are distinguished by orientation and contained ele-
ments. A single tile can contain all elements (like type 2
and 4), all but the I/O Block (IOB) (type 9, i.e. the central
tiles), Programmable Switch Matrix (PSM) and IOB (type
1, 5, 6, 8), CLB, PSM and two IOBs (type 3), or only the
PSM (type 1). Even for tiles which have the same types of
elements, their differences in orientation — and therefore
layout — will require them to be placed differently.

The Configuration Units (CUs) are not shown in Fig. 1a,
as it is an implementation detail of the V-FPGA. They store
and provide the configuration for the CLB, PSM and IOB
in their respective tile and enable dynamic reconfiguration
of the V-FPGA. In our V-FPGA implementation, the CU is
implemented essentially as a shift register with parallel out-
put. It will have to be mapped to the host FPGA in addition
to the other components.

Figure 1a also shows the wires corresponding to relevant
delays for the final VPR architecture model: Apart from

Figure 1   V-FPGA architecture
details: a: Tile Distribution and
top-level architecture. b: CBR
and CBW implementation and
connection to routing channels.

	 Journal of Signal Processing Systems

1 3

intra-block delays such as delays within the CLB, these con-
sist of nets in the global routing channels. Figure 1b shows
how the CLB in a tile connects to the global routing chan-
nels. Connection points are realized using Read Connection
Boxs (CBRs) and Write Connection Boxs (CBWs), which
consist of multiplexers either connecting multiple wires to
one CLB input or connecting the CLB output to one of the
channel wires. To realize this connection, the CBW as an
example consists of one multiplexer for each wire in the
channel. The multiplexer selects between either forwarding
the signal of the channel wire or writing the CLB output to
this wire. Structurally, these multiplexers will be mapped to
host FPGA LUTs. Therefore on the host FPGA, a V-FPGA
wire from PSM to PSM will actually consist of at least two
host wire segments and the LUT. Similar effects are also
caused by IOB connections.

Another peculiarity of our V-FPGA implementation con-
cerns the implementation of its bidirectional wiring: Logi-
cally, the V-FPGA architecture uses bidirectional wiring, but
the implementation on the host FPGA can only make use of
unidirectional wiring. Figure 1b shows how the CBR and
CBW connect to different host wires, leading to different
directions. In order to drive a logical V-FPGA wire in both
directions, the PSMs will loop back the right-to-left signal
in left-to-right direction.

All these effects cause two implications for this work:
First, when constraining the design, the V-FPGA wire can
not be constrained as one unit. Instead, all wire segments on
the host FPGA have to be constrained individually. Further-
more, when modelling the V-FPGA architecture in VPR,
the delay for the complete net is needed. For this reason the
data extraction script extracts the individual segments, but
for architecture modeling and for assessment of placement

results in this publication, these have to be added up. In
the rest of this article, we will always consider and present
complete PSM-to-PSM and CLB-to-PSM paths.

3.2 � Host‑FPGA Architecture

Although the strategies described in this work are designed
to be generic and support different host-FPGA architec-
tures, the specific parameters used will depend on the con-
crete host-FPGA architecture used. For the evaluation and
results shown, we focus on Xilinx 7 Series architecture and
especially the XC7Z020-CLG484 FPGA. To describe how
host-FPGAs architectures provide limits for achievable uni-
formity, we will describe the used host-FPGA architecture
in detail: For manual placement, the most important aspect
of the host-FPGA architecture affecting V-FPGA uniformity
and delay is the host-FPGA uniformity. If the host FPGA
was completely uniform, placing the V-FPGA in a uniform
way would be a simple task of repeating a template structure.
As shown in Fig. 2, this is not the case for recent commercial
FPGAs:

Figure 2a shows the overall device layout, where CLBs
are shown as small boxes. Regions of such CLBs are divided
by wide gaps. These are areas where larger hard-IP blocks,
such as the ARM processor cores or DDR memory control-
ler cores, are located. Placing the V-FPGA across the whole
area of this device will cause larger delays for wires connect-
ing two V-FPGA tiles separated by hard IP, whereas adja-
cent V-FPGA will show reduced delay. This issue will need
to be considered when finding the target area to place the
V-FPGA, as well as when placing the individual tiles. Most
importantly, a single tile should never be disconnected by
an interspersed large hard-IP block. Furthermore, depending

Figure 2   XC7Z020-CLG484
Xilinx 7-series FPGA layout: a:
Chip overview showing clock
regions, peripheral blocks and
large gaps caused by hard-IP
such as the ARM processor
cores b: Close-up view of CLB
columns showing variation
in number of adjacent CLB
columns caused by interspersed
BRAM and DSP hard-IP.

Journal of Signal Processing Systems	

1 3

on the host FPGA, it may not be reasonable to use the whole
area if high performance and low delays are required.

Figure 2b shows a similar, but less grave effect, in pro-
viding a close-up view of the CLB columns. Columns are
also divided by interspersed small hard IP blocks, mainly
Block RAM (BRAM) and Digital Signal Processor (DSP)
resources. These cause the number of adjacent CLB columns
to vary, an effect which needs to be considered when plac-
ing the V-FPGA tile contents and when determining the tile
sizes. In addition, this limitation will cause certain varia-
tion in V-FPGA uniformity which cannot be avoided with-
out significantly affecting other performance characteristics
(e.g. using only some of the available CLBs, which would
increase required area).

3.3 � Metrics

To evaluate and assess the results, we first introduce several
comparison metrics. The commonly used metrics — delays,
uniformity and area — have a specific meaning for V-FPGA
targets and are crucial for V-FPGA applications.

3.3.1 � Uniformity

Uniformity is a measurement of local delay variation across
the V-FPGA structure. Placing every tile in the same way,
the V-FPGA is a uniform structure, which in theory could
be placed uniformly on the host FPGA. As explained previ-
ously, not all tiles have exactly the same internal structure
and non-uniformity of the host FPGA architecture will fur-
ther degrade the uniformity. To address this, our definition
of uniformity divides the V-FPGA into N

C
 sets, where each

set represents one column C. We also group nets into classes,
so that similar nets in different tiles are within a single class.
We differentiate between these classes:

1.	 PSM Left: Horizonal nets, starting at PSM left output
multiplexers and ending at PSM right input multiplexers.

2.	 PSM Right: Horizontal nets, starting at PSM right out-
put multiplexers and ending at PSM left input multiplex-
ers.

3.	 PSM Top: Vertical nets, starting at PSM top output mul-
tiplexers and ending at PSM bottom input multiplexers.

4.	 PSM Bottom: Vertical nets, starting at PSM left output
multiplexers and ending at PSM right input multiplexers.

5.	 PSM Internal: Internal nets within the PSM, realizing
the Wilton switch pattern.

6.	 CLB Input: Nets starting at the output of the CBR and
ending at the input of the LUT.

7.	 CLB Output: Nets starting at the LUT output and end-
ing at the input of the CBW.

Our definition of uniformity then essentially measures dif-
ferences between rows within a set, but no uniformity is
guaranteed between the sets themselves. This definition is
formalized in the following equations:

