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Abstract

Deep learning algorithms have revolutionized the computer vision field in the
last decade. They can reduce tedious feature engineering and have opened new
possibilities of automated visual inspection. With deep learning techniques, the
availability of large amounts of qualitative labeled data became more important
than ever. The main share of computer vision research focuses on RGB images.
With the advances in sensor technologies multi- and hyperspectral cameras have
become more cost effective and accessible in recent years, allowing this imaging
technology to be applied to new fields of application.
This article gives an overview of approaches to apply deep learning techniques
to multi- or hyperspectral data. Several state-of-the-art methods will be reviewed
and problems and difficulties will be discussed. An overview of a selection of
available datasets is presented. To give a broad and diverse insight, research
from different fields of application are considered, namely the remote sensing
domain, the agricultural domain and the food industry.
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1 Introduction

Deep learning models have shown state-of-the-art performance in computer
vision problems with RGB images. They are successfully applied for classifica-
tion, object detection, semantic segmentation, anomaly detection problems and
more. In computer vision, most Convolutional Neural Networks (CNNs) can
be broken down into two parts. The first part is called backbone and usually
consists of a series of convolutional layers and pooling layers that compress
the input image data into high-level feature maps. These layers act as feature
extractors, meaning that certain neurons in these layers will be activated if
certain features are present in the input image. While the first layers can extract
basic features like edges, deeper layers can extract increasingly complex features
like faces or the shape of a specific object [23]. The features extracted by the
backbone can then be used as input for the second part of the neural network,
which is often called head. This head depends on the task and can, for example,
learn to classify the image or its individual pixels or it can output bounding
boxes that correspond to the position of a specific object. To solve the problem
of sample inefficiency of deep neural networks, transfer learning approaches
can be used. In transfer learning, a backbone pretrained on a large dataset is
used as feature extractor and finetuned on a different dataset.

This paper gives an overview of state-of-the-art approaches from the literature
that can be used to apply deep learning models to multi- and hyperspectral
data. A selection of research papers from different fields of application will
be discussed. Different fields of application are considered in this review to
recognize similarities and differences between these different domains.

First, the following section gives an overview on the principles of spectral
imaging. An overview over available multi- and hyperspectral datasets from
different fields of application is given in Section 3. Section 4 discusses common
approaches from the literature that can be used to apply deep learning methods
to spectral imaging data. The article concludes with a recap and an outlook on
promising future research directions.
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2 Principles of spectral imaging

Spectral imaging is the general term for multi- and hyperspectral imaging.
Spectral imaging is a non-destructive measurement technique that can record
images with a different spectral wavelength range and/or spectral resolution than
RGB cameras. Spectral images often go beyond the visible wavelength range into
the near infrared (NIR) or even the short-wave infrared (SWIR) regime. These
wavelength regions are especially interesting as they allow obtaining information
about the chemical composition of a material that cannot be observed by RGB
cameras or the human eye. Spectral images can be represented as 3D tensors of
shape (W,H,C), with the spatial width W and height H of the image and the
number of spectral channels or bands C. This tensor is often called a hypercube.
The values in this hypercube represent the light intensities detected by the
sensor, which usually corresponds to the light reflected by a scene. However, a
hyperspectral image can also be obtained for a transmission setting.

Spectral imaging is becoming more and more popular. This can also partially
be attributed to the technological improvements of the sensors. Multi- and
hyperspectral cameras have become much smaller and more cost effective in
recent years, which allows new possible applications. This trend will most
likely continue and further increase the popularity and accessibility of spectral
imaging.

3 Datasets

This section lists a selection of multi- and hyperspectral datasets that are freely
accessible and have been used by various researchers to compare their models.
The existing multi- and hyperspectral datasets are much more diverse than RGB
datasets. They have different spatial and spectral resolution and cover different
spectral ranges. This makes it more complicated to compare different datasets
with each other or to train one model with different datasets. The main benefit of
spectral images over standard RGB images is the possibility to detect properties
that are invisible to the human eye and thus cannot be detected by using RGB
images. However, this also makes the labeling much more complicated. This,
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and the fact that spectral cameras are much more expensive than RGB cameras
contribute to the fact that the number of existing spectral datasets is much smaller
than RGB datasets and also that the spectral datasets usually have fewer labeled
samples. Spectral imaging is applied in many different domains like remote
sensing, agricultural and food industry, medical technology [13] and recycling
industry [19]. The objectives in the recycling domain are to distinguish different
materials to be able to sort them. In the medical domain, disease diagnosis
and image-guided surgery are relevant use cases. For example, the detection
of cancer in tissues is an important topic where spectral imaging can provide
added value. The remote sensing field and the agricultural and food domain are
described in more detail below.

