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Abstract

In this report a basic pipeline for planning and operating an indoor drone flight
is presented and evaluated in detail. We introduce the structure and interface
considerations of a Planner Manager enabling autonomous indoor flights. The
interaction routines of different planners are introduced in detail before we
evaluate the system in both simulation and real test flights. We show that the
system is capable of managing the typical building blocks of a mobile robotics
system. Most of the components can be swapped easily to allow for rapid
prototyping without the need to rework the whole pipeline.

1 Introduction

UAVs (Unmanned Aerial Vehicles) have become increasingly important in the
last couple of years. Both industrial and consumer sectors require UAVs to
be equipped with more and more intelligent and autonomous behavior. This
includes automatic obstacle avoidance, efficient path planning as well as an
environment sensing with varying imaging sensors. While some of these
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Figure 1.1: Overview of different pipeline building blocks.

functionalities are included in flight control software 1,2, they rarely meet the
requirements of the research community. Prototype driven development of new
algorithms, reproducible testing in simulation as well as in practical experiments
and fine graded control over all system variables often require researchers to
create their own entire software stack in order to run a specific algorithm. Due
to the novelty of the research area, many of the basic requirements as feedback
control, trajectory generation or state estimation are still very active research
topics [2]. Without access to the whole deployment stack, it is often difficult to
run a specific module or to reproduce the results. On the other hand, if the stack
is available, extensive modifications are often required in order to test it against
alternative implementations.

Therefore, we propose a framework which allows for a loose coupling of several
main building blocks of a mobile robot autonomy stack. These building blocks
are depicted in 1.1. We target autonomous indoor inspection flights with some
specific inspection target, which comes with the additional difficulty of accurate
state estimation. Usually some kind of visual inertial odometry must be provided

1 https://www.dji.com/de/guidance
2 https://docs.px4.io/v1.9.0/en/advanced_features/
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to allow a drone to fly in such GPS-denied environments. However, to support
different environments, we don’t want to restrict the platform to a specific source
of odometry as explained in the localization interface (see Section 3.1). The
generation of a obstacle free trajectory requires a planner to interact with some
kind of map representation, this interaction is described in further detail in
Section 3.1. We then continue to describe the main control routine in further
detail in Section 3.2. Finally, we include some practical considerations in
Section 4 and present an evaluation of the controller pipeline and the interfaced
algorithms.

The Robot Operating System (ROS) serves as main link between the different
components in our system as visualized in Figure 1.1. It is widespread in the
robotic community and comes with a powerful toolset consisting of sensor
drivers, simulation frameworks (Gazebo) and a selection of state-of-the-art
perception algorithms. 3,4 The node based architecture together with a publisher
/ subscriber information scheme allows for a semantic abstraction of single
building blocks into reusable, modular software packages. Our platform is
intended to be deployed on drones running the px4 software stack.5 Px4 is
an open source autopilot working on various hardware platforms. It comes
with SITL and HITL features and supports standardized communication via the
mavlink communication protocol. Additionally it allows to publish and retrieve
odometry information to and from ros nodes via mavlink6, which makes it the
most popular platform in the research community.

2 Related Work

There exist few software stacks containing a high level controller which is able
to plan and execute a given waypoint trajectory. Most of the available dynamic
UAV planners solely rely on a specific underlying map representation and require
additional work to run in a real environment.

3 https://ros.org/
4 https://gazebosim.org/
5 https://px4.io/
6 https://mavlink.io/
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In [12], Schmid et al. present a generic planning framework with the focus
on active planning. While the planning module itself is highly configurable,
the underlying map representation must be Voxblox [9] and the calculation
of the exploration gain of specific viewpoints is deeply interlinked with the
raycasting for volumetric map building. The planner is working in the RotorS [4]
environment, which on of the most common simulation frameworks for UAVs.
However, the framework is not meant to be used for flights in practice. Fuel [15]
is another explorative path planner based on a frontier information structure
maintaining a tree of already explored paths. They use a hierarchical planner
structure which is able to perform global and local planning. It however lacks
the possibility to replace single parts of the planner and does not come with
integrated controlling capabilities.

