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ABSTRACT
Through the growing amount of personal health data collected by
the individual itself digital data donations become more and more
attractive.Wearables like AppleWatch or Fitbit trackers make track-
ing of heart rate, daily step counts and other lifestyle data easier
than ever. While this data is collected on the dedicated device, it
can help research in many promising ways. Even if the potential
benefit of this data is very clear, there are open questions regarding
privacy. Traditional privatization measures like anonymization and
pseudonymization can only provide limited privacy guarantees es-
pecially with the growing amount of personalized data. To mitigate
those risks privacy enhancing technologies like differential privacy
can be used. While the theoretical foundation of such technologies
is strong, only limited data is available about their practical use
in large scale applications and the trade-off between privacy and
utility. In this paper we will present a data donation scenario that is
inspired by a real-world use case using lifestyle data for its analyses.
We will apply the local differential privacy technology "RAPPOR"
to improve the privacy protection for the data donors and evaluate
the impact of this technique to the data utility.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; Privacy protections; Social aspects of secu-
rity and privacy; • Social and professional topics → Patient
privacy; Health information exchanges; Medical records; Personal
health records.
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1 INTRODUCTION
It can be seen as yesterday’s news that every year people generate
more data about themselves and their environment.

One of the latest additions into this collection of data are body
worn fitness trackers. Their capabilities strongly vary between mod-
els. Simple versions can count steps, measure the wearers blood
pressure, and track sleep. Newer developments monitor blood glu-
cose levels and blood oxygen levels. Starting with Series 4 the Apple
Watch is capable to make an ECG and detect heart rhythm anom-
alies which are a sign of atrial fibrillation1. While this might look
like a toy example, the sensor and software behind it have a high
enough quality to reach FDA certification2.

Not only Apple, Facebook and Google are interested in these
kinds of data. Researchers see a high potential in monitoring the
public health and advancing medical research with it or using gen-
eral activity data to improve care of individuals. A recent example
where data from activity trackers is donated to research is the
”Corona-Datenspende-App” (Covid data donation app) by the Ger-
man federal agency for disease control and prevention Robert Koch
Institute (RKI). The researchers use the data of more than 500.000
participants to predict the course of the COVID-19 pandemic3.

Working with medical data of volunteers sets high demands
on data protection for the researchers. Legal regulations such as
the GDPR and more specific regulations for medical data must be
fulfilled. Technical and organizational measures need to be in place
to ensure a level of security appropriate to the risk of the data
processing. Additionally, the volunteers have a high demand for

1https://www.cnet.com/health/apple-watch-ecg-app-what-cardiologists-want-you-
to-know/ [Accessed: 25th April 2022]
2https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180044.pdf [Accessed: 25th
April 2022]
3https://corona-datenspende.de/science/en/reports/nowcast/ [Accessed: 25th April
2022]
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data protection4. Errors in handling the data can have a vast impact
on the participants’ privacy. This was already shown by Latanya
Sweeney when she re-identified allegedly anonymized medical data
containing information about Massachusetts governor, William
Weld [16].

Looking at terms like "anonymity" and "de-identification" it gets
clear that these terms are hard to define and even harder to achieve.
In our scenario of research on medical data from volunteers we are
working with personal identifiable information (PII). The question
remains, whether it is possible to remove all elements that identify a
person behind the data and still work with it. On this topic Cynthia
Dwork is quoted with "De-identified data isn’t". You either alter the
data so much that it becomes useless, or you alter it so little that it
will be possible to re-identify persons in your data.

To help to handle medical data and its privacy implication in
research the German "TMF – Technologie- und Methodenplattform
für die vernetzte medizinische Forschung e.V." a registered associa-
tion for connected medical research 5 separates medical data into
two categories:

• IDAT (identity data): Data that is primarily used for identifi-
cation of a person (e.g., Name, birthday, address)

• MDAT (medical data): Data that is primarily used for the
treatment of a person (e.g., blood pressure, medication plan)

IDAT and MDAT are not disjoint sets, the birthday of a patient
might be used in treatment and in identification. Nonetheless sepa-
ration is useful as it allows for a better understanding. Many oper-
ations can be used to alter IDAT to protect privacy. For example,
replacing all IDAT with a pseudonym and limiting access to the
table where IDAT and pseudonym is stored. Or altering IDAT in
a way that makes it harder for an attacker to re-identify a person,
i.e., removing the last 3 digits of a ZIP code.

