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Abstract
To facilitate the estimation of heat loads on plasma-facing components in fusion devices in
various different magnetic geometries, a heat load proxy model was developed based on
anisotropic diffusion. In this work, this model is compared to the so-called field-line diffusion
approach. To facilitate the evaluation of these models, a novel synthetic camera-based approach
for obtaining heat load distributions from Monte Carlo samples was also developed and
implemented. With the assistance of this synthetic camera, heat load predictions for the
Wendelstein 7-X divertor were obtained and compared with infrared camera observations. It
was found that the anisotropic diffusion-based model achieved a closer match to infrared
camera observations, while still being suitable in computational effort for large magnetic
configuration database scans.

Keywords: heat load modeling, Wendelstein 7-X, proxy model, field line diffusion,
anisotropic diffusion, Monte Carlo, kernel density estimation
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1. Introduction

Monte Carlo models are a popular approach to simulate the
heat- and particle-transport in magnetically confined plasmas.
This can mainly be attributed to their excellent ability to
handle the differences between transport parallel and perpen-
dicular to the magnetic field lines, which can be multiple
orders of magnitude apart, as well as their excellent paralleliz-
ability. Furthermore, the parallel and perpendicular transport
processes can be modeled in separate subroutines of model
implementations, which increases the quality and maintainab-
ility of transport codes significantly. An important application
of these models is the simulation of heat fluxes onto plasma-
facing components.

Of particular relevance are two basic linear transport pro-
cesses, the diffusion and convection process. These two
provide straight-forwardmappings between fluid- andMonte–
Carlo-views of the same physics. On the one hand, the convec-
tion process, which is connected to a first-order fluid equation,
can be implemented using single-directional random walks
(e.g. exponentially distributed or fixed-distance movement).
The diffusion process, on the other hand, is related to a para-
bolic second-order fluid equation and, on the microscopic
level, maps to bi-directional random walks, such as Brownian
motions.

Asmentioned before, diffusive and convectiveMonte Carlo
models form important basic building blocks for the modeling
of heat- and particle transport in fusion plasmas. Of particular
importance in the plasma edge are the Braginskii equations,
which are, at their heart, non-linear diffusion equations. How-
ever, the nonlinearity in these equations is numerically chal-
lenging to treat. Common Monte Carlo implementations trace
test particles individually without consideration of the direct
interaction with other tracer particles, which is a concession
made to limit code complexity (exceptions to this tendency
include e.g. particle-in-cell methods). The non-linear interac-
tions need to then be modeled by treating the particle statist-
ics (densities, velocities etc) as fields that the tracer particles
can interact with. This approach requires an alternating loop
between test particle tracing and field accumulation, which
substantially increases the required execution time.

However, the full physics picture provided by a nonlin-
ear model is not always necessary to derive the information
requested. Sometimes, it is sufficient to have a reasonably well
working model which can be used to perform studies on phys-
ics parameters not directly related to the transport itself. The
discussion presented here is aimed at such an attempt of proxy
modeling.

2. Anisotropic diffusion as proxy model

The modeling approaches presented in this discussion primar-
ily aim to support the near- and mid-term future divertor oper-
ation and design of Wendelstein 7-X [1, 2]. In the upcom-
ing campaigns, this stellarator device will aim to demonstrate
quasi-steady-state operation in high-performance regimes.
However, its island divertor configuration can be sensitive

to changes in the magnetic topology related to the toroidal
plasma current and the plasma beta [3, 4]. To assess these
changes (and to prepare future divertor adjustment research),
the underlying heat-load model needs to combine an accept-
able execution time, flexibility in the magnetic background
field and reasonable accuracy of the heat-load predictions.

Prior to the developments presented here, there were two
main models in use for edge physics modeling at Wendel-
stein 7-X. The first one is the widely-known and -employed
edge simulation code EMC3-EIRENE [5, 6]. This code imple-
ments a full Monte Carlo model for the Braginskii equations.
To compensate for the high computational demands of such
a nonlinear simulation, EMC3-EIRENE uses a precomputed
interpolation grid to accelerate field line tracing. Unfortu-
nately, the process to generate these grids has not yet been
fully automated, which precluded application of this code to
our large equilibrium database waiting to be analyzed.