The flight controller software stack px4 itself provides different modes suitable
for simple waypoint navigation. This comes with the advantage of a strong
link to the flight controlling mechanisms. Theses modes are only provided for
GPS based flights and the support for local planning is limited. Within the
px4-universe, the recently open-sourced frameworks XTDrone [14] and MRS
UAV System [2] offer a variety of functions, platforms and sensors and are
highly extensible by providing a plugin based architecture. The MRS UAV
System even allows to swap between different odometry sources, trackers and
controllers mid-flight making it an advanced platform for carrying out research
experiments in simulation and real world scenarios. Due to the sheer size and
complexity of the platforms, it is not a trivial task to adapt or exchange single
components in the systems.

Our proposed architecture does not aim on providing a planner which is on
pair with state-of-the-art planners but rather allow the utilization of different
modules with unified interfaces and minimal overhead.

3 Pipeline

In the following, we briefly describe our pipeline architecture and discuss the
planning routines in greater detail. The main building blocks of the pipeline are
depicted in Figure 3.2. Figure 3.1 introduces the notation of the drone’s reference
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Figure 3.1: UAV System Overview. Similar to [7], the UAV is represented through its body
frame B = {~b1,~b2,~b3} originated in the center of mass (red dot) with the combined thrust of
the four rotors pointing in −~b2 direction. The UAVs position estimate is given through pW ,
w.r.t. the reference world frame W = {~i1,~i2,~i3}. The drone is tracking the given trajectory
T = s1, . . . , sn, while dynamically avoiding the obstacle marked in red (cf. Section 3.1). T is
calculated to be a dynamically feasible trajectory, guaranteed to contain the blue inspection points
unless they lie within an obstacle. The circle around si depicts the acceptance radius for the
respective waypoint.

pose and frames. As input we take a list of setpoints T = s1, . . . , sn given as
coordinates in a specific reference systemW , where each setpoint si = [t, ψ]>

consists of a position t = (x, y, z)> and a heading ψ. This input can either
be user defined or the result of some static planning routine as explained in
Section 3.1. Final output of the pipeline are the lowlevel setpoint commands
which then serve as input for the flight controller.

3.1 Architecture

The controller handles different components which now will be explained in
further detail. Most of the building blocks follow a plugin architecture so that
they can easily replaced with alternatives as long as they are implementing the
same interface.
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Figure 3.2: Planning Blocks for a Pipeline. An initial trajectory can be provided by a static planner
or a waypoint list. The Planner Manager handles different kinds of subplanners, which all use an
interface to an underlying map representation and the current position estimate. The “Setpoint
Track & Control” block receives the output from the localization system and provides inputs to the
low-level flight controller. For a more detailed description of the building blocks, see Section 3.1.

Static Planner For some inspection tasks, it can be useful to pre-generate an
inspection trajectory with the goal of optimal inspection coverage while
reducing path length and uncertainty at the targeted measuring points at
the same time. To support such a pre-computation using a triangle mesh
as input, we adopted a version of the Structural Inspection Planner [1] and
abstracted it into a single “Static Planner” node. Output of this procedure
is a set of optimized viewpoints optimizing the criteria stated above. For
details we refer to the original publication in [1].

Localization Interface We don’t target a specific localization system within our
pipeline. We require some source of odometry to provide an estimate of
the pose pW = (t,R) of the vehicle. The typical source of such odometry
is the GPS / IMU fusion provided by the px4 flight controller utilizing
an Extended Kalman Filter. Other sources of position estimates such
as Visual Odometry (cf. Section 4) system or a full SLAM approaches
might be used as well. The position estimate is provided to the high-level
planner manager as well as to the Setpoint Control block.

Setpoint Track and Control This building block generates the commands for
the low level flight controller as output. It is setup to either use the
flight controller internal position controller by providing the current target
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setpoint s = [t, ψ] at a rate of 50hz. It additionally supports the utilization
of a SE(3) geometric controller as described in [7] to support more
aggressive maneovers. We refer to that publication [7] for a detailed
description of the assumed UAV dynamic model. In that mode, output will
be provided as attitude rate commands right into the attitude controller
of the flight controller. However, using a geometric controller requires
a smooth and feasible input trajectory [7]. Following the approach
by Richter, Bry, and Roy [11], we consider the construction of such a
piecewise polynomial trajectory out of a set of waypoints to be a linear
optimization problem and solve it using an unconstraint linear solver.
The implementation in [3] provides additional methods to check for the
trajectory feasibility.

