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Cyclic projections in Hadamard spaces

Alexander Lytchak and Anton Petrunin

Abstract

We show that cyclic products of projections onto convex subsets of
Hadamard spaces can behave in a more complicated way than in Hilbert
spaces, resolving a problem formulated by Miroslav Bačák. Namely, we
construct an example of convex subsets in a Hadamard space such that the
corresponding cyclic product of projections is not asymptotically regular.

1 Introduction

The method of cyclic projections is a classical algorithm seeking an intersection
point of a finite family C1, . . . , Ck of closed convex subsets in a Hilbert space X .
Denote by Pi the closest-point projection X → Ci; it sends a point x ∈ X
to the (necessarily unique) point Pi(x) in Ci that minimizes the distance to x.
Given a point x ∈ X consider the sequence xn = Pn(x), where P is the cyclic
composition of projections P = P1 ◦ · · · ◦ Pk. The method of cyclic projections
analyzes the sequence (xn), tries to find a limit point x∞, to show x∞ ∈ C1∩ . . .
. . . ∩ Ck, and to understand the rate of convergence.

Let us list some results in the area. If the intersection C1 ∩ · · · ∩Ck is non-

empty, then (xn) always converges weakly to some point in C1 ∩ · · · ∩ Ck [14].
However, this convergence does not need to be strong [19]. If, in addition, Ci

are linear subspaces, then the convergence is strong [18, 23]. If the intersection
C1 ∩ · · · ∩Ck is not assumed to be non-empty, the analysis of the sequence (xn)
is more complicated. However, in [11] it has been established that the cyclic
product P = P1 ◦ · · · ◦ Pk is asymptotically regular ; by definition, this means,
that for any starting point x ∈ X , we have |xn − xn+1| → 0 as n → ∞. The
rates of convergence, respectively, the rates of asymptotic regularity have been
investigated in several works, see, for instance [12, 20]. For further reference,
see [4, 7, 8, 12, 17].

More recently, the method of cyclic projections has been investigated be-
yond the setting of Hilbert spaces in so-called Hadamard spaces (also known as
CAT(0) spaces, or globally non-positively curved spaces in the sense of Alexan-
drov). This class of metric spaces includes hyperbolic spaces, metric trees, as
well as complete simply-connected Riemannian manifolds of non-positive curva-
ture; it has played an important role in many areas of mathematics in the last
decades. We assume some familiarity with Hadamard spaces, refer the reader
to [2, 3, 9, 10, 15, 16] as general references on this subject. For the introduction
and applications of the method of cyclic projections in Hadamard spaces, see
[6], [7, Section 6.8], and the references therein.

Hadamard spaces are defined (loosely speaking) by the property that their
distance function is at least as convex as the distance function on a Hilbert space.
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In particular, Hadamard spaces contain a huge variety of convex subsets; closest
point projections to closed convex subsets are well-defined and 1-Lipschitz, and
the questions discussed above about cyclic projections are absolutely meaningful
in a Hadamard space X .

Many results discussed above have been transferred from the linear setting of
Hilbert spaces to general Hadamard spaces. For instance, if the subsets Ci have a

non-empty intersection, then the cyclic product of projection P is asymptotically

regular and, for any initial point x ∈ X, the sequence xn = Pn(x) converges

weakly to a point x∞ ∈ C1 ∩ · · · ∩Ck [5, 8]. (The weak topology on Hadamard
spaces is discussed in [6, 7, 22]). The rate of convergence in this setting has
been studied in [21].

Therefore it is somewhat surprising, that the fundamental result of Heinz
Bauschke [11] for (possibly) non-intersecting convex subsets Ci does not admit
a generalization to the setting of Hadamard spaces. The following main result
of this paper provides a negative answer to the question of Miroslav Bačák [7,
Problem 6.13].

1.1. Theorem. There exist a Hadamard space X and compact convex subsets

C1, . . . , Ck in X such that the composition of the closest-point projections P =
= P1 ◦ · · · ◦ Pk is not asymptotically regular.