Altering MDAT is more challenging. It is highly use case-specific
which operations can be used to protect data subjects without
rendering the data useless. This needs strong cooperation between
medical domain expert and privacy experts.

In this paper we will investigate the usage of differential privacy
(DP) as a method to preserve the privacy of an individual in a
scenario of a medical data donation. Secure, private, and easily
accessible data donations could have a large impact in the domain
of Active Assisted Living (AAL) to collect long term data about
affected individuals. This data could then be used to improve care
and health conditions of the individuals through Big Data research.
While the benefit of a data donation seems clear, open questions
in terms of privacy remain. Because privacy is also a huge impact
factor for trust and acceptance of data sharing, the here presented
approach offers solutions to improve this factor.

There is a multitude of related work (e.g., [9, 11, 12, 19]) that
also investigate the topic of privacy preserving technologies for
medical data usage but none of them use a local differential privacy
(LDP) approach in the context of a data donation like our work
does by using the RAPPOR technology. This has a lot of advantages
as our approach does not require a trusted third party and is not

4See https://www.tmf-ev.de/DesktopModules/Bring2mind/DMX/Download.aspx?
Method=attachment&Command=Core_Download&EntryId=32187&PortalId=0
[Accessed: 25th April 2022]
5https://www.tmf-ev.de/EnglishSite/Home.aspx [Accessed: 25th April 2022]

limited to numerical values that could be a limitation of other LDP
technologies.

Additionally, we want to clarify, that we do not claim that DP in
this case will allow us to completely anonymize the data. Just as
one example our setup could be vulnerable to side-channel attacks
that allow an attacker to learn something about a participant and
re-identify him or her. We use DP as a privacy enhancing tech-
nology (PET) that makes it harder for an attacker to re-identify
data and thus improve privacy. Most likely additional technical and
organizational measures such as encryption or access control need
to be in place to protect privacy and built a solid system.

Section 2 of this paper will start by introducing the concept of
DP, its extension LDP and the implementation framework RAPPOR.
In section 3 we introduce our scenario in detail and present our
proof-of-concept implementation before evaluation in section 4. As
usual we end our paper with some additional thought on future
work and a conclusion in section 5.

2 PRIVACY MECHANISMS
This chapter will give a crash course for the used privacy mecha-
nisms without claiming to offer enough detail for a full understand-
ing of it.

2.1 Differential Privacy
Differential privacy (DP) goes back to Cynthia Dwork and the
year 2006 [4]. It is a mechanism to publish information about a
dataset and its patterns without publishing information about the
individuals in it. The first formal definition by Dwork is as follows:

Pr[K(D1) ∈ S] ≤ exp(ϵ) × Pr[K(D2) ∈ S]. (1)

This definition means, that DP gives us guarantees when com-
paring the results of two datasets D1 and D2 that differ in at least a
single entry, i.e., they differ in the data of a single person. To eval-
uate the datasets, we use the randomized evaluation mechanism
K with S ⊆ Ranдe(K). This mechanism K is called ϵ-DP if the
results of K in the two datasets differ at most in exp(ϵ) with ϵ a
real number. ϵ is also called privacy budget.

The most crucial part of every DP system is the choice of the
randomized mechanism K . The Laplace mechanism is used when
looking at means, min or max values in a dataset and works by
adding random noise on the data . An exponential mechanism can
be used to have private auctions and special mechanisms can be
used in the training of neural networks [1, 5].

2.2 Randomized response
In our work we use randomized response (RR) as randommechanism
K in DP. RR itself is even older than DP. It was first introduced
by Stanley Warner in 1965 to allow participants in a study to have
plausible deniability when answering sensitive questions (e.g., drug
use, sexuality) [20]. Figure 1 shows the process of a survey using
RR. Before answering a question, the participants throw a coin
that nobody else can observe. If the coins lands heads they should
answer truthfully. If it comes up tails, they should throw it again. If
it comes up tails again, they answer with "yes", if it comes up heads
they should answer with "no". This mechanism adds a random noise
to the result. Looking at the result of a single participant it remains
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Figure 1: Visualization of the Randomized Response process using a double coin flip for a survey.

unclear if the answer was truthfully or the result of the coin flip.
But looking at the results of a large population of participants, it is
possible to calculate the real percentage. RR with a fair coin’s flip
fulfills the ϵ-DP requirements for ϵ ≈ 1, 09.