Mapping Interface Typically, planners work on an underlaying map represen-
tation to account for obstacles. This representation may either be derived
from an existing environment or it can be constructed dynamically using
the current position estimate pW together with some sort of depth sensor
information. The pipeline does not rely on a specific type of such repre-
sentation as long as it supports obstacle-queries for a bounding volume
b = (t,d) ∈ R2×3 of the size d. Most of the available volumetric map
representations allow for such an operation, in particular we implemented
the interface for some of the most popular representations: OctoMap [6]
as efficient Octree based volumetric map; Voxblox, a Truncated Signed
Distance Field based representation [9] and EWOK [13], a highly efficient
voxel representation based on a local ringbuffer.

Constraint Planner Sometimes it is useful to constrain the UAV trajectory
to a specific operation area. While this could be modeled similar to
obstacles in the underlying map representation, we decided to abstract this
operation into a different planner, which can reject specific points outside
of the defined areas and re-trigger the trajectory generation process with
additional constraints. It can also be used to provide warnings or trigger
safety actions if a no-fly zone is approached.

Dynamic Planner With an underlaying map representation in place, a dynamic
planner can now be put into use to dynamically avoid obstacles during
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execution time. We leverage the Open Motion Planning Library (OMPL) 7
as default framework for local planning as it enables us to compare different
kinds of planners using the same interface. In our default configuration,
we use a Informed RRT* Planner [5], which has proven to outperform
the classical RRT* in terms of both convergence rate and solution quality.
Each state in the planners search space is being checked for potential
collision using an approximate hit bounding volume of the vehicle. The
resulting trajectory is post-processed using a path simplification and
smoothing routine.

Inspection Planner As we are targeting object inspection we introduce another
module, which is solely responsible for planning low-level inspection
routines. This allows us, for example, to trigger a hover action when
we reach a point of interest. We can also use it to perform a static
maneuver in order to generate multiple views of a target inspection point.
When carrying out an object measurement task, these measures help to a
reduce the measurement uncertainty, which otherwise would be mainly
influenced by shutter and motion blur effects. When activated during
hovering the Inspection Planner may also target a specific distance to
an inspection object and overrule the safety distances maintained by the
Dynamic Planner. This can prove useful if an inspection unit needs a
specific working distance to perform a specific task.

3.2 Planning Procedure

We now describe the interaction of the modules introduced in Section 3.1 in
further detail. To ensure a high robustness of the planning system, we employ a
multithreaded structure. The Setpoint Track and Control block is publishing
commands with a high availability while the replanning procedure is running at
a lower frequency and the cascading planner structure is invoked on demand.
Algorithm 3.1 explains the concept of the horizon-based dynamic planning
procedure. Multiple planners may be used in a Planner Manager P , their

7 https://ompl.kavrakilab.org/
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configurations or even the whole planner may be replaced at runtime. For each
update, the previously generated smooth trajectory T is being evaluated for
feature waypoints up to the horizon h (line 7) and stored in a planning queue Q
(lines 1-3). If the evaluated position lies within the acceptance radius of the
currently targeted inspection point, we mark it as reached (line 8) and set a new
goal. All registered planners now check the generated points (lines 9-13). The
check depends on the nature of the planner, it typically is an obstacle query
against the Mapping Interface. Within the check, planners can change the state
of the input points to mark them for replanning, inspection, etc. When all points
are marked, the actions are derived (line 14) using an asynchronous function
call. For unplanned points, the configured planners are then invoked to generate
the path changes with respect to their planning target (lines 17-24). A list of
constraints is shared between all the planners. Finally, the waypoint list Q is
updated (line 25).