Here, t
c,r,n is the delay of a net in class n, column c and row

r. Equation 1 provides the arithmetic mean �
c,n of the delays,

calculated over the N
R
 V-FPGA rows. �2

c,n
 then calculates the

variance for a net class in a certain column over the rows.
This is further used in � to calculate the arithmetic mean of
the standard deviations of all net classes in all columns. c

v

provides the arithmetic mean over the coefficient of varia-
tion of all net classes in all columns. Whereas the standard
deviation is an absolute value and therefore depends on the
mean of the delays, the coefficient of variation provides a
relative measurement. As the delays in the host FPGA are
largely discrete (e.g. fixed delays in LUTs), it is expected
that relative delays can not be reduced further at some point.
Because of this, we use � to guide the design of our strate-
gies and for evaluation of practically achievable uniformity.
c
v
 is used to judge the quality of results for V-FPGA: As a

smaller delay � allows to put more logic elements in a path
at the same frequency for V-FPGA applications, a constant
standard deviation leads to reduced certainty of the number
of V-FPGA logic elements in the path. A constant relative
value c

v
 signifies unchanged conditions for the V-FPGA

application synthesis.

3.3.2 � Delay

Delay for the V-FPGA is a measurement that determines
the final achievable V-FPGA user application frequency.
Whereas the final frequency of user applications ultimately
depends on that applications themseves, i.e. the length and
nature of the critical path, the delays of individual ele-
ments within that path are determined by the placement
of the V-FPGA onto the host-FPGA. For characterization
and modelling of the V-FPGA architecture in VPR and for

(1)�
c,n =

1

N
R

N
R

∑

r=1

t
c,r,n

(2)�
2

c,n
=

1

N
R

N
R

∑

r=1

(

t
c,r,n − �

c,n

)2

(3)� =
1

N
C
N
N

N
C

∑

c=1

N
N

∑

n=1

√

�2
c,n

(4)c
v
=

1

N
C
N
N

N
C

∑

c=1

N
N

∑

n=1

√

�2
c,n

�
c,n

	 Journal of Signal Processing Systems

1 3

application routing, the delays of the previously mentioned
net classes are analyzed individually. But without knowl-
edge of the final user application, none of the types can be
considered as more important than any other. Therefore,
which of the types ultimately will limit the user applica-
tion frequency cannot be determined when implementing a
generic V-FPGA. As a consequence, we reduce these vari-
ous measurements to one metric for performance evalu-
ation, the worst delay across all net classes. Equations to
find the maximum delay are given below:

Here, �
c,n selects the worst delay of a net class (n) in a col-

umn (c), calculated over the V-FPGA rows. � uses this to
find the absolute maximum delay over all columns and all
net classes in the design, providing the single value for
evaluation.

3.3.3 � LUT Overhead

Area is measured in number of host FPGA CLBs used by the
V-FPGA design. Used CLBs in the design do not solely con-
sist of the V-FPGA building blocks: It also includes CLBs
that are constrained to be explicitly not used in placement,
optimizing the placement regularity. For partition blocks,
their size may need to be slightly more than the minimum
required area, as aiming for utilization ratio of 100 % may
cause routing to fail. 87 % utilization rate is the default tar-
get chosen by Vivado and is our starting point for manual
placement. Results presented in [6] described this overall
area, whereas the results in this publication will focus on
the intrinsic LUT overhead. This overhead is caused by
restrictions for the synthesis passes, caused by additional
constraints used by the strategies. One example here is pre-
vented LUT recombination.

3.4 � Placement Methodology

Our overall approach to implement and evaluate the cus-
tom placement strategies for the V-FPGA consists of three
steps: At first, the V-FPGA code is synthesized in Xilinx
Vivado. Second, we run custom Tool Command Language
(TCL) scripts on the synthesized design, adding various
timing and location constraints. The third step is needed
to evaluate the results by running a custom TCL script to
extract timing and area information.

(5)�
c,n = max

r∈{1..N
R
}
t
c,r,n

(6)� = max
c∈{1..N

C
}

max
n∈{1..N

N
}
�
c,n

3.4.1 � Synthesis

Synthesis largely follows the Vivado synthesis flow. To
ensure proper conditions for the TCL script, some settings
are adjusted: The flatten_hierarchy option is changed from
the default rebuilt to none. As V-FPGA designs often provide
customizable parameters [12], the default option rebuilt leads
to unpredictable signal names when these parameters change.
Changing this setting can also affect optimization across hier-
archy levels. To limit the impact of this, the implemented
design was analyzed manually and some optimization have
been carried out manually in the VHDL source code.

3.4.2 � Applying Manual Placement Strategies

After a design has been synthesized, we apply our custom
placement strategies. The strategies will be described in
detail in the next chapter, but all of them are based on the
following constraints:

Timing Constraints  As Vivado analyzes every possible path
in the design, it will also consider configurations of PSM
multiplexers that can create combinational loops. It is there-
fore not easily possible to constrain the timing of the design
by simple definition of the final clock period, as Vivado
will break the loops at arbitrary points. This generates long
paths through different numbers of CLBs and PSMs, mak-
ing it further impossible to constrain a path just between
two specific PSMs. To solve this problem, these paths are
broken manually.

We evaluate two variants of constraints used: In the vari-
ant with fine grained constraints, all individual atomic nets
have their delay constrained using the set_max_delay timing
exception, ensuring that the design still meets timing con-
straints and forcing the timing driven optimization to oper-
ate. These constraints will lead to path segmentation, which
in this case is the desired outcome. In addition, it will add
false path constraints on the original long paths automati-
cally. Path segmentation can affect logic placement and tim-
ing results, so special care needs to be taken when examining
the Vivado timing reports. We therefore use custom scripts
to evaluate the delays of relevant nets instead. As will be
shown in the result sections, these fine-grain constraints are
necessary to animate Vivado to optimize the routing for the
manually placed design. The drawback with this approach
concerns scalability, as large designs which introduce many
of these constraints cause excessive memory use and runt-
ime in the Vivado toolflow. We therefore also evaluate vari-
ants without the fine-grain constraints, to determine whether
they are really necessary.

Journal of Signal Processing Systems	

1 3

In addition to path constraints, we define four clocks for
our design: The primary clock as well as three auxiliary
clocks used for the configuration of PSM, IOB and CLB
elements. The frequency of configuration logic is less impor-
tant than the application frequency, so configuration clocks
will target a lower frequency, avoiding over-constraining
the design. Moreover, we specify the relation between these
clocks using an asynchronous clock group.

Placement Constraints  Placement constraints are used to
perform floorplanning by definition of pin placement and
absolute, or relative, placement of cells. It guides and con-
trols where the place-and-route tools may put FPGA design
elements. Vivado supports various placement constraints,
ranging from just constraining a group of logic in a certain
area to exact placement of single cells to a certain logic ele-
ment. We make use of the following placement constraints:

1.	 LUTNM and HLUTNM: Used to place two combina-
tional functions into the same LUT.

2.	 PROHIBIT: When the only requirement is to avoid
placing any logic at a specific site, this is achieved using
this constraint.