The second pre-existing heat-load model is provided as
part of a field line tracing webservice [7], which can option-
ally enable a perpendicular diffusion process inside its tracing
routine. This implements a hybrid transport model, combin-
ing a convective parallel transport with a diffusive perpendic-
ular transport process. The convective parallel transport makes
this code extremely fast, as particles quickly hit the diver-
tor once they leave the confined plasma. This model was ini-
tially used to study the effects of plasma-beta and plasma-
current related magnetic topology changes on the divertor heat
loads. However, its predictions were found to lack some of the
heat load patterns observed in experiment [8] (see section 3).
Particularly, field-line diffusion failed to reproduce heat load
patterns created by counter-streaming heat flows. In such a
counter-streaming flow scenario, the heat first flows into one
direction parallel to the magnetic field (either with or against
the magnetic field vector), and then reverses direction at
least once.

As a response, we decided to improve upon the second
approach by replacing the convective parallel transport pro-
cess with a diffusive one. Internally, this was realized by repla-
cing the single-direction field-line tracing with a bidirectional
Gaussian randomwalk. The sign of the sampled tracing length
would then be used to determine the tracing direction. The res-
ulting model represents a middle ground between the high-
fidelity physics modeling of EMC3 and the particularly fast
computation of field line diffusion. Furthermore, such a model
is still based on simple field line tracing. Therefore, it does not
require a field-aligned grid, which requires substantial manual
labor to set up.

2.1. Field line diffusion

The field line diffusion model is an extension of a field line
tracing process. Instead of simply following the field line until
hitting a plasma-facing component, the test particle follows the
field line for a random distance∆l, after which it is displaced
by a random displacement∆x⃗⊥ perpendicular to the magnetic
field (with a randomly chosen direction). These quantities are
sampled from their respective distributions as:
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p(∆l= k) =

{
λexp(−k/λ) k> 0

0 l⩽ 0
(1)

p(|∆x⃗⊥|= r) =

{
const. r⩽

√
12D⊥λ

v

0 otherwise
, (2)

with a convective streaming velocity v, a perpendicular diffu-
sion coefficient D⊥ and a mean free path length λ. For small
step sizes, this model implements a Monte Carlo process for
a hybrid convective-diffusive transport. In a short mean-free-
path limit (continuous fluid equation), the tracer particle dens-
ity follows the process:

dn
dt

=−∇⃗ · J⃗+ f,

J⃗=−P̂⊥D⊥∇⃗n+
B⃗∣∣∣B⃗∣∣∣vn, (3)

where B⃗ is the magnetic field, P̂⊥ is an operator representing
projection perpendicular to the magnetic field, J⃗ is the tracer
particle flux, n the tracer particle density and f is an inhomo-
genous source term representing particle seeding or heating.

This type of model is very fast to solve (requiring about
4 core hours for 105 test particles) and simple to implement,
as it requires only a small extension of a field line tracer and
scales linearly with the connection lengths in the scrape-off
layer. Unfortunately, this type of model is not able to cap-
ture counter-streaming flow geometries. In such geometries,
particles stream in the direction of the magnetic field in some
regions, and against the magnetic field direction in others.
These effects are uncommon in axisymmetric fields, but can
lead to additional strike patterns in 3D fields as they are found
in Stellarators.

2.2. Anisotropic diffusion

Anisotropic diffusion can itself be again viewed as a simple
extension of the field line tracing process. The key differ-
ence to field-line diffusion, however, is that the parallel trans-
port model is also chosen to be a diffusive one. For a random
walk-based implementation, this implies that the parallel ran-
dom walk must be a bidirectional random walk that can step
in both forward and backward direction. The natural choice
here is to implement both the parallel and the perpendicu-
lar random walks as Gaussian random walks approximating
Brownian motions. For simplicity, the model presented here
simply considers a parallel and an isotropic (omni-directional)
random walk. The movement distance ∆l and the perpendic-
ular displacements ∆x⃗ follow now the distributions:

