
Real-Time Trace Decoding and
Monitoring for Safety and Security in

Embedded Systems

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Eng. Augusto Wankler Hoppe
geb. in Porto Alegre

Tag der mündlichen Prüfung: 14.12.2021

Hauptreferent: Prof. Dr.-Ing. Dr.h.c Jürgen Becker
Korreferent: Prof. Dr. Fernanda Kastensmidt

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

Integrated circuits and systems can be found almost everywhere in today’s
world. As their use increases, they need to be made safer and more perfor-
mant to meet current demands in processing power. FPGA integrated SoCs
can provide the ideal trade-off between performance, adaptability, and energy
usage. One of today’s vital challenges lies in updating existing fault tolerance
techniques for these new systems while utilizing all available processing capa-
bilities, such as multi-core and heterogeneous processing units. Control-flow
monitoring is one of the primary mechanisms described for error detection
at the software architectural level for the highest grade of hazard level clas-
sifications (e.g., ASIL D) described in industry safety standards ISO-26262.
Control-flow errors are also known to compose the majority of detected errors
for ICs and embedded systems in safety-critical and risk-susceptible environ-
ments [5].

Software-based monitoring methods remain the most popular [6–8]. However,
recent studies show that the overheads they impose make actual reliability
gains negligible [9, 10]. This work proposes and demonstrates a new control-
flow checkingmethod implemented in FPGA for multi-core embedded systems
called control-flow trace checker (CFTC). CFTC uses existing trace and debug
subsystems of modern processors to rebuild their execution states. It can iden-
tify any errors in real-time by comparing executed states to a set of permitted
state transitions determined statically.

This novel implementation weighs hardware resource trade-offs to target mul-
tiple independent tasks in multi-core embedded applications, as well as single-
core systems. The proposed system is entirely implemented in hardware and
isolated from all monitored software components, requiring 2.4% of the target
FPGA platform resources to protect an execution unit in its entirety. There-
fore, it avoids undesired overheads and maintains deterministic error detection
latencies, which guarantees reliability improvements without impairing the
target software system. Finally, CFTC is evaluated under different software

i

Resumo

fault-injection scenarios, achieving detection rates of 100% of all control-flow
errors to wrong destinations and 98% of all injected faults to program binaries.
All detection times are further analyzed and precisely described by a model
based on the monitor’s resources and speed and the software application’s
control-flow structure and binary characteristics.

ii

Resumo

Circuitos integrados estão presentes em quase todos sistemas complexos do
mundo moderno. Conforme sua frequência de uso aumenta, eles precisam se
tornar mais seguros e performantes para conseguir atender as novas demandas
em potência de processamento. Sistemas em Chip integrados com FPGAs
conseguem prover o balanço perfeito entre desempenho, adaptabilidade, e uso
de energia. Umdosmaiores desafios agora é a necessidade de atualizar técnicas
de tolerância à falhas para estes novos sistemas, aproveitando os novos avanços
em capacidade de processamento. Monitoramento de fluxo de controle é um
dos principais mecanismos para a detecção de erros em nível de software para
sistemas classificados como de alto risco (e.g. ASIL D), descrito em padrões
de segurança como o ISO-26262. Estes erros são conhecidos por compor a
maioria dos erros detectados em sistemas integrados [5].

Embora métodos de monitoramento baseados em software continuem sendo
os mais populares [6–8], estudos recentes mostram que seus custos adicionais,
em termos de performance e área, diminuem consideravelmente seus ganhos
reais em confiabilidade [9,10]. Propomos aqui um novo método de monitora-
mento de fluxo de controle implementado em FPGA para sistemas embarcados
multi-core. Este método usa subsistemas de trace e execução de código para
reconstruir o estado atual do processador, identificando erros através de com-
parações entre diferentes estados de execução da CPU.

Propomos uma implementação que considera trade-offs no uso de recuros
de sistema para monitorar múltiplas tarefas independetes. Nossa abordagem
suporta o monitoramento de sistemas simples e também de sistemas multi-core
multitarefa. Por fim, nossa técnica é totalmente implementada em hardware,
evitando o uso de unidades de processamento de software que possa adicionar
custos indesejáveis à aplicação em perda de confiabilidade. Propomos, assim,
um mecanismo de verificação de fluxo de controle, escalável e extensível, para
proteção de sistemas embarcados críticos e multi-core.

iii

Zusammenfassung

Integrierte Schaltkreise sind heutzutage fast überall zu finden. Mit zunehmender
Nutzung müssen sie sicherer und leistungsfähiger gemacht werden, um den
aktuellen Anforderungen an die Rechenleistung gerecht zu werden. FPGA-
integrierte SoCs bieten den perfekten Kompromiss zwischen Leistung, An-
passungsfähigkeit und Energieverbrauch. Eine der großen aktuellen Heraus-
forderungen besteht darin, die vorhandenen Fehlertoleranz Techniken für diese
neuen Systeme zu aktualisieren. Die Überwachung des Kontrolle Flusses ist
einer der Hauptmechanismen für die Softwarefehlererkennung auf der höch-
sten Gefahrenstufe (z.B. ASIL D), wie in ISO-26262 beschrieben. Es ist
auch bekannt, dass Kontrollflussfehler die Mehrheit der erkannten Fehler für
eingebettete Systeme in sicherheitskritischen Umgebungen ausmachen [5].

Obwohl softwarebasierte Überwachungsmethoden am beliebtesten sind [6–8],
neuere Studien zeigen, dass die tatsächlichen Zuverlässigkeitsgewinne geringer
sind als erwartet [9, 10]. Wir schlagen eine neue FPGA-basiert Kontrollfluss-
Überwachungsmethode vor, für eingebettete Mehrkernsysteme. Diese Meth-
ode verwendet vorhandene Trace- und Debug-Subsysteme moderner Prozes-
soren, um den aktuellen Status des Prozessors festtellen. Dabei werden etwaige
Fehler identifiziert, indem ein geänderter CPU-Status mit einer statisch bes-
timmten Menge zulässiger Statusübergänge verglichen wird.

Wir schlagen eine Implementierung vor, die Ressource Kompromisse berück-
sichtigt, ummehrere unabhängigeAufgaben in einer insgesamt größeren einge-
betteten Anwendung abzudecken. Unser Ansatz unterstützt die Überwachung
nicht nur von Single-Task- und Single-Core-Anwendungen, sondern auch von
Multi-Tasking- und Multi-Core-Systemen. Schließlich ist unser vorgeschla-
genes System vollständig in Hardware implementiert, wodurch die Verwen-
dung zusätzlicher Verarbeitungseinheiten vermieden wird, die unerwünschte
Kosten in Bezug auf die Fläche, Erkennungslatenzen oder eine verringerte
Zuverlässigkeit verursachen können. Wir schlagen daher einen vollständig

v

Zusammenfassung

skalierbaren und erweiterbaren Kontrollflussprüfungsmechanismus für mehrk-
ernige sicherheitskritische eingebettete Systeme vor.

vi

Acknowledgements

I want to thank my family for all the support and love they gave throughout
these PhD years. My parents Martha and Marco, for their guidance in my
moments of doubt. My sister Mariana and my nieces Sophia and Michelle, for
the joy and vacations among family in the short moments I was able to visit.
Even far away, our connection only grows stronger.

I would also like to thank my advisors, Professor Fernanda Kastensmidt and
Professor Jürgen Becker, for believing in me and my research. I started this
doctorate young and with little understanding of all that it encompassed. Prof.
Kastensmidt was essential in helping put my plans and ideas in place and in
helping me find my research path. I want to give my gratitude to Prof. Becker
for welcoming me to Karlsruhe and ITIV. I want to give my thanks for the
many research and project opportunities inside - and outside - of KIT and for
providing me with a great work environment.

I want to thank my research colleagues and friends in both Brazil and Germany
for all the hours and discussions that helped me in this research and in all the
projects we shared. To everyone at ITIV that welcomedme and helped me with
the ins and outs of this new life inGermany, for the discussions at barbecues and
coffees, at Vogel or the cinema. To my D&D group, Nidhi, Simon, Gabriela,
Florian, and Tim. To Steffen for geeking out with me about films and games.
To my colleagues at the PES lab. Finally, to all my new and old friends, in
Porto Alegre and Karlsruhe, who made this period all the better.

To all of you, my sincere thanks.

Karlsruhe, December 2021
Augusto Hoppe

vii

Table of Contents

Abstract . i

Resumo . iii

Zusammenfassung . v

Table of Contents . ix

1 Introduction . 1
1.1 Motivations and Problem Statement 5
1.2 Objectives and Contributions 8
1.3 Thesis Organization . 10

2 Definitions and Background 13
2.1 Concepts in Safety of Semiconductor Devices 13

2.1.1 Sources of Defects, Faults, and Upsets 14
2.1.2 Error, Failures, and Fault-Tolerance 17
2.1.3 Reliability and Failure Rates 19

2.2 Target Architecture . 21
2.2.1 Heterogeneous Programmable Logic Devices 21
2.2.2 The Cortex-A9 MPCore 23

2.3 Radiation Effects on Semiconductor Devices and CPUs . . . 26
2.3.1 Soft-Errors in Processor Sub-components 27
2.3.2 Data-Flow Error Effects 30
2.3.3 Control-Flow Error Effects 31
2.3.4 Architectural Vulnerability and CPU Faults 34

2.4 Safety Standards for Critical Systems 38
2.4.1 Safety Levels . 40
2.4.2 Safety Monitoring 42

2.5 Security Vulnerabilities and Control-Flow Attacks 45

ix

Table of Contents

2.6 Summary . 47

3 Related Works . 51
3.1 Comparison of Hardware CFC Techniques 52
3.2 Fault Tolerance Techniques for Embedded Processors 57
3.3 Control-Flow Error Detection Techniques 61

3.3.1 Software-Based Techniques 64
3.3.2 Weaknesses of Software-Based Techniques 66
3.3.3 General Hardware-Based Methods 68

3.4 Summary . 72

4 Debug and Trace Architectures 75
4.1 Common Trace Architecture Features 78
4.2 Debugging and Tracing Software Systems 79

4.2.1 Differences between Tracing and Profiling 80
4.3 ARM CoreSight Debug and Trace Architecture 81

4.3.1 Program Tracing with PTM 85
4.3.2 Program Tracing with ETMv4 90

4.4 Leon3 and Leon4 Debug Support Unit (DSU) 94
4.5 IEEE-ISTO NEXUS 5001 Standard 96
4.6 Aurix Multi-Core Debug Solution (MCDS) 98
4.7 Intel Processor Trace (PT) 101
4.8 Summary . 103

5 Binary Program Analysis for Embedded Trace Monitoring 105
5.1 Generating the Binary Application Code 105

5.1.1 Binary Execution and Memory Maps 107
5.1.2 Control-Flow Optimizations 109
5.1.3 Coding Guidelines for Critical Systems 110

5.2 Binary Control-Flow Analysis 113
5.3 Program Trace and the Control-Flow Graph 118
5.4 Summary . 121

6 Hardware Control-Flow Monitoring Architecture 123
6.1 Monitor Architecture . 125

6.1.1 Source Parser . 127
6.1.2 Trace Decoder . 132
6.1.3 Control-Flow Checker Core 139

x

Table of Contents

6.1.4 Configuration Memory 145
6.2 Detectable Control-Flow Errors 148
6.3 Summary . 150

7 Evaluation and Fault Injection Results 153
7.1 Hardware Implementation Results 154
7.2 Models for Trace-Based Monitoring 157

7.2.1 Error Detection and Error Response Times 158
7.2.2 Trace Generation and Transmission Latency 161
7.2.3 Real-Time Trace Processing Model 162

7.3 Vulnerability Analysis of Hardware Monitor 169
7.4 Fault Injection Tests . 175

7.4.1 Methods for Evaluating Fault Tolerance Techniques . 175
7.4.2 Fault Classification 179
7.4.3 Static Fault Injections 181
7.4.4 Runtime Fault Injections 183
7.4.5 Fault Injection Results 185

7.5 Summary . 194

8 Summary, Conclusions and Outlook 195

List of Figures . 199

List of Tables . 205

A Response Time Analysis Graphs 207

Publications . 217

Bibliography . 219

xi

1 Introduction

Fault tolerance has been an important topic of interest since the beginning of
computer history and long before the widespread use of personal computers.
It has been a major research point in military and industrial-grade systems.
The first ever computer systems had to perform exact calculations for military
applications and space missions. Today, we are confronted with electronics
and embedded systems in almost all aspects of our lives. These play an
increasingly important role and accompany us through our everyday lives, be
it in radios, electric toothbrushes, smartphones, or automotive and mobility
systems. Processors and other integrated circuits have significantly improved
their performance in the last couple of decades due to significant advances in
the semiconductor industry. These advances have led to the fabrication of high-
density integrated circuits (ICs) that form the base of many of the technologies
we use today. Technology and software-based systems drive current innovation,
and current systems are being operated at their performance limit and cannot
meet all requirements satisfactorily.

Even today, a system’s ability to cope with faults and continue its correct opera-
tion is a central concern. At the same time, the semiconductor industry provides
increasingly high-performance computing units with ever-smaller structure
sizes. For a long time, manufacturing advancements followed Moore’s law,
which states that the number of components in a chip doubles annually, later
re-stated as a doubling every two years. However, the integration density of
transistors and achievable clock frequencies increasingly approach the physical
and thermal limits of a transistor’s gate [11, 12], with current technology fea-
ture sizes that span the width of tens of atoms. This progress has also reduced
the transistor’s reliability by reducing threshold voltages, node capacitance,
and tightening signal to noise margins [13].

Figure 1.1 shows how, since the beginning of the last decade, clock speeds
plateaued while device integration kept increasing. The new way forward is
device specialization and multiple execution units. To further increase the

1

1 Introduction

computing power of processors, it is no longer possible to increase the clock
frequency. Increasingly, manufacturers are switching to processors that inte-
grate more than just one computing core and are operated with the same or even
lower clock frequencies, as can also be seen in Intel processors’ development
(Fig. 1.1). The last decade saw further miniaturization developments, with
Samsung and TSMC starting volume production of 5 nm chips in 2020 [14].
However, it is visible that we will soon reach a limit on transistor miniaturiza-
tion.

It is not just the failure to replicate components within a multi-core processor a
limitation. The application’s characteristics and domain also limit the increase
in performance. One of the first theoretical formulas to predict the speedup of
an application when parallel processing resources are introduced comes from
Amdahl [16]. Amdahl evaluated the actual increases in performance given

Figure 1.1: Processor development by Intel [15].

2

Figure 1.2: Speedup from Amdahl’s Law.

available computing cores and the application’s inherent parallelism (Fig. 1.2).
The formula for this speedup ((), also called Amdahl’s Law, can be stated as:

(=
)B4@

)?0A
=

B+ ?
(B+ ?/#) =

1
((1− ?) + ?/#) (1.1)

Where)B4@ and)?0A are the execution times before and after parallelization.
B and ? are the fractions of time an application spends in uniquely sequential
and parallel tasks, respectively. These percentages add up to one (B + ? = 1).
is the number of parallel resources used for the speedup application or the
number of processors used for parallel software applications. The lack of
performance increase is justified by the resulting increase in communication
and synchronization requirements between cores. Different processing units
must coordinate the use of different component resources and intermediary
results. Amdahl’s law might appear pessimistic, but it makes the critical
assumption that the parallel portion of the application stays constant, which is
not necessarily true.

3

1 Introduction

Figure 1.3: Speedup given by Gustafson’s Law.

With this in mind, Gustafson proposed a revision of this formula [17]. His new
scaled speedup equation, now known as Gustafson’s Law, is shown in Fig. 1.3
and is expressed as:

(=
)B4@

)?0A
=
B+ ? ∗#
(B+ ?) = B+ ? ∗# (1.2)

This new formulation assumes an increase in parallel execution proportionate
to the increase in additional parallel units, i.e., additional parallel units enable
us to process more data so the application’s workload profile changes.

We often observe this in real-world scenarios. As parallelism is introduced,
the workload of the system also increases. In essence, as new processing units
are made available, designers and engineers can afford to process more data
simultaneously and find new applications and use cases that were impractical
before. This effect is visible in the automotive domain, as more sensors are
added to vehicles and functionalities are integrated and combined into a smaller
number of electronic control units (ECUs).

4

1.1 Motivations and Problem Statement

Real speedups are constrained by both models, as the introduction of more
computing power and resources also increases the serial overhead of compu-
tations. Nonetheless, multi-core processor technology is seen as the principal
technology available to meet the increasing performance requirements.

1.1 Motivations and Problem Statement

The advances in processor technology observed in recent years show a
clear trend towards multi-core processors. These architectures are already
widespread in personal, information, and entertainment domains. They show
performance improvements and an increased digital computing power require-
ment due to their highly parallel software execution. Concurrently, power
demands are increasing for embedded systems in mobility domains (e.g., au-
tomotive, rail, and aviation). Together with all this, diverse and often much
stricter requirements must be met in these systems.

These demands result from the fact that such systems typically perform safety-
critical functions, such as control devices in vehicles (e.g., ABS, ESP), aircrafts
(e.g., flight controls, engine controls), or railways. In this context, a safety-
critical system is understood as one where the failure or deviation of one of its
functions leads to considerable danger to human lives or economic damage.
For this purpose, norms and standards are provided for mobility domains that
must be considered during their development. The strict requirements often
result from the relevant standards for developing electronic components and
systems in their respective domains.