3.	 LOC and BEL: To place a logical element in a specific
location, we use the place_cell command. This com-
mand translates into LOC and BEL constraints, where
LOC links the element from the netlist to a slice and BEL
places it to a specific LUT or flip-flop within the slice.

4.	 PBlock: A PBlock is a collection of cells in one or more
rectangular regions that specify the device resources con-
tained by the block. It is more restrictive than no place-
ment constraints, but less constraining than LOC and BEL.

3.4.3 � Extracting Metrics

The Vivado timing report includes all details to judge in
what respects the design met the timing constraints and
usually provides the authoritative source in knowing the
delay of all nets. But in case of the V-FPGA, this report can
not be used to extract meaningful data: The combinational
loops, path delay constraints and path segmentation hide the
important delays of the atomic nets from the timing report.
Even though the target value for these nets is given using
the path delay constraints, it is still useful to extract the real
delays. To remedy this, a TCL script was written to extract
the delays manually, using the get_net_delay command to
get the delays of atomic nets.

The process of calculating the delay through the CLB is
divided into two parts. At first, we get the worst delay from
the output of any multiplexer of the CBRs cells to the input of
the LUT. Then we add the propagation delay from the output
of the LUT to the CLB output, taking into consideration the
maximum of the two paths of either bypassing the D flop or

using it. The V-FPGA LUT can be implemented in three dif-
ferent ways by host-FPGA toolchain in one or two slices. All
of these options are taken into account.

For the PSM net delays, the total delay from one PSM out-
put to another PSM input is calculated. If such a net is divided
into two or three parts due to interruption by IOB connection
boxes, the parts are summed up. The delays of the horizontal
tracks of the bottom border PSM are expected to be larger
than the rest, as it is divided by the connection box of the
upper tile and the IOB. In contrast, the horizontal tracks of
the upper border PSM have the lowest delays because it is just
interrupted by the IOB unit of the same tile. All delays are
stored in a file for later evaluation grouped into the previously
mentioned net classes.

Additionally, due to the structure of Xilinx 7 series LUT,
more than one function can be implemented on the same
fracturable LUT. This must be taken into consideration when
determining the area used, or when deriving the minimum
size needed for a tile. To find combined LUTs, we first get all
the LUT BELs used as LUT6. We then get all the LUT5 in the
design and compare their location with the LUT6, checking if
they are located at the same site.

3.5 � VPR Architecture Models

In order to synthesize user applications for the V-FPGA, we
used the commonly used open-source VPR toolchain. For syn-
thesis and placement, VPR needs an architecture description.
This file is essentially a specially formatted XML file with
information about the target FPGAs logical structure and tim-
ing information. We use a template for the logical structure,
but timing information will be deduced from the extracted
metrics for all analyzed design variations. To analyze effects
of the various techniques on user applications, we make use
of VPRs benchmark framework. As the benchmarks shipped
with VPR are too large for the V-FPGA sizes compared here,
we used 26 Verilog implementations of 74xx series ICs and
one 4 bit full-adder implementation to emulate a longer critical
path. We measure the maximum frequencies VPR achieves
for those benchmarks, normalize them to the values obtained
for the placement based on Vivado standard placement and
lastly average the results for all benchmarks. Averaging over
those circuits furthermore provides a certain immunity against
non-stable results, which are caused by pseudo random start
conditions in placement algorithms.

4 � Logic Placement Strategies

In the following, we discuss the three manual placement
strategies in detail. We primarily use the uniformity metric
to guide development of the strategies, then assess critical
path delay and LUT overhead in the evaluation.

	 Journal of Signal Processing Systems

1 3

4.1 � Standard Vivado Placement

Figure 3 shows placement result of the default Vivado
strategy (Vivado Synthesis Defaults, Vivado Implementa-
tion Defaults, Vivado 2019.1.1). The figure illustrates the
arguments given previously in the introduction section:
Automated placement does not make explicit use of the
structural regularity of the V-FPGA, which results in tiles
being implemented in slightly different ways. Some are more
distributed, others more localized, leading to varying net
delays and reducing uniformity of the V-FPGA architecture.
This effect is even more apparent in larger designs, where
placement algorithms have to deal with an overall larger
amount of nets and cells. These standard Vivado placement
results will be used as reference point for the evaluation of
the manual placement strategies presented here. Evaluation
results will be normalized accordingly to show improvement
or degradation over the usual automated approach.

4.2 � General Custom Approach

Before the strategy-specific placement step, some steps com-
mon to all approaches are required.

4.2.1 � V‑FPGA Size Determination

Before the V-FPGA can be placed, a suitable host FPGA loca-
tion and area has to be determined. This step has to consider
non-uniformity of the host FPGA: As described previously,

Virtex 7 devices have a rectangular structure with larger gaps
(more than 2 columns) and smaller gaps (2 columns) between
CLBs, caused by I/O banks, clocking and other support logic.
In addition, DSP and BRAM blocks are distributed over the
chip between CLB columns. In order to reduce net length
between placed V-FPGA logic blocks, the biggest area with
no large gaps will be selected, where the threshold when a gap
is considered large is configurable. This is supposed to improve
net delays and support the rectangular layout of the V-FPGA.
Finding the location and area consists of the following steps:

1.	 Estimate the overall area needed for the design using
total CLB count.

2.	 Create a 2D array which represents available and used
CLBs. Then search for the largest possible target area,
only considering areas without blockages larger than the
accepted gap threshold. A reasonable value for Virtex
7 is two, allowing DSP and BRAM gaps but avoiding
larger ones.

3.	 Calculate tile dimensions, fitting all tiles in square form
in the target area.

4.	 If the previous step fails, set the dimension ratio of all
tiles relative to the vertical and horizontal dimensions
of the selected target area.

5.	 If the largest contiguous target area is not large enough
to fit the complete design (step three and four failed), the
steps are reevaluated. In this reevaluation, multiple dis-
connected areas are allowed, yielding split target areas
as shown in Fig. 4b.

6.	 Find the vertical and horizontal dimensions of all tiles
according to their resource usage.

7.	 Normalize the dimensions of all tiles in the same column
or row.

4.2.2 � Rectangular and Quadratic Tiles

Before a tile can be created, its size must be determined.
We investigate two options to derive the tile size: The first
option is to use a size with same width and height for all
tiles, resulting in quadratic tiles. The largest tile dimen-
sions are then taken as the unified size for the PBlocks of
all tiles. Alternatively, the size can be chosen according to
the required area in each tile. This requires additional rules
for tile sizes, to keep the rectangular layout of V-FPGA and
avoid irregular layout results. Therefore, the horizontal size
for all tiles in the same column and the vertical size for all
tiles in the same row have to be identical, leading to rectan-
gular tiles. Figure 4a demonstrates the second option, show-
ing the generated floorplan for a small 2x2 CLB V-FPGA.
For all strategies introduced, we will evaluate the variant
with rectangular and with quadratic tiles. We will assess
differences between these options in the evaluation section.

Figure 3   V-FPGA placed using standard Vivado placement. Host-
FPGA CLBs belonging to same V-FPGA tile are shown in the same
color. As can be seen, some tiles are compact, whereas some are
scattered across wider area. It can also be seen that all-in-all, Vivado
packs tightly and does not keep empty sites to preserve overall struc-
ture.