2.3 Local Differential Privacy
RR has an additional characteristic. Many DP concepts require that
we first transmit data to a central repository and later evaluate
them with a random mechanism K to achieve DP. While the re-
sults of the evaluation are protected by DP the central repository
holds all sensitive information and represents an interesting target
for attackers. With RR we do not have this problem. The random
mechanism K is executed by the participant, even before the an-
swer is transmitted to the interviewer. This characteristic, called
local differential privacy (LDP) and can strongly add into protecting
participants’ privacy.

2.4 RAPPOR
With LDP and RR we have all the building block we need to under-
stand the inner workings of RAPPOR – Randomized Aggregatable
Privacy-Preserving Ordinal Response. RAPPOR was developed by
Erlingsson et. al at Google research [6]. It is be one of the first
DP mechanisms that is used in a commercial setting, namely, to
submit security critical parts of the Google Chrome settings for
monitoring.

RAPPOR was designed to work with unpredictable string values
as input. To achieve this, so-called Bloom filters are used to map
strings into a bit array. Figure 2 gives an insight into the necessary
steps. Input values are first hashed and then placed into a bit array
B. Now we do RR for every individual bit in the bit array. This will
generate B′ for us. RAPPOR offers different parameters to influence
its behavior. Here we explain the three most important ones:

• k : The size of the bit arrays B and B′. A higher value will
prevent hash collisions and overall improve the precision of

Figure 2: The RAPPOR system adding the string "78" to the
Bloom filter B before altering it using RR

the design. At the same time a higher value will decrease
performance.

• h : Bloom filters can be used with one or multiple hash algo-
rithms. Using multiple algorithms will offer some protection
against hash collisions while decreasing performance.

• f : The probability that we alter the value of B during the
RR. To simulate a fair coin toss, this value should be set to
0.5. This parameter can be altered to increase precision by
reducing privacy and vice versa. The value of f is connected
to ϵ .

If we want to use RAPPOR to send a set of values a single time
we can stop here. If we want to send the same values over a longer
period, we must do one additional step to protect the users against
information leak and fingerprinting. To do so we store the value of
B′ after first creating it. Every time we want to send it, we first do
another round of RR on B′ to generate a new S . This S is send to the
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server and then deleted. This process is also called Instantaneous
Randomized Response (IRR).

3 PRIVACY PRESERVING DATA DONATION
In this section our proposal for a privacy preserving data donation
is described. At first, we introduce the usage scenario and will
show the potential privacy risk for an individual by presenting an
attacker for this scenario. After this we will explain the prototypical
implementation of our workflow.

3.1 Scenario
We use a population wide fever monitor as use case for our im-
plementation. This scenario is inspired by the so called "Corona-
Datenspende-App"6 (Covid data donation app) by the German fed-
eral agency for disease control and prevention Robert Koch Institute
(RKI). This app collects step counts and heart rate measurements
from fitness trackers like Apple Watch and asks the users to donate
this data. According to the responsible researchers those measure-
ments are used to model a correlation between reduced activity
and fever. This could help to predict the course of the COVID-19
pandemic. The project itself is a huge success. Over 500.000 individ-
uals participated and donated their health data. Recent findings7 of
the project showed that it enabled a relatively precise prediction
of the virus spread in Germany. Unfortunately, the raw data and
processing algorithms of the "Corona-Datenspende-App" are not
available publicly. Nevertheless, the use case still shows the im-
portance of the data donation scenario even when the actual data
and algorithms are replaced with our own technologies that try to
mimic this behavior.
For our scenario we want to use this data analysis setting and see
how good it works and how accurate the data is when Privacy
Enhancing Technologies (PETs) like RAPPOR are applied to them,
so that an individual cannot be linked to its donated data. It remains
to be noted that recent work about data privatization often used
synthetic data generation (See for example [10, 13, 14]). However,
we choose RAPPOR for this mechanism because synthetic data
generation requires a decent amount of data to produce reasonable
results. This would not be possible in a scenario of a data dona-
tion with LDP where the real data should only be on the affected
persons device. Synthetic data would require a large database of
raw data which would impose an additional privacy risk. Therefore,
we choose the more traditional technique of LDP with RAPPOR.
Since the original dataset is not publicly available, we use a crowd-
sourced Fitbit datasets which has similar properties [7]. Table 1
shows some sample entries from the dataset. It consists out of heart
rate measurements (5 seconds interval), step counts (60 second
interval) and duration of sleep from 30 participants over a a time
span of a month making it approximately 15 million data points.