The increased demands on computing power in mobility domains can be at-
tributed to new functionalities and the integration of multiple different func-
tions in one control device. Inmany domains, these attempts formore function-
ality are often characterized by increasingly complex software-based systems
to boost product quality and competitiveness. Due to the non-functional re-
quirements (Space, Weight, and Power (SWaP)), it is impossible to implement
this on multiple control units based on processors with low computing power.
In the automotive industry in particular, a further trend towards ever more
powerful domain control computers can be observed, in which all function-
ality within a vehicle domain (e.g., chassis, power train, body) is integrated
into a smaller set of ECUs [18]. Aviation applications also present similar

5

1 Introduction

changes. Functions traditionally distributed over several control units, with
each possessing a dedicated processor, now share a common hardware plat-
form (including execution and memory units). Since SWaP requirements are
typically very high in mobility domain, they present the highest efforts to
reduce the number of control units through integration.

These critical applications demand fault-tolerant and detection techniques with
minimum implementation and performance overheads. Fault tolerance tech-
niques based on software rely on using additional instructions to the original
program code to detect or correct faults [19]. They may be able to detect faults
that affect the data and the control flows. Software-based techniques provide
high flexibility, short development time, and lower cost since there is no need
to modify the hardware. Furthermore, new generations of microprocessors can
be used that do not implement Radiation Hardened (RadHard) technologies.
As a result, aerospace applications can use commercial off-the-shelf (COTS)
microprocessors with RadHard software. However, some results from ran-
dom fault injection have shown the impossibility of achieving complete fault
coverage when using only software-based techniques due to an increase in
control-flow errors [20]. This limitation is due to the software’s inability to
protect against all possible control-flow errors in the microprocessor. One ex-
ample would be a fault in the program counter (PC) that causes the processing
unit to only execute no-operation (NOP) instructions. In such a case, it does
not matter how many safety instructions or data are added to the original code
because the processor will not execute them, and such a failure will not be
detected.

Due to the redundant instructions inserted in the original program code,
software-based techniques have drawbacks and overheads in data and program
memory. They also present degraded performance due to the increased compu-
tation time required to execute the program. The program memory increases
due to additional instructions inserted in the original program code, while
the data memory may increase due to replication of variables and structures,
which can be, for example, the replication of all stored data in the working
memory. Performance degradation comes from the execution of redundant
instructions. These overheads have the propensity to significantly increase
the overall system’s vulnerability. These nullifies the actual reliability gains
from such techniques, and in some cases, even makes the software where these
techniques are applied to less reliable than before [9, 10].

6

1.1 Motivations and Problem Statement

Hardware-based techniques usually change the original processor architecture
by adding redundant logic, such as module replication with majority voters,
information redundancy, error correction codes (ECC), or time redundancy.
Peripheral monitoring devices added to the system’s architecture, such as a
verification hardware module, are also less invasive ways to implement such
techniques. They change the system’s architecture, but not the processor’s
architecture, making them less or non-intrusive. Classic hardware-based tech-
niques such as lockstep and triple-modular redundancy (TMR) may increase
the processor’s area around two or three times its original size, which leads to
more power consumption and production costs. Nevertheless, non-intrusive
hardware modules, such as watchdogs, can have a more negligible impact on
the area and operating frequencies, but they require special access to system
interfaces.

Control-flow monitoring has also experienced a resurgence in interest from
an embedded security perspective through attack mitigation techniques known
as control-flow integrity (CFI). A Microsoft security report suggested that
more than 90% of recent exploits use code-reuse attacks (CRA) [21]. In these
exploits, an attacker changes the application’s control-flow through existing
code with a malicious result, posing a high risk to the system’s integrity.
Constraining control-flow for security purposes is not new. For example,
computer hardware has long been able to prevent code execution from data
memory regions, and the latest x86-64 and armv8 processors support this
feature. At the software level, several existing mitigation techniques restrain
control-flow in some way, e.g., by checking stack integrity and validating
function returns [22, 23], or by encrypting function pointers [24].

Control-flow errors (CFEs) are also known to compose most detected errors
for ICs and embedded systems in safety-critical and risk-susceptible environ-
ments [5]. Even in modern real-time central processing unit (CPU) architec-
tures, only 10% of a processor’s elements are responsible for more than 70%
of detected errors at its outputs [25]. Even after years of developments in the
field, the detection of CFEs in embedded systems is still a challenge that must
be overcome. New hardware-based control-flow monitor techniques are ex-
ploring the use of non-invasive debug and trace interfaces. Despite this, these
investigations do not address how such techniques translate across different
processor architectures.

7

1 Introduction

Most trace interfaces and protocols implement high data compression rates.
The aim of such interfaces is to transmit data as fast as possible through re-
stricted serial-wire debug (SWD) or JTAG connections, or to store the program
trace data in an intermediary buffer memory. Besides the overheads to decode
this information, most protocols also assume that trace analyzers have infor-
mation about or access to the running binary application. Therefore, we must
understand the relationship between high-level software components such as
core synchronization functions, exception handling, and the binary interfaces
used in their implementation.

There is a clear trend in the increased use of multi-core processors in mobility
domains to fulfill higher computing power demands. However, the architec-
tures inherent to a multi-core processor result in various challenges that must
be mastered for safe and reliable use when executing a safety-critical function.
To achieve and ensure these requirements, newmethods, concepts, and patterns
must be explored that enable error detection and avoidance while minimizing
impacts on overheads.

1.2 Objectives and Contributions

This thesis performs an in-depth investigation of program trace interfaces of
modern COTS processors and their capacity to provide real-time control-flow
monitoring capabilities and serve as the basis of new control-flow checking so-
lutions. It proposes a new control-flow checking (CFC) hardware architecture
based on such interfaces that increases the safety and security capabilities of
software systems running inmodern processors. Themain questions addressed
and answered by this thesis are:

• What are the added requirements for using debug and trace interfaces
designed and employed in offline tests for online and real-time monitor-
ing? How do we relate the information provided by these interfaces to
the target binary program?

• How can we leverage hardware accelerators to implement efficient real-
time monitors that scale with the number of CPU cores? How can this
architecture promote ease of implementation and portability according
to a designer’s needs?

8

1.2 Objectives and Contributions

Figure 1.4: Main and secondary contributions to this Thesis.

• What are the metrics associated with such components for their adop-
tion in safety-critical embedded systems? What are the limits of this
technology in regards to detection timings and processing capabilities?

This work proposes and evaluates a new dedicated hardware control-flowmon-
itor architecture implemented in a field-programmable gate array (FPGA). In
the course of explaining this architecture, this work answers the previously
raised questions and addressed topics. It shows that trace-based monitors can
detect at least 98% of all faults in program branches and 100% of all explicit
control-flow errors, providing clearly defined real-time and latency bounds.
The analysis presented here shows how these techniques can be expanded
to detect timing violations on software components while maintaining inde-
pendence and isolation from the running application. This technique can be
incorporated into System-on-Chip (SoC) designs or implemented as FPGA
accelerators to existing COTS processors.

Figure 1.4 shows the breakdown of the main contribution of this thesis. The
main contribution of this thesis is the development of the first demonstrably
portable, modular, and scalable hardware-based control-flow error detection
system. This thesis presents relevant secondary contributions for the domain
and community of safety and error detection in the development of this archi-
tecture. It first analyzes existing systems and outlines a hardware and software
framework for portable monitors in Chapters 4 and 5. The modular hardware

9

1 Introduction

architecture with trace-decoder acceleration is presented in Chapter 6. Finally,
Chapter 7 presents a novel timing analysis and modeling concept for real-time
estimation of detection response times.

This thesis’s contributions were also published throughout the development
of this work in conferences, books, and academic journals. In [1] the first
methods for a generic trace-based program analysis were published. Fault
injections were performed over a series of benchmarks while control-flow
traces were collected. The acquired information showed the reliability of
the trace information in identifying errors and anomalies. The first portable
architecture for a trace-based hardware monitor was published in [2]. The
architecture was described in detail and presented with further fault-injection
validations, comparisons to similar relevant methods, and implementation
measures. The final component required less than 2% of FPGA resources to
secure a single-core of the CPU.

The portability of this monitor was further analyzed in [3], where existing
trace architectures were profiled and their features presented within the scope
of monitoring purposes. The study proved that all existing architectures pro-
vide the means for proper monitoring capabilities, given a proper decoder
unit. In [4] the first hardware-based control-flow monitoring architecture for
multi-cores was presented together with the first real-time delay model for
trace-based monitoring. The models and architecture were validated through
interruption-based fault injections to branch instructions. The response time
results combined with the presented model showed the necessary metrics and
trade-offs fundamental to any control-flow monitoring system. The results
first presented in this study show the minimum performance required by any
monitor to secure a program in real-time, given the its inherent control-flow
and binary characteristics.

1.3 Thesis Organization

This thesis answers the laid out questions and, in the process, proposes and
evaluates a novel hardware control-flowmonitor implemented in FPGA. Chap-
ter 2 introduces definitions and the background knowledge necessary for the
understanding of this work. It also presents an overview of the target processing
platform, the dual-core Cortex-A9 System-on-Chip, with an integrated FPGA.

10

1.3 Thesis Organization

It details some crucial aspects of architectures, trace systems, and instruction
set architectures (ISAs).

Chapter 3 presents relevant and related works done in the domain of fault
tolerance. It shows current and accepted approaches for software, hardware,
and hybrid CFC. It briefly explains the main way in which fault-tolerance
techniques work. It then highlights the different existing CFC architectures,
together with their main characteristics, advantages, and drawbacks.

Chapter 4 shows the major debug and trace solutions of today. It offers and
analysis of their features for the purposes of real-time monitoring. Presenting
a detailed overview of the connection between trace data and executed binary
branch instructions. Meanwhile, Chapter 5 shows a quick overview of one
simple binary analysis method used in this work for embedded applications.
Binary analysis enables us to observe the control-flow structures of modern
programs and to translate these structures into data that can be used by the
real-time monitor units. The information in these chapters is used to build
a framework for how the monitoring mechanisms operate on in the hardware
architecture.

Chapter 6 describes the proposed architecture, including the trace decoder
unit’s pipeline, the configuration memory implementation and its stored
control-flow graph data structure, and our fine-grained checking unit core
and its pipelined implementation. In Chapter 7 the fault injection evaluation
methodology is explained together the newly developed real-time model for
hardware CFC monitors. The proposed architecture is shown to have small
costs and be an effective technique to identify changes in the control-flow. It
can be incorporated into SoC designs or implemented as a FPGA accelerator
to existing COTS processors. The chapter goes into detail on the processing
and real-time requirements for the implementation of trace-based control-flow
monitors. These requirements also show the first limits and trade-offs for
trace-based systems in real-time scenarios.

Finally, Chapter 8 summarizes the findings in this work. It brings this Thesis’
results back into perspective according to their place within the state of the art.
It also discusses its place within the future of control-flow monitoring, espe-
cially with the significant recent emergence of trace-based security integrity
techniques.

11

2 Definitions and Background

The basics listed in this chapter provide a foundation for understanding the
target technologies of this work and their underlying environments. For this
purpose, this chapter gives a brief overview of their application domains,
focusing on the relevant metrics for safety-critical systems. It discusses the
specific characteristics of such metrics to increase their understanding and
motivation for further improvements in the field. It additionally introduces the
processor technologies and architectures referenced in the further course of
this work and used to implement the case study. The context and the resulting
specifics on using multi-core processors in safety-critical applications are also
briefly explained.

2.1 Concepts in Safety of Semiconductor
Devices

We routinely use terms such as "faults" and "failures" to describe unexpected
and unwanted incidents surrounding our use of tools and machines. However,
as these devices become too complicated for a single individual to comprehend
fully, we need to define precisely the meanings behind each term. This section
presents the essential collection of definitions that are used throughout this
work. The definitions here range from defects and upsets in semiconductor
devices that occur at the individual logic gate level, to faults, errors, and
failures of system-level components. Our focus here is to define the terms
necessary to understand the failures of embedded execution units, particularly
CPUs and Microcontrollers.

13

2 Definitions and Background

2.1.1 Sources of Defects, Faults, and Upsets

Defects or upsets are described as unintended differences between the im-
plemented electronic system and its expected function. Defects are used to
label deviations caused by variations during the manufacturing process. The
term upset, in turn, describes electromagnetic perturbations caused by envi-
ronmental phenomena. Ionizing radiation, including energized particles such
as neutrons, heavy ions, and electromagnetic radiation, may interact with in-
tegrated circuits producing different outcomes. These effects correspond to
natural phenomena, typically a product of solar activity, deep cosmic sources,
and earth materials with decaying particles.

Faults are the abstraction of a physical defect or upset at the logical level. They
describe the changes in a device’s logic function caused by a defect or upset.
Therefore, faults are defined here as any variation from the expected logical
behavior of the underlying hardware. They can be further detailed as transient,
intermittent, or permanent. Transient faults occur and then soon disappear.
They manifest from effects that can occur for a short period during the compo-
nent’s lifetime. Intermittent faults are characterized as a fault occurring, then
vanishing, and then reoccurring, and so on. Examples of intermittent faults are
signal interference, such as cross-talk between connections or communication
lines. Permanent faults manifest and exist within the system until the defective
component is repaired or replaced. These faults commonly occur due to man-
ufacturing defects or physical damage to CMOS gates due to high charges. It
is also possible that the device’s electrical properties may mask some defects
or upsets, causing no faults to appear.

With nanometer feature sizes dominating current semiconductor technologies,
CMOS transistors have become more susceptible to faults caused by radiation
interference due to their reduced threshold voltages, reduced node capacitance,
and tightened noise margins [13]. Radiation effects may occur when a single
ionizing particle strikes the silicon, creating trapped charges. These charges
can cause current and voltage pulses that may be sampled and eventually
change the logic state of the system. These issues are also known as single-
event effect (SEE) and can be destructive or non-destructive. An example
of a destructive effect is a single-event latch-up (SEL) that results in a high
operating current, possibly above device specification, causing severe damage
and requiring correction via a power cycle or reset. Non-destructive effects

14

2.1 Concepts in Safety of Semiconductor Devices

correspond to transient faults produced by the interaction of a single energized
particle and the PN junction of an off-state transistor (Fig. 2.1).

When a transient pulse occurs in a memory element, such as a register, it is
classified as a single-event upset (SEU) (Fig. 2.3). When an ionized particle
hits a combinational logic component, it creates a glitch or pulse that may
be propagated and sampled by a sequential component. This type of upset is
classified as a single-event transient (SET) (Fig. 2.2). Together, these transient
effects are also known as soft-errors [13]

Figure 2.1: Diagram of the effects of an SET on a logic circuit.

Figures 2.2 and 2.3 showexamples of SETandSEUsoft-errors in a logic circuit.
Figure 2.2 displays a particle hitting the XNOR gate of the combinational logic.
This collision causes a glitch on the signal path amplified by the inverter and
then sampled by the flip-flop. Figure 2.3 shows an SEU effect, where a particle,
represented by the bolt, hits the register forming part of the sequential logic
of this module, changing the element’s logical value and directly affecting the
rest of the component as wrong generated outputs are passed on.

Maiz et al. [26] showed that 95% of SEUs and soft-errors lead to single bit-
flips in sequential logic components, with the remaining 5% spreading up to
five bit-flips at maximum. These observations have been further confirmed
and identified in modern integrated hardware designs [13, 27, 28]. Soft-errors
can be detected and corrected at runtime by components inside a fault-tolerant
system, which means they do not require a hard reset from the system. The rate
at which a device or system encounters soft-errors is defined as its soft-error
rate (SER). This rate is dependent on the type of transistor, manufacturing
process, technology node, and the target running environment for the final
system.

15

2 Definitions and Background

Figure 2.2: Effects of an SET on a logic circuit.

Figure 2.3: SEU effects on a logic circuit.

For CMOS transistors operating at a ground-level environment (as opposed
to space or high-altitudes), the rate, or the probability, of faults occurring in
a device increases with smaller node technologies [29]. The SER in such a
scenario is proportional to the diffusion area (�38 5 5) of the trapped charges,
the collected charge on the gate (&2>;) from the ionization of atoms through
the collision path, and the minimum critical charge (&2A8C) required by the gate
to represent a change in operation os state :

(�' ≈ �38 5 5 ∗ exp(−&2A8C
&2>;

)

16

2.1 Concepts in Safety of Semiconductor Devices

The diffusion area and collected charges depend on the topology of the collision
and the energy of the particle, but the critical charge is mainly related to the
technology’s driving voltage and load capacitance, as shown in Figure 2.4. As
the minimum critical charge required for a soft-error decreases, the probability
of a fault increases.

Figure 2.4: Minimum Critical Charge in SRAM Cells by driving Voltage and Technology
Node [29].

2.1.2 Error, Failures, and Fault-Tolerance

Computers are possibly the most complex physical systems ever developed.
Whenever a complex architecture behaves unexpectedly or fails to provide
the function for which it was designed, it is typically said to be experiencing
a system failure. To properly avoid such failures, we must understand their
origins, causes, and effects and how these are related. Therefore, the meanings
behind concepts like faults, errors, failures, and their relationsmust be precisely
defined.

According to Avizienis et al. [30], a system is an entity that interacts with other
entities, be they other hardware or software systems or the physical world. A
complex system is also itself made of components or subsystems with their
respective functions that interact to deliver the service promised by the system.
A system failure, also called merely failure, is characterized by the system’s
inability to provide its service or function. A service is a sequence of states

17

2 Definitions and Background

performed by the system. Therefore a failure implies that one or more of its
states deviated from the set of correct possible values. This deviation is called
an error. For this reason, errors are also states of the system that may lead to
a failure if left uncorrected. The faults in the underlying electronic hardware
are ultimately the cause of such errors in the overall system.