Journal of Signal Processing Systems	

1 3

4.2.3 � Split Area Implementation

If the V-FPGA does not fit into the largest available con-
tiguous area when considering large gaps according to the
threshold, our placement script can split the target area into
multiple sub-areas, making sure not to split V-FPGA tiles
across sub-areas. In such cases (happening for very large
V-FPGA designs), uniformity will be degraded due to the
nets crossing gaps between the sub-areas. The placement
script will ensure not to split a V-FPGA tile into multiple
sub-areas, to at least guarantee better uniformity within the
tile in such cases.

4.3 � Basic PBlock Strategy

In the basic PBlock strategy, we contain each tile in a single
Partition Block (PBlock): We create a block with suitable
size in quadratic or rectangular form, then use the add_
cells_to_pblock TCL command to add all cells of a tile to
the block. After the tile size has been determined, the host
FPGA location and target area will be fixed. Finally, all
V-FPGA cells are fixed to the PBlocks belonging to their
tile using the PBlock constraints, completing the basic
PBlock placement. Exemplary placement results are shown
in Fig. 4.

4.4 � Nested PBlock Strategy

In addition to the PBlocks used in the first strategy, this strat-
egy introduces up to two additional PBlocks within each tile.
Logic belonging to the V-FPGA CLBs and IOBs is mapped
to these nested PBlocks accordingly: When defining the
PBlocks, all assigned logic cells are forced into the blocks,
but this does not prevent placing any additional unassigned
cells into them. Based on this idea, we introduce two more
variants in addition to the rectangular vs. quadratic layout
distinction: In the partially nested strategy, we use the outer
PBlock for the tile and nested blocks for IOB and CLB, but
the PSM is only constrained by the outer PBlock. This gives
Vivado the freedom to place the PSM in the remaining outer
PBlock area, or place part of it inside the nested PBlocks.
In the fully nested strategy, we force Vivado to not place
any PSM logic in the nested PBlocks, prohibiting usage of
remaining logic cells in them. Figure 5 demonstrates the
concept for a 5x5 CLB V-FPGA.

The placement script is extended with the following steps
to create the nested PBlocks:

1.	 The internal PBlocks can consist of multiple rectangles.
The CLB PBlock is placed at the bottom left corner
with height at most equal to the height of the tile minus

Figure 4   Floorplanning and
PBlocks: a: Floorplan for 2x2
CLB V-FPGA using individu-
ally calculated sizes for each
tile. To keep the layout regular,
widths and heights of tiles are
adjusted accordingly. b: PBlock
floor plan demonstrating a
larger V-FPGA design. The start
point location was forced, so the
target area had to be split into
three smaller areas because of
intersecting hard blocks.

Figure 5   5x5 CLB V-FPGA
floorplan with nested PBlocks.
The nested CLB PBlock is
divided into two pieces to
ensure the minimum possible
area is used. The top right
corner tile has an extra nested
PBlock for its second IOB unit.
No internal PBlock was used at
all in the bottom left corner tile,
as it only contains a PSM.

	 Journal of Signal Processing Systems

1 3

one. This guarantees some freedom to IOB PBlock and
to ensures distribution of the PSM unit over the tile
PBlock.

2.	 The IOB PBlock is placed within the tile PBlock. The
side is determined according to the tile type.

4.5 � Fine‑Grain Manual Placement Strategy

This strategy further constrains logic, directly mapping the
relevant LUTs and flipflops to specific LUTs or flipflops in
the 7 series host CLB. As there are numerous ways to place
the logic within a tile, a manually derived layout is chosen
instead of trying to find a fully automated one. The strategy
is then made generic to support different V-FPGA param-
eters, but the layout is fixed to the V-FPGA and therefore
cannot be reused for completely different applications. Eval-
uation of different manual layouts led to a placement as was
presented in Fig. 1a: The PSM is located in the upper right
corner and the CLB is placed in the lower part of the tile.
Figure 6 shows the device view in Vivado after the manual
placement strategy has been applied.

The implementation of this strategy operates on two
lists for each tile PBlock, an instruction list and a list of the
free host FPGA LUTs. The instruction list contains simple
V-FPGA logic element place instructions, interleaved with
sorting instructions. It is processed element by element,
either placing logic elements or resorting the list of free
resources. When an element placement instruction is pro-
cessed, the logic elements are mapped sequentially to the
elements in the sorted list of free resources, starting at a
specified offset. When a resorting instruction is found, the
resorting algorithm sorts the list of remaining available host
LUTs. It sorts horizontally or vertically and uses ascending
or descending sorting order, depending on the instruction.
As an example, the sort_xy_dd instruction sorts first based
on the x location, and if the x value is the same for some
CLBs, it uses y as secondary criteria. Descending sorting

is applied in both cases. This specific instruction is used to
sort the list of available logic elements before placing the
right and left multiplexers of the PSM, as they need to be
placed vertically from the top right corner. Sorting is always
done on the list of free resources, so the length of this list
decreases as the placement process proceeds. This makes it
possible to reach every single CLB in the PBlock, not just
the ones at the borders.

5 � VPR Architecture Generation

To describe the V-FPGA architecture and timings for VPR,
an architecture XML file has to be provided. The logical
architecture description for the V-FPGA consists of CLBs
and IOBs and closely resembles the V-FPGA VHDL imple-
mentation as it was previously described. The most important
aspect of the VPR architecture model is the timing infor-
mation, which describes delays for certain paths. Figure 7
shows the simplified CLB block and IOB block as modelled
and depicts some examples of timing paths. For the IOBs,
we directly specify input delays and output delays. Only one
of those is relevant in each single IOB, depending on the

Figure 6   V-FPGA tile (type 9) placed using the manual placement
strategy. Multiplexers of the PSM’s top, right, bottom and left side
are marked red (1), purple (2), yellow (3) and blue (4). The CLB is
located at the bottom with the LUT, two internal multiplexers and
D-flipflop colored in black (5). Sky blue color represents the config-

uration units of the tile (6). Yellow blocks at the bottom (7) depict
Write Connection Boxs, whereas Read Connection Boxs are marked
green and turquoise (8) and make up remaining logic distributed
around the LUT.

T i
n T o
ut

D

TLUT

T o
ut

T i
n

Figure 7   VPR architecture modeling the V-FPGA structure with the
CLB model on the left-hand side and the IOB model on the right-
hand side. Dotted lines show timing paths which need to be character-
ized and specified to enable user application synthesis with VPR.

