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Abstract
Virtual FPGAs (V-FPGAs) are used as vendor-independent virtualization layers, to retrofit features which are not available 
on the host FPGA and to prototype novel FPGA architectures. In these usecases, the achievable clock frequencies of V-FPGA 
user applications are a major concern. The abstraction layer inherently induces overhead, but this aspect is reinforced by 
nonuniformity effects: When V-FPGA cells perform worse locally, basic architecture modeling generalizes these worst-case 
path delays to the whole device, limiting applications to a lower frequency than theoretically achievable. We propose three 
approaches to attenuate these effects: First we introduce uniformity metrics and manual V-FPGA placement strategies for 
more uniform placement, improving achievable frequency by 16 %. Second, we propose a framework for automated timing 
extraction, enabling individual characterization of each V-FPGA design. Third, after evaluating Vivado synthesis strategies, 
we extend the timing model for non-uniform timings, achieving improvements of up to 28 %.

Keywords  FPGA · EDA · Placement · Virtual FPGA

1  Introduction

In recent years, virtual Field Programmable Gate Array 
(FPGA) architectures (V-FPGAs) have been been introduced 
in academia [1]. Unlike common commercial and academic 
FPGAs, the V-FPGA is an FPGA architecture layered onto a 
base FPGA architecture: A commercial host FPGA architec-
ture is synthesized for a silicon chip target, and the V-FPGA 
layer is synthesized for that host FPGA architecture. The vir-
tual layer is implemented as a bitstream to be programmed 
onto the host FPGA. User applications are synthesized using 
a custom toolchain for the V-FPGA layer and the result-
ing application bitstream is programmed onto it. V-FPGA 

architectures have been applied for three main use cases: 
First, as an abstraction layer, providing a common bitstream 
format independent of commercial FPGA architectures. This 
allows using features such as partial dynamic reconfigura-
tion on FPGAs which do not natively support this [2]. Sec-
ond, V-FPGAs can be used for FPGA architecture research: 
Novel ideas can be integrated in the architecture and tested 
on a hardware implementation, which can provide additional 
insight compared to simulation. This becomes especially 
useful when investigating heterogeneous System-on-Chip 
(SoC) solutions, which may combine processing systems 
and reconfigurable logic [1, 3]. Third, using the V-FPGA as 
a basic FPGA architecture: Here it is realized using stand-
ard synthesis approaches for silicon targets and can be used 
to evaluate the usage of different logic cell technologies in 
FPGAs [4, 5].

V-FPGA architectures have to address various issues and 
limitations, some inherent in the very idea of a virtualization 
layer, such as e.g. overhead of various kinds caused by the 
virtualization layer. One example is area overhead of placed 
user applications, comparing total area required on the host 
FPGA including the virtualization layer to direct placement 
on the host FPGA. Some of the difference is caused by dif-
ferent synthesis tools for the host FPGA and the V-FPGA: 
Whereas commercial vendor tools are used for host FPGAs, 
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V-FPGA architectures commonly use the open source tool 
Versatile Place and Route (VPR). Area overhead is further 
caused by the structures of the V-FPGA itself, especially the 
configuration logic. This logic, which is used to configure 
the application bitstream onto the V-FPGA and to store the 
configuration for the V-FPGA Lookup Tables (LUTs), is 
usually implemented in host FPGA user logic. It therefore 
doesn’t make use of the explicit configuration logic of the 
host FPGA, increasing the amount of normal LUT resources 
used. Although making use of host FPGA configuration 
resources is possible, it will cause the V-FPGA architecture 
to resemble the host FPGA very closely, therefore impeding 
many of the common V-FPGA use cases. Because of this, 
there is a trade-off between the achievable grade of abstrac-
tion from the host FPGA and the overhead caused by the 
virtualization, which has to be considered carefully.

Similar considerations apply for the maximum achiev-
able frequency of a user application targeting the V-FPGA. 
Whereas an application directly placed onto the host FPGA 
can make use of commercial vendor tools, for V-FPGAs the 
applications will have to be synthesized with custom tools. 
VPR requires an architecture description to provide informa-
tion about the V-FPGA, including the logical structure of 
the V-FPGA, aspects such as LUT size, Configurable Logic 
Block (CLB) structure, how individual blocks are connected 
in the interconnect and more. Whereas this information is 
easy to obtain or already given by design decisions made 
during development of the V-FPGA architecture, the sec-
ond class of information, the timing information, is more 
difficult to acquire. To properly determine the frequency 
a user design can be clocked at, the placement tool VPR 
needs to know about the delays of all logical elements of the 
V-FPGA architecture. These logical elements often map to 
multiple elements on the host FPGA. In addition, the delay 
encountered for one element at one location of the V-FPGA 
is usually different from the delay of a logically equivalent 
element at a different location. As an example, the delay of a 
LUT at location (1, 1) may be different from the one at loca-
tion (4, 4) due to irregularities in the placement and routing 
of the V-FPGA onto the host FPGA.

To address these issues, two approaches will be consid-
ered in this publication. The first approach is making the 
V-FPGA placement onto the host FPGA more uniform. 
As the timing information in a common VPR architecture 
considers all elements of one type to have identical delays, 
the V-FPGA timing characterization has to use the worst 
case, e.g. the maximum delay of all elements of one type in 
the V-FPGA. In the example case of LUTs, the maximum 
delay of all V-FPGA LUTs would be used to characterize the 
LUT in the architecture. With this approach, the maximum 
observed delay is most important and outliers anywhere in 
the V-FPGA affect all of the V-FPGA elements. Uniformity 
of the design is therefore beneficial, as long as it also reduces 

the maximum delay. For special use cases, uniformity is fur-
thermore not just a secondary metric, but inherently impor-
tant: Use cases involving relocation of placed logic require 
similar delays everywhere on the V-FPGA. Furthermore, 
achieving quick tool runtime in VPR requires assumption of 
a uniform FPGA architecture, although other solutions are 
possible and will be considered in the following. When mod-
eling a uniform architecture, a worst case value may be used, 
but it will severely limit the maximum frequency of user 
applications. The first part of this work therefore considers 
approaches to reduce the number of maximum delay outli-
ers and increase uniformity of observed delays. This part is 
an extended version of our previous publication [6], which 
provided the initial idea of manual placement. Manual place-
ment tries to customize the placement of V-FPGA resources 
onto the host FPGA, trying to achieve more uniform delays 
than default placement does. In addition, we follow up on 
this work to describe how timing information is extracted 
from the design and used to model the architecture in VPR. 
The original results have been re-evaluated to be based on 
a fixed track width for all V-FPGA sizes compared, avoid-
ing confusion due to multiple parameters changing between 
compared designs. We also provide a new comparison of 
Vivado synthesis strategies and the influence those have on 
the uniformity of the V-FPGA.

We further introduce a new, second approach to address 
the described V-FPGA issues: Accepting the non-uniformity 
of the V-FPGA, in which we present adjustments in VPR 
synthesis flow to handle the non-uniformity: First we obtain 
the timing information for each single logic element of 
the placed V-FPGA. Then, instead of using the maximum 
value as in the basic case, we model each CLB in the VPR 
architecture with individual timing information. Whereas 
this leads to improved user application frequency, it has 
the drawback of being more complex to model, increasing 
the VPR runtime and therefore having limited scalability 
towards larger V-FPGA designs. For large V-FPGA designs, 
increasing the uniformity as shown in our first approach may 
prove to be more viable.