p(∆l= k) =
(
2πD∥δt

)−1/2
exp

(
− k2

2D∥δt

)
, (4)

p
(
∆x⃗= d⃗

)
= (2πDδt)−3/2 exp

(
− d⃗2

2Dδt

)
, (5)

with a parallel diffusion coefficient D∥, an isotropic diffusion
coefficient D and a time step size δt. For infinitesimal time
steps, such a model can be interpreted as solving an equation
similar to equation (3):

dn
dt

=−∇⃗ · J⃗+ f

J⃗=−
(
P̂∥D∥∇⃗n+D∇⃗n

)
=−

(
P̂∥
(
D∥ +D

)
∇⃗n+ P̂⊥D∇⃗n

)
. (6)

This gives rise to two equivalent interpretations, a parallel dif-
fusionwith coefficientD∥ and an isotropic diffusionwith coef-
ficientD, or a parallel diffusion with coefficientD∥ +D, a per-
pendicular diffusion with coefficient D, and the source term f.

2.3. Parameter dependency of flux distributions and
computing time

As the fluid transport equations represent the small-step-size
limits of the Monte Carlo processes, both models contain scal-
ing parameters that do not appear in their respective fluid
interpretation. For the field-line diffusion, this parameter is
the mean-free path λ, while the time step size δt is its equi-
valent for the anisotropic diffusion model. These parameters
represent computational accuracy tradeoffs. Small values lead
to more physically accurate solutions of the fluid equations,
but also to increased computational time. This is particularly
important for the anisotropic diffusion model, as the effective
distance traversed by a diffusing particle does not scale with
the time, but with its square rootσ ∝

√
Dt. This in turn implies,

that such amodel’s execution time scales with the square of the
connection length in the edge. To combine upstream accur-
acy with acceptable computation times, we chose to linearly
increase the time step size with the step number in the ran-
dom walk. This curbs the computational cost at the expense
of potentially missing some flow reversal points in the down-
stream region.

In addition to the above parameters, there is another import-
ant simplification to be considered. The purpose of the presen-
ted models is to calculate the distribution of attached heat
loads in steady-state conditions. Therefore, only the fluxes J⃗
in steady state cases dn

dt = 0 are of practical relevance. In such
a case, it is possible to linearly rescale all velocities and dif-
fusion coefficients by an identical factor c, which will modify
only the tracer particle densities n by a factor of c−1 without
modifying the flux distributions. Therefore, the heat loads do
not depend strictly on the transport parameters, but only on
their ratios. The characteristic quantities for steady state heat
load solutions are therefore:

• D⊥/v for the field line diffusion model, empirically fixed
to the value 3 · 10−7m by matching to infrared camera
observations;

• D/D∥ for the anisotropic diffusion process, empirically
fixed to the value 10−7 by matching to infrared camera
observations.
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To limit the sampling noise of the Monte Carlo model to
an acceptable level while attaining high resolution, we chose
to trace 105 test particles for each model. For the anisotropic
diffusion model, this calculation was done in parallel on the
JURECA supercomputer [9], while the field-line diffusion
model was traced in a serial implementation [7]. As should
be expected from a tradeoff for increased accuracy (due to
worse computation time scaling with connection length), the
total CPU consumption of the anisotropic diffusion model
already substantially eclipses its simpler counterpart. Whereas
the field-line diffusion calculation takes roughly 4 h on a single
core, the anisotropic diffusion calculation requires a wall clock
time of about 1 h on a 128 CPU setup (leaving the anisotropic
diffusion model at a substantially more expensive 128 core-
hours). For our purpose, this is tolerable, but for applications
without access to a parallel machine, thismight already present
a substantial hurdle.