Journal of Signal Processing Systems	

1 3

mode (input or output) in which it is used. The timings are
directly obtained from the placed V-FPGA design using the
timing extractions scripts. For the simplified CLBs model,
three timing delay values are required: First, the input delay
Tin , which models the delay through the CBR and input mul-
tiplexer crossbar to the LUT. Second, the LUT delay itself.
As the V-FPGA LUT maps directly to a host FPGA LUT,
this value is the propagation delay though the host FPGA
LUT and can be obtained from the host FPGA datasheet. The
third value, Tout , is the output delay from LUT to the output
of the CBW. Here two paths could be considered indepen-
dently: The one starting at the D-FF and passing through the
multiplexer, when the LUT output is registered. The other
one starting at the LUT output and passing through the mul-
tiplexer directly, for combinational outputs. To simplify mod-
eling, we use the maximum of those values for both paths.
The simple V-FPGA architecture does not have any CLB
internal feedback path, so no additional delay values have
to be considered for the CLB. For the PSM, the VPR model
description is unfortunately not very flexible. It is possible
to assign resistance and capacitance to wires and to assign
constant delays to the switches in PSMs. But most notably, it
does not seem possible with a normal architecture description
to actually assign different delays to individual PSMs.

To obtain customized architecture descriptions for the vari-
ous tested implementation strategies and V-FPGA sizes, we
modelled the base architecture as a parametrizable template.
The template is essentially a mustache file, which can then be
combined with the timing descriptions in form of a simple
JSON file to yield the architecture with custom timings. The
JSON file itself is obtained through evaluation of the detailed
timing information generated by the TCL timing extraction
scripts. In some cases, the paths depicted in Fig. 7 consist of
multiple host FPGA segments or logic elements, so those ele-
ments are summed in the timing extraction scripts. We then
consider two main approaches: The basic, direct modeling of
CLB, IOB and PSM. In this case, we check all CLBs, IOBs
or PSMs in the V-FPGA and search for the ones with the
maximum delay. We then use this value for all logic elements
of that type within the VPR architecture. This clearly reduces
overall performance by assigning worse timings to all but the
slowest logic blocks, but it is the approach closest to tradi-
tional FPGA architecture modeling, where uniform delays
are expected and common. It therefore allows VPR to work
efficiently in the way it was originally meant to be used.

The second approach tries to achieve better results by
modelling each CLB individually. Here, a different block
type is modeled for each single CLB in the architecture.
Timings are extracted for each individual V-FPGA CLB
and assigned to the block at that specific location in the
V-FPGA architecture description. Making use of the tem-
plate approach, automatization of this approach is rather
simple. Nevertheless it results in large FPGA architecture

files and causes certain compute and memory overhead in
the VPR tools. Whereas a similar approach for IOBs and
PSM could further increase performance, there are reasons
against individual characterization of those: For IOBs, the
expected gain is assumed too be small considering the VPR
runtime increase for common designs, where IOB paths are
rare compared to logic routing between CLBs. For PSMs,
this approach is not feasible, as VPR enforces uniformity of
the interconnect network.

6 � Evaluation of the Placement Strategies

To evaluate the different placement strategies with different
V-FPGA parameters, three V-FPGA designs of increasing
size (2x2, 5x5 and 8x8) have been implemented: Unlike in
[6], we kept the channel width value at 4 for all architec-
tures. Exact numbers therefore are different than in [6], but
this allows for more stringent comparison between different
V-FPGA sizes, avoiding varying routing congestion effects
in the different designs. All designs have been evaluated both
with fine grain timing constraints and without fine grain tim-
ing constraints. We compare the three strategies presented
previously, with both quadratic and rectangular tiles for the
PBlock strategies and two different placement script varia-
tions for fully manual placement. Comparisons between the
three proposed strategies are held in the previously described
metrics of uniformity, worst delay and LUT overhead, where
results are normalized to the standard Vivado strategy.

For the remaining discussion, we introduce the following
abbreviations: T in a design evaluation means that we used
fine grain timing constraints for this design, e.g. 2x2 T means
the 2x2 design with fine grain timing constraints applied.
The implementation strategies are abbreviated I1a to I4b
and refer to the following strategies:

I1a:	� Basic strategy using quadratic PBlocks.

I1b:	� Basic strategy using rectangular PBlocks.

I2a:	� Partially nested strategy using quadratic PBlocks.

I2b:	� Partially nested strategy using rectangular PBlocks.

I3a:	� Fully nested strategy using quadratic PBlocks.

I3b:	� Fully nested strategy using rectangular PBlocks.

I4a:	� Fully manual placement strategy, using sort instruc-
tion list a.

I4b:	� Fully manual placement strategy, using sort instruc-
tion list b.

	 Journal of Signal Processing Systems

1 3

6.1 � Impact of Synthesis Strategies

In addition to the evaluation of the standard synthesis strat-
egy, we also tested the various other synthesis strategies
offered by Vivado, assessing their impact on the overall
results. In the following, the available synthesis strategies
will be abbreviated as follows:

S1:	� Vivado Synthesis Defaults

S2:	� Flow_AreaOptimized_high

S3:	� Flow_AreaOptimized_medium

S4:	� Flow_AreaMultThresholdDSP

S5:	� Flow_AlternateRoutability

S6:	� Flow_PerfOptimized_high

S7:	� Flow_PerfThresholdCarry

S8:	� Flow_RuntimeOptimized

Tables 1 and 2 show the uniformity metrics, where best
results for each design are marked in bold text. The � and c

v

values show similar trends in overall, which is expected as
those are closely related metrics. Of the tested strategies, no
strategy shows consistent improvements in uniformity for all
design sizes. Strategies S2 and S3 yield improvements when
not using timing constraints, but they yield worse uniform-
ity for some cases when using timing constraints. Strategies

S6 and S7 yield uniformity improvements for the 2x2 and
8x8 designs with timing constraints, but do yield worse
results on the 5x5 design. On the 5x5 design with timing
constraints, all synthesis strategies yield worse results than
the default strategy. It is therefore not possible to choose a
single synthesis strategy which yields best uniformity for all
design sizes. This is not entirely unexpected, as non of the
synthesis strategies is optimized for uniformity.

The maximum delay as shown in Table 3 is larger for the
non-default synthesis strategies in almost all cases. S6 and
S7 yield better results when the designs are not timing con-
strained and S5 yields good results in two timing constrained
cases. Further analysis shows that those are however excep-
tional cases and the results depend a lot on channel width,
the V-FPGA size and other structure parameters. These syn-
thesis strategies can therefore not be recommended for all
cases: If an improvement in uniformity or delay is wanted,
those strategies need to be evaluated for the specific use
case, which makes consistent improvements using manual
placement even more important.