With those 30 participants we simulate the scenario that every
participant sends his data to a central point which can be a research
institute that analyzes the data. Figure 3 shows a visualization of
the use case and components that are used for the implementation.
The data is sent by the user with a smartphone app or some other

6https://corona-datenspende.de [In German; Accessed: 25th April 2022]
7https://corona-datenspende.de/science/reports/nowcast/ [In German; Accessed: 25th
April 2022]

Figure 3: Visualization of the data donation scenario

interface which is not further discussed in this paper. We use the
collected data to perform some typical data evaluation steps. One of
those analyses is a resting heart rate curve which can be calculated
by using the heart rate and step count of an individual. Instead of
sending the raw data we use LDP with the RAPPOR Algorithm to
increase the privacy protection for the data donors. The RAPPOR
parameters are set by the research institute which also hosts the
database where the noisy data is stored. This database can then be
used by researchers for the previously described or other analyses.

3.2 Potential Attackers
Our system should protect the privacy of all participants in the
present of an attacker. A recent study also underlines that such
privacy and security issues are relevant for data donation scenarios
[8]. A potential attacker wants to re-identify participants by a com-
bination of the transmitted data and publicly available information
like voter registers or location data. Additionally, the attacker could
observe individuals to collect information about their activities.
Many studies show the potential re-identification risk of linking
such datasets [2, 16]. The potential privacy impact of a successful
attack varies with the goals of the attacker. The used heart rate data
can be used to gain knowledge about the general health of the data
donor. Additionally, pattern from activity timestamps and sleep
data could be created, to reconstruct the day of an individual (e.g.,
when he goes to bed, to work, workout schedule). For our scenario
we ignore the risk of an attacker gaining access to the device of the
data donor or attackers intercepting the communication between
participant and server. We consider those attacks vectors to be
handled by using security best practices like a secure encryption
of the local data. We are focusing on attackers that gain access to
the data stored on the research database, this attacker also models
a malicious researcher that missuses his access to the database.

If attackers get access to the database, they can gain an apparent
knowledge about certain properties of the user like described above.
However, using LDP with the noisy data the attacker cannot be
sure what the actual value is thus reducing the risk. Additionally,
an attacker that has access to the whole database can reconstruct
profiles about an individual even if the data is anonymized (so the
actual sender is not known). If the attacker has additional knowl-
edge about individuals in the database, he can even link the data
for a so called Attribute disclosure. This can also be mitigated by
using LDP. In this case not even the central database has the raw
data making re-identification a lot harder. Even if participant IDs,
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Table 1: Exemplary entries of an individual in the Fitbit dataset

Id Time Heartrate Steps SleepStage Calories

2022484408 2016-04-12 07:21:35 101 17 0 3
2022484408 2016-04-12 07:21:40 87 9 0 3
2022484408 2016-04-12 07:21:45 58 0 0 1

IP addresses or real timestamps (IDAT) must be stored, LDP en-
sures that the attacker can not gain solid knowledge regarding the
medical data (MDAT) of an individual in the database.

3.3 Implementation
Instead of implementing the whole workflow of a data donation
with a dedicated app and a research infrastructure, we build only
the necessary parts to demonstrate our use case. For RAPPOR we
use the open-source library Pure-LDP8 which implements a RAP-
POR client besides different PETs. The library is enhanced by an
implementation of the IRR and some other additions to adapt it to
our use case. We provide a prototypical client and server applica-
tion written in Python9. The server creates the RAPPOR interface
and sets all the required parameters for RAPPOR. In addition, the
server collects all data sent by the exemplary data donors and runs
the analysis on the data. The client simulates the data donors and
reads the data from the Fitbit dataset. For every user of the dataset
a RAPPOR client is created which receives the parameters from
the RAPPOR server. With those parameters every user can run the
RAPPOR LDP on its data and send them to the server. With this we
simulate an n parties data donation scenario.