2.4. Heat-load density estimation from Monte–Carlo samples

A common challenge that Monte–Carlo methods face is the
back-conversion of test particle distributions into fluid para-
meter distributions, a problem commonly known in statistics
and machine-learning as ‘kernel density estimation’. Volumet-
ric quantities such as temperature and density distributions
are usually inferred by convolution or using grid cells. Heat-
load estimation, however, requires the estimation of a surface
density on a (usually irregular) 2D geometry embedded in 3D
space. This challenge is usually tackled by one of the two fol-
lowing approaches:

• The first approach is to directly use the geometry mesh
(which is also used during field line tracing) for heat load
inversion, essentially by binning particles over the elements
of this mesh. The accuracy of this process is tightly linked
to the surface resolution of this mesh. If the mesh is too
coarse, small-scale hot spots will be missed during eval-
uation, while a too fine mesh will result in overly large
noise from Monte Carlo sampling. While dynamic subdi-
vision techniques exist to remedy this problem, the irregu-
larity of triangle meshes makes this a challenging problem
to address.

• The second approach is to selectively map parts of the
plasma-facing components onto a 2D grid. Once such amap-
ping is constructed, it is straight-forward to convert particle
samples into 2D distributions. Since the target region of the
mapping is a regularly spaced rectangular region, changing
the sampling density (even with local adaptivity) becomes
a relatively simple process. The main drawback of this
approach is the large amount of manual work involved,
because such transformations are usually manually spe-
cified, and are cumbersome to derive for complex shapes
which arise outside of the divertor target elements.

To retain the advantages of the second approach while
removing most of the manual setup work involved, we decided
to automate the transform from 3D to 2D space following the
ideas of a synthetic camera. Since an imaging transform is

any way necessary for visualization, this removes any duplic-
ate effort related to heat flux inversion. For this purpose, we
make the following assumptions about our synthetic camera
formalism:

• The camera transform is given as T (⃗x) = A⃗x+b⃗
c⃗·⃗x+d : R

3 → R2

(A ∈ R2×3,b ∈ R2,c ∈ R3,d ∈ R), where the numerator cal-
culates the 2D position relative to the camera origin and
viewpoint and the denominator calculates the depth.

• The camera viewport is given by the interval [0,M]×
[0,N]⊂ R2 and is subdivided into M×N pixels.

The resulting density estimation method consists of the fol-
lowing steps:

(a) Apply the perspective transform T to all test particle strike
points, transforming them from 3D space into the synthetic
camera’s image plane.

(b) Remove all invisible strike point samples:
1. Remove all occluded strike points based on a maximum

per-pixel depth c⃗ · x⃗+ d,
2. Remove all strike points outside the camera viewport.

(c) Count the number of strike points inside each pixels and
divide by the total number of strike points (including hid-
den / invisible ones). As the pixels are of size 1× 1, this
gives the viewport density of strike points.

(d) Multiply the strike point density by a per-pixel correction
factor to obtain the heat load density (assuming an even
energy distribution over test particles).

In order to carry out this procedure, one needs to obtain two
pixel-related pieces of information ahead of time:

• The depth of the closest geometry piece along the sight line
related to the pixel,

• The correction factor required to calculate the heat load
density from the pixel-space sample density.

The first quantity can be obtained using well-known raster-
ization procedures. The second quantity can be obtained using
information derived from the transform T. The value one needs
to compute here (or at least approximate to first order) inverse
of the pixel’s area if it were to be back-projected onto the vis-
ible geometry mesh. This is challenging to compute, as the
transform from 3D to 2D space is, by itself, degenerate. We
therefore reuse the information provided during triangle ras-
terization to compute the required correction factor.

During rasterization, the following pieces of information
(besides the imaging transform T) are available to us:

• An affine mapping H from the reference triangle TR =
{x,y ∈ [0,1] |x+ y⩽ 1} onto the mesh triangle currently
undergoing rasterization, given by the triangle’s three
spanning points h0,h1,h2: H(x,y) = h0 + x · (h1 − h0)+ y ·
(h2 − h0) ,

• The current pixel (n,m)⊂ N2 viewing the rasterized tri-
angle,
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• A point xR ∈ TR on the reference triangle such that it gets
mapped onto the current pixel T(H(xR)) =

(
n+ 1

2 ,m+ 1
2

)
,

Based on this information, given an infinitesimal rectangu-
lar area dAR around xR, we can compute:

• the corresponding area on the mesh dAM = dAR ·
|(h1 − h0)× (h2 − h0)| ,

• the corresponding area on the camera viewport dAV =
det
(
J [T ◦H]|x=xR

)
· dAR (which is unitless), where

J [T ◦H]|x=xR is the Jacobian of the combined transform
from the reference triangle to the camera viewport around
xR (Note: H is affine, T is fully nonlinear).