6.2 � Uniformity

Tables 4 and 5 show uniformity metrics for the various
manual placement strategies. Again patterns for � and c

v

values are similar, as those are closely related. We expect
the rectangular tile versions to perform slightly better, as
they reduce wire length between the tiles. when compar-
ing the b variants to the a variants, this effect can be seen
in the table, although it is subtle. We further expected the
fully manual strategies I4a and I4b to yield best uniform-
ity, as they enforce most constraints on the design. This

Table 1   Normalized standard
deviation � for synthesis
strategies in Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 0.92 0.92 1.00 1.20 0.92 0.92 1.01
5x5 1.00 0.91 0.91 1.00 1.13 1.02 1.02 0.99
8x8 1.00 0.94 0.94 1.00 1.16 1.00 1.00 1.00
2x2 T 1.00 1.02 1.02 1.00 1.32 0.87 0.87 1.31
5x5 T 1.00 1.04 1.04 1.00 1.53 1.14 1.14 1.08
8x8 T 1.00 1.00 1.00 1.00 1.19 0.85 0.85 1.02

Table 2   Normalized variation
c
v
 for synthesis strategies in

Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 0.90 0.90 1.00 1.23 1.01 1.01 1.02
5x5 1.00 0.96 0.96 1.00 1.19 1.08 1.08 0.99
8x8 1.00 0.97 0.97 1.00 1.18 1.05 1.05 1.00
2x2 T 1.00 0.98 0.98 1.00 1.14 0.90 0.90 1.10
5x5 T 1.00 1.05 1.05 1.00 1.43 1.13 1.13 1.04
8x8 T 1.00 0.94 0.94 1.00 1.06 0.86 0.86 0.95

Journal of Signal Processing Systems	

1 3

is however not always the case, for small designs some
of the other strategies yield better results. Whereas the
best strategy varies depending on the design, most strate-
gies yield more uniform results than the standard place-
ment strategy in all cases. The fully manual strategy I4a
for example yields consistent results for all architectures
and when using timing constraints, it improves for larger
designs. This is expected and less an improvement of the
manual strategy than a degradation of the default strat-
egy for larger designs. As designs become larger, routing
requires more effort, ultimately reducing the quality of
results. In addition, it should be noted that designs with
timing constraints are more uniform than those without in
general, but this is not visible in the tables as the strategies
are normalized to their relative default strategy with same
constraint application.

6.3 � Delay

Figure 8 shows maximum delay for the various different
strategies evaluated. Overall delay is largely dominated by
the routing. As the routing is still performed by Vivado’s

automated router, timing constraints directly influence
the optimization effort. Due to this, most strategies yield
worse delays when no constraints are given. Because of
the reduced packing density especially in small designs,
total delays may be larger than in the standard placement.
The fully manual strategies I4a and I4b perform well even
in those cases, as the LUT location constraints leave less
decisions to Vivado than PBlock based placement. For
the timing constrained designs, most strategies lead to
improvements. Those are not as large as initially reported
in [6], which is mainly caused by the fixed and smaller
V-FPGA track width in this work compared to the previ-
ously reported results. This track width of 4 is also the
reason for worse results in the 2x2 cases, as those were
evaluated with channel width 2 in [6]. The I4a strategy
again is most stable across design sizes, which makes it a
candidate to be a default strategy.

6.4 � LUT overhead

Our previous publication [6] showed an increased area usage
of up to 16 % when considering the total V-FPGA size, e.g.

Table 3   Normalized worst
delay � for different synthesis
strategies in Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 1.25 1.25 1.00 1.07 0.96 0.96 1.00
5x5 1.00 0.94 0.94 1.00 1.02 0.94 0.94 1.00
8x8 1.00 1.08 1.08 1.00 1.23 0.88 0.88 1.00
2x2 T 1.00 0.96 0.96 1.00 0.94 0.97 0.97 1.09
5x5 T 1.00 1.11 1.11 1.00 1.12 1.01 1.01 1.12
8x8 T 1.00 1.13 1.13 1.00 0.95 1.00 1.00 1.29

Table 4   Standard deviation
� relative to Vivado standard
implementation results,
comparing uniformity.

Bold values denote the best result for a given design

Design I1a I1b I2a I2b I3a I3b I4a I4b

2x2 0.93 0.80 1.00 0.97 0.78 0.90 0.78 0.87
5x5 0.84 0.83 0.84 0.82 0.93 0.81 0.80 0.77
8x8 0.89 0.86 0.88 0.84 0.89 0.81 0.81 0.84
2x2 T 0.96 0.94 0.93 0.86 1.11 1.01 0.93 0.92
5x5 T 0.92 0.95 0.95 0.93 0.95 0.86 0.82 0.87
8x8 T 0.82 0.83 0.81 0.76 0.83 0.80 0.79 0.80

Table 5   Coefficient of variation
c
v
 relative to Vivado standard

implementation results,
comparing uniformity.

Bold values denote the best result for a given design

Design I1a I1b I2a I2b I3a I3b I4a I4b

2x2 0.93 0.85 0.92 0.90 0.75 0.86 0.86 0.97
5x5 0.87 0.89 0.84 0.85 0.93 0.82 0.91 0.94
8x8 0.90 0.89 0.89 0.86 0.90 0.80 0.93 0.98
2x2 T 0.86 0.85 0.83 0.79 0.90 0.87 0.87 0.91
5x5 T 0.93 0.95 0.92 0.93 0.90 0.87 0.86 0.95
8x8 T 0.83 0.85 0.83 0.77 0.84 0.81 0.84 0.87

	 Journal of Signal Processing Systems

1 3

counting unused CLBs in the area of the V-FPGA as part
of the used CLBs. This overhead is expected, as the target
utilization rate for the are was set as 87 % in the placement
scripts. In addition, we evaluated the overhead of the strate-
gies in raw LUT numbers: Due to prevented LUT recombi-
nation and similar effects, we do expect to see some differ-
ences in the amount of LUTs which are required. As there
was an maximum overhead of 1 %, we do not list these over-
heads for all strategies individually. We conclude that the
constraints the strategies use do not have any meaningful
impact on LUT count, the overall impact due to unused parts
of P-Blocks and utilization rate is more significant and the
main determining factor for area overhead.

6.5 � VPR Architecture Performance

Figure 9 shows evaluations of 72 different VPR architec-
tures, grouped first into whether fine grain timing constraints
were applied (a and b) or not (c and d). Figures are further
grouped according to the variant used to characterize the
timing in the VPR architecture: Whether the worst case
delays of all CLB has been used (a and c) or whether each
CLB has been modeled individually (b and d). The sub-
graphs then are further divided into two groups according
to the tested V-FPGA sizes. The 2x2 V-FPGA has not been
evaluated, as it is too small for the benchmark circuits. Each
set of results compares the default placement strategy and
the manual placement strategies. Please note that all values

in (a) and (b) are normalized to the default placement strat-
egy with worst case timing characterization in (a), whereas
the values in (c) and (d) are normalized to the default place-
ment strategy with worst case timing characterization in (c).
This is consistent with the way the previous results have
been normalized and allows a direct comparison between
individual timing characterization and the wort-case char-
acterization. For example, comparing the standard place-
ment of the 8x8 architecture in (b) to the reference in (a)
shows that the individual characterization lead to 16 % faster
clock frequencies in average for the evaluated benchmarks.
Differences between the timing constrained and non-timing
constrained variants are not directly visible in the graphs,
but timing constrained designs were 46 % faster in average
for the reference architectures.

When considering the achieved synthesis results for
V-FPGA user applications, we can therefore reaffirm some
of the conclusions based on uniformity and delay metrics in
the previous section and add some additional ones: The evalu-
ation of the benchmarks and the improvement of 46 % in clock
frequency clearly shows that fine-grain timing constraints are

Figure 8   Delays � relative to
Vivado standard implementa-
tion results. Of all analyzed
atomic nets, the largest increase
or the smallest decrease, i.e. the
worst case, is shown. Strategies
shown from left-to right: I1a,
I1b, I2a, I2b, I3a, I3b, I4a, I4b.