More broadly, a fault is the underlying logical cause of an error. It is a
manifestation of either a hardware defect or a software/programming mistake
(bug) [31]. The origin of hardware faults comes from either internal or external
effects. Internal effects might include defects due to fabrication processes,
packaging materials, or aging and device deterioration. External effects might
include interactions between the integrated transistors and randomly occurring
radiation, such as SETs and SEUs explained in Section 2.1.1. However, some
faults may be masked by the component’s electrical characteristics, internal
logic, or the running application. In such cases, no errors arise, and the system
retains its correct execution state. It is essential to mark the difference between
this definition of error and soft-errors defined in Section 2.1.1. Soft-errors
are, within this work, a type of randomly occurring fault that affects integrated
sequential logic components such as embedded processors, memories, and
hardware accelerators. Finally, the relation between faults, errors, and failures
can be summarized as follows:

1. Faults: are the logical outcome of a physical effect on hardware that
modifies the information therein.

2. Errors: represent a new state or action taken by the system or subsystem
because of a fault, outside of its intended or designed scope.

3. Failures: arise from the system’s inability to keep providing its service
or function after the appearance of one or more errors.

In other words, faults might lead to errors, eventually leading to the system’s
failure. Faults can also be further classified concerning their persistence in
the system as transient, intermittent, or permanent. A transient fault happens
randomly and only for a short period. These are most commonly SEUs and
SETs. Intermittent faults correspond to a repetitive malfunction of a device
or system that occurs at intervals, while a permanent fault is continuous in
time. Fault Tolerance is thus the system’s ability to provide the means to avoid
service failures in the presence of faults. Therefore, this ability depends on the

18

2.1 Concepts in Safety of Semiconductor Devices

specific type of tolerated fault and the maximum number of faults the system
can withstand. Finally, Error Detection is the ability to detect the effects of
faults after they influence the system or system components but before they
cause a failure in this entity. Proper error detection capabilities are fundamental
for the development of robust fault-tolerant systems.

2.1.3 Reliability and Failure Rates

When stipulating guidelines and rules for designing and implementing safety-
critical systems, we requiremetrics to compare the relevant differences between
multiple designs or implementation proposals. These criteria ultimately stem
from the notions of errors and failures developed thus far. As we effectively
wish to avoid or reduce failures, the first relevant analysis comes from the
average number of failures we expect an application or function to experience
over time, i.e., its failure rate. This section considers a single component of
a more complex system and shows how reliability and Mean Time to Failure
(MTTF) arises from the basic failure rate concept. Increasing the reliability
and MTTF is inherent to the search for fault-tolerant architectures.

Let) denote the lifetime of a component (the time until failure), and let
5 (C) and � (C) denote the probability density function of) and the cumulative
distribution of) , respectively. Therefore, � (C) represents the probability that
the component will fail at or before a time C (%() 6 C)). A component’s
reliability is defined as the probability that it provides its function until a given
time C (%() > C)) [31]. The relationship between these definitions is thus:

'(C) = 1−� (C), � (C) =
∫ C

0
5 (g)3g,

∫ ∞

0
5 (g)3g = 1

TheMTTF of a component is equal to its expected lifetime, � [)], i.e., the aver-
age or the mean value of the random lifetime variable) . In the case of random,
independent, and transient faults in non-deteriorating systems, the probability
of failure events is described through an exponential distribution. In such
common scenarios the reliability '(C) and MTTF are expressed by Eqs. (2.1)
and (2.2), where _ represents the constant failure rate of the component.

19

2 Definitions and Background

'(C) = 4−_C (2.1)

"))� = � [C] =
∫ ∞

0
C 5 (C)3C = 1

_
(2.2)

While 5 (C) represents the probability that a new component will fail at time C
in the future, we are also interested in knowing the probability that a working
component of current age C will fail in the next moment 3C. This can be defined
as the conditional probability of 5 (C) on '(C). This conditional probability is
denoted as the hazard function (I(C)). For exponentially distributed failures,
the hazard function is constant and equals the given component failure rate
given by Eq. (2.3).

I(C) = 5 (C)
'(C) = −

1
'(C)

3'(C)
3C

= _ (2.3)

Minimizing hazards is a significant concern in the design of safety-critical sys-
tems and an indispensable feature of safety standards described in Section 2.4.
While an exponential distribution describes transient faults such as soft-errors
in integrated circuits, they are not directly equal to _. The failure rate of an
integrated device will only equal its SER in the worst case when all faults
occurring on the component cause functional failures, which is not the case in
reality. Some faults do not provoke errors or do not change the component’s
functionality. They are safe faults. Faults that consistently cause failures, on
the other hand, are called dangerous faults. Safety mechanisms increase the
number of safe faults and decrease the number of dangerous faults.

The failure rate is relative to the rate of dangerous and undetected faults
_�* for systems experiencing faults and with error detection capabilities.
Assuming that an appropriate repair mechanism is in place once a fault is
detected, improving the rate of dangerous and detected faults _�� will keep
the system safely functioning. Therefore, studying and identifying the most
common andmost critical types of faults can show how to develop the best cost-
effective methods to reduce hazards and the failure rate of critical components.
Real-time monitor components that look for the errors from such faults can

20

2.2 Target Architecture

improve system reliability, giving the system time to repair the error before a
catastrophic failure.

2.2 Target Architecture

This section explains the major components of the Zynq-7000 SoC device used
in our case study. Zynq-7000 is a commercial-off-the-shelf device designed
by Xilinx and built with a 28 nm technology node from Taiwan Semicon-
ductor Manufacturing Company (TSMC). This thesis uses a device version
XC7Z020-CLG484, embedded in a commercially available ZedBoard De-
velopment Board. This SoC is also known as a type of heterogeneous pro-
grammable logic device. It integrates anARMCortex-A9multi-core processor
with a FPGA [32]. First, an overview of the Zynq-7000 is given, and then the
characteristics of its implemented processor are detailed.

2.2.1 Heterogeneous Programmable Logic Devices

In keeping with the constant need for processing power growth, multi-
processing architectures have become ubiquitous in most domains. Het-
erogeneous architectures are a new step in this trend, where processing power
and energy efficiency are also a concern. These architectures combine tradi-
tional general-purpose processors with additional hardware components that
can perform better in specific application scenarios. Such components vary
from graphics processing units (GPUs), custom application specific integrated
circuits (ASICs), and FPGAs.

Custom logic can provide the most energy-efficient form of computation (100-
1000x improvement in either efficiency or performance) through ASICs cus-
tomized to a specific task [33]. However, ASICs are exceptionally costly to
develop and produce, and as the name suggests, they are very optimized for a
single use-case or application. Therefore, manufacturers and developers cannot
easily reuse them in new applications. GPUs can be acquired as COTS compo-
nents and have also been shown to outperform conventional microprocessors
in target applications significantly [34]. They derive most of their optimiza-
tion from large data segments’ vectorization and symmetric multi-threading to

21

2 Definitions and Background

diminish large memory latencies. GPUs are very suitable for homogeneous
data-parallel tasks but lose efficiency in other application-specific use-cases.

Figure 2.5: Block diagram of the processing system (PS) component of the Zynq-7000 [32].

Unlike ASICs and GPUs, FPGAs enable flexibility through programmable
Look-Up Table (LUT) cells used to implement arbitrary logic circuits. Typical
implementations of ASICs and FPGAs can present a 10-100x difference in area
and power [35]. However, their increased flexibility, lower development costs,
and widespread use in COTS components provide a valuable trade-off. They
stand as a desired alternative between the performance of ASICs and the ease
of use of GPUs. In this thesis, our use-case focuses on heterogeneous FPGA
SoCs and a new error detection method for multi-core processors that fully
utilize their unique advantage as a connected and flexible hardware resource.
Ultimately, the proposed monitor technique can also be implemented as one
component of a larger ASIC or SoC if COTS devices are not a possibility or a
concern for the system developers.

22

2.2 Target Architecture

2.2.2 The Cortex-A9 MPCore

The case study multiprocessor used in this work is a dual-core ARM’s Cortex-
A9. It implements a standard processor architecture based on the ARMv7-A
instruction set architecture (ISA) [36]. Processors based onARMdesigns, or its
ISA, are used in all classes of computing devices. Systems based on their pro-
cessor families occupy large market shares in mobile, communication, server,
and even safety-critical systems, including automotive and space. In 2019,
22.8 billion ARM-based chips were shipped worldwide, with ARM systems
holding 90% of embedded IoT, 75% of automotive advanced driver-assistance
systems (ADAS), and 32% of networking infrastructure markets [37].

Figure 2.6 presents the general architecture of the processor. Besides the two
processing cores, it also contains a 512 kB level two (L2) cache 8-way set-
associative memory and an SRAM On-Chip Memory (OCM). Timers and a
generic interrupt controller (GIC) are other functional blocks located in the
processing unit. Finally, a Snoop Control Unit (SCU) 1 forms a bridge between
the ARM cores, the caches, and the OCM. The SCU undertakes several tasks
relating to interfacing between the processors and L1 and L2 cache memories.
The SCU can further interface with the FPGA, also called the programming
logic (PL)within the Zynq SoC, through anAccelerator Coherency Port (ACP).

The internal structure of each Cortex-A9 Core is presented in Fig. 2.7. They
each have a dedicated single-instruction multiple-data (SIMD) media NEON
processing engine, memory management unit (MMU), and separate 32 kB
level one (L1) instruction and data 4-way set-associative caches. Each core
implements a Harvard memory architecture internally, with a superscalar,
variable-length pipeline from 9 to 12 stages. Its pipeline also employs ad-
vanced fetching, dual-issue, out-of-order instruction execution with dynamic
branch prediction that decouples branch resolution from potential instruction
stalls [38]. Up to four instruction cache lines are pre-fetched to reduce the im-
pact of memory latency on instruction throughput. The fetch unit continuously
forwards two to four instructions per cycle to the instruction decode buffer
to ensure efficient pipeline utilization. Its superscalar decoder can decode
two full instructions per cycle, and any of the four CPU pipelines can select

1 Snooping is one of the several mechanisms for ensuring cache coherency, i.e., managing the
consistency of shared cacheable data resources.

23

2 Definitions and Background

Figure 2.6: Cortex-A9 MPCore Architecture [32].

instructions from the issue queue. The parallel pipelines support concurrent
execution across full dual arithmetic units, a parallel write-back unit, plus the
resolution of any branch every cycle (Fig. 2.8).

The CPU pipeline employs speculative execution through the dynamic renam-
ing of physical registers into a pool of available virtual registers. It also uses
register renaming to eliminate dependencies without jeopardizing the correct
program’s execution. This feature allows code acceleration through effec-

24

2.2 Target Architecture

Figure 2.7: Cortex-A9 Internal Core Architecture [39].

tive hardware-based unrolling of loops and increases pipeline utilization by
removing adjacent instructions’ data dependencies.

Figure 2.8: Simplified Cortex-A9 Pipeline Diagram.

25

2 Definitions and Background

To minimize the branch penalty in its highly pipelined CPU, the Cortex-A9
implements both static and dynamic branch prediction. Static branch prediction
is provided by the instructions and is determined during compilation. Dynamic
branch prediction uses the outcome of a specific branch’s previous executions
to determine whether the branch should be taken or not. The dynamic branch
prediction logic employs a global branch history buffer (GHB) which is a 4,096
entry table holding 2-bit prediction information for specific branches and is
updated every time a branch gets executed. The branch execution and the
overall instruction throughput are also largely dependent on the branch target
address cache (BTAC) which holds the target addresses of the recent branches.
This 512-entry address cache is organized as 2-way × 256 entries and provides
the target address for a specific branch to the pre-fetch unit before the actual
target address is generated based on the calculation of the effective address
and its translation to the physical address. Cortex-A9 also employs an 8-entry
return stack cache containing the active 32-bit subroutine return addresses.
This feature remarkably reduces the penalty of executing subroutine calls and
can address nested routines up to eight levels deep.

Finally, each processor core implements its program trace unit through a Pro-
gram Trace Macrocell (PTM). This unit supports the generation of CoreSight
messages for all branch and control-flow operations, processor-specific events,
and system-coherency events. The CoreSight and other market standard trace
architectures are presented in more detail in Chapter 4.

2.3 Radiation Effects on Semiconductor Devices
and CPUs

A processor is nothing more than a group of sequential and combinational cir-
cuits combined into one intricate component. This blend of different circuits
makes processors susceptible to radiation hitting different areas with different
effects. A processor’s components are roughly divided into five groups ac-
cording to the physical area hit by an SEU: program memory, data memory,
register bank, control path, and data path; and into two groups describing the
logical effects caused by a fault: data-flow and control-flow. The following
subsections will address how soft-errors affect these different parts and analyze
their effects from the program’s point of view.

26

2.3 Radiation Effects on Semiconductor Devices and CPUs

2.3.1 Soft-Errors in Processor Sub-components

Modern processing units are composed of highly complex combinatorial and
sequential circuits that can all be affected by SEEs. Each region or area suscep-
tible to SEEs is approximately categorized as being part of or corresponding
to either:

• the instruction memory, e.g., Instruction Caches;

• the data memory, e.g., Data Caches;

• the register banks, e.g., General Purpose registers;

• the control path, e.g., Branch Predictors;

• the data path, e.g., Arithmetic and Logic Units (ALUs);

All types of memory are sequential logic circuits and, therefore, susceptible to
SEUs. Due to the regular physical structure ofmemory cells, they are optimized
to fit in smaller die areas than standard circuits and generally possess higher
operating frequencies. Therefore radiation effects, such as multiple-bit upset
due to a single particle, are intensified in memory components. There are two
main types of available memories for embedded devices: Flash and SRAM
memory. The first one is less sensitive to radiation effects, as it requires a higher
voltage to change the state of its memory cells, typically over 5 V. Its main
drawbacks are its constrained durability with a finite number of program-erase
cycles, meaning that a memory position can only be written around 100,000
times before deteriorating its integrity. While the memory cells are more
resilient against radiation effects, Flash components require more complex
configuration logic to control this higher voltage and its required program-
erase cycles, which is sensitive to radiation effects. On the other hand, static
random-access memory (SRAM) memory cells are more sensitive to radiation
effects since they operate at standard voltages. However, they also have better
performance, less power consumption, and are not constrained by a finite
number of program-erase cycles.

Two memory organization frameworks reign the design of current processors.
They can access a single memory, where program and data memory are stored
together, so-called Von Neumann architectures. Another possibility is that
data and instructions each occupy independent memory components, with

27

2 Definitions and Background

the possibility of independent parallel access, which is the case of Harvard
architectures. When stored separately, instructions are usually stored in flash
memory and the data memory in an SRAM. Doing so makes it possible to
reduce the number of upsets in the program memory, while fault-tolerant
techniques can protect the data memory. When sharing the same memory,
program and data memories are typically implemented on SRAMs. Since
fault tolerance techniques are too expensive to protect the program memory,
low-level approaches, such as error-detection and correction (EDAC) codes,
are implemented. However, not all internal memory elements are protected.
The Cortex-A9 processor, for example, does not support Parity error detection
on the branch GHB RAM for large entry sizes.

The register bank is mostly a sequential circuit, just like the program and data
memory components. Because of that, it is sensitive to SEUs. The register
bank can be implemented through an SRAM or by using flip-flops. In the
first case, we apply the same principles for data program memory. In the
second case, hardware replication or software-based techniques can replicate
and protect the information. While the total number of physical and pipeline
registers of the Cortex-A9 processor is not made available, we can estimate its
size and complexity by the number of required architectural registers.

The ARM architecture provides sixteen 32-bit general-purpose registers (R0-
R15) for software use [38]. Fifteen of them (R0-R14) can be used for general-
purpose data storage, while R15 is the program counter (PC) whose value
increments every cycle, maintaining a pointer to the currently executed in-
struction. A direct write to R15 by a software operation will alter the program
flow. R13 and R14 are additional special general-purpose registers, respec-
tively the stack pointer (SP) the link register (LR). The SP hold the current
value of the top of the program stack for the current function context, while
LR holds the value for the current context’s return address. The architec-
ture also implements a dedicated current program status register (CPSR), and
sometimes the execution mode may implement a copy CPSR register from a
previous mode, called the saved program status register (SPSR).

As Cortex-A processors implement a modal architecture, non-banked general-
purpose registers must be saved to the stack between context changes [39].
Figure 2.9 shows all nine execution modes of the processor. The lowest
privilege mode is User mode, which most applications use. Hypervisor (HYP)
mode has a higher privilege level but is not considered for secure execution.

28

2.3 Radiation Effects on Semiconductor Devices and CPUs

Figure 2.9: Architectural register banks and modes of the Cortex-A architecture [39].

It is used to control and switch between guest Operating Systems (OSs) that
execute in a secure mode. Similarly, Moniotor (MON) mode is used to switch
between secure and non-secure operation modes. System (SYS) mode is used
by the base OS and shares the same register view as User mode but in a
secure privileged context. All other modes correspond to internal interruption
contexts, such as interruption request (IRQ) and fast interruption request (FIQ),
Supervisor Call (SVC), and Hardware Abort (ABT) and Undefined Instruction
Abort (UND) contexts.

In all modes, "Low Registers" (R0 to R7) and PC share the same physical
storage location. Figure 2.9 shows how some ’High Registers’ (R8 to R14) are
banked for specific modes. For example, R8 to R12 are banked for FIQ mode,
i.e., accessing these registers leads to a different physical storage location. For
all modes other than User and Systemmodes, SP, LR value, and the SPSRs are
banked. The values of banked registers are highly critical. They maintain the
correct execution flow state between different contexts and simultaneously have
an extremely long liveliness, i.e., the time during execution that the register
holds a valid, or live, value. Errors in any banked register can represent a

29

2 Definitions and Background

corruption of the execution flow upon the end of the context and may induce
unwanted access to an invalid stack location and corrupt data.