3.1 Remote Sensing

In remote sensing, hyperspectral images of the earth surface are acquired through
satellites or aircrafts. These datasets are used in agriculture, environmental
monitoring, urban planning and defense. Table 3.1 shows a selection of popular
multi- and hyperspectral datasets that are publicly available and have been
widely used by researchers in the remote sensing field. The Indian Pines (IP)
[2], University of Pavia (UP), Salinas Valley (SV) and Kennedy Space Center
(KSC) datasets are hyperspectral datasets with pixelwise annotations. They
consist of a single image and the number of labels in table 3.1 refers to the
number of pixels within that image for which a ground truth class is given. All
remaining pixels are considered as background. The IP dataset was captured
by the AVIRIS sensor [6] in Indiana in 1992. The KSC dataset and the SV
dataset were also captured by the AVIRIS sensor in Florida and in California
respectively. The UP dataset was recorded by the ROSIS sensor [10] over the
campus of the University of Pavia and has the highest spatial resolution with
1.3 m per pixel. The IP and UP datasets are available online on the GRSS Data
and Algorithm Standard Evaluation (DASE) website (http://dase.grss-ieee.org).
More remote sensing dataset are summarized in the works of [1] and [15].

EuroSAT [9] is a multispectral dataset, created with the freely accessible Sentinel-
2 satellite images. The dataset is patch-based, it consists of 27000 small image
patches that contain one predominant class and thus have one ground truth class
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Table 3.1: Details of five popular remote sensing datasets. The Indian Pines (IP), University of
Pavia (UP), Salinas Valley (SV) and Kennedy Space Center (KSC) are hyperspectral datasets with
pixelwise classification labels and the EuroSAT dataset is a multispectral dataset with imagewise
classification labels.

Dataset Name IP UP SV KSC EuroSAT
Pixels 145 ×145 610 ×340 512 ×217 512 ×614 64 ×64
Bands 224 103 227 176 13

Spectral Range in nm 400-2500 430-860 400-2500 400-2500 440-2200
Spatial Resolution in m 20 1.3 3.7 18 10

Classes 16 9 16 13 10
Labels 10,249 42,776 54,129 5,202 27,000

label each. Thus, this dataset does not allow evaluating per-pixel segmentation
algorithms; however, this is not its intention. Since the Sentinel-2 satellite is
scanning earth’s surface repeatedly approx. every five days, a classifier trained
on this data could be used to continuously monitor land surfaces and detect
changes in land use.

3.2 Agriculture and food industry

The most common objectives of spectral data in the agricultural domain are
monitoring the state of plants, crops, fruits and vegetables. Examples are the
detection of diseases and weeds or the estimation of ripeness. In the food domain,
common objectives are the detection of defects like bruises and the prediction of
physical parameters like acid and sugar content in fruits and vegetables. In the
food domain spectrometry has a long history, thus many spectral datasets exist
of point measurements without spatial dimensions. Multi- and hyperspectral
datasets have become more popular in recent years, but still many dataset of the
food domain are not made publicly available. It is also noteworthy that there
seem to be no popular benchmark datasets that are widely used by researchers
like they exists in the remote sensing domain.

Varga et al. [21] recently published a dataset that contains hyperspectral images
of avocados and kiwis and covers different ripening states from unripe to overripe.
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The fruits were recorded with two cameras simultaneously: the Specim FX 10
with 224 channels from 400 to 1000 nm and an INNO-SPEC Redeye 1.7 with
252 channels from 950 to 1700 nm. The images were cropped to contain one
fruit and have varying spatial dimensions of around 200 to 300 pixels in each
dimension. In total the dataset contains 1038 recordings of avocados and 1522
recordings of kiwis. A subset of 180 avocado images and 262 kiwi images were
annotated with the reference labels: weight, weight loss during storage, storage
time, firmness determined with a penetrometer and ripeness level determined by
appearance and taste.

The Ladybird Brassica dataset [3] contains image data, based on weekly scans
of cauliflower and broccoli vegetables over a 10-week period from transplant to
harvest. This multimodal dataset consists of stereo vision data, thermal images
and hyperspectral images. The hyperspectral images were recorded with the
Resonon Pika XC2 camera, with 447 channels in the range 400-1000 nm. The
crops were annotated with bounding boxes.