We provide an explicit example with X being a product of two trees, proving
the theorem for k = 3. Setting C3 = · · · = Ck defines examples for any k > 3.

In this example, all subsets Ci are isometric to the unit interval, the projec-
tions Pi map all of these segments isometrically onto Ci and the composition
P = P1 ◦ P2 ◦ P3 maps C1 to itself isometrically but exchanges the endpoints
of this interval. A stronger version of the theorem is proved in the appendix; it
requires a somewhat deeper understanding of the geometry of Hadamard spaces.
It seems possible, but would require some non-trivial technical work, to adapt
the example from the appendix so that the Hadamard space becomes a smooth
Hadamard manifold.

On the other hand, in the case k = 2, the result of Heinz Bauschke [11] does
admit a generalization; in this case, the algorithm is sufficiently simple to be
controlled explicitly, even providing an optimal rate of asymptotic regularity.
As it was pointed out by an anonymous referee, the following statement follows
from [5, Theorem 3.3], under the additional assumption of the existence of a
fixed point of the composition P .

1.2. Proposition. Let C1, C2 be two closed convex subsets of a Hadamard

space X. Then the composition P = P1 ◦ P2 is asymptotically regular.

Moreover, |xn − xn+1| = o( 1√
n
) for any x ∈ X and xn = Pn(x).

Here and further we denote by |x− y| the distance between points x and y
in any metric space, even without linear structure.

Examples given by the real axis C1 ⊂ R
2 and the set

C2 = { (x, y) : x > 0, y > 1 + x−ε }

reveal that the convergence rate in Proposition 1.2 cannot be improved to
O(n− 1

2
−ε) for any ε > 0.

This also shows that the optimal rate of asymptotic regularity for cyclic
product of projections on two convex subsets is the same for the Euclidean
plane and general Hadamard spaces.
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2 Three segments in a product of two tripods

Proof of 1.1. A union of three unit segments that share one endpoint with the
induced length metric will be called a tripod. Consider two tripods S and T and
the product space X = S × T . Our space X is a product of two trees, thus of

S T

a

b c

u

v w

two Hadamard spaces. Hence X is a Hadamard space.
Denote by a, b, c and u, v, w the sides of S and T respectively.
The following diagram shows 3 isometric copies of 2×2-square in X ; they

are obtained as the products of two pairs of sides in S and T as labeled.

a b bc c a

u v v

w w u

C1 C2 C2

C3 C3 C1

Consider the segments C1, C2, and C3 shown on the diagram; they all have
slope −1 and project to each other isometrically. Note that each projection Pi

reverses the shown orientation. It follows that the composition P = P1 ◦P2 ◦P3

sends the segment C1 to itself isometrically and changes the orientation of the
segment. In particular, P exchanges the ends of the segment, hence P is not
asymptotically regular. (In fact, for an end e of C1, and any n, we have |Pn(e)−
− Pn+1(e)| = 1.)

Finally, setting C3 = · · · = Ck defines examples for any k > 3.

3 Two sets

Proof of 1.2. By definition, xn ∈ C1 for all n. Set yn+1 = P2 ◦ Pn(x), so
y1 = P2(x), x1 = P1(y1), y2 = P2(x1), and so on. Further set

rn := |xn − xn+1|,

sn := |yn − yn+1|.
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C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1

x

y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1

a1

a2 b1

Since the closest-point projection is
nonexpanding, we get

s1 > r1 > s2 > r2 > . . . ➊

Set

an := |xn − yn| = distC1
yn,

bn := |yn+1 − xn| = distC2
xn.

Note that

a1 > b1 > a2 > b2 > . . . ➋

Since C1 is convex and xn ∈ C1 lies at the minimal distance from yn, we
have ∡[xn

xn−1

yn
] > π

2
. Since X is a Hadamard space,

r2n 6 b2n − a2n+1.

Therefore, ➋ implies that ∑

n

r2n 6 b21.

By ➊, rn is non-increasing. Therefore, rn = o( 1√
n
).