2 � Related Work

Regarding previous research in placement algorithms for 
FPGA, we differentiate two research areas: Placement algo-
rithms for generic FPGA applications and manually guided 
placement for specific applications. Research on generic 
placement algorithms has largely been conducted using 
academic open source tools. The most-widely used of these 
tools is Verilog to Routing (VTR) [7], which consists of 
three main tools: Odin II for synthesizing circuits designed 
in Verilog into generic LUT resources, ABC for technology-
mapping those resources into architecture specific LUTs, 
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and VPR for packing, placement, and routing. Research led 
to the introduction of new techniques and algorithms for 
placement and packing, focusing on different cost targets 
such as timing driven, routing-driven or runtime-driven: [8] 
introduces an algorithm named adaptive range-based Simu-
lated Annealing (ARBSA). It provides an adaptive approach 
to choose the neighborhood for each block according to the 
nets it belongs to. The result shows a 1.78X runtime speed 
up, 10 % reduction on wire length and 2 % reduction on the 
critical path with timing-driven optimization. Research in 
this area proposes general algorithms, trying to find good 
solutions regardless of the target application. Results are 
usually compared to the VTR algorithms, showing improve-
ments over VPR which do not directly translate to compari-
sons with commercial tools [9].

The second group of research uses the concept of manual 
placement, ranging from guidance to completely manually 
placed designs. For example, [10] introduced a sea-of-gates 
architecture called Triptych. It aims to reduce the signifi-
cant cost paid for routing in standard FPGAs, replacing the 
logic blocks with Routing and Logic Blocks (RLBs). RLBs 
perform both logic and routing tasks, allowing a tradeoff 
between logic and routing resources on a per mapping basis. 
Using manual placement made this architecture yield a logic 
density improvement of up to a factor of 3.5 over commer-
cial FPGA’s automatic placement. In another example, Shi 
et al. analyzed manual placement for their specific FPGA 
application [11]. It shows that using manual placement leads 
to a compact and optimized design with shorter nets, reduc-
ing propagation delay up to 25 %.

Whereas generic algorithms can be used to implement 
the V-FPGA, they have to be reimplemented in the Vivado 
implementation flow, as they originally target VPR. In addi-
tion, none of these algorithms takes the regular structure of 
the V-FPGA into account. The presented application specific 
manual placement methods on the other hand, do not directly 
translate to the V-FPGA structure. They need to be heavily 
modified to be usable for this application area. In order to 

improve net delay in the V-FPGA, we therefore investigate 
specific custom placement methods based on similar ideas, 
but explicitly considering the V-FPGA architecture and 
regularity.

3 � Background

The placement strategies to be introduced make use of the 
regular structure of the V-FPGA. As such, they are depend-
ent on both the V-FPGA architecture, as well as on the host 
FPGA architecture. The strategies have been designed to 
work with a certain parameter variability in these architec-
tures, but certain assumptions have been made.

3.1 � V‑FPGA Architecture

Figure 1a shows the V-FPGA architecture and the arrange-
ment into the common types (1-9) of tiles. In its simplest 
configuration, the V-FPGA consists of 9 different tile types, 
which are distinguished by orientation and contained ele-
ments. A single tile can contain all elements (like type 2 
and 4), all but the I/O Block (IOB) (type 9, i.e. the central 
tiles), Programmable Switch Matrix (PSM) and IOB (type 
1, 5, 6, 8), CLB, PSM and two IOBs (type 3), or only the 
PSM (type 1). Even for tiles which have the same types of 
elements, their differences in orientation — and therefore 
layout — will require them to be placed differently.

The Configuration Units (CUs) are not shown in Fig. 1a, 
as it is an implementation detail of the V-FPGA. They store 
and provide the configuration for the CLB, PSM and IOB 
in their respective tile and enable dynamic reconfiguration 
of the V-FPGA. In our V-FPGA implementation, the CU is 
implemented essentially as a shift register with parallel out-
put. It will have to be mapped to the host FPGA in addition 
to the other components.

Figure 1a also shows the wires corresponding to relevant 
delays for the final VPR architecture model: Apart from 

Figure 1   V-FPGA architecture 
details: a: Tile Distribution and 
top-level architecture. b: CBR 
and CBW implementation and 
connection to routing channels.
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intra-block delays such as delays within the CLB, these con-
sist of nets in the global routing channels. Figure 1b shows 
how the CLB in a tile connects to the global routing chan-
nels. Connection points are realized using Read Connection 
Boxs (CBRs) and Write Connection Boxs (CBWs), which 
consist of multiplexers either connecting multiple wires to 
one CLB input or connecting the CLB output to one of the 
channel wires. To realize this connection, the CBW as an 
example consists of one multiplexer for each wire in the 
channel. The multiplexer selects between either forwarding 
the signal of the channel wire or writing the CLB output to 
this wire. Structurally, these multiplexers will be mapped to 
host FPGA LUTs. Therefore on the host FPGA, a V-FPGA 
wire from PSM to PSM will actually consist of at least two 
host wire segments and the LUT. Similar effects are also 
caused by IOB connections.

Another peculiarity of our V-FPGA implementation con-
cerns the implementation of its bidirectional wiring: Logi-
cally, the V-FPGA architecture uses bidirectional wiring, but 
the implementation on the host FPGA can only make use of 
unidirectional wiring. Figure 1b shows how the CBR and 
CBW connect to different host wires, leading to different 
directions. In order to drive a logical V-FPGA wire in both 
directions, the PSMs will loop back the right-to-left signal 
in left-to-right direction.

All these effects cause two implications for this work: 
First, when constraining the design, the V-FPGA wire can 
not be constrained as one unit. Instead, all wire segments on 
the host FPGA have to be constrained individually. Further-
more, when modelling the V-FPGA architecture in VPR, 
the delay for the complete net is needed. For this reason the 
data extraction script extracts the individual segments, but 
for architecture modeling and for assessment of placement 

results in this publication, these have to be added up. In 
the rest of this article, we will always consider and present 
complete PSM-to-PSM and CLB-to-PSM paths.

3.2 � Host‑FPGA Architecture

Although the strategies described in this work are designed 
to be generic and support different host-FPGA architec-
tures, the specific parameters used will depend on the con-
crete host-FPGA architecture used. For the evaluation and 
results shown, we focus on Xilinx 7 Series architecture and 
especially the XC7Z020-CLG484 FPGA. To describe how 
host-FPGAs architectures provide limits for achievable uni-
formity, we will describe the used host-FPGA architecture 
in detail: For manual placement, the most important aspect 
of the host-FPGA architecture affecting V-FPGA uniformity 
and delay is the host-FPGA uniformity. If the host FPGA 
was completely uniform, placing the V-FPGA in a uniform 
way would be a simple task of repeating a template structure. 
As shown in Fig. 2, this is not the case for recent commercial 
FPGAs:

Figure 2a shows the overall device layout, where CLBs 
are shown as small boxes. Regions of such CLBs are divided 
by wide gaps. These are areas where larger hard-IP blocks, 
such as the ARM processor cores or DDR memory control-
ler cores, are located. Placing the V-FPGA across the whole 
area of this device will cause larger delays for wires connect-
ing two V-FPGA tiles separated by hard IP, whereas adja-
cent V-FPGA will show reduced delay. This issue will need 
to be considered when finding the target area to place the 
V-FPGA, as well as when placing the individual tiles. Most 
importantly, a single tile should never be disconnected by 
an interspersed large hard-IP block. Furthermore, depending 

Figure 2   XC7Z020-CLG484 
Xilinx 7-series FPGA layout: a: 
Chip overview showing clock 
regions, peripheral blocks and 
large gaps caused by hard-IP 
such as the ARM processor 
cores b: Close-up view of CLB 
columns showing variation 
in number of adjacent CLB 
columns caused by interspersed 
BRAM and DSP hard-IP.
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on the host FPGA, it may not be reasonable to use the whole 
area if high performance and low delays are required.