The data path represents the computing circuit of the processor. It is defined
as the circuit leading from a stored value (in the memory or the register
bank) through the ALU or Floating Point Unit (FPU) and back to a storage
element. It is composed of both combinational and sequential logic since the
data path processes data and crosses the register barriers from the pipeline
stages. Therefore, it is sensitive to SEUs (in the pipeline registers) and SETs
(in the computing logic, such as the ALU). The effect of a fault in the data path
usually leads to a wrong result by the end of the operation but hardly leads to
an infinite loop or a control-flow error.

The control path is responsible for all decision logic of the processor. It
calculates the next instruction to be fetched and sets required internal flags,
such as control of the ALU to sum or subtract or if a branch is to be taken or
not. The control path also encompasses all internal branch prediction logic,
including branch history buffers and target caches. The control logic in modern
CPU architectures is incredibly large and one of its most complex features.

2.3.2 Data-Flow Error Effects

Data-flow effects are those errors arising from a variable during its compu-
tation. They can manifest in a program as an execution that was accurately
followed through but ended incorrectly. An example would be the operation
add R3, R1, R2 that adds the values stored in registers R1 and R2, and saves
it to R3. If a soft-error affected bit N of R2, it would change the operation to
'3 < −'1+ '2± 2# . In such a case, the processor correctly performed the
sum in the ALU but register '2 had an incorrect value. Embedded memories
play an essential role in the overall reliability and system performance. They
represent around 60% of the chip area in current processors. Memory cells,
especially in caches, are built to be fast, efficient, and as small as possible with
very low capacitance [40]. As a consequence, such characteristics make them
particularly vulnerable to SEEs.

Data-flow effects are troublesome to detect or identify without redundancy
techniques or sanity checks, where the data is compared to a golden or expected
result or range of results. If left for too long, data errors may lead to incorrect

30

2.3 Radiation Effects on Semiconductor Devices and CPUs

decisions or actions on the application’s part, leading to catastrophic events.
While such outcomes are of extreme importance in electronics safety and
reliability, they are not the focus of this thesis.

2.3.3 Control-Flow Error Effects

Given a defined input sequence, any program executing in a modern proces-
sor or a similar Turing machine model of computation has a fixed series of
executed operations. control-flow errors (CFEs) are characterized as errors in
the program execution where the running application’s instruction flow does
not follow this defined sequence. In some cases, a fault that directly causes
a data-flow effect may also cause a control-flow effect. An example, an SET
could hit the ALU as it computes the comparison before a conditional branch,
causing a branch to be taken when it should not. Ultimately, such types of
errors are considered as a CFE. While L1 and L2 caches can be configured and
either enabled or disabled depending on safety and performance requirements,
branch caches and branch prediction tables cannot. An SEE into any of the
complex branch prediction sub-components could disrupt the program’s flow
without warning. Figure 2.10 shows an example of a soft-error that changes the
result of a branch target address and the corresponding change in the resulting
control-flow graph (CFG).

As we can see, CFEs can be caused by faults in several different sub-
components. A fault in the branch predictor might cause the system to
determine a wrong target address or mispredict a conditional branch. Faults in
the PC might cause a fetch of wrong instructions or the branch to an inaccurate
PC-relative address. The architectural effects that SEEs may cause on the
control path of a processor can be resumed to the following cases, also shown
in Fig. 2.11 :

Branch Creation: A branch instruction is executed when there was previously
no codified branch, e.g., sequential instruction is converted into a branch,
and then this illegal branch incorrectly alters the program flow.

Branch Deletion: A branch instruction is not executed when it should, e.g., a
branch is converted into a non-branch instruction. Therefore, a control
flow path is not taken when it should be.

31

2 Definitions and Background

Figure 2.10: Control-flow of a program showing example of an error on a target branch.

Direct PC Error: It directly changes the next instruction fetched by the pro-
cessor. It has the same effect as branch creation, but it does not appear
on instruction trace streams as a branch.

Incorrect Target: An SEUmodifies the value of the target address of a branch
instruction, e.g., the LR used to return from a subroutine. This change
willmake the program’s execution follow a branch to an incorrect address
region.

Incorrect Condition Check: Happens when a branch that should go in one
direction, based on a comparison, goes in the other direction, i.e., a
branch is not taken when it should be, or it is taken when it should not
be.

Another way to categorize CFEs is regarding their logical program out-
comes [10]. This top-down categorization looks at outcomes from a branch
operation’s execution and the operation that succeeded it. These erroneous
branch outcomes are classified as:

Not successor CFEs: The execution flow changes to an incorrect target from
the current instruction. For example, the corrupted target address of a
branch.

32

2.3 Radiation Effects on Semiconductor Devices and CPUs

Figure 2.11: Control-flow graph diagram with different types of CFEs.

Wrong successor CFEs: The execution flow changes to a possible destina-
tion of the current instruction, which would not have been chosen in a
correct execution state. For example, a conditional corrupted branch is
taken when it should not.

Recent studies show that approximately 87% of all CFEs in processing units
corresponded to not successor CFEs [41]. After injecting around 500k errors
in 8 different benchmarks, the study determined that among all detected CFEs,
what they called Direction Errors, equivalent to wrong successor CFEs, only
represented 13%. Figure 2.12 shows the equivalence between these different
classifications of CFEs. While almost all architectural faults can generate a not
successor CFE, wrong successors can only happen from a deleted conditional

33

2 Definitions and Background

branch or a wrongly executed condition check. Data-path errors can eventually
cause wrong successor errors, given the use and structure of the internal data.
Therefore, protection against these types of errors correlates more closely to
data protection techniques. Consequently, and due to the higher criticality of
the first type of outcomes, this work targets not successor CFEs.

Figure 2.12: Equivalence between architectural CFEs and logical CFEs.

One of the most researched types of control-flow monitoring techniques is
called control-flow checking (CFC). In the safety domain, several CFC schemes
strive to provide a fine-grained, orthogonal hardening of individual control
flows, with industry standards such as the automotive ISO-26262 [42] safety
standard recommending their use. They work by identifying allowed branches
after analyzing the program’s CFG and issuing interruptions to the application
if an unallowed branch is detected. They check in runtime the correctness of
the control-flow through additional software operations after branches or by
monitoring hardware interfaces. However, it has been repeatedly shown that
evaluating such techniques is more challenging than we originally thought [9,
10]. The modifications applied to the running software by most control-flow
protection techniques increase the overall system vulnerability, going against
the design objectives. Chapter 3 explores existing CFC techniques and the
problems many of them carry.

2.3.4 Architectural Vulnerability and CPU Faults

Figure 2.13 shows a general processor architecture with 5 pipeline stages.
It shows examples of possible effects according to the component that was

34

2.3 Radiation Effects on Semiconductor Devices and CPUs

affected. On the left, a fault in the instruction memory may corrupt a target
branch, causing a wrong control flow path on the program. On the right,
soft-errors in the data memory may change data, which may cause the system
to output erroneous data or be propagated back to the system and cause other
errors. Depending on the sub-component and the logic functions it fulfills, a
data-flow or control-flow error may occur. The sub-component functionality is
essential as it dictates the actual severity of possible errors in the system given
a fault in this component. This subsection explores the use of architectural
vulnerability factor (AVF) to estimate and compare which important functional
components are more susceptible to errors.

Figure 2.13: Sensitive areas of a general CPU architecture under SEEs.

When analyzing hardware components and systems’ susceptibility, one of the
most important parameters used is its soft-error rate (SER) [31]. This rate is
the expected number of faults per unit time that a currently sound component
will suffer in a given future time interval, usually expressed as a constant
(_(�'). This rate determines the final distribution of faults during the lifetime
of a system. It is important to note that any hardware component’s SER is
determined by its integrated circuit technology and fabrication processes, as it
corresponds to SEEs on the level of transistor gates. However, only comparing
the SER is not enough, as depending on the component’s architecture and
complexity, a fault may be more or less masked, generating different rates
of errors. Therefore, the AVF is the probability that a fault in a particular
processor’s structure will result in a visible error in the final output of the
program [43]. Therefore, a structure’s effective error rate is the product of its

35

2 Definitions and Background

raw circuit SER and its AVF. The overall processor error rate is calculated by
adding the effective error rate of its # total components with Eq. (2.5).

_�%* =

#∑
8

_8(�' × �+�8 (2.4)

To compute the AVF, we must analyze which bits in a component’s structure
are required for an architecturally correct execution (ACE), also called the
ACE bits [43]. Any fault in a sequential cell that contains one of these bits will
cause a visible error in the final output. The other bits that do not contribute
to the final output are then called un-ACE bits. It is important to note that
the status of a bit stored in a memory structure inside the CPU might change
during a program’s execution. This can be easily seen by taking the example
of a general-purpose register that in one cycle is not used and in another cycle
holds the target address value for a branch instruction, e.g., the LR.

Thus, to calculate the AVF of a hardware structure, wemust find the probability
in time that an upset in that cell will cause an error. This probability corre-
sponds to the average time a critical bit is alive in the component divided by
the system’s total execution time. It can be calculated by counting all pairs of
ACE bits and cycles for a given hardware structure and dividing it by the total
component area (in bits) times its running time (in cycles). This is expressed
by Eq. (2.5), where # 8

���
is the total number of ACE bits during the execution

cycle 8 of the component, #18CB is the total number of bits in the hardware
component, and)4G42 is the total execution time in which the components was
active, in cycles.

�+� =
1

#18CB ×)4G42

)4G42∑
8

8��� (2.5)

Through analysis of AVF, it is visible that not all faults in a microarchitectural
structure affect a program’s outcome. Some of the significant factors con-
tributing to high failure rates are the complete instruction and data memory
areas used by the processing system and its total execution time. Many models
have been proposed to calculate the AVF for integrated systems. Simulation or
HDL-based analysis can provide individual values for the components inside

36

2.3 Radiation Effects on Semiconductor Devices and CPUs

a processor [25,44]. Online performance metrics can also be used to estimate
the AVF of large structure sections of a processor [45, 46].

However, this type of analysis requires detailed knowledge of the register trans-
fer level (RTL) description of all components. This knowledge is not always
available depending on different license agreements between design houses
and IP users. Therefore another way to calculate the AVF is by estimating its
average total ACE-bits through its bandwidth and execution time [43]. Using
Little’s Law, derived in the framework of queue systems, we can compute the
mean number of resident critical bits in a resource and, therefore, the AVF of
the resource [47]. This relation provides a way to compute the AVFwhile treat-
ing the component as a black-box. This law can be translated into Eq. (2.6), by
#��� as the average number of bits in the black-box component being equal to
the product of the average bandwidth of ACE bits into the component (����)
times the average waiting time or residence in cycles of an ACE bit in the
element (,���). Thus, dividing it by the total number of bits in the black-box
(#) >C0;) gives us an estimation for the AVF.

�+� =
#���

#) >C0;
=
���� ×,���

#) >C0;
(2.6)

Among ARM processors, the Cortex-R family is closely related to the Cortex-
A, such as the Cortex-A9, but developed specifically for real-time and crit-
ical systems. Iturbe et al. [25] analyzed the vulnerability of different sub-
components of an ARM Cortex-R5 CPU under soft-error simulations. This
study identifies less than 10% of CPU sequential elements accounting for more
than 70% of all errors. They also highlight the most critical sub-components
in this CPU architecture, which are the following:

1. Register files

2. Cache store buffers

3. Branch prediction table

4. Branch return address stack

5. Exception handler logic

6. Instruction queue

7. PC logic

37

2 Definitions and Background

8. Register translation logic

9. Control registers

Almost all of these structures are either directly part of the CPU’s control-path
or responsible for the correct execution of control-flow operations. Other stud-
ies have also shown that between 33% and 77% of transient faults occurring in
processors cause control-flow errors [5]. These studies show that ascertaining
the correct execution of the system’s control flow corresponds to identifying
the majority of errors that may occur.

Understanding the correspondence of AVF to the final system reliability and
what changes to hardware and software architecture affect it is extremely
important as we develop fault tolerance techniques. Reliability estimates based
only on raw device fault rates will be pessimistic, leading architects to over-
design their processor’s fault-handling features. Overly complicated designs
can be dangerous as any increase in overhead, be it in the hardware resource
area, execution time, data, or instruction memories, increases the possibility of
any fault occurring. These overheads can poorly impact the combined software
and hardware system’s final effective error rate and overturn any increases in the
technique’s reliability. While some studies argue that the architectural details
required to perform a correct ACE analysis undermine its usefulness [48],
others [49] show that carefully choosing the details in the system description
can result in very precise AVF calculations.

2.4 Safety Standards for Critical Systems

Standards and norms must generally be observed and taken into account when
developing safety-critical applications. The standards form a guide for develop-
ment and thus also set implementation requirements. They describe processes
and suggestions to be followed during development for safeguarding a safety-
critical system, usually on a very abstract level. These processes guarantee
users and consumers that the product’s functionalities meet standard criteria
and are within the defined safety metrics. Functional safety is described in
detail in the standard IEC-61508 - "Functional Safety of electric / electronic /
programmable electronic safety-related systems" [50].

38

2.4 Safety Standards for Critical Systems

The IEC-61508 standard provides the basis for different domain-specific stan-
dards related to different application areas. Among these, we draw attention to
the ISO-26262 [42] used in Automotive development and DO-178C [51] and
DO-254 [52] used in Avionic software and hardware components, respectively.
One crucial term defined and used in such standards is risk. The term risk
describes the expected frequency with which an event that can lead to damage
will occur in combination with the damage’s expected extent. This frequency
is typically composed of:

• the duration of stay in the danger area,

• the ability to avert the danger,

• the likelihood of an undesirable event occurring.

The international standard IEC-61508 deals with the safety requirements for
electrical/electronic/programmable electronic systems (E/E/PES). These re-
quirements serve to define exact limit values and safety goals to which the
finished system must adhere. For this purpose, it defines tolerable risk (resid-
ual risk). The handling and minimization of calculated or identified risk are
one of the main concerns of such standards. Through such procedures, we can
avoid or control dangerous failures of a system.

For these reasons, IEC-61508 places requirements on the procedure for de-
veloping such systems in order to be able to meet the safety requirements.
These requirements include, among other things, implementation of risk anal-
ysis and the design of the hardware or software according to certain specified
principles [53]. The standards derived from IEC-61508 also follow this essen-
tial procedure but contain industry-specific changes. Before development, it
must be checked which area-specific norms and standards must be followed.
Therefore, we must thoroughly test safety-critical systems after integrating a
component that has been manufactured or procured in-house following a spe-
cific standard. The standard does not make any requirements for manufacturing
or procurement processes. Integration tests should only prove that the modules
interact correctly and fulfill their specified functions. Manufacturers need to
check only hardware and interface functions, as the integration tests of associ-
ated software only take place in the software’s safety lifecycle. Following this
integration, the validation inspections can take place in order to prove that the
system complies with the specified safety requirements [50].

39

2 Definitions and Background

2.4.1 Safety Levels

To make the system’s safety classification clear, IEC-61508 uses the so-called
Safety Integrity Levels (SILs). These SIL are the central aspect of IEC-61508.
Function classification based on these levels is carried out according to the
extent of damage due to the function failure, the likelihood of avoiding the
danger, the amount of time a person is subject to the dangerous operation, and
the probability of functional failure. The corresponding SIL is determined
from this classification of the required function.

If the standard itself does not stipulate any special safety requirements after
going through this scheme, themanufacturer’s quality assurance aspects should
apply. It becomes clear that a Safety Integrity Level is determined based on
various, not precisely defined, conditions. The determination of the SIL is
therefore not an exact process. The relative parameters must be determined by
the development team and communicated consistently. It specifies four Safety
Integrity Levels, the highest (SIL 4) intended for those functions that have the
most devastating effects in the event of failure. After determining the SIL, the
permissible failure rates of the respective systems or components can be taken
from the tables of IEC-61508, Table 2.1.

Table 2.1: Acceptable failure rates according to IEC-61508 [50].

Safety Integrity
Level

Failure Probability
for a function on demand

Continuous
Failure Rate

SIL 1 10−2 6 � < 10−1 10−6 6 _ < 10−5

SIL 2 10−3 6 � < 10−2 10−7 6 _ < 10−6

SIL 3 10−4 6 � < 10−3 10−8 6 _ < 10−7

SIL 4 10−5 6 � < 10−4 10−9 6 _ < 10−8

As shown in Table 2.1, SIL requirements make a distinction between functions
executed on demand, and for continuously executing functions. The probability
of failure � is used for seldom-used functionalities and computed over the
whole function’s execution time. For often or continuously executed functions,
the failure rate (_) is instead used, conventionally expressed in terms of Failure
in Time (FIT) units. One FIT represents the failure of a system or components
after 1 billion (109) hours of operation. Therefore, a functionality classified as

40

2.4 Safety Standards for Critical Systems

SIL 4 should have a failure rate on the order of 1 FIT or 1 failure per billion
hours of execution.

ISO-26262 [42] is a specific standard relating to passenger cars. This standard
deals with the development of electrical and electronic systems in automobiles
This derivation and specialization emerged due to uncertainties in the appli-
cation of IEC-61508 in relation to motor vehicles. It presents modifications
that are specially designed for the series production of vehicles. The general
standard also does not address the significant number of networked control
devices present in automotive systems.