4 Deep Learning Methods

Deep learning refers to models that use neural network with many layers. Deep
learning methods and more specifically deep CNNs have shown state-of-the-art
performance in computer vision problems like classification, object detection,
semantic segmentation and anomaly detection. The convolutional layers consist
of many filters that act as spatial-spectral feature extractors. In the early layers
simple features like edges can be learned by the network, whereas deeper
layers can extract more complex features like specific textures or geometries.
Convolutional layers are so efficient for image data due to their translation
invariance in the spatial dimension. A filter that learned to extract a specific
feature will extract this feature regardless of its spatial location in the image. This
idea is also called weight sharing and reduces the required weights dramatically
compared to a fully connected layer. The convolutional filter exploits the local
correlation in the spatial dimension of the image. Convolutional networks have
been show to work well with grayscale images and 3-channel RGB images, but
when working with multi-channel images the size of the filters in the first layer
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increases drastically if normal 2D-CNN filters are used. Just like adjacent pixels,
adjacent spectral bands are also correlated. A 2D-CNN filter does not make
full use of this spectral correlation. One possible solution to this problem are
3D-CNN filters, however they cannot detect long-range dependencies in the
spectral dimension sufficiently. A possible solution to this problem might be the
use of attention-based methods.

Another problem of all these models is sample efficiency. As discussed in
Section 3, the available spectral datasets have fewer samples than popular RGB
datasets like ImageNet. In computer vision with RGB images, transfer learning
has shown to be a powerful tool to improve sample efficiency. Models that
have been trained on datasets with millions of images can be finetuned on
much smaller datasets and still achieve good results. This section presents
some methods that try to make use of transfer learning to apply RGB pretrained
models to spectral imaging data. Another promising method to improve sample
efficiency are unsupervised learning approaches.

The selection of a suitable and efficient model for spectral images poses a
challenge. This section shows a selection of different approaches to these
problems from the literature and discusses their results.

4.1 Preprocessing

Unlike traditional machine learning models, neural networks are usually more
robust with respect to data preprocessing. Thus, most works do not use
preprocessing for the spectral imaging data, with the exception of normalization.
Common image normalization techniques are to normalize all values to the
range [0, 1] or to normalize the first- and second-order moments to obtain a zero
mean and unit variance [1]. This normalization can be done for each channel
independently or for all channels globally.

4.2 2D CNN

To make standard 2D-CNN architectures work with spectral imaging data, that
has more than 3 channels, either the number of channels of the input hypercube
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has to be reduced before it is fed to the network or the first layer of the network has
to be modified. To reduce the number of channels, different methods can be used:
representative wavelengths can be selected with feature selection algorithms, the
spectral dimension can be compressed with dimensionality reduction techniques
like Principal Component Analysis (PCA) or a compression layer with learnable
weights can be added before the first layer.

4.2.1 Wavelength selection

Often the most useful wavelengths for the task at hand get selected with feature
selection algorithms and then only those selected wavelengths are used as input
for a model. This approach solves the problem of the high dimensional data
by reducing it to a few wavelengths. However, this approach usually requires
tedious feature engineering and does not generalize well as these wavelengths
are chosen to work optimal for one specific problem. Gao et al. [5] recorded
hyperspectral images of 120 strawberries and classified them into ripe and
early ripe. They use a sequential feature selection algorithm to select a feature
wavelength and input this as a grayscale image into an AlexNet Model.
Pang et al. [14] recorded 300 hyperspectral images of bruised apples with 256
wavelengths from 930 to 2548 nm. They use wavelength selection to compress
the data to 3 channels and then apply a YOLOv3 object detection model. To
extract the effective wavelengths they applied PCA to broad regions of the
spectrum and visually selected the principle component (PC)-image with the
most apparent contrast between sound and bruised tissue. Then they chose 3
wavelengths where the weighing coefficient curve of the PC-image had extreme
values. They also compared the result with a traditional segmentation algorithm
and found the deep learning approach with YOLOv3 is more robust.

A common option to reduce the number channels in spectral images is the use
of PCA. The grayscale PC-images can be concatenated to one image. However,
some research has found that this approach does not perform very well when used
as input for CNNs. Varga et al. [21] tested different architectures with different
input data: a full hyperspectral image, a pseudo-RGB image and PC-images of
the full spectrum. They found that the PC-images do not perform as well as RGB
images, even when using non-pretrained CNN architectures. They conclude
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that PCA might remove some necessary information that is still available in the
pseudo-RGB images.

Zhao and Du [25] implemented a hybrid approach. They use PCA to reduce the
spatial dimension of the UP dataset and feed this to a 2D-CNN to extract deep
spatial features. They also implement a balanced local discriminant embedding
(BLDE) in parallel to extract spectral features from the hyperspectral data.
Finally, they stack both spectral and spatial features together and use a LR
classifier to classify the pixels of the UP dataset with an accuracy of 96%.