(a)

(b)

Figure 9   Average over achieved maximum frequencies in VPR
benchmarks. Results are normalized relative to the standard synthesis
strategy with worst case timing characterization. Timing constraint
application of the reference strategy is the same as in the result that is
normalized. Strategies shown from left-to right: Standard placement,
I1a, I1b, I2a, I2b, I3a, I3b, I4a, I4b.

◂

Journal of Signal Processing Systems	

1 3

	 Journal of Signal Processing Systems

1 3

essential, especially for the default placement strategy. For
the other strategies, there are still benefits of using timing
constraints, but they are slightly reduced in comparison. The
reason for this is that the manual placement strategies provide
larger relative improvements for the non-timing constrained
case. This can be explained by the manual strategies enforcing
a uniform placement and a certain fixed layout, even without
the timing constraints. The constraints still further improve
the results for manual placement strategies, as they affect the
routing in the global interconnect. For the default placement
strategy and unlike for the manual placement strategy, they
however also directly influence the placement and therefore
have larger impact. It can further be seen that the individual
characterization approach in VPR yields improvements of
up to 28 % for the 8x8 designs without timing constraints.
For the timing constrained designs, the improvements are
slightly reduced at up to 14 %. This can be explained by an
overall larger uniformity of placed architectures in the timing
constrained case. As more uniformity means more CLBs are
closer to the worst case timing, the benefit of modelling them
individually compared to using the worst case is diminished.

Looking at Figures (c) and (d), another conclusion that
can be drawn is that the simple P-Block based techniques
I1a to I3b do not yield much improvements or even reduce
performance compared to the standard placement for 5x5.
Investigation shows that the low area utilization targeted
caused logic to be spread more widely than in the default
placement, which manages to pack all elements more
closely. This increases routing delays, therefore making
these strategies less suitable for small designs. The I4a and
I4b strategies perform similar to the default strategy, do
however not yield any improvements. Interestingly for the
5x5 designs, some strategies perform better in the simple
characterization then in the individual timing characteriza-
tion. This is unexpected, as the modeled individual architec-
ture has strictly lower delay than the maximum one. Using
exactly the same placement and routing as in the simple
architecture should therefore yield higher frequencies. Inves-
tigation into the placed benchmarks shows localized higher
routing channel utilization in the individual characterization.
We conclude that VPR can not always efficiently handle an
architecture the way we modeled it and that changes to the
used algorithms may be required. For the 8x8 designs, the
individual characterization yields better results than the sim-
ple characterization. Here, the increased nonuniformity of
the architecture makes the approach more viable.

7 � Conclusion

In this publication, we investigated various ways to increase
the user application frequencies for V-FPGAs. We intro-
duced a uniformity metric, arguing that the common basic

timing modeling is based on the maximum delay in a design
and therefore sensitive to outliers. After describing our tool-
flow to measure the delays and calculate the uniformity met-
ric for our V-FPGA designs, we evaluated different Vivado
synthesis strategies using that framework. Results show that
no single synthesis strategy consistently provides better uni-
formity than the default synthesis. As another solution, we
described three different manual placement approaches and
evaluated the conditions under which those achieve more
uniform results. Of those, strategy I4a showed consistently
better results. To verify whether these results also enable
higher user application frequencies as expected, we used the
extracted metrics to model the architecture timings in VPR.
Using a set of small benchmarks, we determined the maxi-
mum frequencies VPR could obtain for those benchmarks
in our characterized architectures. Here depending on the
architecture and whether fine-grain timing constraints were
used, improvements of up to 33 % could be seen. For timing
constrained designs, which perform better in general, only an
improvement of 11 % could be achieved. Aiming to improve
those results, we introduced a timing modeling approach for
VPR which models all CLBs individually. Here improve-
ments of up to 11 % were achieved for Vivado default place-
ment and up to 14 % for manual placement strategies.

These results will allow for higher clock rates in user
applications on V-FPGA, lowering the entry barrier for using
it in more cases. In addition, the increased uniformity can be
used to enable new concepts, such as overclocking of user
applications or moving parts of the application dynamically
on the V-FPGA. In general, more uniform V-FPGAs also
provide more realistic insights for physical FPGA develop-
ment, as they resemble their uniformity more closely. Future
work in this area may focus on more advanced placement
strategies, extending VPR to better handle individual timing
in architectures and making the whole process more efficient
and robust using tools such as RapidWright.

Author Contributions  All authors contributed to the study conception
and design. Material preparation, data collection and analysis were
performed by Peter Wagih and Johannes Pfau. The first draft of the
manuscript was written by Johannes Pfau and Peter Wagih and all
authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the German Research Foundation
(DFG) within the PARFAIT project (DFG 326384402).

Availability of Data and Material  Not applicable.

Code Availability  The evaluation only used the industry standard pro-
gram Xilinx Vivado which is a commercial program, but widely avail-
able. The custom TCL scripts developed for this research are tailored
to and partially derived from the V-FPGA sources. V-FPGA sources
have been previously been developed as part of research projects by

Journal of Signal Processing Systems	

1 3

various authors. As licensing and copyright has not been cleared, the
sources are unfortunately currently not publicly available. They are
archived according to good scientific practice and DFG rules.

Declarations 

Conflicts of Interest  The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Figuli, P., Hübner, M., Girardey, R., Bapp, F., Bruckschlögl, T.,
Thoma, F., Henkel, J., & Becker, J. (2011). A heterogeneous SoC
architecture with embedded virtual FPGA cores and runtime Core
Fusion. In 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS) (pp. 96–103). https://​doi.​org/​10.​1109/​AHS.​
2011.​59639​22

	 2.	 Sidiropoulos, H., Figuli, P., Siozios, K., Soudris, D., & Becker, J.
(2013). A platform-independent runtime methodology for map-
ping multiple applications onto FPGAs through resource virtual-
ization. In 2013 23rd International Conference on Field program-
mable Logic and Applications (pp. 1–4). https://​doi.​org/​10.​1109/​
FPL.​2013.​66455​64

	 3.	 Harbaum, T., Schade, C., Damschen, M., Tradowsky, C.,
Bauer, L., Henkel, J., & Becker, J. (2017). Auto-SI: An adaptive
reconfigurable processor with run-time loop detection and accel-
eration. In 2017 30th IEEE International System-on-Chip Confer-
ence (SOCC) (pp. 153–158). https://​doi.​org/​10.​1109/​SOCC.​2017.​
82260​27

	 4.	 Pfau, J., Reuter, M., Hofmann, K., & Becker, J. (2020). Designing
universal logic module FPGA architectures for use with ambipolar
transistor technology. In 2020 International Conference on Field-
Programmable Technology (ICFPT) (pp. 165–173). https://​doi.​
org/​10.​1109/​ICFPT​51103.​2020.​00031

	 5.	 Rai, S., Nath, P., Rupani, A., Vishvakarma, S. K., & Kumar, A.
(2021). A survey of fpga logic cell designs in the light of emerg-
ing technologies. IEEE Access, 9, 91564–91574. https://​doi.​org/​
10.​1109/​ACCESS.​2021.​30921​67

	 6.	 Pfau, J., Zaki, P. W., & Becker, J. (2021). Evaluation of different
manual placement strategies to ensure uniformity of the V-FPGA.
In S. Derrien, F. Hannig, P. C. Diniz, & D. Chillet (Eds.), Applied
Reconfigurable Computing. Architectures, Tools, and Applications
(pp. 35–49). Springer International Publishing, Cham.