Given its specific industry requirements regarding the classification of vehicles,
ISO-26262 offers a SIL alternative or extension called the Automotive Safety
Integrity Level (ASIL). In the automotive sector, it can be assumed that the
existing systems will never achieve SIL 4 since the IEC-61508 classification
SIL 4 is reserved for hazards that result in a catastrophe with many deaths.
Most of the safety-critical systems in this area are located between SIL 2 and
SIL 3. Since the assignment to one of the two levels is very difficult here, the
introduction of ASIL leads to an assignment in which ASIL-C is between SIL
2 and SIL 3 of IEC-61508. The standard also defines a new level not present
previously. Quality management (QM) is assigned to functions that do not
require additional safety measures in line with ISO-26262 requirements.

For the avionic domain, two essential guidelines are used: DO-254 [52] is used
to develop hardware in avionics, while DO-178C [51] defines requirements for
avionic software components. These are de facto standards, i.e., guidelines
applied by all aviation authorities such as the Federal Aviation Administration
(FAA) and European Aviation Safety Agency (EASA) [54, 55]. These guide-
lines describe the life cycle of hardware and software development and the
activities and objects associated with the respective phases. They use different
Design Assurance Levels (DALs), from DAL-A to DAL-E, representing the
avionic counterpart to SIL of IEC-61508. The criticality and meaning of every
level are defined as [56]:

• DAL-A - Catastrophic: Aircraft destroyed and many fatalities.
• DAL-B - Hazardous: Damage to aircraft with an overextended crew, occupants
hurt with possible fatalities.

• DAL-C - Major: Large reduction in safety margins and possible injury to
occupants.

41

2 Definitions and Background

• DAL-D - Minor: Little effect to operation of aircraft and on crew workload.
• DAL-E - No effect: No effect on aircraft or crew.

In this case, failure of DAL-A system results in a catastrophe, while a DAL-E
system does not affect an aircraft’s safety in the event of failure. The influence
of the DO-254 extends from the aircraft manufacturer to the semiconductor
manufacturer. Therefore, all components used in avionic systems must provide
artifacts and documentation corresponding to the DO-254 and DO-178C [55].
Table 2.2 presents an overview of the general compatibility or equivalence
between the different domain safety-levels described here.

Table 2.2: Compatibility between safety-levels of the investigated domain standards.

Domain

General
(IEC-61508 [50])

Automotive
(ISO-26262 [42])

Avionic
(DO-178C,DO-254 [51, 52])

Safety-Levels

- QM DAL-E
SIL 1 ASIL-A DAL-D

SIL 2 ASIL-B DAL-C
ASIL-C*

SIL 3 ASIL-D DAL-B
SIL 4 - DAL-A

2.4.2 Safety Monitoring

Besides outlining the processes for classifying the suitable safety-level for a
system’s functionalities, safety standards also layout and suggest specificmech-
anisms to increase the safety and reliability of components. Safety monitoring
is a means of protecting against specific failure modes or conditions by directly
monitoring a function for errors that would result in a failure. Monitoring func-
tions can be implemented in hardware, software, or a combination of hardware
and software.

DO-178C explicitly points out the importance of software monitoring tech-
niques. It incorporates guidelines that control-flow and data-flow should be
monitored when safety-related requirements dictate, e.g., for DAL-A or B as-

42

2.4 Safety Standards for Critical Systems

signed software. The standard specifies requirements that allow a monitor to
be assigned to a software component, given the safety level associated with
the loss of its related system function. The important attributes of the monitor
that should be determined to allow such an assignment are defined as [51]:

1. Software level: The safety monitor is assigned the safety level associ-
ated with the most severe failure condition category for the monitored
function.

2. System fault coverage: Assessment of the system fault coverage of a
monitor ensures that the monitor’s design and implementation are such
that the faults it is designed to detect will be detected under all necessary
conditions.

3. Independence of function and monitor: The monitor and protective
mechanism are not rendered inoperative by the same failure that causes
the failure condition.

ISO-26262 similarly defines software safety requirements as all objectives
needed to avoid a violation of its functions or properties. It further defines
safety-related functionality as [42]:

• functions related to the detection, indication, and mitigation of faults of
safety-related hardware elements;

• monitoring functions related to the detection, indication, and mitigation
of failures in the operating system, basic software or the application
software itself;

It also highlights the importance of isolation between the monitor and mon-
itored function. A monitor cannot operate correctly if both the monitor and
the monitored function are subjected to the same event or situation due to
a common cause failure. These common causes of failures are therefore of
notable concern. The standard in its latest iteration included new examples
and classifications of failure modes for digital components such as CPUs and
their sub-components, see Table 2.3. Due to modern CPU complexity, such
hardware failure modes are hard to identify individually. They are also a pri-
mary root of dependent failures between software and hardware elements. To
further reduce the probability of a safety goal violation due to dependent faults
in hardware, such as in a CPU, safety measures must be implemented, such

43

2 Definitions and Background

as program flow monitoring independently and separately from the monitored
software components.

Table 2.3: Possible failures modes for digital components.

Part / Subpart Function Failure Mode Aspects

CPU Execute instruction flow
according to given ISA. • Instruction flow not executed (total

omission)
• unintended instruction flow executed
(comission)

• incorrect instruction flow timing (too
early/late)

• incorrect instruction flow result

CPU Interrupt Handler Execute interruption ser-
vice routine (ISR) accord-
ing to interrupt request.

• ISR not executed (omission/too few)
• un-intended ISR execution (comis-
sion/too many)

• delayed ISR (too early/late)
• incorrect ISR execution

Interrupt Control Unit Send IRQs to given CPU
according to defined events
and to intended quality of
service (e.g. priority).

• IRQ to CPU missing
• IRQ to CPU without triggering event
• IRQ too early/late
• IRQ sent with incorrect data

Therefore, the importance of proper program monitoring in safeguarding crit-
ical software components is evident. However, the current state of program
monitors and CFC is predominantly software-based, with few proposed hard-
ware techniques, as presented in Chapter 3. Most software methods fail to
increase reliability due to isolation problems and common causes of failures.
Also, most hardware methods are architecture-specific and do not demonstra-
bly scale well to multiple or different CPUs. Safety standards outline software
designs and implementation guidelines, which help guide our monitoring ob-
jectives.

44

2.5 Security Vulnerabilities and Control-Flow Attacks

2.5 Security Vulnerabilities and Control-Flow
Attacks

Ourwork is also related to research on intrusion detection techniques. Together
with safety, the security of electronic and embedded systems is a significant
concern. While the safety domain’s main goal lies in preventing unforeseen
random events that may cause system failure, the safety domain is concerned
with protecting and ensuring the integrity of the system given deliberate at-
tacks through events intentionally generated by a third party. While this work
addresses the error-detection capabilities gained by the implementation of dedi-
cated control-flowmonitors, it must also reference the number of investigations
using control-flow monitoring in the security domain for intrusion detection,
particularly on the family of attack patterns called CRAs.

In these attack techniques, a malicious agent changes the application’s control-
flow through existing code in its memory, posing a high risk to the system’s
integrity. The most common type of such attack is called return-oriented pro-
gramming (ROP). ROP attacks allow this agent to hĳack the control-flow by
using gadgets (code segments ending with a "return from function" instruc-
tion,e.g., ret in x86 or pop lr in armv7 [57]). Figure 2.14 shows an example
of such an attack in which the stack values are altered to generate jumps be-
tween memory regions, executing different segments of the same application’s
code. ROP ROP attacks usually leverage buffer overflow or use-after-free vul-
nerabilities to overwrite the return address inside the stack. The control-flow
is then illegally transferred to a gadget. This gadget changes the stack pointer
to the beginning of the modified portion of the stack, redirecting it again to the
next gadget by executing another return instruction. These gadgets execute one
by one, forming a chain until the attacker’s desired functionality is executed
and the system is fully compromised.

control-flow integrity (CFI) is a general approach used for preventing such
code-reuse attacks. It restricts control transfers along the edges of a pro-
gram’s predefined CFG [59]. The CFG is constructed by statically analyzing
a program’s source code or binary, but this statically constructed CFG is nor-
mally an over-approximation of the valid runtime target addresses for indirect
branches, including indirect call, jump,and ret instructions. This is a particular
problem for returns from frequently called functions that might have many
valid target addresses [60]. Limited context information makes this backward-

45

2 Definitions and Background

Figure 2.14: ROP attack example in x86 architecture [58].

edge CFI vulnerable to bending in which attackers make a program return to
a different address within the set of valid target addresses [61]. Protection
techniques should be simple to comprehend and enforce yet provide strong
guarantees against powerful adversaries if they mean to be trustworthy. On the
other hand, in order to be deployed in practice, CFI techniques should apply to
existing code (preferably even to legacy binaries) and incur low overheads [62].

The main differences between monitoring architectures from the safety and
security domains originate from distinctions between CFI attack models and
CFC failure models. Fault-tolerance techniques are focused on one-time ran-
dom soft-errors. CFI, on the other hand, is concerned with a persistent,
adversarial attacker that can arbitrarily change data memory (in particular, by
exploiting program vulnerabilities) but makes certain assumptions on regis-
ter contents. Most CFC work provides probabilistic guarantees, while CFI
entails that even a motivated, powerful adversary can never execute even one
instruction outside the legal CFG. However, CFI does not aim to provide fault
tolerance.

46

2.6 Summary

While CFI and CFC techniques are not always immediately comparable, the
recent growing security concerns and the interest in CFI brings new similar
techniques that we must observe for a fair analysis of our control-flow monitor
method. In the past five years alone (2015 to 2020), there were 82 publica-
tions about CFI in relevant security journals according to the web of science
portal [63]. In comparison, during the same period, only 12 journals were pub-
lished about new advances regarding CFC. Similarly, the number of citations
surrounding journals about control-flow integrity grows almost exponentially
every year (Fig. 2.16), while the same interest surrounding control-flow check-
ing seems to have slowed (Fig. 2.16). Although, the problems in the field of
CFC are still not solved.

Figure 2.15: Total citations per year for journal in the domain of safety CFC architectures (data
source: Web of Science [63])

2.6 Summary

This chapter explained the main differences among the safety-critical concepts
of single-events, faults, soft-errors, control-flow errors, and failures. These
concepts and terminology are the basis from which we build the understanding
of safety and use them to relate to other state-of-the-art techniques in the same

47

2 Definitions and Background

Figure 2.16: Total citations per year for journal in the domain of security CFI architectures (data
source: Web of Science [63])

domain. In safety-critical environments, all applied systems must conform to
reliability and availability standards. Several procedures and methods exist to
help the final system achieve a tolerable failure rate. Such safety measures
are specified in domain-specific standards, like the ISO-26262 for automotive
systems, and both DO-178C and DO-254 for avionics [42, 51, 52]. However,
specific safety techniques formulti-core and heterogeneous components remain
still poorly detailed or lacking.

Information and communication systems play an ever-increasing role in satisfy-
ing customer requirements in today’s high-end automotive and avionic systems.
Especially in the last two decades, these industries had to face growing new
functionalities mainly realized through electronic systems and software. As
greater processing power and the need for higher function integration on single
chips drive the market, semiconductor IP core vendors will focus even more
on multi-core processing units, making single-core processors possibly not
readily available in the future. Thus, new ECU architectures for automotive
and integrated modular avionic (IMA) systems are needed. Multi-core archi-
tectures especially are more sensitive to failures due to their higher integration
density [64]. Such failures can originate fromSEUs caused by radiation effects.

48

2.6 Summary

One significant challenge in this context is the proper segregation between
different applications considering unintentional interferences. Accordingly,
an essential requirement for certification is precise and reliable isolation and
monitoring of safety-critical applications. CFC schemes can present a use-
ful method for both cases, providing a fine-grained, orthogonal hardening of
individual control flows. The techniques are already highly recommended in
current standards, with control-flow monitoring being highly recommended as
an error detection mechanism for the highest safety integrity levels outlined in
the automotive standards (i.e., ASIL C and D). Simultaneously, control-flow
analysis is also highly recommended to verify architectural software designs
at those same safety levels.

This chapter also detailed the necessary safety concepts regarding CRA that
will be used in Chapter 3 to understand better and later compare relevant
techniques from this domain. This thesis considers a fault-model that assumes
faults and soft-errors as originating from SEEs, such as SETs pulses that may
occur in the combinational logic and SEUs that translates into bit-flips that may
occur in memory elements. This work targets the error detection of transient
or intermittent faults on embedded software components’ control-flow path at
the hardware level.

49

3 Related Works

This chapter goes overwell-established and current advances in the field of fault
tolerance for integrated and embedded systems. It performs an overview of the
area and the general approaches proposed through the years. The text then goes
into detail about CFC techniques that focus on control-flow error detection,
both SW-based and HW-based. The main differences between software- and
hardware-based techniques are explained, as well as CFC and CFI techniques.
In the end, some of their most significant drawbacks are outlined, including the
points that guide further design considerations of this thesis. Relevant hardware
CFI techniques are also analyzed due to their implementation similarities to
the method proposed in this thesis and described in Chapter 6.

Figure 3.1: Taxonomy of fault tolerance techniques according to protection goals and implemen-
tation methods.

Figure 3.1 shows a simplified diagram of the taxonomy of solutions talked
about in this work. Techniques are classified in two main ways: according to

51

3 Related Works

their goals and guarantees or according to their implementation approaches.
This chapter draws attention and compares the architecture proposed in this
thesis with other similar techniques. It then extends its scope to analyze the
differences and strategies of leading fault tolerance solutions. Control-flow
protection solutions are looked into in further detail, including software-based
approaches.

3.1 Comparison of Hardware CFC Techniques

This thesis proposes a fully hardware-based technique that explicitly avoids
any execution and code overheads over the application called control-flow
trace checker (CFTC). To achieve this, CFTC uses dedicated program trace
interfaces provided in modern processor architectures. Table 3.1 presents a
comparison between the technique described in this work and different hard-
ware techniques [8, 41, 65–67]. The table presents the data reported by each
paper. The cell was left blank when no data was provided (’-’). A star (’*’)
denotes cells where no data was provided but which could be calculated from
other given information. Portability is defined here based on how reliant the
method is on its target system architecture, interface, or platform and how
much knowledge or access to RTL design specifications it requires.

Table 3.1: Comparison of different HW CFC techniques according to reported results.

Technique Portability Performance
Overhead

CPU Area
Overhead

Data/Code
Overhead

Detection
Coverage

CFCBTE [68] Low 110%-340% - 33%-44% 89%-94%
CFCET [65] Low 33%-140% - - 79%-96%
Ragel et al. [69] Low 2.83% 2.70% 9.3%-20% 100%
HETA [8] Low 8%-34% 11.2% 46%-48% 100%
Nostradamus [70] Medium 0% 10.9% - 88%-100%
IDSM [71] Medium 0% ≈25% 73%-94% 85%-95%
CFEC [41] Medium 0.76% 2.5% 0% 86%-99%
CFC-ST [66,72, 73] Medium 0% 1.4%-2% *45% 100%
PDTC [67,74] Medium 11%-51% *0.33% - 86%-96%
Proposed CFTC High 0% 0.6%-1.3% 3%-17% 100%

52

3.1 Comparison of Hardware CFC Techniques

Control-flow checking using branch trace exceptions (CFCBTE) [68] was one
of the first proposed techniques that used PowerPC trace packet exceptions
to detect execution errors on an application. However, this PowerPC-based
method performs all checking operations on the same target processor, causing
significant performance overheads. The first trace-based hardware technique,
control-flow checking by execution tracing (CFCET), proposes an automatic
watchdog processor (WDP) generation based on the verification of executed
branches of a Intel Pentium processor [65]. It checks the linear addresses at
which branch instructions are stored, and their target addresses with corre-
sponding addresses calculated at compile time. This approach’s main draw-
backs are its dependence on an early and specific tracing system and using the
main system bus to send and collect program trace packets, which adds consid-
erable execution overheads. Their coverage results also relied on instruction
vulnerability calculations that were correct for old variable size instructions
based on CISC architectures but do not necessarily correspond to newer RISC
processors andmore recent microarchitecture-based x86 systems. CFCET [65]
relies on a specific trace packet architecture and direct communication with
the software application.

Following CFC techniques, Ragel et al. [69] and hybrid error-detection tech-
nique using assertions (HETA) [8], combine previous software protection with
processor hardware extensions. They make up some of the first proposed
hybrid approaches. Both add separate hardware RTL units controlled by sup-
plementary software micro-instructions. They are assigned low portability due
to the need to modify both hardware and software. Nostradamus [70] proposes
a dedicated watchdog architecture for superscalar and out-of-order cores able
to predict the outcome and effect of fetched instruction before their commit
stage. This particular core requires at least direct access to the monitored
processor’s fetch stage interface and internal state flags. Improved disjoint sig-
nature monitoring (IDSM) [71] proposes a dedicated watchdog that checks the
instruction and data interfaces between a processor and its first-level caches. A
drawback of this approach is the lack of information available to themonitoring
unit about the processor’s internal operation, particularly with complex pro-
cessors. Control-flow error checking (CFEC) [41] modifies only the hardware
but requires the full RTL description of the processor and is not usable by most
COTS devices. It is assigned medium portability as it only requires hardware
modifications, and the software is left unchanged.

53

3 Related Works

Du et al. [66] presents one of the newest developments in the domain of
hardware-based control-flow checking. They propose a new hardware tech-
nique that uses the instruction trace stream data to detect illegal control-flow
operations. Their CFC module performs two checking processes: the first
checks the target of branch operations to guarantee that they were correctly ex-
ecuted; the second calculates a signature key in real-time based on the opcodes
and addresses (PC values) of executed instructions. At the moment of a branch,
i.e., the end of a basic block, it compares this signature to a pre-calculated and
expected value.