Figure 2b shows a similar, but less grave effect, in pro-
viding a close-up view of the CLB columns. Columns are 
also divided by interspersed small hard IP blocks, mainly 
Block RAM (BRAM) and Digital Signal Processor (DSP) 
resources. These cause the number of adjacent CLB columns 
to vary, an effect which needs to be considered when plac-
ing the V-FPGA tile contents and when determining the tile 
sizes. In addition, this limitation will cause certain varia-
tion in V-FPGA uniformity which cannot be avoided with-
out significantly affecting other performance characteristics 
(e.g. using only some of the available CLBs, which would 
increase required area).

3.3 � Metrics

To evaluate and assess the results, we first introduce several 
comparison metrics. The commonly used metrics — delays, 
uniformity and area — have a specific meaning for V-FPGA 
targets and are crucial for V-FPGA applications.

3.3.1 � Uniformity

Uniformity is a measurement of local delay variation across 
the V-FPGA structure. Placing every tile in the same way, 
the V-FPGA is a uniform structure, which in theory could 
be placed uniformly on the host FPGA. As explained previ-
ously, not all tiles have exactly the same internal structure 
and non-uniformity of the host FPGA architecture will fur-
ther degrade the uniformity. To address this, our definition 
of uniformity divides the V-FPGA into N

C
 sets, where each 

set represents one column C. We also group nets into classes, 
so that similar nets in different tiles are within a single class. 
We differentiate between these classes: 

1.	 PSM Left: Horizonal nets, starting at PSM left output 
multiplexers and ending at PSM right input multiplexers.

2.	 PSM Right: Horizontal nets, starting at PSM right out-
put multiplexers and ending at PSM left input multiplex-
ers.

3.	 PSM Top: Vertical nets, starting at PSM top output mul-
tiplexers and ending at PSM bottom input multiplexers.

4.	 PSM Bottom: Vertical nets, starting at PSM left output 
multiplexers and ending at PSM right input multiplexers.

5.	 PSM Internal: Internal nets within the PSM, realizing 
the Wilton switch pattern.

6.	 CLB Input: Nets starting at the output of the CBR and 
ending at the input of the LUT.

7.	 CLB Output: Nets starting at the LUT output and end-
ing at the input of the CBW.

Our definition of uniformity then essentially measures dif-
ferences between rows within a set, but no uniformity is 
guaranteed between the sets themselves. This definition is 
formalized in the following equations:

Here, t
c,r,n is the delay of a net in class n, column c and row 

r. Equation 1 provides the arithmetic mean �
c,n of the delays, 

calculated over the N
R
 V-FPGA rows. �2

c,n
 then calculates the 

variance for a net class in a certain column over the rows. 
This is further used in � to calculate the arithmetic mean of 
the standard deviations of all net classes in all columns. c

v
 

provides the arithmetic mean over the coefficient of varia-
tion of all net classes in all columns. Whereas the standard 
deviation is an absolute value and therefore depends on the 
mean of the delays, the coefficient of variation provides a 
relative measurement. As the delays in the host FPGA are 
largely discrete (e.g. fixed delays in LUTs), it is expected 
that relative delays can not be reduced further at some point. 
Because of this, we use � to guide the design of our strate-
gies and for evaluation of practically achievable uniformity. 
c
v
 is used to judge the quality of results for V-FPGA: As a 

smaller delay � allows to put more logic elements in a path 
at the same frequency for V-FPGA applications, a constant 
standard deviation leads to reduced certainty of the number 
of V-FPGA logic elements in the path. A constant relative 
value c

v
 signifies unchanged conditions for the V-FPGA 

application synthesis.

3.3.2 � Delay

Delay for the V-FPGA is a measurement that determines 
the final achievable V-FPGA user application frequency. 
Whereas the final frequency of user applications ultimately 
depends on that applications themseves, i.e. the length and 
nature of the critical path, the delays of individual ele-
ments within that path are determined by the placement 
of the V-FPGA onto the host-FPGA. For characterization 
and modelling of the V-FPGA architecture in VPR and for 
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application routing, the delays of the previously mentioned 
net classes are analyzed individually. But without knowl-
edge of the final user application, none of the types can be 
considered as more important than any other. Therefore, 
which of the types ultimately will limit the user applica-
tion frequency cannot be determined when implementing a 
generic V-FPGA. As a consequence, we reduce these vari-
ous measurements to one metric for performance evalu-
ation, the worst delay across all net classes. Equations to 
find the maximum delay are given below:

Here, �
c,n selects the worst delay of a net class (n) in a col-

umn (c), calculated over the V-FPGA rows. � uses this to 
find the absolute maximum delay over all columns and all 
net classes in the design, providing the single value for 
evaluation.

3.3.3 � LUT Overhead

Area is measured in number of host FPGA CLBs used by the 
V-FPGA design. Used CLBs in the design do not solely con-
sist of the V-FPGA building blocks: It also includes CLBs 
that are constrained to be explicitly not used in placement, 
optimizing the placement regularity. For partition blocks, 
their size may need to be slightly more than the minimum 
required area, as aiming for utilization ratio of 100 % may 
cause routing to fail. 87 % utilization rate is the default tar-
get chosen by Vivado and is our starting point for manual 
placement. Results presented in [6] described this overall 
area, whereas the results in this publication will focus on 
the intrinsic LUT overhead. This overhead is caused by 
restrictions for the synthesis passes, caused by additional 
constraints used by the strategies. One example here is pre-
vented LUT recombination.

3.4 � Placement Methodology

Our overall approach to implement and evaluate the cus-
tom placement strategies for the V-FPGA consists of three 
steps: At first, the V-FPGA code is synthesized in Xilinx 
Vivado. Second, we run custom Tool Command Language 
(TCL) scripts on the synthesized design, adding various 
timing and location constraints. The third step is needed 
to evaluate the results by running a custom TCL script to 
extract timing and area information.

(5)�
c,n = max

r∈{1..N
R
}
t
c,r,n

(6)� = max
c∈{1..N

C
}

max
n∈{1..N

N
}
�
c,n

3.4.1 � Synthesis

Synthesis largely follows the Vivado synthesis flow. To 
ensure proper conditions for the TCL script, some settings 
are adjusted: The flatten_hierarchy option is changed from 
the default rebuilt to none. As V-FPGA designs often provide 
customizable parameters [12], the default option rebuilt leads 
to unpredictable signal names when these parameters change. 
Changing this setting can also affect optimization across hier-
archy levels. To limit the impact of this, the implemented 
design was analyzed manually and some optimization have 
been carried out manually in the VHDL source code.