	 7.	 Luu, J., Goeders, J., Wainberg, M., Somerville, A., Yu, T.,
Nasartschuk, K., Nasr, M., Wang, S., Liu, T., Ahmed, N., Kent, K.
B., Anderson, J., Rose, J., & Betz, V. (2014). Vtr 7.0. ACM
Transactions on Reconfigurable Technology and Systems, 7(2),
1–30. https://​doi.​org/​10.​1145/​26175​93

	 8.	 Yuan, J., Chen, J., Wang, L., Zhou, X., Xia, Y., & Hu, J. (2019).
Arbsa: Adaptive range-based simulated annealing for FPGA
placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(12), 2330–2342. https://​doi.​
org/​10.​1109/​TCAD.​2018.​28781​80

	 9.	 Vansteenkiste, E., Kaviani, A., & Fraisse, H. (2015). Analyzing the
divide between FPGA academic and commercial results. In 2015
International Conference on Field Programmable Technology (FPT)
(pp. 96–103). https://​doi.​org/​10.​1109/​FPT.​2015.​73931​37

	10.	 Borriello, G., Ebeling, C., Hauck, S. A., & Burns, S. (1995). The
triptych FPGA architecture. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 3(4), 491–501. https://​doi.​org/​
10.​1109/​92.​475968

	11.	 Shi, M., Bermak, A., Chandrasekaran, S., & Amira, A. (2006). An
efficient FPGA implementation of gaussian mixture models-based
classifier using distributed arithmetic. In 2006 13th IEEE Inter-
national Conference on Electronics, Circuits and Systems (pp.
1276–1279). https://​doi.​org/​10.​1109/​ICECS.​2006.​379695

	12.	 Figuli, P., Ding, W., Figuli, S., Siozios, K., Soudris, D., & Becker,
J. (2017). Parameter sensitivity in virtual FPGA Architectures. In
S. Wong, A. C. Beck, K. Bertels, & L. Carro (Eds.), Applied
Reconfigurable Computing. ARC 2017. Lecture Notes in Computer
Science (Vol. 1026, pp. 141–153). Springer International Publish-
ing, Cham. https://​doi.​org/​10.​1007/​978-3-​319-​56258-2_​13

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Johannes Pfau  received the M.Sc.
degree in Electrical Engineering
and Information Technology from
Karlsruhe Institute of Technology,
Karlsruhe, Germany, in 2017. Since
2017, he is pursuing his Ph.D. at the
Institute for Information Processing
Technologies at Karlsruhe Institute
of Technology. His research focuses
on the integration of novel transistor
and memory technologies in system
design, in particular for reconfigur-
able systems. His research interests
further include architecture changes
for power optimization in these sys-

tems, as well as the tools and tool flow required to synthesize HDL code for
those.

Peter Wagih  received the B.Sc.
degree in Electronics Engineering
and Technology from the German
University in Cairo, Egypt, in July
2021. During his undergraduate
study, he worked as a junior teach-
ing assistant and a researcher. In
2020, he did his Bachelor's Thesis
in manual placement of V-FPGA
architecture at Karlsruhe Institute
of Technology, Germany. Since
August 2021, he works as a Qual-
ity Assurance Engineer at Mentor
Graphics, a Siemens Business, in
Cairo. His interests in research
extend to FPGA prototyping of

functions concerning machine learning and information security.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/AHS.2011.5963922
https://doi.org/10.1109/AHS.2011.5963922
https://doi.org/10.1109/FPL.2013.6645564
https://doi.org/10.1109/FPL.2013.6645564
https://doi.org/10.1109/SOCC.2017.8226027
https://doi.org/10.1109/SOCC.2017.8226027
https://doi.org/10.1109/ICFPT51103.2020.00031
https://doi.org/10.1109/ICFPT51103.2020.00031
https://doi.org/10.1109/ACCESS.2021.3092167
https://doi.org/10.1109/ACCESS.2021.3092167
https://doi.org/10.1145/2617593
https://doi.org/10.1109/TCAD.2018.2878180
https://doi.org/10.1109/TCAD.2018.2878180
https://doi.org/10.1109/FPT.2015.7393137
https://doi.org/10.1109/92.475968
https://doi.org/10.1109/92.475968
https://doi.org/10.1109/ICECS.2006.379695
https://doi.org/10.1007/978-3-319-56258-2_13

	 Journal of Signal Processing Systems

1 3

Jürgen Becker  received the
Diploma and Ph.D. (Dr.-Ing.)
degree from Technical University
Kaiserslautern, Germany. He is
full professor for embedded elec-
tronic systems and Head of the
Institute for Information Process-
ing Technologies (ITIV) at the
Karlsruhe Institute of Technology
(KIT). From 2005–2009 he has
been appointed as Vice President
for Education at Universitaet
Karlsruhe (TH) and Chief Higher
Education Officer (CHEO) at KIT

from 2009–2012. Since 2012 till 2014 he served as Secretary General of
CLUSTER, an association of 12 leading Technical Universities in
Europe. His research interests include Hardware/Software Systems-on-
Chip (SoC), Cyber-Physical Systems (CPS), Heterogenous Multicore
(MC) Architectures and Design Methods, Reconfigurable Computing,
with application in Embedded Systems (Automotive, Industry 4.0, Avi-
onics, HPC Scientific Applications and Experiments). He authored more
than 400 papers in peer-reviewed international journals and conferences.
Prof. Becker is active in numerous international conferences, as Chair-
man in TPC & Steering Commitees, e. g. IEEE ISVLSI, IEEE SOCC,
RAW, FPL, PATMOS, IFIP VLSI-SoC, DATE, SBCCI, ARC, FCCM,
FPT, among others.

	V-FPGAs: Increasing Performance with Manual Placement, Timing Extraction and Extended Timing Modeling
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 V-FPGA Architecture
	3.2 Host-FPGA Architecture
	3.3 Metrics
	3.3.1 Uniformity
	3.3.2 Delay
	3.3.3 LUT Overhead

	3.4 Placement Methodology
	3.4.1 Synthesis
	3.4.2 Applying Manual Placement Strategies
	3.4.3 Extracting Metrics

	3.5 VPR Architecture Models

	4 Logic Placement Strategies
	4.1 Standard Vivado Placement
	4.2 General Custom Approach
	4.2.1 V-FPGA Size Determination
	4.2.2 Rectangular and Quadratic Tiles
	4.2.3 Split Area Implementation

	4.3 Basic PBlock Strategy
	4.4 Nested PBlock Strategy
	4.5 Fine-Grain Manual Placement Strategy

	5 VPR Architecture Generation
	6 Evaluation of the Placement Strategies
	6.1 Impact of Synthesis Strategies
	6.2 Uniformity
	6.3 Delay
	6.4 LUT overhead
	6.5 VPR Architecture Performance

	7 Conclusion
	References