Planner Manager

Inspection Planner Dynamic Planner Constraint Planner

Constraint Store

. . .
check()

plan()

isObstacle()

informedRRT*()
smoothCurve()

Q

needsInspection() isConstraint()

generateInspectionRoutine() setConstraints()

Figure 3.3: Scheme of planner invokations in Planner Manager. Multiple planners can be attached
to the Planner Manager, they need to implement plan and check interfaces. The blue flow illustrates
the check functionality for a point. A dynamic Planner would check for free space necessary to
approach the point, while a constraint planner would check for user defined constraints preventing
this point to be a target. The red flow illustrates the generation of actions to resolve points which
need replanning. A dynamic planner might invoke some RRT* routine while an inspection planner
generates a custom inspection trajectory.

Since the order of invocation within the Planner Manager is crucial, different
priorities can be assigned to the planners. Typically, a low priority planner such
as the Inspection Planner should be invoked first, followed by the Dynamic
Planner with collision avoidance capabilities. Finally, a Constraint Planner may
reject some of the generated points and trigger another iteration of planning.
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Algorithm 3.1 Structure of the Planner Controller Routine
Input: Waypoints {s1, . . . , sn}

1: T ← smooth trajectory through s1, . . . , sn by solving unconstraint QP [11]
2: P ←Manager{ConstraintPlanner, RRTPlanner, InspectionPlanner}
3: Q← sampled waypoints from T up to horizon h
4: function updateHorizon // 5hz rate
5: t← current time
6: Q.prune()
7: Q.update(T (t), T (t+ ∆), . . . , T (t+ h∆))
8: if T (t) ∈ acceptanceRadius(st) then st.reached← true
9: for all q ∈ Q with q.state = wp_state::future do

10: for all p : P do
11: q.planning_state← p.check(q, t)
12: end for
13: end for
14: generateActions() async
15: end function

16: function generateActions
17: V← Q.rangeView(q => q.state 6= planning_state::planned)
18: C ← collectConstrains(V)
19: for all p : P do
20: if V contains unplanned points then
21: Vp ← p.plan(Q.begin(),V.begin(), st, C)
22: V.update(Vp)
23: end if
24: end for
25: Q.update(V )
26: end function
Output: Collision free setpoints in Q

Safety Actions may be triggered in the updateHorizon procedure. The invocation
tree of three exemplary planners managed by a common manager is visualized
in 3.3.
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4 Experimental Evaluation

We verify the functionality of the proposed system in both simulation and
practical demonstrations. We develop the pipeline with focus on cross-platform
operability in order to support different companion computers. We equip both
the virtual model and the drone used for the practical experiments with a stereo
setup (720px× 480px per lens) for depth perception as well as a 4k-RGB sensor
and a forward facing distance sensor. In addition, we use a 9-axis IMU (3-axis
accelerometer, 3-axis gyroscope and 3-axis compass) as well as barometer. We
allow to set user-defined values for IMU noise parameters as well as camera
calibration parameters and forward the values to the respective modules.

(a) UAV (b) Simulation (c) Real Environment

Figure 4.1: Planning tests can be performed in simulation as well as in the real environment.

4.1 In Simulation

We used the px4 Software-In-The-Loop component to run experiments with
Gazebo as simulator. We recreated the real environment in simulation to test
the localization, planning and mapping procedures (cf. 4.1(b)). Even if Gazebo
is not capable of rendering photorealistic environments, it allows for a realistic
dynamic simulation and connects well with ROS-based system. Sensor and
environment data can be read programmatically using standardized interfaces.
Checks, such as disabling the planning framework mid-flight, can be performed
safely in the simulation environment.

Figure 4.2 shows some of the experiments performed in the simulation envi-
ronment. In 4.2(a) we calculate inspection points for a simulated building
using the static planner module. We tested the dynamic obstacle avoidance
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as visualized in 4.2(b). The module conveniently allows to test and evaluate
different dynamic planners leveraging the OMPL library. Additional safety
checks can be performed to ensure that the replanned trajectory meets specific
constraints such as a maximal path length. In the depicted scenario, we used the
InformedRRT* planner as default choice. We assumed a 60× 60× 40cm3 hit
volume for the planner’s collision check. As admissible heuristic for the planner,
we chose the CostToGoal heuristic, which is basically the euclidean distance to
the target position.