The server runs different analyses on the received data. A simple
example is to measure the frequency count of each heart rate in
the received dataset as an average or median operation. This can
be also done for body weight, sleep duration and step counts. More
use case specific analyses following the example of the "Corona-
Datenspende-App" to create a fever monitor can be also done by
the server. Our model for fever is a higher average resting heart
rate than usual (the higher the average the more likely the popula-
tion has a higher body temperature than usual [15]). The resting
heart rate estimation by the "Corona-Datenspende-App" is shown
in Figure 4. On the right side of this figure there is our analysis of
the Fitbit data. To estimate the average resting heart rate, we com-
bine the step counts with the average heart rate as an association
analysis. Since the step counts are also noisy through the RAPPOR
processing we arrange the step count values in four activity classes:
no, low, medium, and high activity. This also improves accuracy.
Several studies show that useful ranges for the step counts are 0,
70 and 140 steps per minute [3, 17, 18]. Combining those values
results in an average heart rate subdivided in activity categories per
minute. To get the resting heart rate the values of the no activity
class can be used which results in a curve analogously to the left one
in Figure 4. Please note that the data used for our plot is from 2016

8https://pypi.org/project/pure-ldp/ [Accessed: 25th April 2022]
9https://www.python.org [Accessed: 25th April 2022]
10Source: https://corona-datenspende.de/science/reports/pulse/ [In German; Accessed:
25th April 2022]

and from only 30 participants. So, we do not have a way to directly
compare the quality of our system to the Corona-Datenspende-App.
In the next section we will discuss some important elements of the
system and what we can say about the quality of the results.

4 EVALUATION
In this section the results of the analysis with our implementation
of a data donation with RAPPOR will be presented and discussed.

4.1 Results
We separate the discussion of the results in multiple steps. First,
we look at the overall performance and then go into more specific
parameters and their effect on the evaluation.

4.1.1 Data histograms. Figure 5 shows a simple histogram of all
heart rates of all participants in the dataset. For every evaluation
mechanism we run tests in advance to find the best parameters
for the evaluation. We display the used RAPPOR parameters f , h
and k in the figures as well. For the histogram of the heart rate, we
choose to use a single hash function (h = 1) and a bit array size of
220. The size of the bit array allows us to have a single bit for every
value we expect. The selected value for the privacy budget (ϵ = 3),
results in f = 0.365.

4.1.2 Offset of mean values. Figure 6 shows the average heart rate.
Here we compute the average of all the received heart rates of all
participants per day. The figure shows that the curve of the real
values and the data from RAPPOR look similar, but the curve of
the RAPPOR values is floating above the real values. This is due to
the fact, that our value range is purely positive. As the RAPPOR
algorithm will add additional positive measurements as noise but
never negative ones, the average is increased. A strategy to deal
with this offset would be to calibrate the offset with an expected
average for the resting heart rate. Because the relative change is
considered more relevant than in the actual values, we do not
include this correction step in this work.

Going into more detail one can observe that the precision of
RAPPOR or the downstream evaluations heavily depend on the
value range of the input data. The larger the value range, the less
precise the estimation will be.

4.1.3 Effect of data range on precision. Figure 7 shows a compari-
son of the LDP estimation and the raw data heart rate distribution
and the same for the average calories burn. It can be noticed that
the heart rate estimation alters more from the raw data curve than
the average calories burn curve does. This can be explained by
the larger range of possible data values. While heart rate can be
between 0 and 220 the average calories burn is between 0 and 20.
As the number of participants is the same in both experiments,
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Figure 4: Comparison of the resting heart rate curve from the "Corona-Datenspende-App"10 on the left and our approach with
RAPPOR on the right

Figure 5: Frequency count of the heart rates from the dataset

Figure 6: Daily average heart rate from the dataset

there are less data points for every value of the heart rate than for
the calorie burn. So, the RAPPOR algorithm has a smaller range of

values and will therefore create less outliers that will influence the
results.

4.1.4 Single user evaluation vs. group evaluation. Our experiments
show the desired feature of LDP is achieved. Data about an indi-
vidual is disguised while we have usable results for analyses of
all participants. On the left side of Figure 8 you can see the daily
average heart rate of a single data donor. The RAPPOR estimation
differs a lot from the raw data average. On the right side of the same
figure you can see the average heart rate of all participants. The
estimated curve and the real curve converge much more. This is
exactly the behavior we want to have. The privacy of the individual
is protected, while the data is still useful to make assertions about
all participants.