3.4.2 � Applying Manual Placement Strategies

After a design has been synthesized, we apply our custom 
placement strategies. The strategies will be described in 
detail in the next chapter, but all of them are based on the 
following constraints:

Timing Constraints  As Vivado analyzes every possible path 
in the design, it will also consider configurations of PSM 
multiplexers that can create combinational loops. It is there-
fore not easily possible to constrain the timing of the design 
by simple definition of the final clock period, as Vivado 
will break the loops at arbitrary points. This generates long 
paths through different numbers of CLBs and PSMs, mak-
ing it further impossible to constrain a path just between 
two specific PSMs. To solve this problem, these paths are 
broken manually.

We evaluate two variants of constraints used: In the vari-
ant with fine grained constraints, all individual atomic nets 
have their delay constrained using the set_max_delay timing 
exception, ensuring that the design still meets timing con-
straints and forcing the timing driven optimization to oper-
ate. These constraints will lead to path segmentation, which 
in this case is the desired outcome. In addition, it will add 
false path constraints on the original long paths automati-
cally. Path segmentation can affect logic placement and tim-
ing results, so special care needs to be taken when examining 
the Vivado timing reports. We therefore use custom scripts 
to evaluate the delays of relevant nets instead. As will be 
shown in the result sections, these fine-grain constraints are 
necessary to animate Vivado to optimize the routing for the 
manually placed design. The drawback with this approach 
concerns scalability, as large designs which introduce many 
of these constraints cause excessive memory use and runt-
ime in the Vivado toolflow. We therefore also evaluate vari-
ants without the fine-grain constraints, to determine whether 
they are really necessary.
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In addition to path constraints, we define four clocks for 
our design: The primary clock as well as three auxiliary 
clocks used for the configuration of PSM, IOB and CLB 
elements. The frequency of configuration logic is less impor-
tant than the application frequency, so configuration clocks 
will target a lower frequency, avoiding over-constraining 
the design. Moreover, we specify the relation between these 
clocks using an asynchronous clock group.

Placement Constraints  Placement constraints are used to 
perform floorplanning by definition of pin placement and 
absolute, or relative, placement of cells. It guides and con-
trols where the place-and-route tools may put FPGA design 
elements. Vivado supports various placement constraints, 
ranging from just constraining a group of logic in a certain 
area to exact placement of single cells to a certain logic ele-
ment. We make use of the following placement constraints: 

1.	 LUTNM and HLUTNM: Used to place two combina-
tional functions into the same LUT.

2.	 PROHIBIT: When the only requirement is to avoid 
placing any logic at a specific site, this is achieved using 
this constraint.

3.	 LOC and BEL: To place a logical element in a specific 
location, we use the place_cell command. This com-
mand translates into LOC and BEL constraints, where 
LOC links the element from the netlist to a slice and BEL 
places it to a specific LUT or flip-flop within the slice.

4.	 PBlock: A PBlock is a collection of cells in one or more 
rectangular regions that specify the device resources con-
tained by the block. It is more restrictive than no place-
ment constraints, but less constraining than LOC and BEL.

3.4.3 � Extracting Metrics

The Vivado timing report includes all details to judge in 
what respects the design met the timing constraints and 
usually provides the authoritative source in knowing the 
delay of all nets. But in case of the V-FPGA, this report can 
not be used to extract meaningful data: The combinational 
loops, path delay constraints and path segmentation hide the 
important delays of the atomic nets from the timing report. 
Even though the target value for these nets is given using 
the path delay constraints, it is still useful to extract the real 
delays. To remedy this, a TCL script was written to extract 
the delays manually, using the get_net_delay command to 
get the delays of atomic nets.

The process of calculating the delay through the CLB is 
divided into two parts. At first, we get the worst delay from 
the output of any multiplexer of the CBRs cells to the input of 
the LUT. Then we add the propagation delay from the output 
of the LUT to the CLB output, taking into consideration the 
maximum of the two paths of either bypassing the D flop or 

using it. The V-FPGA LUT can be implemented in three dif-
ferent ways by host-FPGA toolchain in one or two slices. All 
of these options are taken into account.

For the PSM net delays, the total delay from one PSM out-
put to another PSM input is calculated. If such a net is divided 
into two or three parts due to interruption by IOB connection 
boxes, the parts are summed up. The delays of the horizontal 
tracks of the bottom border PSM are expected to be larger 
than the rest, as it is divided by the connection box of the 
upper tile and the IOB. In contrast, the horizontal tracks of 
the upper border PSM have the lowest delays because it is just 
interrupted by the IOB unit of the same tile. All delays are 
stored in a file for later evaluation grouped into the previously 
mentioned net classes.

Additionally, due to the structure of Xilinx 7 series LUT, 
more than one function can be implemented on the same 
fracturable LUT. This must be taken into consideration when 
determining the area used, or when deriving the minimum 
size needed for a tile. To find combined LUTs, we first get all 
the LUT BELs used as LUT6. We then get all the LUT5 in the 
design and compare their location with the LUT6, checking if 
they are located at the same site.

3.5 � VPR Architecture Models

In order to synthesize user applications for the V-FPGA, we 
used the commonly used open-source VPR toolchain. For syn-
thesis and placement, VPR needs an architecture description. 
This file is essentially a specially formatted XML file with 
information about the target FPGAs logical structure and tim-
ing information. We use a template for the logical structure, 
but timing information will be deduced from the extracted 
metrics for all analyzed design variations. To analyze effects 
of the various techniques on user applications, we make use 
of VPRs benchmark framework. As the benchmarks shipped 
with VPR are too large for the V-FPGA sizes compared here, 
we used 26 Verilog implementations of 74xx series ICs and 
one 4 bit full-adder implementation to emulate a longer critical 
path. We measure the maximum frequencies VPR achieves 
for those benchmarks, normalize them to the values obtained 
for the placement based on Vivado standard placement and 
lastly average the results for all benchmarks. Averaging over 
those circuits furthermore provides a certain immunity against 
non-stable results, which are caused by pseudo random start 
conditions in placement algorithms.

4 � Logic Placement Strategies

In the following, we discuss the three manual placement 
strategies in detail. We primarily use the uniformity metric 
to guide development of the strategies, then assess critical 
path delay and LUT overhead in the evaluation.
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4.1 � Standard Vivado Placement

Figure  3 shows placement result of the default Vivado 
strategy (Vivado Synthesis Defaults, Vivado Implementa-
tion Defaults, Vivado 2019.1.1). The figure illustrates the 
arguments given previously in the introduction section: 
Automated placement does not make explicit use of the 
structural regularity of the V-FPGA, which results in tiles 
being implemented in slightly different ways. Some are more 
distributed, others more localized, leading to varying net 
delays and reducing uniformity of the V-FPGA architecture. 
This effect is even more apparent in larger designs, where 
placement algorithms have to deal with an overall larger 
amount of nets and cells. These standard Vivado placement 
results will be used as reference point for the evaluation of 
the manual placement strategies presented here. Evaluation 
results will be normalized accordingly to show improvement 
or degradation over the usual automated approach.

4.2 � General Custom Approach

Before the strategy-specific placement step, some steps com-
mon to all approaches are required.