4.2.2 Added trainable layers

Steinbrener et al. [20] added two 2D-CNN layers in front of a pretrained
GoogLeNet network to reduce the number of channels from 16 to 3. They
use a custom dataset with 2700 multispectral images of 13 different classes of
fruits and vegetables with 16 spectral bands for their finetuning. This method
shows better results for their dataset than using the pretrained GoogLeNet with
pseudo-RGB images, which shows the added value of additional wavelengths.
However, they do not compare the results with a non-pretrained GoogLeNet,
thus the benefit of transfer learning cannot be evaluated with their paper.

Zhang et al. [24] utilized a VGG16 backbone, pretrained on ImageNet, to
segment bruises in blueberries from hyperspectral transmittance images. Their
dataset consists of 1200 hyperspectral images with pixelwise labels for the 4
classes bruised, unbruised, calyx and background. To use the hyperspectral
images with a pretrained backbone, they added a convolutional layer before
the first layer to reduce the number of channels from 87 to 3. They found
that using the full spectrum with 87 channels achieved better accuracy than
using only 3 or 9 selected wavelengths. They also compared the results of
the pretrained backbone with a backbone that was trained from scratch with
randomly initialized weights. For their dataset, the model that was trained from
scratch performed better than the pretrained network. The reason for this might
be that the output of the added first layer has a different distribution than the
original input images of the pretrained model. Since the learned filters in deeper
layers depend on the output feature maps of previous layers, those learned filters
might be less useful if the input distribution changes. They conclude that a
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possible solution for this problem could be to train only the added layer and
freeze the other layers to maximize similarity between the distribution of the
added layer outputs and the original input images. Another possible reason for
the poorer performance of the pretrained model could be that their use case of
segmenting bruised regions within blueberries might differ too much from the
objective of the pretrainig, which for ImageNet is classifying images based on
more than 20000 categories. The blueberry bruises in this dataset apparently do
not have distinct spatial patterns, unlike most categories in ImageNet. Thus, the
model might benefit less from the pretraining. It would be interesting to test if a
backbone pretrained on a segmentation dataset instead of a classification dataset
would achieve better results.

4.2.3 Modified first layer

Wang et al. [22] use a modified ResNet architecture where the first 2D-CNN
layer has been modified to work with input images that have 151 channels
instead of 3. Their custom dataset contains 557 hyperspectral transmittance
images of blueberries, which are classified into good and bruised. They resize
the hyperspectral cubes from (128, 128, 1002) to (32, 32, 151) to reduce the
computational complexity and feed this reduced hypercube to their model.
They achieve an accuracy of of 88% in classifying the bruised samples, which
was better than the result of traditional machine learning models like linear
regression or random forest. However, they highlight the limitations of traditional
2D convolutional layers when working with multi-channel images. A 2D
convolutional filter uses every channel of the input data, which does not fully
exploit the local correlation between channels and introduces many unnecessary
weights to be trained. This may lead to overfitting and harm the generalizing
ability of the model. This is especially the case for small datasets, which are
common for hyperspectral data.

4.3 2D + 1D CNN

The combination of 2D and 1D CNNs is also called depthwise separable
convolution and can reduce the computational complexity and the number
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of weights, compared to pure 2D or 3D CNNs. The depthwise separable
convolution consists of a depthwise (DW) convolution followed by a pointwise
(PW) convolution (or PW followed by DW) [7]. The depthwise convolution
allows to model spatial relationship by applying a 2D filter-kernel to each input
channel. This allows learning different spatial features for different channels.
The pointwise convolution is a 1× 1 convolution that can model relationships
across channels. A 1× 1 convolution can also be used to reduce the number of
channels of an input tensor, which will result in a reduction of the number of
parameters in the following convolution layer. They can also be referred to as
squeeze layers [18].

Depthwise separable convolution layers have been applied by Varga et al. [21]
to classify the fruit ripening dataset that was described in section 3.2. They
compared their model with a ResNet and an AlexNet architecture whose first
2D-CNN layers have been adapted to the size of the hyperspectral input data
and found that the separable convolution outperformed the 2D-CNNs.

Senecal et al. [18] propose a SpectrumNet architecture to classify the EuroSat
dataset. They also compared the use of depthwise separable convolutions
with standard 2D-CNN. While the final classification accuracy of both CNNs
was similar, the standard 2D-CNN was more sample efficient in their case.
The decoupling of cross-channel correlations and spatial correlation seems to
make the training more difficult. However, the use of the depthwise separable
convolution reduced the computational requirements of the network significantly
which could be a worthwhile trade-off.