Based on this information, we can estimate (to first order)
the inverse back-projected area of the pixel as the ratio of these
two:

A−1
pix =

dAV
dAM

=
det(J [T ◦H])

|(h1 − h0)× (h2 − h0)|
.

This calculation works with arbitrary camera transforms, cap-
tures all transform effects (including zoom, distortion, dis-
tance, etc) and only requires forward pass information about
the camera transform. Furthermore, it turns out that the inverse
pixel can be stably computed, whereas the pixel area could
potentially become extremely large (due to a surface being
extremely close or the camera looking at it at a steep angle).
The generality of this approach has already proven to be highly
useful in heat load studies related to equilibrium effects on
the magnetic field topology, where it was possible to quickly
investigate the complex geometries outside of the divertor
plate. This investigation revealed previously unnoticed areas,
which were at risk of facing potential overloads in finite-beta
configurations [4].

3. Comparison between models in W7-X reference
configurations

In order to compare the validity of both models, heat load dis-
tributions are presented exemplarily for two magnetic refer-
ence configurations (the ‘standard’ and ‘low-iota’ configura-
tions) of the Wendelstein 7-X Stellarator in finite-beta fields
(see [4] for a discussion of the calculation procedure and the
magnetic configurations), and then compared to infrared cam-
era observations in experimental discharges. As mentioned in
section 2.3, we used 105 Monte Carlo samples or the simu-
lations (which fixes the attainable resolution of the simulated
heat load densities). To eliminate the influence of drift effects
(which are not simulated by either model) onto the IR obser-
vations, IR camera images from an upper and lower divertor in
a single module (module 1) were combined. Please see [1, 2]
for a more thorough discussion of the Wendelstein 7-X island
divertor and [10] for an overview of the magnetic reference
configurations.

The heat-flux observations are obtained by running the 2D
diffusion code THEODOR [11] on individual fingers of the
divertor tiles, constraining the plasma-facing surfaces tem-
peratures to values measured by the divertor infrared cam-
eras [12]. Please see [13, 14] for a more detailed descrip-
tion of this process. The heat fluxes are then normalized to
Pdiv = Pheating −Prad, where Pheating is the total power injected
into the device (in our case ECRHheating power), whilePrad is
the radiated power estimated by the bolometer diagnostic. Pos-
sible dependencies of these derived heat fluxes include the sur-
face emissivity of the divertor (which is not only material-, but
also roughness-dependent), the non-uniformity of the IR cam-
era, reflections of infrared light emitted by other components,
as well as the alignment of the cameras themselves. All of the
mentioned dependencies, with the exception of possible reflec-
tions, are included in the calibration of the heat-load computa-
tion process. However, possible deviations beyond the calib-
ration still represent potential error sources, which are difficult
to quantify.

• In the magnetic standard configuration (figure 1), both mod-
els correctly predict the locations of both the main strike
lines on the horizontal and vertical targets (lower and upper
components in the pictures) in the left part of the toroidally
extended divertor. However, infrared measurements show
an additional secondary strike pattern on the right hand side
of the horizontal plate, which can not be reproduced by the
field line diffusionmodel without increasing the perpendicu-
lar diffusion to levels at which the main strike line is distrib-
uted over nearly the entire divertor. This difference indicates
that this secondary pattern is related to a counter streaming
flow distribution discussed above.

• In the low-iota configuration (figure 2) at finite beta, both
models show little deviation in the qualitative structure of
the divertor heat loads. Like above, there exists an additional
heat flux pattern on the right hand side of the horizontal tar-
get, as well as an extension of the main strike line into the
divertor’s middle section. However, these effects appear to
be less prominent than in the magnetic standard configura-
tion discussed above. Furthermore, there are disagreements
concerning the toroidal distribution of heat loads inside the
wetted regions. The anisotropic diffusion model appears to
slightly better capture the heat loads onto the secondary
spot-like structure adjacent to the main strike line on the
horizontal target. On the other hand, it also predicts a con-
centration of heat flux near this spot inside the main strike
line. This contradicts experimental observation, which show
the heat load to be concentrated on the center of the strike
line. The original field line diffusion model appears to cap-
ture the heat load distribution inside the wetted spots better
for this configuration. It should be mentioned that this con-
figuration is subject to substantial up-down heat load asym-
metries [15], which were eliminated by averaging between
observations from an upper and a lower divertor infrared
camera.