4.2.1 � V‑FPGA Size Determination

Before the V-FPGA can be placed, a suitable host FPGA loca-
tion and area has to be determined. This step has to consider 
non-uniformity of the host FPGA: As described previously, 

Virtex 7 devices have a rectangular structure with larger gaps 
(more than 2 columns) and smaller gaps (2 columns) between 
CLBs, caused by I/O banks, clocking and other support logic. 
In addition, DSP and BRAM blocks are distributed over the 
chip between CLB columns. In order to reduce net length 
between placed V-FPGA logic blocks, the biggest area with 
no large gaps will be selected, where the threshold when a gap 
is considered large is configurable. This is supposed to improve 
net delays and support the rectangular layout of the V-FPGA. 
Finding the location and area consists of the following steps: 

1.	 Estimate the overall area needed for the design using 
total CLB count.

2.	 Create a 2D array which represents available and used 
CLBs. Then search for the largest possible target area, 
only considering areas without blockages larger than the 
accepted gap threshold. A reasonable value for Virtex 
7 is two, allowing DSP and BRAM gaps but avoiding 
larger ones.

3.	 Calculate tile dimensions, fitting all tiles in square form 
in the target area.

4.	 If the previous step fails, set the dimension ratio of all 
tiles relative to the vertical and horizontal dimensions 
of the selected target area.

5.	 If the largest contiguous target area is not large enough 
to fit the complete design (step three and four failed), the 
steps are reevaluated. In this reevaluation, multiple dis-
connected areas are allowed, yielding split target areas 
as shown in Fig. 4b.

6.	 Find the vertical and horizontal dimensions of all tiles 
according to their resource usage.

7.	 Normalize the dimensions of all tiles in the same column 
or row.

4.2.2 � Rectangular and Quadratic Tiles

Before a tile can be created, its size must be determined. 
We investigate two options to derive the tile size: The first 
option is to use a size with same width and height for all 
tiles, resulting in quadratic tiles. The largest tile dimen-
sions are then taken as the unified size for the PBlocks of 
all tiles. Alternatively, the size can be chosen according to 
the required area in each tile. This requires additional rules 
for tile sizes, to keep the rectangular layout of V-FPGA and 
avoid irregular layout results. Therefore, the horizontal size 
for all tiles in the same column and the vertical size for all 
tiles in the same row have to be identical, leading to rectan-
gular tiles. Figure 4a demonstrates the second option, show-
ing the generated floorplan for a small 2x2 CLB V-FPGA. 
For all strategies introduced, we will evaluate the variant 
with rectangular and with quadratic tiles. We will assess 
differences between these options in the evaluation section.

Figure  3   V-FPGA placed using standard Vivado placement. Host-
FPGA CLBs belonging to same V-FPGA tile are shown in the same 
color. As can be seen, some tiles are compact, whereas some are 
scattered across wider area. It can also be seen that all-in-all, Vivado 
packs tightly and does not keep empty sites to preserve overall struc-
ture.
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4.2.3 � Split Area Implementation

If the V-FPGA does not fit into the largest available con-
tiguous area when considering large gaps according to the 
threshold, our placement script can split the target area into 
multiple sub-areas, making sure not to split V-FPGA tiles 
across sub-areas. In such cases (happening for very large 
V-FPGA designs), uniformity will be degraded due to the 
nets crossing gaps between the sub-areas. The placement 
script will ensure not to split a V-FPGA tile into multiple 
sub-areas, to at least guarantee better uniformity within the 
tile in such cases.

4.3 � Basic PBlock Strategy

In the basic PBlock strategy, we contain each tile in a single 
Partition Block (PBlock): We create a block with suitable 
size in quadratic or rectangular form, then use the add_
cells_to_pblock TCL command to add all cells of a tile to 
the block. After the tile size has been determined, the host 
FPGA location and target area will be fixed. Finally, all 
V-FPGA cells are fixed to the PBlocks belonging to their 
tile using the PBlock constraints, completing the basic 
PBlock placement. Exemplary placement results are shown 
in Fig. 4.

4.4 � Nested PBlock Strategy

In addition to the PBlocks used in the first strategy, this strat-
egy introduces up to two additional PBlocks within each tile. 
Logic belonging to the V-FPGA CLBs and IOBs is mapped 
to these nested PBlocks accordingly: When defining the 
PBlocks, all assigned logic cells are forced into the blocks, 
but this does not prevent placing any additional unassigned 
cells into them. Based on this idea, we introduce two more 
variants in addition to the rectangular vs. quadratic layout 
distinction: In the partially nested strategy, we use the outer 
PBlock for the tile and nested blocks for IOB and CLB, but 
the PSM is only constrained by the outer PBlock. This gives 
Vivado the freedom to place the PSM in the remaining outer 
PBlock area, or place part of it inside the nested PBlocks. 
In the fully nested strategy, we force Vivado to not place 
any PSM logic in the nested PBlocks, prohibiting usage of 
remaining logic cells in them. Figure 5 demonstrates the 
concept for a 5x5 CLB V-FPGA.

The placement script is extended with the following steps 
to create the nested PBlocks: 

1.	 The internal PBlocks can consist of multiple rectangles. 
The CLB PBlock is placed at the bottom left corner 
with height at most equal to the height of the tile minus 

Figure 4   Floorplanning and 
PBlocks: a: Floorplan for 2x2 
CLB V-FPGA using individu-
ally calculated sizes for each 
tile. To keep the layout regular, 
widths and heights of tiles are 
adjusted accordingly. b: PBlock 
floor plan demonstrating a 
larger V-FPGA design. The start 
point location was forced, so the 
target area had to be split into 
three smaller areas because of 
intersecting hard blocks.

Figure 5   5x5 CLB V-FPGA 
floorplan with nested PBlocks. 
The nested CLB PBlock is 
divided into two pieces to 
ensure the minimum possible 
area is used. The top right 
corner tile has an extra nested 
PBlock for its second IOB unit. 
No internal PBlock was used at 
all in the bottom left corner tile, 
as it only contains a PSM.
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one. This guarantees some freedom to IOB PBlock and 
to ensures distribution of the PSM unit over the tile 
PBlock.

2.	 The IOB PBlock is placed within the tile PBlock. The 
side is determined according to the tile type.

4.5 � Fine‑Grain Manual Placement Strategy

This strategy further constrains logic, directly mapping the 
relevant LUTs and flipflops to specific LUTs or flipflops in 
the 7 series host CLB. As there are numerous ways to place 
the logic within a tile, a manually derived layout is chosen 
instead of trying to find a fully automated one. The strategy 
is then made generic to support different V-FPGA param-
eters, but the layout is fixed to the V-FPGA and therefore 
cannot be reused for completely different applications. Eval-
uation of different manual layouts led to a placement as was 
presented in Fig. 1a: The PSM is located in the upper right 
corner and the CLB is placed in the lower part of the tile. 
Figure 6 shows the device view in Vivado after the manual 
placement strategy has been applied.