(a) Static Planner (b) Dynamic Planner
in Simulation

(c) Inspection Planner

Figure 4.2: In (a), we invoked a static planning procedure (derived from [1]) resulting in a set of
viewpoints. In (b) we can see the result of a dynamic RRT* Planner avoiding an obstacle on the
flight path, whereas in (c) an actual short inspection routine is carried out during a real flight.

4.2 On a Real Drone

Figure 4.1(a) shows our hardware and environment setup. We used a standard
Holybro S500 frame with a Pixhawk 4 as lowlevel flight controller. We designed
different custom plug-in mounts to allow for different companion computers and
sensor setups. Planning and localization tests have been performed using the
Snapdragon Flight module equipped with a quad-core Snapdragon820 processor
using the ARM-v8 architecture. To enable the usage of modern cameras, we
also deployed the pipeline onto the Jetson Xavier NX as companion computer
and connected a Realsense L515 solid-state LiDAR camera. This setup allows
for a more detailed indoor map generation than the stereo setup described above.
Figure 4.3 shows a comparison of the two hardware setup in terms of mapping
performance.
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(a) Scene (b) Stereo Setup (c) Solid-State LiDAR

Figure 4.3: The scene in (a) was captured into a map representation using different sensor setups.
(b) shows an exemplary result using a stereo setup while the LiDAR setup used in (c) allows for a
more detailed scene representation.

The Localization module (cf. 3.2) allows to run different localization algorithms.
Figure 4.4 compares two different approaches. The Snapdragon Flight board
comes with a basic visual-inertial algorithm based on an Extended Kalman
Filter. 8. We referenced the local pose within the global frameW by mounting
AprilTags [10] at different locations and passing the resulting camera poses
inW back to the EKF. The resulting poses (grey line) are used as baseline as
they provide centimeter accurate pose estimates at measured reference points.
OrbSlam2 [8] uses only the monocular camera to estimate the pose. The blue
line in Figure 4.4 shows that while loop-closure is successfully performed on
the right part of the trajectory, on the left part not enough visual features are
available to provide an accurate state estimate.

We evaluate the waypoint following capabilities of the pipeline by flying
trajectories through manually defined inspection points. Figure 4.2(c) shows
an excerpt of such an inspection flight. We notice that the flight performance
highly depends on the stability of the localization module. Frequent divergence
of the visual inertial system causes the drone to fallback to its safety hovering
action preventing a smooth flight.

7 https://michaelgrupp.github.io/evo/
8 https://developer.qualcomm.com/software/machine-vision-sdk
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Figure 4.4: Trajectory estimates for repeated circle flight using two different localization systems.
The grey line depicts the estimated pose of the reference system, which is a VISLAM approach
for the custom Snapdragon Flight platform. The tracking camera and the onboard IMU are fused
in an EKF fashion to provide a state estimate. In addition, AprilTags have been integrated to
define a precise reference frame and enhance the state estimation. The blue line shows the state
estimate provided by OrbSlam2 [8] using the monocular tracking camera only. The evaluation can
be conveniently performed using EVO 9as part of the pipeline.

5 Conclusion and Future Work

In this report, a pipeline for performing UAV flights in indoor environments has
been introduced. The construction of such a pipeline is motivated by the lack
of controlling software for research oriented flight experiments as presented in
Section 2. The presented interfaces allow the dynamic usage of different modules
for localization, mapping and planning. The required building blocks and their
interface definitions have been established, before the cascaded planner structure
was presented in detail. Finally, different experiments have been conducted in
simulation as well as in real-world scenarios to verify the practicability of the
pipeline. The experiments showed that the pipeline is capable to safely perform
and operate simple indoor flights.

In order to enhance the robustness of the pipeline further, additional failchecks
and fallbacks need to be implemented in future works. This should allow for a
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smooth trajectory tracking even with inaccurate localization results. In addition,
the dynamic planner module needs additional robustification for application in
practice. In the current setup, the feasibility of a planned route is not rechecked
after an evasive maneuver. Therefore, such a maneuver can only be performed
slowly as the transition to the next planned waypoint may not be smooth. So
far, the setup has only been tested with static obstacles. Moving obstacles have
higher requirements regarding the real-time capability of the Mapping module
which should be investigated in the future.
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