4.1.5 The effect of different privacy budgets ϵ . Figure 9 shows the
daily average heart rate for all data donors with two different values
for the privacy budget ϵ . Again, you can see an offset between
the real values and the estimation after the data was altered with
RAPPOR. It can be noticed, that this offset depends on the privacy
budget ϵ . The smaller ϵ the large the offset will be. This again can
be explained by the inner workings of RAPPOR. A smaller value
of privacy budget will result in more random altered bits in the
bit array. As all our values are positive, the offset of the average
will bet bigger the more random noise you add. While you could
get rid of the offset with calibration as mentioned earlier, a lower
value for the privacy budget ϵ (without increasing the number of
participants) will result in less precise evaluations.

4.1.6 The effect of local aggregation on result quality. Figure 10
shows the resting heart rate for the fever monitor scenario. As
described in Section 3.3 an association analysis from the step count
and heart rate is used. At first it can be noticed that through the
combination of two different values the number of outliers is rising
so that there is a noticeable offset. In this analysis the small number
of data points is even more reduced as we only look at the heart
rate if the participant is currently in a no activity phase. This can be
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Figure 7: Distribution of heart rate and calorie consumption per minute (Privacy budget ϵ = 1)

Figure 8: Daily average heart rate of single data donor vs. the average heart rate of all participants

Figure 9: Daily average heart rate of all data donors (Privacy budget left: ϵ = 1 right: ϵ = 3)
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seen on the LDP estimation curve on the left-hand side, which does
not preserve the course of the raw data curve while the right side
does. Using the data as it is, it results in nearly useless evaluations,
as can be seen on the left side.

Looking at our data, we have the heart rate in 5 seconds inter-
vals, while we have activity only in 60 seconds intervals. To try
to improve our results we interpolated our data and created addi-
tional activity measurements with the existing information. This
was done on the client before sending the data to the repository and
it resulted in a significant more accurate LDP estimation. This can
be seen on the right side of Figure 10. The improved diagram shows
us two things. First, as with all data evaluation, the more data the
more accurate our privatized estimation will be. Second, with RAP-
POR or other LPD approaches, it might be a good choice to do data
aggregation later in the processing. While data aggregation offers
many benefits for privacy and performance, we think that RAPPOR
offers even stronger privacy guarantees and the performance cost
should be balanced by the greater usability.

As final remark we want to point out that there are only around
30 participants in our dataset. The "Corona-Datenspende-App" -
a real world example - had around 500.000 participants, so this
accuracy issue would be less relevant in the real world.

4.2 Discussion
The results show that there must be a general knowledge of the
RAPPOR and LDP technology to interpret the privatized data. This
helps to understand the occurrence of outliers or different levels of
accuracy when using data that have different value ranges. Further-
more, the analysis methods used should have some error tolerance
to generate clear results. When working with the data, there must
be also some use case depending on decisions how to treat the data
or how to define possible value ranges. A good example from the
fever monitor use case is the activity categorization for the step
counts per minute. In addition, there are also some considerations
that need to be done before a data donation with RAPPOR is started.
This applies especially to the RAPPOR parameters. Besides that,
they need to be defined on the central server so that the reports
from the individual donors remain compatible, most of them can
also not be changed when the data collection is already running.
If the privacy budget is badly chosen and the results have a bad
accuracy, the change cannot be undone without losing the reports
with the old privacy budget. On the other hand, RAPPOR can han-
dle a growing number of data donors without any issues and does
not require a static number of donors. The relevance of the number
of donors could also be seen in the results of this use case. The
evaluation shows that the small number of participants can lead to
imprecise results. Additionally, data quality is another issue. This
especially applies to data that is collected by wearables that are not
worn regularly like in our use case. Irregular gaps in the datasets of
the individuals can lead to inaccurate results for the whole analysis.
In practice this can be balanced by a larger number of participants.
For rather simple analysis like averages of heart frequencies or
calorie burn a small number of participants is no big issue. Our
evaluation shows that even the small number of the Fitbit dataset
led to usable results. But the utility limit was reached with the more
complex association analysis that was done for the resting heart

rate analysis. Besides this the LDP technique shows its strength
when trying to analyze the data of single individuals. With the pri-
vatized data of a single data donor a reconstruction of any pattern
in the data was not possible anymore. This can be ensured by a
well-chosen privacy budget. Another consideration when using
RAPPOR is the long-term privacy protection of an ongoing data
donor. If a single participant is asked multiple times the uncertainty
about his randomized response which is used for the privatization
sinks. RAPPOR already has some techniques like the IRR that helps
to mitigate this risk and ensures long term protection. Additional
measures and a wise choice of the RAPPOR parameters should be
considered to improve the long-term privacy protection. Finally, it
should be noted that RAPPOR or LDP is no silver bullet for privacy
protection but is a very useful and usable technique that helps to
improve privacy in the scenario of data donation. It provides a solid
protection and provides accurate although for non-technicians a
bit cryptic privacy protection guarantee.