The implementation of this strategy operates on two 
lists for each tile PBlock, an instruction list and a list of the 
free host FPGA LUTs. The instruction list contains simple 
V-FPGA logic element place instructions, interleaved with 
sorting instructions. It is processed element by element, 
either placing logic elements or resorting the list of free 
resources. When an element placement instruction is pro-
cessed, the logic elements are mapped sequentially to the 
elements in the sorted list of free resources, starting at a 
specified offset. When a resorting instruction is found, the 
resorting algorithm sorts the list of remaining available host 
LUTs. It sorts horizontally or vertically and uses ascending 
or descending sorting order, depending on the instruction. 
As an example, the sort_xy_dd instruction sorts first based 
on the x location, and if the x value is the same for some 
CLBs, it uses y as secondary criteria. Descending sorting 

is applied in both cases. This specific instruction is used to 
sort the list of available logic elements before placing the 
right and left multiplexers of the PSM, as they need to be 
placed vertically from the top right corner. Sorting is always 
done on the list of free resources, so the length of this list 
decreases as the placement process proceeds. This makes it 
possible to reach every single CLB in the PBlock, not just 
the ones at the borders.

5 � VPR Architecture Generation

To describe the V-FPGA architecture and timings for VPR, 
an architecture XML file has to be provided. The logical 
architecture description for the V-FPGA consists of CLBs 
and IOBs and closely resembles the V-FPGA VHDL imple-
mentation as it was previously described. The most important 
aspect of the VPR architecture model is the timing infor-
mation, which describes delays for certain paths. Figure 7 
shows the simplified CLB block and IOB block as modelled 
and depicts some examples of timing paths. For the IOBs, 
we directly specify input delays and output delays. Only one 
of those is relevant in each single IOB, depending on the 

Figure  6   V-FPGA tile (type 9) placed using the manual placement 
strategy. Multiplexers of the PSM’s top, right, bottom and left side 
are marked red (1), purple (2), yellow (3) and blue (4). The CLB is 
located at the bottom with the LUT, two internal multiplexers and 
D-flipflop colored in black (5). Sky blue color represents the config-

uration units of the tile (6). Yellow blocks at the bottom (7) depict 
Write Connection Boxs, whereas Read Connection Boxs are marked 
green and turquoise (8) and make up remaining logic distributed 
around the LUT.
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Figure 7   VPR architecture modeling the V-FPGA structure with the 
CLB model on the left-hand side and the IOB model on the right-
hand side. Dotted lines show timing paths which need to be character-
ized and specified to enable user application synthesis with VPR.
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mode (input or output) in which it is used. The timings are 
directly obtained from the placed V-FPGA design using the 
timing extractions scripts. For the simplified CLBs model, 
three timing delay values are required: First, the input delay 
Tin , which models the delay through the CBR and input mul-
tiplexer crossbar to the LUT. Second, the LUT delay itself. 
As the V-FPGA LUT maps directly to a host FPGA LUT, 
this value is the propagation delay though the host FPGA 
LUT and can be obtained from the host FPGA datasheet. The 
third value, Tout , is the output delay from LUT to the output 
of the CBW. Here two paths could be considered indepen-
dently: The one starting at the D-FF and passing through the 
multiplexer, when the LUT output is registered. The other 
one starting at the LUT output and passing through the mul-
tiplexer directly, for combinational outputs. To simplify mod-
eling, we use the maximum of those values for both paths. 
The simple V-FPGA architecture does not have any CLB 
internal feedback path, so no additional delay values have 
to be considered for the CLB. For the PSM, the VPR model 
description is unfortunately not very flexible. It is possible 
to assign resistance and capacitance to wires and to assign 
constant delays to the switches in PSMs. But most notably, it 
does not seem possible with a normal architecture description 
to actually assign different delays to individual PSMs.

To obtain customized architecture descriptions for the vari-
ous tested implementation strategies and V-FPGA sizes, we 
modelled the base architecture as a parametrizable template. 
The template is essentially a mustache file, which can then be 
combined with the timing descriptions in form of a simple 
JSON file to yield the architecture with custom timings. The 
JSON file itself is obtained through evaluation of the detailed 
timing information generated by the TCL timing extraction 
scripts. In some cases, the paths depicted in Fig. 7 consist of 
multiple host FPGA segments or logic elements, so those ele-
ments are summed in the timing extraction scripts. We then 
consider two main approaches: The basic, direct modeling of 
CLB, IOB and PSM. In this case, we check all CLBs, IOBs 
or PSMs in the V-FPGA and search for the ones with the 
maximum delay. We then use this value for all logic elements 
of that type within the VPR architecture. This clearly reduces 
overall performance by assigning worse timings to all but the 
slowest logic blocks, but it is the approach closest to tradi-
tional FPGA architecture modeling, where uniform delays 
are expected and common. It therefore allows VPR to work 
efficiently in the way it was originally meant to be used.

The second approach tries to achieve better results by 
modelling each CLB individually. Here, a different block 
type is modeled for each single CLB in the architecture. 
Timings are extracted for each individual V-FPGA CLB 
and assigned to the block at that specific location in the 
V-FPGA architecture description. Making use of the tem-
plate approach, automatization of this approach is rather 
simple. Nevertheless it results in large FPGA architecture 

files and causes certain compute and memory overhead in 
the VPR tools. Whereas a similar approach for IOBs and 
PSM could further increase performance, there are reasons 
against individual characterization of those: For IOBs, the 
expected gain is assumed too be small considering the VPR 
runtime increase for common designs, where IOB paths are 
rare compared to logic routing between CLBs. For PSMs, 
this approach is not feasible, as VPR enforces uniformity of 
the interconnect network.

6 � Evaluation of the Placement Strategies

To evaluate the different placement strategies with different 
V-FPGA parameters, three V-FPGA designs of increasing 
size (2x2, 5x5 and 8x8) have been implemented: Unlike in 
[6], we kept the channel width value at 4 for all architec-
tures. Exact numbers therefore are different than in [6], but 
this allows for more stringent comparison between different 
V-FPGA sizes, avoiding varying routing congestion effects 
in the different designs. All designs have been evaluated both 
with fine grain timing constraints and without fine grain tim-
ing constraints. We compare the three strategies presented 
previously, with both quadratic and rectangular tiles for the 
PBlock strategies and two different placement script varia-
tions for fully manual placement. Comparisons between the 
three proposed strategies are held in the previously described 
metrics of uniformity, worst delay and LUT overhead, where 
results are normalized to the standard Vivado strategy.

For the remaining discussion, we introduce the following 
abbreviations: T in a design evaluation means that we used 
fine grain timing constraints for this design, e.g. 2x2 T means 
the 2x2 design with fine grain timing constraints applied. 
The implementation strategies are abbreviated I1a to I4b 
and refer to the following strategies: 

I1a:	� Basic strategy using quadratic PBlocks.

I1b:	� Basic strategy using rectangular PBlocks.

I2a:	� Partially nested strategy using quadratic PBlocks.

I2b:	� Partially nested strategy using rectangular PBlocks.

I3a:	� Fully nested strategy using quadratic PBlocks.

I3b:	� Fully nested strategy using rectangular PBlocks.

I4a:	� Fully manual placement strategy, using sort instruc-
tion list a.