Appendix: Three discs

While the cyclic product of projections P constructed in Section 2 is not asymp-
totically regular, its square P 2 is the identity on C1, in particular, P 2 is asymp-
totically regular. The construction in Section 2 produces a Möbius band B
divided into three rectangles and a map from B to a Hadamard space that is
distance-preserving on each rectangle.

In this appendix, we produce a Hadamard space that contains an embedding
of a twisted solid torus with arbitrary twisting angle, such that the solid torus
consists of 3 isometrically embedded flat cylinders. In this case, we obtain
again 3 projections onto convex sets, each of them isometric to a Euclidean
disc, the bases of the cylinders. Then the cyclic product of these projections
is the rotation of a disc by the prescribed twisting angle α. In particular, if α

π

is irrational, then any power of this cyclic product of projections may not be
asymptotically regular.

A.1. Theorem. There is a cyclic projection P as in Theorem 1.1 such that

any of its power Pm is not asymptotically regular.

Proof of A.1. Fix an angle α and a small ε > 0. Consider the closed ε-
neighborhood A of a closed geodesic γ in the unit sphere S

3. Note that the
boundary of A is a saddle surface in S

3; hence it has curvature bounded from
above by 1. Thus, A is a compact Riemannian manifold with boundary, such
that the curvature of the interior and of the boundary is bounded from above
by 1. Therefore, by the result of Stephanie Alexander, David Berg, and Richard
Bishop [1], A equipped with the induced intrinsic metric is locally CAT(1). The
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universal cover Ã of A with its induced metric is locally CAT(1) as well. Since Ã
does not contain closed geodesics, it is CAT(1), by the generalized Hadamard–
Cartan theorem [3, 8.13.3], [10, 6.8+6.9], [13].

Denote by E the inverse image of γ in Ã. The isometry group of Ã contains
the group of translations along E and the rotations that fix E. Let T be the
composition of translation along E of length 2·π+10·ε and the rotation by angle
α. The element T generates a discrete subgroup Γ in the group of isometries of
Ã that acts freely and discretely on Ã.

Set Y = Ã/Γ. Since ε is small, any nontrivial element of Γ moves every
point of Ã by more than 2·π. Therefore, Y is a compact locally CAT(1) space
that does not contain closed geodesics of length less than 2·π. Hence, by the
generalized Hadamard–Cartan theorem [3], Y is CAT(1). By construction, Y is
locally isometric to S

3 outside its boundary B. The projection of E to Y is a
closed geodesic G of length 2·π + 10·ε.

Denote by X the Euclidean cone over Y ; since Y is CAT(1), we get that X
is CAT(0); see [3]. Moreover, X is locally Euclidean outside its boundary — the
cone over B.

The cone Z over the closed geodesic G is the Euclidean cone over a circle of
length 2·π+10·ε. By construction, Z is a locally convex subset of X . Hence, Z
is a convex subset of X [2, 2.2.12]. Let us consider a geodesic triangle [q1q2q3]
in Z that surrounds the origin o of the cone Z.

By construction, the sides of the triangle [q1q2q3] lie in the flat part of X .
Thus, we can find a small r > 0 such that the 2·r-neighborhood U1 of the
geodesic [q1q2] is isometric to a convex subset of the Euclidean space. We can
assume that 2·r-neighborhoods U2 of [q2q3] and U3 of [q3q1] have the same
property.

Denote by Ci the disc of radius r centered at qi and being orthogonal to Z.
By construction, Ci and Ci+1, for i = 1, 2, 3 (mod 3) are contained in Ui. Since
Z is convex, Ci and Ci+1 are parallel inside Ui, thus their convex hull Qi is
isometric to the cylinder Ci × [qi, qi+1] with bottom and top Ci and Ci+1. In
particular, the projection Pi defines an isometry Ci+1 → Ci.

By construction, the composition P = P1 ◦ P2 ◦ P3 : C1 → C1 rotates C1 by
angle α. If α

π
is irrational, then P , as well as all its powers, are not asymptoti-

cally regular.
As before, setting C3 = · · · = Ck defines examples for any k > 3.
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