4.4 3D CNN

While a 2D convolutional filter is sliding across the two spatial dimensions
and produces a 2D feature map, a 3D convolutional kernel is sliding across all
three dimensions of the hypercube and produces 3D feature cubes. Like with
2D-CNNs a layer can contain several filter kernels, in which case several feature
cubes are created as output of that layer. Li et al. [11] and Chen et al. [4]
achieved competitive results to state-of-the-art models on the IP and UP datasets,
using 3D CNNs.
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To reduce the computational complexity of standard 3D-CNNs, [17] proposes a
hybrid spectral CNN (HybridSN) for HSI classification that achieves state-of-
the-art performance on the IP dataset. The HybridSN is a 3D-CNN followed by
2D-CNN. The 3D-CNN can extract joint spatial-spectral features from the input
image and the following 2D-CNN can learn more abstract spatial features.

4.5 Attention

One disadvantage of CNNs is that they are not good at modelling long-range
dependencies. However, the spectra of hyperspectral images do contain long-
range dependencies as the wavelengths are correlated and may contain hundreds
of channels. To solve this problem, different attention-based models have been
proposed recently [8], [16].

An Attention-Based Adaptive Spectral-Spatial Kernel (A2S2K) ResNet has been
proposed by [16] very recently and has achieved state-of-the-art performance on
the KSC dataset with an overall accuracy of 99.43% and competitive results to
the state-of-the-art on the UP and IP datasets.

Zhu et al. [26] recently proposed a spectral-spatial dependent global learning
(SSDGL) model that uses an attention mechanism as well as a convolution long
short-term memory module. Their model achieved state-of-the-art performance
on the UP dataset and competitive results to the state-of-the-art on the IP dataset.

4.6 Unsupervised Methods

Unsupervised learning is a promising approach to the problem of limited
availability of labeled data in spectral imaging. Unsupervised methods can
make use of unlabeled data and the amount of available unlabeled data is much
higher than the amount of labeled data. A common unsupervised method are
autoencoders. Autoencoders are composed of an encoder that compresses the
input data into latent feature space and a decoder that gets the latent space as
input and tries to reconstruct the original input data from it. The encoder can
use different convolutional layers and pooling layers to compress the data. If
the autoencoder is trained with the unlabeled data, the encoder can be used as a
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feature extractor that will ideally be able to extract meaningful spatial-spectral
features. Such an autoencoder can be used to extract features, e.g. from a
much smaller labeled dataset, which can then be used as input for a supervised
classifier. This approach is called semi supervised learning. Liu et al. [12] use
a similar approach to classify the UP dataset and achieves competitive results to
state-of-the-art methods.

4.7 Perspectives

Many different deep learning architectures for spectral imaging have been
published in recent years and have set a new state-of-the-art performance in
the field. Especially in the remote sensing domain, a lot of research has been
published. This may also be partially contributed to the availability of several
widely used benchmark datasets. Such benchmark datasets allow researchers to
compare their models in a competitive way. However, the current state-of-the-art
models are reaching accuracies close to 100% on some of those datasets. This
may indicate the need for new and potentially more diverse or more difficult
datasets. To the knowledge of the author, no such widely used benchmark
datasets exist in the agricultural or food domain. In fact, many researchers just
use their own private datasets. These domains could benefit from more public
benchmark datasets.

Apart from the data, there is also a lot of potential for improvement on the
model side. For example, the sample efficiency and robustness of such models
offers room for improvements. The existing hyperspectral datasets are very
different in spatial size and resolution and in the spectral wavelength range
and resolution. It could be beneficial to have a universal model that works for
datasets with different resolution without the need to modify its architecture,
similar to RGB models that work for different spatial resolutions. Such a model
could be trained with a combination of multiple different datasets, which would
massively increase the available data. Unsupervised models also have a great
potential, since they do not need labeled data.
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5 Conclusion

Deep learning models have proven to be efficient for multi- and hyperspectral
data. Many different convolutional architectures have been proposed to process
spectral imaging data. The 2D, 2D + 1D and 3D CNNs combine spatial and
spectral information in an intuitive and efficient way. They show state-of-the-art
performance on different multi- and hyperspectral datasets. CNNs that use an
attention mechanism to be able to model long-range dependencies are becoming
more popular lately, also showing state-of-the-art performance on the available
datasets. One of the main remaining challenges is the scarce availability of large
annotated datasets. More and bigger spectral imaging datasets, similar to the
ImageNet and COCO datasets used in RGB imaging, would be beneficial for the
research field. However, the labeling of such data is very time consuming. Thus,
a promising direction is the development of unsupervised and semi-supervised
approaches.
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