I4b:	� Fully manual placement strategy, using sort instruc-
tion list b.
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6.1 � Impact of Synthesis Strategies

In addition to the evaluation of the standard synthesis strat-
egy, we also tested the various other synthesis strategies 
offered by Vivado, assessing their impact on the overall 
results. In the following, the available synthesis strategies 
will be abbreviated as follows: 

S1:	� Vivado Synthesis Defaults

S2:	� Flow_AreaOptimized_high

S3:	� Flow_AreaOptimized_medium

S4:	� Flow_AreaMultThresholdDSP

S5:	� Flow_AlternateRoutability

S6:	� Flow_PerfOptimized_high

S7:	� Flow_PerfThresholdCarry

S8:	� Flow_RuntimeOptimized

Tables 1 and 2 show the uniformity metrics, where best 
results for each design are marked in bold text. The � and c

v
 

values show similar trends in overall, which is expected as 
those are closely related metrics. Of the tested strategies, no 
strategy shows consistent improvements in uniformity for all 
design sizes. Strategies S2 and S3 yield improvements when 
not using timing constraints, but they yield worse uniform-
ity for some cases when using timing constraints. Strategies 

S6 and S7 yield uniformity improvements for the 2x2 and 
8x8 designs with timing constraints, but do yield worse 
results on the 5x5 design. On the 5x5 design with timing 
constraints, all synthesis strategies yield worse results than 
the default strategy. It is therefore not possible to choose a 
single synthesis strategy which yields best uniformity for all 
design sizes. This is not entirely unexpected, as non of the 
synthesis strategies is optimized for uniformity.

The maximum delay as shown in Table 3 is larger for the 
non-default synthesis strategies in almost all cases. S6 and 
S7 yield better results when the designs are not timing con-
strained and S5 yields good results in two timing constrained 
cases. Further analysis shows that those are however excep-
tional cases and the results depend a lot on channel width, 
the V-FPGA size and other structure parameters. These syn-
thesis strategies can therefore not be recommended for all 
cases: If an improvement in uniformity or delay is wanted, 
those strategies need to be evaluated for the specific use 
case, which makes consistent improvements using manual 
placement even more important.

6.2 � Uniformity

Tables 4 and 5 show uniformity metrics for the various 
manual placement strategies. Again patterns for � and c

v
 

values are similar, as those are closely related. We expect 
the rectangular tile versions to perform slightly better, as 
they reduce wire length between the tiles. when compar-
ing the b variants to the a variants, this effect can be seen 
in the table, although it is subtle. We further expected the 
fully manual strategies I4a and I4b to yield best uniform-
ity, as they enforce most constraints on the design. This 

Table 1   Normalized standard 
deviation � for synthesis 
strategies in Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 0.92 0.92 1.00 1.20 0.92 0.92 1.01
5x5 1.00 0.91 0.91 1.00 1.13 1.02 1.02 0.99
8x8 1.00 0.94 0.94 1.00 1.16 1.00 1.00 1.00
2x2 T 1.00 1.02 1.02 1.00 1.32 0.87 0.87 1.31
5x5 T 1.00 1.04 1.04 1.00 1.53 1.14 1.14 1.08
8x8 T 1.00 1.00 1.00 1.00 1.19 0.85 0.85 1.02

Table 2   Normalized variation 
c
v
 for synthesis strategies in 

Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 0.90 0.90 1.00 1.23 1.01 1.01 1.02
5x5 1.00 0.96 0.96 1.00 1.19 1.08 1.08 0.99
8x8 1.00 0.97 0.97 1.00 1.18 1.05 1.05 1.00
2x2 T 1.00 0.98 0.98 1.00 1.14 0.90 0.90 1.10
5x5 T 1.00 1.05 1.05 1.00 1.43 1.13 1.13 1.04
8x8 T 1.00 0.94 0.94 1.00 1.06 0.86 0.86 0.95
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is however not always the case, for small designs some 
of the other strategies yield better results. Whereas the 
best strategy varies depending on the design, most strate-
gies yield more uniform results than the standard place-
ment strategy in all cases. The fully manual strategy I4a 
for example yields consistent results for all architectures 
and when using timing constraints, it improves for larger 
designs. This is expected and less an improvement of the 
manual strategy than a degradation of the default strat-
egy for larger designs. As designs become larger, routing 
requires more effort, ultimately reducing the quality of 
results. In addition, it should be noted that designs with 
timing constraints are more uniform than those without in 
general, but this is not visible in the tables as the strategies 
are normalized to their relative default strategy with same 
constraint application.

6.3 � Delay

Figure 8 shows maximum delay for the various different 
strategies evaluated. Overall delay is largely dominated by 
the routing. As the routing is still performed by Vivado’s 

automated router, timing constraints directly influence 
the optimization effort. Due to this, most strategies yield 
worse delays when no constraints are given. Because of 
the reduced packing density especially in small designs, 
total delays may be larger than in the standard placement. 
The fully manual strategies I4a and I4b perform well even 
in those cases, as the LUT location constraints leave less 
decisions to Vivado than PBlock based placement. For 
the timing constrained designs, most strategies lead to 
improvements. Those are not as large as initially reported 
in [6], which is mainly caused by the fixed and smaller 
V-FPGA track width in this work compared to the previ-
ously reported results. This track width of 4 is also the 
reason for worse results in the 2x2 cases, as those were 
evaluated with channel width 2 in [6]. The I4a strategy 
again is most stable across design sizes, which makes it a 
candidate to be a default strategy.

6.4 � LUT overhead

Our previous publication [6] showed an increased area usage 
of up to 16 % when considering the total V-FPGA size, e.g. 

Table 3   Normalized worst 
delay � for different synthesis 
strategies in Vivado.

Bold values denote the best result for a given design

Design S1 S2 S3 S4 S5 S6 S7 S8

2x2 1.00 1.25 1.25 1.00 1.07 0.96 0.96 1.00
5x5 1.00 0.94 0.94 1.00 1.02 0.94 0.94 1.00
8x8 1.00 1.08 1.08 1.00 1.23 0.88 0.88 1.00
2x2 T 1.00 0.96 0.96 1.00 0.94 0.97 0.97 1.09
5x5 T 1.00 1.11 1.11 1.00 1.12 1.01 1.01 1.12
8x8 T 1.00 1.13 1.13 1.00 0.95 1.00 1.00 1.29

Table 4   Standard deviation 
� relative to Vivado standard 
implementation results, 
comparing uniformity.

Bold values denote the best result for a given design

Design I1a I1b I2a I2b I3a I3b I4a I4b

2x2 0.93 0.80 1.00 0.97 0.78 0.90 0.78 0.87
5x5 0.84 0.83 0.84 0.82 0.93 0.81 0.80 0.77
8x8 0.89 0.86 0.88 0.84 0.89 0.81 0.81 0.84
2x2 T 0.96 0.94 0.93 0.86 1.11 1.01 0.93 0.92
5x5 T 0.92 0.95 0.95 0.93 0.95 0.86 0.82 0.87
8x8 T 0.82 0.83 0.81 0.76 0.83 0.80 0.79 0.80

Table 5   Coefficient of variation 
c
v
 relative to Vivado standard 

implementation results, 
comparing uniformity.