5 FUTUREWORK & CONCLUSION
The authors are confident that data donations to researchers will
be an important topic in the future. With upcoming devices and
sensors, a broader variety of medical information can be collected.
While this might be good news for medical research and the scien-
tific results one can expect it seems plausible that the sensitivity
of the data will also increase. Protecting participants rights and
freedoms while allowing for data evaluation will be very important
for acceptance.

We have shown that using RAPPOR as a DP mechanism is a
promising PET to modify data, even before it leaves the participants
devices. If we have enough participants, the precision of the data
should be sufficient. As we assume that in the future more and more
people will start tracking their health data, we see no problem in
requiring additional participants to strongly improve privacy.

Ironically advertising that a study is protecting the participants’
privacy with DP might be one of the hardest parts. While partici-
pants want to have privacy protection and DP can offer it, it can
get hard to explain. Even experts struggle with giving a meaning to
ϵ values. So, in the future researchers might chose not to mention
it to not irritate their participants.

Of course, the quality of the results depends on the concrete
evaluation that researchers plan to perform. So, we do not demand
that every research project should use DP. But the question if data
can be protected by DP could be a logical extension of the question
which data needs to be collected in the first place. However, our
results shows that PETs have the potential to improve privacy
and still produce usable results for data donations. Other PETs
besides DP should be looked at and evaluated against different data
donations scenarios.

The system that was presented in this paper was a first prototype.
While all the data modification with RAPPOR and the evaluation
are present we have not yet built the part of the user app. But we are
confident that large challenges are present to test in a real-world
example. Speaking of real-world examples, it would be interesting
to test the system with larger datasets. Even with our relatively
small number of participants some performance problems occurred
in the beginning of the work. They could be fixed by switching

453



Privacy Preserving Medical Data Donations PETRA ’22, June 29-July 1, 2022, Corfu, Greece

Figure 10: Daily average resting heart rate of all data donors. The left side was created with heart rate per minute. The right
side with heart rate per five seconds.

from a small laptop to a more capable server. But so far, we cannot
predict how system will perform with large participants numbers
(>10.000) and if the performance problems are due to not optimized
code or the complexity of the problem. So, a larger test with more
participants seems to be the next logical step for our research. In
addition, a real-world setup like the "Corona-Datenspende-App" is
needed to benchmark the approach in a more realistic scenario.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Yves-Alexandre de Montjoye et al. 2013. Unique in the Crowd: The privacy
bounds of human mobility. Scientific Reports 3 (2013).

[3] S. W. Ducharme, D. S. Turner, J. D. Pleuss, C. C. Moore, J. M. Schuna, C. Tudor-
Locke, and E. J. Aguiar. 2021. Using Cadence to Predict the Walk-to-Run Transi-
tion in Children and Adolescents: A Logistic Regression Approach. J Sports Sci
39, 9 (May 2021), 1039–1045.

[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[5] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

[6] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-
domized aggregatable privacy-preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications security (2014).
1054–1067.

[7] Robert Furberg, Julia Brinton, Michael Keating, and Alexa Ortiz. 2016. Crowd-
sourced Fitbit datasets 03.12.2016-05.12.2016. https://doi.org/10.5281/zenodo.53894

[8] Sandra Gabriele and Sonia Chiasson. 2020. Understanding Fitness Tracker Users’
Security and Privacy Knowledge, Attitudes and Behaviours. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3313831.3376651

[9] Raquel Hill. 2015. Evaluating the Utility of Differential Privacy: A Use Case Study
of a Behavioral Science Dataset. Springer International Publishing, Cham, 59–82.
https://doi.org/10.1007/978-3-319-23633-9_4

[10] Hao Jin, Yan Luo, Peilong Li, and Jomol Mathew. 2019. A Review of Secure and
Privacy-Preserving Medical Data Sharing. IEEE Access 7 (2019), 61656–61669.
https://doi.org/10.1109/ACCESS.2019.2916503

[11] Jong Wook Kim, Beakcheol Jang, and Hoon Yoo. 2018. Privacy-preserving ag-
gregation of personal health data streams. PLOS ONE 13, 11 (11 2018), 1–15.
https://doi.org/10.1371/journal.pone.0207639

[12] Chi Lin, Zihao Song, Houbing Song, Yanhong Zhou, Yi Wang, and Guowei Wu.
2016. Differential privacy preserving in big data analytics for connected health.
J. Med. Syst. 40, 4 (April 2016), 97.