While check one can only detect that branch instructions have performed a
correct jump, it will not identify an error of previously modified branches. The
received machine code would be wrong, but its target branch would be seen as
correct. The second check operation is more powerful as it uses information
about the program flow, i.e., CFG, to perform its checks. This information
is encoded and stored in their CFC Signature Table (CFC-ST) memory. The
second check is able to detect the incorrect execution of any instructions inside
a block, but the requirements for such an implementation are not as prevalent in
modern processor architectures. For example, both Cortex-A9 and Cortex-A53
FPGA embedded systems provide sequential instruction tracing interfaces, but
their interfaces do not provide PC values and opcodes of executed instructions.

They propose two different algorithms to fill the block address and signature
table, one static and another dynamic [66]. The different table filling algorithms
are used to select which basic blocks to monitor in applications with a much
larger number of blocks than the total available size for the table. For the
static method, they further propose three ways to rank basic blocks in order
to choose which to fill their checking table with: first by total instruction size
((), second by the number of times they are executed (#), and third by the
total size times the number of times it is executed ((G#). They try with this
method to identify which blocks have a higher likelihood of being executed.
Their results show that the final approach outperformed the first two. The last
approach can be understood as the best measure of likelihood by considering
each basic block’s total execution rate from the entire program’s execution
time. If an SEU has an equal probability of occurring in every cycle, the most
relevant basic blocks to be protected are those with a higher percentage of the
total system execution time. In this sense, a better approach would be not to
use total program size but instead the average block execution time, as a block

54

3.1 Comparison of Hardware CFC Techniques

may have fewer instructions but have a longer total execution time if it does
more memory accesses.

Their dynamic CFC (Dyn-CFC) table filling algorithm, on the other hand,
works by filling the table in runtime with calculated signatures. The table
starts empty and is filled with a new basic block entry if it is not on the
table. If there is a key collision when inserting a basic block, a least recently
used (LRU) replacement algorithm is used. The dynamic algorithm was more
effective than the static one for large applications combined with minimal
table size, on the order of 16 entries. Their approach relies on collecting
both opcode and PC values from the execute stage of the pipeline at every
execution cycle. This type of trace data collection is only possible on their
chosen target architectures, the miniMIPS [75] and Leon3 [76] cores, or other
FPGA programmable soft-cores, as they give the flexibility to collect such
information and enable the implementation of dedicated FPGA components
that execute at the same clock domain and frequency as the central processing
unit. Therefore, these techniques cannot be applied tomore powerful hard-core
processors. For SoCs with embedded FPGAs, these check operations are also
muchmore onerous. Hard-core processors andFPGAs typically run in different
clock domains, with processors running at much higher frequencies than the
FPGA. Additionally, such SoCs usually do not provide FPGA interfaces to
perform direct internal pipeline readings.

program and data trace checker (PDTC) is another fully trace-based hardware
technique [67]. In this approach, a dedicated monitor was placed in FPGA
and used to monitor an integrated hard-core processor’s data- and control-
flow path. Their chosen target system was an ARM Cortex-A9 processor.
Besides using provided trace messages to identify control-flow errors, the
technique also relies on data access trace messages generated by a particular
component of the ARM SoC. This Instrumentation Trace Macrocell (ITM)
generates traces driven by special software operations. It produces multiple
data packets providing compressed information. Their component analyzes
software instrumentation trace packets to monitor the data-flow. These packets
export any 32-bit data value generated by the software to the trace interface.
Protected applications write to stimulus ports of the ITM, mapped in memory
as special registers to trigger this packet generation.

To retrieve PC and control-flow related data, they use the integrated PTM com-
ponent of the ARM CoreSight trace. Their implementation focuses on trace

55

3 Related Works

packets that give only explicit PC address information, i.e., I-sync, Branch Ad-
dress, and Waypoint Update packets. This component is also one of the prin-
cipal implementation targets of this thesis. Section 4.3.1 gives a more detailed
description of its functioning and message descriptions. PDTC’s control-flow
checking mechanism relies on coarse-granular comparisons of retrieved cur-
rent instruction address information. They compare the PC address with up to
eight user-programmable address ranges to determine if execution has reached
a forbidden or unexpected region. CFC-ST [66] and PDTC [67] are two of
the newest techniques that rely on trace data to monitor CFEs. The monitor
raises an error signal if the incoming address values are outside the configured
bounds. Even though both methods do not modify the processor, they are
intrinsically tied to its trace system architecture. As a result, they are only
portable to systems that implement these processors or trace systems and are
therefore given medium portability.

The current trend is that newer approaches focus on direct monitoring of trace
interfaces instead of data and memory buses but still primarily use specific
architectural features. Non-invasive instruction tracing is already present in
most newer processors and microcontrollers, but they do not follow a standard
protocol nor usually provide all the same information due to different imple-
mentation constraints. Their trace information is provided first and foremost
with testing and debugging in mind, not for online and real-time monitoring.
To properly create a modular and effective control-flow monitor, we must find
out what similar features different protocols provide. The overlap in trace data
across platforms is used to build a portable monitor over target architectures.
Section 4.8 outlines a minimal trace interface that provides the least amount
of information required, including the order of sequentially taken or non-taken
branches and their target addresses. These basic features are combined with
binary static analysis to monitor received trace packets and corresponding
transitions in the program CFG.

Most of these techniques do not consider different target architectures and the
ways their methods escalate to other more powerful devices. Hardware tech-
niques require modification of the underlying hardware system or additional
components, FPGA-embedded COTS devices make it possible to use such
techniques while still maintaining low implementation costs. FPGAs are opti-
mized for power, and many techniques already exist to protect and secure their
configuration fabrics and memories against SEUs [77]. Processors integrated

56

3.2 Fault Tolerance Techniques for Embedded Processors

into FPGA SoCs are also much more performant than any soft-cores available
nowadays. If we wish to have such useful systems implemented in critical
environments, we must also have proper techniques that ascertain their safe
use.

Primarily, this work improves on PDTC and CFC-ST approaches by not relying
on a single trace interface’s specific features. It focuses only on features
shared between different commonly used trace architectures such as CoreSight,
NEXUS-5001, and Intel Processor Tracing. CFTC also does not require
code instrumentation such as PDTC or tight processor coupling such as CFC-
ST. PDTC was the only method implemented on the same trace system as
CFTC. However, they add significant performance overheads, shown to be
a significant drawback for reliability, and do not explore the latencies and
possible vulnerabilities introduced by the trace bus. The architectural results
presented for CFTCs in Table 3.1 are explained in Chapter 7.

The proposed system of this thesis focuses on protection against all not suc-
cessor CFEs. It provides higher and finer-granular coverage than previous
software-based approaches without incurring additional execution overheads
in the performance or code area. CFTC provides similar coverage to fine-
grained trace-based techniques while requiring fewer resources. It is addi-
tionally portable to multiple systems with minimal re-implementation costs.
The only methods with more CFE coverage include full or partial data-flow
protection, therefore also identifying wrong successor errors. However, this
additional protection usually requires the re-execution of binary instructions
or the replication of pipeline units. It can cause overheads and problems for
the final system reliability and are beyond the scope of this thesis.

3.2 Fault Tolerance Techniques for Embedded
Processors

Throughout the past 40 years, many methods to detect and correct errors
of integrated circuits have been proposed [66, 68, 78–80]. These techniques
rely fundamentally on information redundancy to detect and correct faults in
complex systems, whether structural or data-based. Fault tolerance techniques

57

3 Related Works

aiming to protect integrated processing units are divided into three broad
categories:

Software-Based Techniques: are the techniques that work by altering or
modifying the application software. They can be used in almost any
type of system.

Hardware-Based Techniques: are techniques that rely on modifications
of the underlying hardware architecture without any need to modify
the running application. They may rely on either structural hardware
redundancy or on extra monitoring hardware that periodically checks for
faults.

Hybrid Techniques: are methods that combine special software functions
or modify the application and rely on additional hardware units. One
example of this is lockstep processors with implemented software check-
pointing rollbacks.

These various techniques can be further applied at different architectural lev-
els of the system description. Different implementations can focus on the
architectural instruction level, the component structure level, or the logical and
transistor level. This thesis focuses on system protection through hardware-
supported techniques at the architectural instruction level.

The less elaborate hardware fault tolerance techniques rely on multiplying the
existing hardware architecture to add redundancy mechanisms. TMR is a well-
known hardware-based method that relies on triplicating hardware structure
and comparing their results for the same input with a voter. Such a method
can then decide the correct response with a 2 out of 3 majority vote [31].
Alternatively, if normal dual redundancy is used, errors can be detected, but
it is unknown which component is currently experiencing a failure. More
generally, N-modular redundancy (NMR) is defined as a technique based on
component replication to achieve fault-tolerance. NMR is characterized by
the use of N instances of the same system, module, or component, where the
resulting combination is correct if m out of the N copies of the system agree
on their outputs, also called an M-out-of-N system.

Figure 3.2 shows the diagram of an NMR system, with a majority m-out-of-N
voter. The original reliability of the protected module is '" , and the voter
reliability is '+ . For a TMRwith an ideal 2-out-of-3 voter ('+ = 1.0), the final

58

3.2 Fault Tolerance Techniques for Embedded Processors

reliability resolves to ') "' = 3'2
"
−2'3

"
. As an example, for a module with

a 5% failure rate, i.e., '" = 0.95, the failure rate with TMR will be 0.725%
(') "' = 0.99275).

Figure 3.2: Diagram implementation of NMR (M-out-of-N redundancy) and its resulting reliabil-
ity.

Hardware error detection based on simple redundancy still requires methods
to place the system back in a known state after an error occurs. This repair
mechanism can be done through software either by resetting the application or
performing some checkpoint and rollback mechanism for processing units. In
the case of an FPGA, the board can be partially reprogramed, correcting both
transient and permanent errors that might have happened in hardware units.
Spatial replication techniques may change according to design constraints
and can be applied to different levels of granularity through the hardware
architecture [80]. Although such techniques can provide high fault tolerance
capabilities, they introduce large area overheads, with TMR causing a factor
increase of about 3.5 times in the original circuit’s final area, which leads as
well to much higher power consumption.

Many modified processor architectures have been proposed that implement
TMR and other safety techniques [81]. Some processors are specially designed
and sold with hardware-based techniques already implemented. They are
usually known as RadHard processors. Examples of RadHard processors

59

3 Related Works

are Cobham Gaisler’s LEON 3FT/4FT and Space Micro’s Proton200k DSP
Processor Board [76]. However, they are usually much more expensive than
COTS processors and do not achieve the performance of newer high-end
architectures [82, 83]. Figure 3.3 presents a comparison between what is the
state of the art for COTS and RadHard processors performed by [82] showing
a 10-year gap in their throughput.

Figure 3.3: Evolution of performance between COTS and RadHard processors [82].

As an alternative to redundancy, other hardware-based techniques focus on
implementing monitoring blocks, also called WDP, to ensure that the system
correctly performs specific operations [84,85]. Such devices monitor the con-
trol flow of software systems running inside the processor and performmemory
accesses’ data flow. In order to accomplish this, monitoring components work
by performing usually specific types of operations [78,79,84]: memory access
checks, which look for unexpected memory accesses such as unused mem-
ory areas and restricted function memory areas; consistency checks, where
the monitoring units verify that data held in memory or register components
is adequate by employing knowledge on the currently executing CPU task;
alternatively, control-flow checks that use instruction tracing mechanisms or
special modifications to a processor’s microarchitecture. Section 3.3.3 ex-
plores in detail how well-known hardware-based monitoring techniques are
implemented.

60

3.3 Control-Flow Error Detection Techniques

Software-based techniques, also called Software Implemented Hardware Fault
Tolerance (SIHFT), focus on concepts of operation of hardware resources, time,
and information redundancy to detect the presence of faults during program
execution [86]. These techniques automatically apply instruction patterns and
modifications to a program during its development or assembly phases, repli-
cated instructions ensure correct execution, or replicate certain control flow
condition checks to ensure that the correct path is taken. These SIHFT tech-
niques usually have significant drawbacks, causing performance degradation
due to the additional instructions used to improve reliability, increasing the
overall execution time and program memory usage.

Section 2.3 shows that faults occurring in different CPU structures will have
different kinds of associated errors depending on what kind of structures they
were, either data path or control path. Therefore, fault tolerance techniques
that aim to protect the software at the architectural level can be characterized
according to their aims or fault detection goals:

• data-flow checking techniques that aim to detect faults affecting the data
flow,

• and control-flow checking techniques aim to prevent errors that may
happen to a program’s execution control flow.

The first group targets data structures such as variables, registers, execution
units, and data memory. On the other hand, CFC tries to secure the normal
execution of a program, preventing such errors as wrong target branches or
incorrect conditional executions, causing the execution of a path that should
not have been taken. CFC techniques are fundamental, as the most sensitive
components to faults are those related to the control flow logic. Their use is
also heavily recommended in most safety-critical application domains.

3.3 Control-Flow Error Detection Techniques

Control-flow error detection techniques, also called control-flow checking or
program monitoring techniques, aim to detect incorrect branches during pro-
gram execution. They codify behavioral information about the program and
verify it in runtime, detecting possible CFEs. They check every or most

61

3 Related Works

control-flow decision point in a program during its execution by replicating
and checking that instructions were correctly executed or by checking the
processor’s interfaces.

Most techniques work by first performing a static analysis of the code that
will be executed and generating from that the program control-flow graph
(CFG) structure [87]. The CFG is built as a directed graph, �� = {+,�}, with
vertices (+), and edges (�), such that the vertices correspond to the basic blocks
(BBs) of the program and all edges correspond to possible transitions between
basic blocks. A BB corresponds to a sequence of instructions that execute
sequentially with no branches coming into or leaving from the sequence, except
at the first and last instructions. Every branch’s target must point to the start
of a basic block, and the instruction following every branch corresponds to the
start of a new basic block. These blocks end at a branch or at the instruction
that precedes a basic block’s start, i.e., a branch target.

Figure 3.4 shows the basic blocks of an example program presented in in
Listing 3.1, codified in ARMv7 assembly language [36]. The example code
implements the call for a recurrent subroutine, a recurrent Fibonacci function.
It compares the input value and returns the same input value on a 0 or 1.
Otherwise, it calls itself twice at the end of blocks 7 and 8. It must also be
noted that the realization of a program’s execution, also seen as a walk of its
CFG, can only be known at runtime, as its inputs will determine how many
times a function is called as shown in this example.

Listing 3.1: Example ARMv7 Assembler code.

1 B0 :
2 _main :
3 push { fp , l r }
4 add fp , sp , #4
5 sub sp , sp , #8
6 mov r3 , #0
7 mov r0 , #8
8 b l _ f i b o n a c c i
9 B1 :
10 . . .
11 B2 :
12 _ f i b o n a c c i :
13 push { r4 , fp , l r }
14 add fp , sp , #8
15 sub sp , sp , #12
16 mov r0 , [fp , # −16]

62

3.3 Control-Flow Error Detection Techniques

17 l d r r3 , [fp , # −16]
18 cmp r3 , #0
19 bne B4
20 B3 :
21 mov r3 , #0
22 b B9
23 B4 :
24 l d r r3 , [fp , # −16]
25 cmp r3 , #1
26 bne B7
27 B5 :
28 mov r3 , #0
29 b B9
30 B6 :
31 l d r r3 , [fp , # −16]
32 sub r3 , r3 , #1
33 mov r0 , r3
34 b l _ f i b o n a c c i ; B2
35 B7 :
36 mov r4 , r0
37 l d r r3 , [fp , # −16]
38 sub r3 , r3 , #1
39 mov r0 , r3
40 b l _ f i b o n a c c i ; B2
41 B8 :
42 mov r3 , r0
43 add r3 , r4 , r3
44 B9 :
45 mov r0 , r3
46 sub sp , fp , #8
47 pop { r4 , fp , pc }

63

3 Related Works

Figure 3.4: Example control-flow graph partition of a program.

3.3.1 Software-Based Techniques

Software-based monitoring techniques for CFC work through additional in-
structions. These are inserted into the target application, generally at the
beginning and end of basic blocks. These instructions serve to check that
the last executed branch was executed correctly. Due to the nature of such
techniques, they are generally unable to certain types of CFEs, especially those
that occur inside the same block. Many methods based on this idea have been
proposed in the literature throughout the years, such as:

• Control Flow Checking Using Assertions (CCA) [88]

• Enhanced Control Flow Checking Using Assertions (ECCA) [89]

• Control Flow Checking by Software Signatures (CFCSS) [90]

64

3.3 Control-Flow Error Detection Techniques

• Assertions for Control Flow Checking (ACFC) [91]

• Yet Another Control Flow Checking using Assertions (YACCA) [92]

• Control Flow Error Detection using Assertions (CEDA) [7]

• Selective software-only error-detection technique using assertions (SETA) [6]

CCA, and other SIHFT techniques that followed it, assign signatures to sequen-
tial blocks of a program and use assertions during runtime to verify them [88].
CCA implements a Block Identifier (BID) and a Control Flow Identifier (CFID)
for its assertions. The first identifier is a unique value assigned to each BB,
while the second identifies all permissible transitions or edges present in the
CFG. Thus, it checks the control flow’s correctness by setting and verifying
each block’s BIDs and CFIDs as the program runs. The BID is saved in a
dedicated register at the entry point of a new block. We compare the current
block’s BID to the saved value upon exit. If a block is entered from the middle,
then the current BID will not match, and an error will be detected. It ensures
that all BBs are only accessed at their input point and only leave at their exit
point.