Bold values denote the best result for a given design

Design I1a I1b I2a I2b I3a I3b I4a I4b

2x2 0.93 0.85 0.92 0.90 0.75 0.86 0.86 0.97
5x5 0.87 0.89 0.84 0.85 0.93 0.82 0.91 0.94
8x8 0.90 0.89 0.89 0.86 0.90 0.80 0.93 0.98
2x2 T 0.86 0.85 0.83 0.79 0.90 0.87 0.87 0.91
5x5 T 0.93 0.95 0.92 0.93 0.90 0.87 0.86 0.95
8x8 T 0.83 0.85 0.83 0.77 0.84 0.81 0.84 0.87
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counting unused CLBs in the area of the V-FPGA as part 
of the used CLBs. This overhead is expected, as the target 
utilization rate for the are was set as 87 % in the placement 
scripts. In addition, we evaluated the overhead of the strate-
gies in raw LUT numbers: Due to prevented LUT recombi-
nation and similar effects, we do expect to see some differ-
ences in the amount of LUTs which are required. As there 
was an maximum overhead of 1 %, we do not list these over-
heads for all strategies individually. We conclude that the 
constraints the strategies use do not have any meaningful 
impact on LUT count, the overall impact due to unused parts 
of P-Blocks and utilization rate is more significant and the 
main determining factor for area overhead.

6.5 � VPR Architecture Performance

Figure 9 shows evaluations of 72 different VPR architec-
tures, grouped first into whether fine grain timing constraints 
were applied (a and b) or not (c and d). Figures are further 
grouped according to the variant used to characterize the 
timing in the VPR architecture: Whether the worst case 
delays of all CLB has been used (a and c) or whether each 
CLB has been modeled individually (b and d). The sub-
graphs then are further divided into two groups according 
to the tested V-FPGA sizes. The 2x2 V-FPGA has not been 
evaluated, as it is too small for the benchmark circuits. Each 
set of results compares the default placement strategy and 
the manual placement strategies. Please note that all values 

in (a) and (b) are normalized to the default placement strat-
egy with worst case timing characterization in (a), whereas 
the values in (c) and (d) are normalized to the default place-
ment strategy with worst case timing characterization in (c). 
This is consistent with the way the previous results have 
been normalized and allows a direct comparison between 
individual timing characterization and the wort-case char-
acterization. For example, comparing the standard place-
ment of the 8x8 architecture in (b) to the reference in (a) 
shows that the individual characterization lead to 16 % faster 
clock frequencies in average for the evaluated benchmarks. 
Differences between the timing constrained and non-timing 
constrained variants are not directly visible in the graphs, 
but timing constrained designs were 46 % faster in average 
for the reference architectures.

When considering the achieved synthesis results for 
V-FPGA user applications, we can therefore reaffirm some 
of the conclusions based on uniformity and delay metrics in 
the previous section and add some additional ones: The evalu-
ation of the benchmarks and the improvement of 46 % in clock 
frequency clearly shows that fine-grain timing constraints are 

Figure 8   Delays � relative to 
Vivado standard implementa-
tion results. Of all analyzed 
atomic nets, the largest increase 
or the smallest decrease, i.e. the 
worst case, is shown. Strategies 
shown from left-to right: I1a, 
I1b, I2a, I2b, I3a, I3b, I4a, I4b.

(a)

(b)

Figure  9   Average over achieved maximum frequencies in VPR 
benchmarks. Results are normalized relative to the standard synthesis 
strategy with worst case timing characterization. Timing constraint 
application of the reference strategy is the same as in the result that is 
normalized. Strategies shown from left-to right: Standard placement, 
I1a, I1b, I2a, I2b, I3a, I3b, I4a, I4b.

◂
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essential, especially for the default placement strategy. For 
the other strategies, there are still benefits of using timing 
constraints, but they are slightly reduced in comparison. The 
reason for this is that the manual placement strategies provide 
larger relative improvements for the non-timing constrained 
case. This can be explained by the manual strategies enforcing 
a uniform placement and a certain fixed layout, even without 
the timing constraints. The constraints still further improve 
the results for manual placement strategies, as they affect the 
routing in the global interconnect. For the default placement 
strategy and unlike for the manual placement strategy, they 
however also directly influence the placement and therefore 
have larger impact. It can further be seen that the individual 
characterization approach in VPR yields improvements of 
up to 28 % for the 8x8 designs without timing constraints. 
For the timing constrained designs, the improvements are 
slightly reduced at up to 14 %. This can be explained by an 
overall larger uniformity of placed architectures in the timing 
constrained case. As more uniformity means more CLBs are 
closer to the worst case timing, the benefit of modelling them 
individually compared to using the worst case is diminished.

Looking at Figures (c) and (d), another conclusion that 
can be drawn is that the simple P-Block based techniques 
I1a to I3b do not yield much improvements or even reduce 
performance compared to the standard placement for 5x5. 
Investigation shows that the low area utilization targeted 
caused logic to be spread more widely than in the default 
placement, which manages to pack all elements more 
closely. This increases routing delays, therefore making 
these strategies less suitable for small designs. The I4a and 
I4b strategies perform similar to the default strategy, do 
however not yield any improvements. Interestingly for the 
5x5 designs, some strategies perform better in the simple 
characterization then in the individual timing characteriza-
tion. This is unexpected, as the modeled individual architec-
ture has strictly lower delay than the maximum one. Using 
exactly the same placement and routing as in the simple 
architecture should therefore yield higher frequencies. Inves-
tigation into the placed benchmarks shows localized higher 
routing channel utilization in the individual characterization. 
We conclude that VPR can not always efficiently handle an 
architecture the way we modeled it and that changes to the 
used algorithms may be required. For the 8x8 designs, the 
individual characterization yields better results than the sim-
ple characterization. Here, the increased nonuniformity of 
the architecture makes the approach more viable.

7 � Conclusion

In this publication, we investigated various ways to increase 
the user application frequencies for V-FPGAs. We intro-
duced a uniformity metric, arguing that the common basic 

timing modeling is based on the maximum delay in a design 
and therefore sensitive to outliers. After describing our tool-
flow to measure the delays and calculate the uniformity met-
ric for our V-FPGA designs, we evaluated different Vivado 
synthesis strategies using that framework. Results show that 
no single synthesis strategy consistently provides better uni-
formity than the default synthesis. As another solution, we 
described three different manual placement approaches and 
evaluated the conditions under which those achieve more 
uniform results. Of those, strategy I4a showed consistently 
better results. To verify whether these results also enable 
higher user application frequencies as expected, we used the 
extracted metrics to model the architecture timings in VPR. 
Using a set of small benchmarks, we determined the maxi-
mum frequencies VPR could obtain for those benchmarks 
in our characterized architectures. Here depending on the 
architecture and whether fine-grain timing constraints were 
used, improvements of up to 33 % could be seen. For timing 
constrained designs, which perform better in general, only an 
improvement of 11 % could be achieved. Aiming to improve 
those results, we introduced a timing modeling approach for 
VPR which models all CLBs individually. Here improve-
ments of up to 11 % were achieved for Vivado default place-
ment and up to 14 % for manual placement strategies.

These results will allow for higher clock rates in user 
applications on V-FPGA, lowering the entry barrier for using 
it in more cases. In addition, the increased uniformity can be 
used to enable new concepts, such as overclocking of user 
applications or moving parts of the application dynamically 
on the V-FPGA. In general, more uniform V-FPGAs also 
provide more realistic insights for physical FPGA develop-
ment, as they resemble their uniformity more closely. Future 
work in this area may focus on more advanced placement 
strategies, extending VPR to better handle individual timing 
in architectures and making the whole process more efficient 
and robust using tools such as RapidWright.
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