[13] Yunhui Long, Suxin Lin, Zhuolin Yang, Carl A. Gunter, and Bo Li. 2019. Scalable
Differentially Private Generative Student Model via PATE. CoRR abs/1906.09338
(2019). arXiv:1906.09338 http://arxiv.org/abs/1906.09338

[14] C. Ma, L. Yuan, L. Han, M. Ding, R. Bhaskar, and J. Li. 5555. Data Level Privacy
Preserving: A Stochastic Perturbation Approach based on Differential Privacy.
IEEE Transactions on Knowledge and Data Engineering 01 (dec 5555), 1–1. https:
//doi.org/10.1109/TKDE.2021.3137047

[15] Jennifer M Radin, Nathan EWineinger, Eric J Topol, and Steven R Steinhubl. 2020.
Harnessing wearable device data to improve state-level real-time surveillance of
influenza-like illness in the USA: a population-based study. The Lancet Digital
Health 2, 2 (Feb. 2020), e85–e93. https://doi.org/10.1016/s2589-7500(19)30222-5

[16] Latanya Sweeney. 2013. Matching known patients to health records in Washing-
ton State data. (2013). https://doi.org/10.2139/ssrn.2289850

[17] Catrine Tudor-Locke, Ho Han, Elroy J Aguiar, Tiago V Barreira, John M Schuna Jr,
Minsoo Kang, and David A Rowe. 2018. How fast is fast enough?Walking cadence
(steps/min) as a practical estimate of intensity in adults: a narrative review. British
Journal of Sports Medicine 52, 12 (2018), 776–788. https://doi.org/10.1136/bjsports-
2017-097628 arXiv:https://bjsm.bmj.com/content/52/12/776.full.pdf

[18] C. Tudor-Locke, S. B. Sisson, T. Collova, S. M. Lee, and P. D. Swan. 2005.
Pedometer-determined step count guidelines for classifying walking intensity
in a young ostensibly healthy population. Can J Appl Physiol 30, 6 (Dec 2005),
666–676.

[19] Zhiqiang Wang, Pingchuan Ma, Ruming Wang, Jianyi Zhang, Yaping Chi, Yanzhe
Ma, and Tao Yang. 2018. Secure Medical Data Collection via Local Differential Pri-
vacy. In 2018 IEEE 4th International Conference on Computer and Communications
(ICCC). 2446–2450. https://doi.org/10.1109/CompComm.2018.8780925

[20] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating
evasive answer bias. 60, 309 (1965), 63–69.

454

https://doi.org/10.5281/zenodo.53894
https://doi.org/10.1145/3313831.3376651
https://doi.org/10.1007/978-3-319-23633-9_4
https://doi.org/10.1109/ACCESS.2019.2916503
https://doi.org/10.1371/journal.pone.0207639
https://arxiv.org/abs/1906.09338
http://arxiv.org/abs/1906.09338
https://doi.org/10.1109/TKDE.2021.3137047
https://doi.org/10.1109/TKDE.2021.3137047
https://doi.org/10.1016/s2589-7500(19)30222-5
https://doi.org/10.2139/ssrn.2289850
https://doi.org/10.1136/bjsports-2017-097628
https://doi.org/10.1136/bjsports-2017-097628
https://arxiv.org/abs/https://bjsm.bmj.com/content/52/12/776.full.pdf
https://doi.org/10.1109/CompComm.2018.8780925

	Abstract
	1 Introduction
	2 Privacy mechanisms
	2.1 Differential Privacy
	2.2 Randomized response
	2.3 Local Differential Privacy
	2.4 RAPPOR

	3 Privacy Preserving Data Donation
	3.1 Scenario
	3.2 Potential Attackers
	3.3 Implementation

	4 Evaluation
	4.1 Results
	4.2 Discussion

	5 Future Work & Conclusion
	References