While BID ensures that the CPU correctly executes individual blocks, the
CFID secures the blocks’ correct execution order. CCA stores these values in
a two-element queue and initializes the queue with the starting CFG vertex’s
identifier. When a new block starts, the next blocks’ CFID are queued. Once
it finishes, the top of the queue is read and compared with the current block’s
identifier. If there is a mismatch, it means a wrong predecessor block was
taken. While ingenious for a software-based verification approach, this model
cannot detect CFEs inside a sequential block. It requires that all blocks from
the same predecessor share the same CFID. Therefore it is also unable to detect
wrong conditional branches.

ECCA [89] improves on this concept by using a new signature scheme and
generating block groups that overcome some of the shortfalls of CCA. It
combines CCA’s BID and CFID into one signature, increasing the complexity
of comparison functions and instructions added at the beginning and end of
BBs. This technique is sensitive to different sizes of BBs due to its signature
calculation scheme. A small BB increases error detection capabilities and
decreases detection latency. However, its main drawback is its increased
memory and performance overheads.

65

3 Related Works

CFCSS [90] creates a random signature for each basic block and a new global
signature � stored in a register updated at runtime. The technique performs
XOR operations between origin and successor block signatures and � to en-
code and decode the correct control-flow sequence. The new signature is
continuously computed at runtime and compared to an expected signature ev-
ery time a branch occurs. This technique’s main drawbacks rely on its limited
detection capabilities as it cannot detect, for example, when the processor
wrongly executes another instruction inside the same block.

YACCA [92] attempts a similar approach as ECCA but with an optimized
signature generation and checking function. Their results show less memory
and power overheads than ECCA and CFCSS, with similar CFE coverage rates.
Venkatasubramanian et al. [91] proposed a new approach, called ACFC, that
is not dependent on predecessor-successor relationships between basic blocks.
It instead uses the execution parity of a basic block for fault detection. This
technique adds one extra instruction to a subset of all BB in the flow. It
also presented similar but lower fault coverage than ECCA and CFCSS with
significantly less memory and performance overheads.

One of the more advanced software-based techniques is CEDA [7]. It adds
signature verifications at the start and end of every basic block. It devises
two signatures for every block and uses a global signature register updated in
runtime. Newer approaches such as the ones presented byChielle et al. [6] build
on top of CEDA and focus on further code analysis to identify which are the
most critical basic blocks of a program. They implement signature monitoring
on these blocks, not achieving maximum error detection but optimizing the
overhead cost imposed on the code.

3.3.2 Weaknesses of Software-Based Techniques

Aggregate studies on the efficacy of such techniques found that the additional
instructions and overheads inflicted seriously diminish any previously esti-
mated reliability gains [9, 10]. These incurred overheads are more harmful
than what is first thought. They show that the evaluations performed until
now on such methods fail to qualify their reliability gains accurately through
independent approaches. Standard fault injection methods for validating CFC
techniques overestimate their protection results. Usual validation schemes

66

3.3 Control-Flow Error Detection Techniques

only consider simple residual failure rate or CFE coverage rates, i.e., the rate
between errors detected by the monitoring methods and the total number of
faults injected that resulted in errors. These validations are performed through
software or simulated fault injection campaigns and usually focus on the exact
faults against which the system is designed to protect.

Schuster et al. [9] tested the techniques mentioned in Section 3.3.1, performing
an absolute failure count analysis. This approach weighs the vulnerability of
faults that resulted in CFEs according to the system’s critical bits’ lifespan.
After this analysis, they found an overall degradation in the application’s re-
liability due to a widening of data liveness intervals from each technique’s
overheads. They show that signature-based CFC schemes perform lower than
advertised reliability gains. Their re-evaluated techniques include CFCSS [90]
and YACCA [92]. Instead of approximating %(�) from the number of injected
faults by generated failures, they weigh the faults according to the life-time of
data elements in memory/registers [93]. This way, they give more importance
to the faults that would occur more often on the system. In essence, they use an
analysis based on AVF, described in Section 2.3.4, to consider the actual risk
associated with each injected fault. ACE bits that only exist in the system for a
brief amount of time may be over-counted if injected during a stochastic fault
injection campaign. They refer to the typical approach as residual failure rate
and their weighed fault injection as absolute failure count. Overall, their study
disclosed various latent deficiencies of both the residual failure rate metric and
software-implemented CFC, potentially compromising their widespread use.

Rhisheekesan et al. [10] chose to avoid fault injections altogether due to their
elevated computational cost and developed a method that directly computed
the system’s AVF through simulations of each described CFC method. They
directly calculate all vulnerable bits before and after applying the protection
schemes, therefore identifying the difference in vulnerable bits and estimating
the methods’ overall strength. Ultimately, they identify the same underlying
problem as the previous study.

To calculate the AVF of different pipeline components, they used description
models of the Amber Core [94] combined with instruction-level system simu-
lations. They then measure the normalized vulnerability, calculating the AVF
rate found for each method running different benchmarks against a baseline
without protection mechanisms. The study performed this analysis on several
well-known software techniques such as CFCSS [90], CEDA [7], and also one

67

3 Related Works

hardware-based technique called CFCET [65]. Their reported results show
that all software-based CFC implementations had average increases in their
practical vulnerability factors between 18% and 21%. They also note that
the hardware-based approach correctly detected errors without increasing the
system AVF due to its isolation and minimal overheads.

The original CFCET uses an old Intel Pentium platform and trace subsystem,
while Rhisheekesan et al. use an ARM-based instruction-level simulator [10].
They did not disclose their re-implementation of the hardware-based approach.
Unlike software-based approaches, hardware-based strategies are not easily
portable and are even harder to realize in simulated systems, not fully described
in hardware.

In general, they find that the additional code overhead in implementing the
advanced CFC techniques renders them worse than earlier software CFC tech-
niques, as the residency of additional CFC code instructions in different mi-
croarchitectural processor components tends to increase vulnerability. While
the reliability improvements in terms of residual failure rates were significant
and in line with the literature, the transition to absolute failure counts, which
accounted for memory and execution time overheads, resulted in moderate
improvements at best and even degraded reliability at worst. This disparity
between the two metrics suggests that ignoring overheads has led to ill-guided
optimizations and previous CFC scheme evaluations.

Finally, they also note that experimental investigations with control-flow fault
injections suggest that prevailing hardware protection mechanisms already
catch the vast majority of CFEs, with only a small fraction of less than 6%
manifesting themselves as failures [9]. However, we usually require hyper-
visor or supervisor software systems to control these mechanisms, and it has
been shown that operating systems significantly increase the overall system
vulnerability if left unprotected [95, 96].

3.3.3 General Hardware-Based Methods

Instead of relying on structural redundancy like other hardware approaches,
hardware-based CFC techniques deploy dedicated monitoring devices that
analyze specific processor interfaces in search of errors. Some techniques
may further implement software component modifications to acquire enough

68

3.3 Control-Flow Error Detection Techniques

information about a program’s execution state. These methods correspond to a
hybrid approach that combines hardware monitoring with additional software
instructions.

Broadly, auxiliary hardware units verify control-flow by comparing instruction
addresses with expected target addresses or comparing runtime signatures with
reference values saved in local memory. Therefore, these WDPs implement
two primary units: one checker unit implemented in an external general-
purpose processor or microcontroller running a single dedicated monitoring
algorithm; a local verification memory used to hold the reference information
corresponding to a correctly running system.

Such memories can be local, only accessible by the monitoring unit, or shared
with the system, resulting in performance overheads as the main buses are
continuously used by checking modules. The checker units compare the infor-
mation stored in the system with runtime data that the application processor
generates. However, the processor’s monitored interfaces may not provide full
access or observability of the required data. Information in registers, buses,
cache memories, and other internal hardware interfaces may not be accessible.
These constraints limit the use of watchdogs depending on the architecture of
the target processor. Another debilitating constraint is the necessity to modify
the SoC or to integrate the watchdog into a communication bus close to the
execution unit. Many proposed techniques assume that the system’s full hard-
ware description is available and modifiable, either as part of the processor
development in ASIC or as a soft-core component implemented in FPGA.

Although hardware-based techniques provide high-reliability increases, they
can introduce significant overheads, like an increase in area and power con-
sumption, if directly built on top of the processor architecture. Hardware-based
techniques also present additional design and production costs for ASIC im-
plementations [97]. Using COTS with embedded FPGAs, we can benefit from
a design already optimized for power consumption and their inherently lower
integration costs than a custom-built ASIC. Findingmonitoring techniques that
best use available FPGA-Processor interfaces is necessary for their use as part
of critical systems.

Several hardware-basedmonitoring techniques have been proposed throughout
the years. They differ in several aspects and details, but they can be compared
in regards to the interfaces used to gather information about the running system.

69

3 Related Works

Therefore, such techniques can be non-exhaustively classified with respect to
the following groups:

• Software Interfaces: [8, 78, 98, 99]
These approaches form hybrid techniques built upon the exchange of
information between software and hardware components. The hard-
ware monitors receive information about the state of execution directly
from the running application, while the checking logic and decision-
making are accelerated in hardware. This information exchange can be
done through modified ISAs, creating new instructions used solely by
watchdog processors, or combined with data interfaces to send software-
generated signatures to the watchdog. These methods provide more
comprehensive fault coverage due to increased collected information
but maintain the same drawbacks of software-based implementation re-
garding memory and performance overheads.

• Data Memory Interfaces: [100–103]
These approaches rely on monitoring bus activity and access to critical
variables or code segments. Therefore, these architectures are less useful
for CFC at the machine instruction level. More information might be
gathered from the system if combined with software signature checking
algorithms. However, it can further increase data bus bandwidth and
possibly cause significant performance overheads.

• Performance Counters: [104, 105]
These schemes rely on using integrated performance measuring units
inside the processor to evaluate its correct runtime behavior. Depending
on the architecture, performance counters may provide valuable infor-
mation, including the number of executed branches, total committed
instructions, power consumption, and total memory accesses. We may
use performance counters in different ways to verify the correct execu-
tion of a system. For example, specific elements can be directly observed
such as total committed branches per code segment, or many different
elements combined into a single runtime signature later matched to a
previously calculated pattern.

• Instruction Memory Interfaces: [71, 79, 102, 106]
These methods correlate the progression of fetched instructions to the
application processor’s control-flow decisions at every cycle. They usu-

70

3.3 Control-Flow Error Detection Techniques

ally use instruction cache interfaces that deliver both current fetched
instruction addresses and opcode values. Although they do not require
modification of the internal processor architecture, they can only be
implemented if a system-level description of the hardware is available.
Therefore, only hardwaremanufacturers can integrate suchmethods, and
they are much less portable to COTS systems.

• Direct Pipeline Monitoring: [98, 107–109]
These schemes depend on direct reading access to the processor’s
pipeline. They extract the highest amount of information available
by the hardware, as the monitor system can verify in detail all execution
steps and operations performed by the system. Such techniques can only
be implemented if the complete processor description is available, for
example, in soft-core processors or the design of an entire SoC system.

• Debug & Trace Interfaces: [65–68]
Debug interfaces combine the benefits of the large amount of informa-
tion given by pipeline or instruction cache monitoring with data memory
interfaces’ flexibility. They provide information about the system’s ex-
ecution state but do not require any extensions to the internal hardware
architecture, as most modern processors already provide program in-
struction tracing capabilities.

These possible CFC strategies make trade-offs between system access level
assumptions and the amount of information we use to track the execution flow
efficiently, e.g., interfaces closer to the processor core providemore information
but are harder to integrate. These techniques may also combine multiple
interfaces to extract more information from the system, such as simultaneously
checking data and instruction interface transfers [79].

The chosen interface imposes constraints and limits on what platforms these
techniques can be applied. More detailed information is gathered with direct
pipeline monitoring or instruction memory and cache interfaces, but we must
have the complete hardware description of the execution unit to implement
such monitoring units. Therefore, such techniques can only be used in an en-
tirely FPGA-based platform with soft-core processors or an SoC components’
development phase. We depend on access to information from interfaces such
as data buses, performance counters, and debug & trace units if we wish to
support COTS devices. Overheads may also be unavoidable if this access is

71

3 Related Works

dependent on a shared memory bus, as constant read operations may increase
usual access times.

Lu et al. [78] showed one of the first hardware-based software control-flow
error detection approaches. Their technique relies on a dedicated second
processor running a single monitoring algorithm that receives signatures from
executed basic blocks and compares them with memory reference values. The
Watchdog Direct Processing method [79] expanded the monitoring interfaces
by adopting a custom interface that monitors the processor’s fetch stage as well
as the memory bus, monitoring both executed instructions and accessed data
memory regions.

OSLC [107] and ASIS [99] propose hardware architectures that rely on sig-
nature generator components directly coupled to each monitored application
processor. The signatures are then sent to the checker unit through the internal
bus. OSLC further proposes using online signatures generated during the test
phase, avoiding the requirement of static code analysis for the pre-calculation
of stored signatures. These approaches allow for monitoring multiple proces-
sors with a single architecture but add significant area and latency overheads
to detect faults in runtime.

Modern trace interfaces can typically be configured for both on-chip access
through the memory bus or off-chip access through dedicated implementation-
specific interfaces. Therefore, they provide overhead-free and detailed infor-
mation gathering means that can be used efficiently by the proper hardware.
Some of the more recent CFC methods propose reading instruction opcodes
and address interfaces from the program traces or instruction caches [66,106].
However, as shown in Chapter 4, not all trace protocols are built the same,
and even similar processors may present differences in implemented features.
Therefore, the primary concern of this work lies in identifying precisely which
relevant features are shared across different processor families.

3.4 Summary

CFC architectures are usually implemented in two ways, either by hardware
or software modifications. Hardware techniques directly modify the CPU,
memory bus, or implement watchdogs, while software-based methods rely

72

3.4 Summary

on replicating or modifying instructions and instrumenting the application
code. Due to additional instructions, software-based methods present high
overheads, increasing the overall execution time and program memory usage.
Recent studies show that overheads can introduce new regions susceptible to
errors and that they significantly increase system vulnerability, undermining
any actual safety gains [9, 10]. Therefore, overheads in execution time, code
size, and data usage significantly increase the system’s chances of having a
fault.

This chapter presented the current state of art of control-flow protection mech-
anisms. It first presented the newest hardware monitor architectures of past
years, concentrating on the newest methods that focus on using program traces
to verify the correct execution of the system in real-time. The analysis of these
methods demonstrated how every proposed trace monitoring mechanism was
restricted to its target processor architecture or use case. While the results
show how trace-based methods are a powerful tool for detecting errors, they
do not concern themselves with expanding their methods beyond the proposed
use-cases.

It then presented the most current software-based methods for protecting the
control-flow and detecting CFEs. These methods rely on software transfor-
mation and new instructions that calculate running signatures and identify if
a branch was correctly executed. These methods typically cannot detect all
types of CFE, specifically errors that modify the target to a point inside another
valid block. They also add significant execution and program size overheads
due to the need to execute as many as two times as many branch operations
instructions. These high overheads are due to additional instructions, increas-
ing the execution time and program memory usage. Recent findings show how
these overheads are a critical limiting factor to performance and the actual final
reliability of the system. The additional instructions generate new points of
failure and increase the total effective critical bits of the program. However,
hardware-based techniques have been shown not to suffer these same problems.

Therefore, the two key unanswered questions in the domain of trace-based
CFC are:

1. can we reliably use control-flow trace across different processor archi-
tectures?

73

3 Related Works

2. can we use trace to detect errors under real-time constraints? Moreover,
what timing limitations can we expect from the online decoding of trace
packets?

The first of these questions is the focal point of Chapter 4, where different trace
protocols are analyzed together with the architecture of COTS processors.
These findings are later used to develop the portable CFC monitor presented
in Chapter 6. This work proposes a two-stage architecture, where it first
translates the actual target trace packets to an independent architecture interface
before evaluating them in a dedicated verification unit. This approach allows
the verification stage to be reused across different target systems, as long as
designers provide the appropriate translation stage.

The second question is answered with the evaluations and collected results pre-
sented in Chapter 7. It is shown how application characteristics such as average
time between branches and speed variations between monitor and processor
may cause high latencies and large occupancy of input buffers. To perform
this evaluation, we combine fine-grained static binary analysis, presented in
Chapter 5, with the limits in decoding speed given by the translation stage
architecture shown in Chapter 6.

74

4 Debug and Trace Architectures

Modern processors integrate additional components that increase the observ-
ability of executed operations. They are used to help software developers
debug and test their systems, and together these components are called the
Trace Subsystem, shown in Fig. 4.1. They form an independent subsystem
whose generated data helps follow or trace the execution path of the processor.
Usually, trace data is sent outside of the integrated system through a JTAG con-
nection. However, some SoCs allow users to connect to and access a trace’s
output interface directly. Therefore, it is possible to implement a dedicated
monitor component, e.g., in an FPGA, that continuously processes the trace
data in search for errors and can quickly stop the processor if a wrong state is
identified. All this without interfering with the normal execution of the pro-
gram. Most CFC methods rely on direct access to these components, which is
not always possible in hard-core processors or is very dependent on the archi-
tecture. The solution proposed in this work accesses only the available system
interfaces, working with the same data used by debugging environments.

Figure 4.1: Detailed trace subsystem architecture based off of the Zynq-7000 platform.

75

4 Debug and Trace Architectures

This chapter analyzes and characterizes the trace subsystems of some of the
leading processors of semiconductor manufacturers currently in the market,
especially those used in safety-critical systems. These include our main target
architectures as well as their safety-critical usage domains. To systematically
and adequately perform system partitioning and isolation in modern complex
systems, we require hypervisors, OSs, and other self-monitoring software.
These software system components are also responsible for error detection and
isolation of failures. Therefore, we must ensure that these components and ap-
plication codes run correctly and without failures. A failure in software-based
monitoring functions can lead to a violation of technical safety requirements.
Integrated hardware monitors are a strong candidate for the reliable monitoring
of critical software and identifying errors in processing units. They can be eas-
ily isolated from the system and supervise the application without impacting
or changing its characteristics.