It can be seen from these observations that the relat-
ive behavior of both models and the experiment is highly
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Figure 1. Heat load estimations in the standard configuration based on the anisotropic diffusion model (top) and the field-line diffusion
model (middle), and the heat load distribution measured in the experiment by averaging the infrared camera data viewing the upper and
lower divertor in module 1 (ports 10 and 11). Heat loads are normalized to total power flow into the divertor (estimated from heating power
and radiated power).

configuration-dependent. In particular, the characteristics of
the main strike line are well captured by classical field-line
diffusion. However, the anisotropic diffusion model appears

to achieve a closer match to the experimental observations
concerning the structure of secondary heat loads (specifically,
which areas appear to receive heat loads andwhich do not). For

6
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Figure 2. Heat load estimations in the low-iota configuration based on the anisotropic diffusion model (top) and the field-line diffusion
model (middle), and the heat load distribution measured in the experiment by averaging the infrared camera data viewing the upper and
lower divertor in module 1 (ports 10 and 11). Heat loads are normalized to total power flow into the divertor (estimated from heating power
and radiated power).

a design study encompassing many parameters (such as diver-
tor shape parameters), the suggested approach would be to first
use field-line diffusion to prune the parameter space, and then

apply more expensive models like the anisotropic diffusion
model on a reduced set of cases to look for secondary heat
load patterns.Wewould like to stress that we do not believe the

7
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anisotropic diffusion model to be strictly more accurate. Both
models are proxy models that skip over part of the underlying
physics. Therefore, final checks should be performed with a
high-fidelity physics-based code where possible.

4. Conclusions & outlook

Based on the comparison in section 3, it can be concluded
that the improved ability to capture counter-streaming flows
represents a relevant edge of the anisotropic diffusion model
over its simpler and faster field line diffusion counterpart
when modeling divertor heat loads, particularly when trying
to identify location of potential overload events. Unless the
existence of counter-streaming flows can be ruled out based
on prior knowledge, care should be taken to include them
in the physical modeling process. This work did not invest-
igate alternative approaches to embed such effects into the
simpler field-line diffusion model. One such approach, based
on repeatedly tracing in alternating directions (by reflecting
particles at their impact points) a fixed number of times are
currently being tested on Wendelstein 7-X. It could also be
concluded that in a direct comparison, the anisotropic diffu-
sion model is not necessarily more accurate, particularly when
examining the heat distribution inside wetted regions.

It should also bementioned that the proxymodels discussed
here completely neglect the effects of electric fields inside the
plasma. In particular, no sheath models or ambipolarity con-
ditions were included for the plasma edge. The large electro-
static potential differences across such an electrostatic sheath
can potentially change the flow structure of electrons and ions
in the plasma edge. However, to implement such a model for
parameter studies, one would have to compromise between
accuracy of the (nonlinear) sheath simulation and computation
time constraints.

The flexibility of the synthetic camera-based heat load
interpretation was found to be of substantial practical value
during the modeling studies. Currently, the synthetic camera
approach is implemented as a python code accelerated by the
NUMBA compiler [16]. It should be possible to implement it
directly as a GPU pixel shader. Such an implementation could
potentially offer massive speedups over a CPU implementa-
tion, as graphics cards are specifically tailored to accelerate
this type of computation.

Currently, the relative comparison of the presented mod-
els was only performed on a qualitative basis. In the future, it
would be desirable to also evaluate the models quantitatively.
Such a comparison metric would have to take into account
the design constraints of divertor scenarios (different heat load
limits on different subcomponents, position deviation vs max-
imum local heat load deviation), but could potentially provide
a valuable proving ground for models to compete in.
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