The available COTS multi-core processors do not usually provide sufficient
protection for safety-critical environments. Hence, we must be able to adapt
and extend them for such domains. Most modern processors share a prevalent
feature: non-invasive debug and trace subsystems. These subsystems can
provide precise information about committed instruction branches and serviced
exceptions. There are many common objectives among all existing test and
debug architectures, not least the desire to simplify and speed up data extraction
at runtime. Many standards and proprietary solutions aim to address these same
needs [110–114].

Concerning FPGA multi-core architectures, processing units can be classified
into twomain groups: soft-core or hard-core processors. Soft-cores are flexible
processor architectures fully defined in hardware description languages and
implemented through FPGA fabrics. They are usually available in Hardware
Description Language (HDL) files (e.g., VHDL, Verilog, or SystemVerilog)
and can be freely modified or configured by developers. On the other hand,
hard-cores are implemented on silicon as part of the overall IC chip and
have bus and other direct interface connections with the FPGA fabric. Both
categories can use the integrated programmable hardware logic to implement
accelerators. Hard-cores generally achieve much faster operating frequencies,
up to gigahertz speeds. They achieve this because the fabric’s additional
routing and architectural constraints do not affect them. Soft-cores can be

76

easily modified and tuned to specific requirements, and many parallel cores
can be implemented in a single system, given enough resources.

Figure 4.2: Diagram showing relevant trace architectures and the processors or companies that
implement them.

Current solutions for FPGA SoCs with hard-core processors include Xil-
inx’s Zynq-7000 [32] and Zynq-UltraScale+ [115], and Intel’s Cyclone, Arria,
Stratix and Agilex [116] device families. They are all based on ARM dual-
core Cortex-A9 and quad-core Cortex-A53 general-purpose processors. All
of these solutions have also implemented ARM’s CoreSight Trace, and Debug
architecture [117]. One example of a widely used soft-core processor in safety-
critical aerospace applications is Gaisler’s Leon3, Leon3FT (Fault-Tolerant),
and Leon4 SPARC V8 based CPUs [76]. The fault-tolerant variant of the
Leon family of processors comes with built-in fault detection and correction
techniques. At the same time, the non-FT version is distributed open-source
and widely used in academia. The Leon cores also implement a non-invasive
tracing unit called theDebug Support Unit (DSU). This chapter aims to identify
standard features across different trace architectures for control-flow monitor-
ing purposes. For this comparison, four architectures previously targeted by
both CFC and CFI implementations were chosen (ARM, Intel, Infineon, and
Gaisler’s Leon) and one international trace standard, the IEEE-5001 Nexus
specification. Figure 4.2 shows the connection between the trace architectures
explored in this chapter and the processors and commercial architectures that
implement them.

77

4 Debug and Trace Architectures

4.1 Common Trace Architecture Features

Table 4.1 presents the evaluated architectures’ features side by side. The Leon
family of processors presents the least compression, as it outputs full opcode
and PC values for every executed instruction. The Nexus and Intel PT stan-
dards present a heavy compression scheme that outputs only 1 bit of data
for conditional branches, informing if taken or not, and do not automatically
generate packets for direct branch operations. Except for Leon DSU, all archi-
tectures compress the target address information, only informing target address
bits that have changed since the last packet. Designers of trace architectures
heavily optimize trace data to minimize the use of internal memory buffers.
This compression creates overheads for real-time analysis.

While Nexus 5001 and Intel PT do not directly support full target address
tracking of direct branches, we can achieve it if we perform a transformation
over the compiled program branches. Direct branches can be replaced by
equivalent indirect branches, with direct target addresses stored in an available
general-purpose register. Finally, all architectures present similar features and
codification schemes, and techniques used to decode one can be similarly used
for other implementations.

To fully monitor a given program, we require the ability to know the result of
all control-flow and branching operations. Any executed branch also implies
executing all sequential instructions in the program between it and the last
branch. With each branch, we need to know what is its target address and, in

Interface Trace
Compression

Target Address
Tracking

Packet Sizes

LEON DSU Low Full 16 Bytes
NEXUS 5001 High Partial 2 to 8 Bytes
MCDS Medium Full 5 Bytes
Intel PT High Partial 1 to 9 Bytes
ARM CoreSight High Full 1 to 6 Bytes

Table 4.1: Relevant features for online monitoring in each of the evaluated Trace architectures.

78

4.2 Debugging and Tracing Software Systems

the case of conditional instructions, if the branch was taken or not. The target
address defines the next sequential block of instructions. In a typical program,
this block will also end in a branch. Once a branch instruction is executed, and
the following instruction address is resolved, we know the next branch to be
executed if information about the running code is available.

The address of the next instruction from a conditional branch is not required
in case the branch is not taken since it will always be the next sequential
instruction in the code. However, more information is required to account for
processor interruptions and other exceptions, as they can happen anywhere
in the program code. If the address where an interruption happens is always
knowable, the return address of its exception routine is also known. Some
CFC techniques that focus on violating real-time requirements may also rely
on timing information from the executed code. Table 4.2 describes how an
instruction trace data packet of a protocol that follows these requirements might
look.

Table 4.2: Description of an abstract instruction trace packet sufficient for general control-flow
monitoring.

Data Component Description

Current Address Program address of the executed branch or at which an ex-
ception happens.

Target Address Target address of a branch instruction or exception.
Branch Not Taken Flag that is set only if a conditional branch was not taken.
Exception Flag that is set if this packet corresponds to an exception.
Time Count (optional) Amount of elapsed time since the last executed branch or

received exception.

4.2 Debugging and Tracing Software Systems

The main use-cases of current real-time trace analysis are in debugging and
verification [118]. In most commonly used embedded trace solutions, in-
coming trace data is first stored in temporary buffer memories before being
analyzed offline. At the end of a traced execution run, a trace analyzer must

79

4 Debug and Trace Architectures

reconstruct the program flow and calculate the execution’s structural coverage.
This procedure’s limits are the observation time bounded by the buffer mem-
ory’s size and the additional computing time required for the program flow’s
offline reconstruction. Typical use-cases of hardware program tracing do not
include online or real-time analysis. The information retrieved through tracing
is not intended to be used by the actual running system but only during the
development’s design and verification phases.

Online program analysis can help solve these problems but has its own technical
challenges. First, the new real-time analyzer must decode the compressed
trace data stream before reconstructing the CPU’s control-flow. Second, the
generated data must be sufficient to reconstruct the program’s actual flow path
without assuming that target addresses are statically known, i.e., the trace data
must contain the exact target address of executed branch operations. This last
requirement is essential as an online trace monitor’s primary objective is to
identify dynamic anomalies in the program’s control flow.

Hardware accelerators for online trace monitors have been used as solutions
for both safety and security problems. In the safety domain, CFC techniques
using program tracing have been proposed to identify control fault errors
originating from hardware faults and random electromagnetic effects [65–67].
CFI security techniques have also been considered to prevent malware attacks
from redirecting a program’s control flow [119,120]. However, these different
techniques usually focus on a single target processor and specific trace features.

4.2.1 Differences between Tracing and Profiling

Profiling is a method for collecting events by sampling or taking snapshots of
an entire object (software component, process, or event of the whole system)
at specific intervals. If the sample rate is fast enough, all the events executed
on the system can be essentially caught. Otherwise, any events executed in the
time between sampling operations may be missed. The Linux OS implements
the perf_event_open syscall, which can help users and designers to perform
profiling at the system level. One of its primary functions is saving the state
of the CPU’s registers at every sampling action. Other tools like bpftrace
also provide profiling capability, using the same datasource backend as perf
(from perf_event_output). Profiling can help us have a broad view of a

80

4.3 ARM CoreSight Debug and Trace Architecture

system, but not a complete full picture. This lower observability comes from
the nature of profiling and its dependence on sampling the system state. The
sampling rate may not be able to observe all system changes and may also
impact the observed system’s performance. Sampling and reading operations
can significantly impact the CPU performance or disk IO.

As its name implies, event tracing relies on trace data generation for specific
and required events. Modern processors implement program and data trac-
ing accelerators in hardware to mitigate the drawbacks of standard sampling
profiling approaches. These accelerators enable users to configure filters to
select which events are to be traced. In data tracing, these filters can be con-
figured, for example, to generate trace packets for specific memory accesses
or messages in the data bus. For program tracing, these trace and debug ac-
celerators generate packets to track changes in the internal state of the target
CPU. The easiest way to follow internal changes in the CPU is to trace changes
to its control-flow. From the running software’s point of view, all changes
directly correlate to executed control-flow operations in the binary and imply
the execution of any preceding sequential instruction. Whenever the program
changes its control-flow, i.e., performs a branch operation, an event trace is
generated, sent, and stored by the hardware’s tracing subsystem. The impor-
tance of profiling and tracing modern high-performance systems has made
program trace architectures extraordinarily complex and diverse. However,
they are all solutions to the same problem. All trace solutions strive to provide
a low-overhead fine-granular analysis of running applications. Thus, they ul-
timately implement similar functionalities, such as the crucial ability to know
when branch operations are executed and the operation’s target address des-
tination. This chapter explores existing solutions implemented for hardware
trace acceleration in some of the most well-known and commercially available
processors.

4.3 ARM CoreSight Debug and Trace
Architecture

The ARM CoreSight architecture comprises tools and components that offer
debug and trace solutions for SoC designs [117]. The standard outlines com-
ponents like trace macrocells, which allow for continuous collection of system

81

4 Debug and Trace Architectures

information [121]. The macrocell of processing elements allows for a com-
plete tracing of indirect and conditional branches. They trace branch events
from the most basic level, where only the execution of branches is informed,
to higher levels that allow for full target address tracking. This last config-
uration is called Branch Broadcast and issues full target address information
of all executed branches, including unconditional direct branches [122]. This
feature facilitates the implementation of more powerful online trace monitors,
but as shown in Chapter 6, trace data compression still poses difficulties for
the decoder. The proliferation of modern ARM Cores in modern embedded
systems and the presence of hybrid SoCs with integrated ARM cores makes
the CoreSight architecture a "de facto" standard among modern systems.

The implementation detailed in this work focuses on this architecture, given
the ubiquity of ARM systems and its list of overlapping features to other trace
systems. This work utilizes leading development platforms to test this system,
such as Digilent’s Zynq Development Board (ZedBoard) [123] implementing
a Zynq-7000 with a dual-core ARM Cortex-A9 processor. This platform
implements aCoreSight architecture subsystem that provides full program trace
information from the two CPUs to the FPGA through a dedicated interface.
This interface is unique and not shared by other devices, meaning that its use
does not impact the use of other peripherals, causing unwanted overheads.

A typical CoreSight system structure presents fourmain component types [124,
125]:

1. Control and Access components: these modules configure, access, and
control the trace generation. They do not deal with the generation or the
processing of data. Access components may include access ports (AP)
such as the JTAG-AP or the Debug Access Port (DAP).

2. Sources: They are responsible for generating all trace data and providing
it through a dedicated standard bus infrastructure called AMBA trace
bus (ATB).

3. Links: They manage trace data flow throughout the ATB interconnect.
They are the communication infrastructure between trace generating
components and interfaces that communicate outside the subsystem.

4. Sinks: They are the endpoints for trace data inside the system. Some
sinks can also aggregate the packets of multiple trace sources into a

82

4.3 ARM CoreSight Debug and Trace Architecture

single stream that can be read off-chip, stored in a dedicated internal
buffer, or routed into a shared memory system.

The components of most interest to us include the trace sources, links and
sinks. Trace sources are hardware modules that enable the tracing of software
applications. They either provide low-level instruction traces from executing
units or higher-level trace messages from specific instrumented code. This
instrumentation is achieved through instrumentation trace units, called either
ITM or Instrumentation Trace Macrocell (STM), that depend on the running
program’s more invasive modifications. Processor trace units focus on low-
level non-invasive tracing and implement a dedicated interface that acquires
information directly from each core’s execution pipeline. These units are the
Embedded TraceMacrocell (ETM) or PTM, depending on the target processor.
Each Cortex-A53 core has a corresponding ETM module [126] while each
Cortex-A9 core has its own PTM [121]. Each macrocell is specific to its
designed processor, and its feature set may vary depending on the use cases of
each architecture. This work focuses on the features shared by both version 4 of
the ETM architecture and the PTM unit, including the trace of direct, indirect,
and conditional branch instructions and software and hardware exceptions and
interruptions.

Trace links include all interconnect components that provide specific features
to transport, share, and filter data packets from trace Sources to Sinks. These
components include bridges, clock and power domain crossing, packet repli-
cators, and funnels, combining data streams and buffer components. They can
also stall a given trace source based on the downstream components’ ability to
collect data and share synchronization requests through the bus.

Trace sinks are the final components in the trace bus chain. A single bus may
contain more than one trace sink, where each sink is configured to collect
distinct trace streams and overlapping data. They may cover a wide range of
latency and bandwidth capabilities, depending on how they are implemented,
configured, or on the destination of their trace packets, be it on-chip or off-
chip. Essential sinks include the Embedded Trace Buffer (ETB), the Embedded
Trace Router (ETR), and the Trace Port Interface Unit (TPIU). ETBs and ETRs
are implemented as specific configurations of a more general component called
Trace Memory Controller (TMC). They are responsible for storing trace data
either in a dedicated circular buffer or routing it over an AXI bus directly to
the system memory or any memory-mapped AXI slave. The TMC is usually

83

4 Debug and Trace Architectures

responsible for on-chip trace data storage, while the TPIU is used for off-chip
trace data collection.

In Zynq-7000 and Zynq-UltraScale+ devices, the TPIU can be directly con-
nected to specific external pins on the board or routed through the FPGA fabric
to other interfaces. This second configuration can be used to connect the TPIU
with a dedicated monitoring unit that will capture, decode, and process any
incoming packets from ATB sources directly on FPGA. This direct FPGA
connection gives us much greater flexibility than trace monitors that depend
on external debug interfaces. The CoreSight architectures implemented for the
Zynq-7000 and Zynq-UltraScale+ are shown respectively in Figs. 4.3 and 4.4.

Figure 4.3: Zynq-7000 CoreSight system block diagram [32].

Implemented trace sinks include an ETB component in both architectures and
one ETR present in the UltraScale+. ETBs are controlled and accessed by
the processor running the traced application and are thus not suitable for the
CFC monitor proposed here. The ETR, on the other hand, can be configured
to continuously write trace data to an internal memory-mapped component
implemented in FPGA. The disadvantage of accessing the ETR is that access
to trace data must go through the main memory-mapped bus. All trace data
will flow through the main system bus that the CPUs and application memory
share, increasing bus bandwidth. This increase can cause bus contention for

84

4.3 ARM CoreSight Debug and Trace Architecture

Figure 4.4: Zynq UltraSCale+ CoreSight system block diagram [115].

data-dependent applications, increasing the delay to programmemory accesses
and increasing timing overheads. Therefore, TPIU remains the best choice
interface to collect all incoming packets without affecting the running system.

4.3.1 Program Tracing with PTM

The program tracing protocol implemented in the Program Trace Macrocell
(PTM) units of Cortex-A9 cores follow what ARM calls the Program Flow
Trace (PFT) architecture [122]. This protocol focuses on reducing trace band-
width, relying on a minimal set of traced instructions and data compression.
It assumes that the trace decompressor analyzing the data keeps a copy of
the program or its relevant control-flow information. It only outputs enough
information so that an analyzer can later reconstruct the program sequence.
The architecture also supports tracking exceptions serviced by the CPU and

85

4 Debug and Trace Architectures

synchronization with other trace-generating sources through timestamps. It
provides cycle count information regarding the number of CPU clock cycles
elapsed between the execution of two traced instructions or events.

The PFT protocol names trace generating instructions as waypoints. The
protocol defines a waypoint as all points in the program execution that may
cause a change in its flow. PFT waypoints, or trace generating events, include:

• all indirect branches;

• conditional and unconditional direct branches;

• software and hardware exceptions;

• instructions that change the ISA state or Security state of the running
core.

The ARMv7-A implements two main instruction sets, the ARM and Thumb
instruction sets, also called A32 and T32 in 64-bit ARMv8-A architectures [36,
127]. All ARM instructions correspond to 32-bit instructions and correspond
to the main ISA of the system. Thumb instructions have varying instruction
lengths, either 32-bits or 16-bits, and can optimize code areas in some im-
plementations. Table 4.3 shows a non-exhaustive list of relevant waypoint
instructions from the ARM ISA. Any of the instructions shown may also be
coded as a conditional instruction if the instruction operation code, i.e., B, BL,
is followed by a condition code. In this case, a conditional direct branch is
taken when the CPU state flags match the code modifier, e.g., BEQ executes a
direct branch only if a previous instruction’s side effects set the "equal to" flag
to one. These branch instructions are commonly used for simple control-flow
operations, procedure calls, and exception returns. Besides the branches listed
above, any other operation that loads or modifies the PC will cause a change in
the control-flow. These include operations that have the PC as a target register
such as load from memory (LDM), or arithmetic operation, e.g., addition (ADD).
Newer specifications deprecate this use of the PC, enforcing the strict use of
branch operations to perform jumps in code execution [128]. The same is
true for the general use of the LR as a target register in load or arithmetic
operations [128].

The Cortex-A9 implements an 8-stage pipeline with out-of-order speculative
execution [39]. It contains two instruction decoding units and 3+1 integer

86

4.3 ARM CoreSight Debug and Trace Architecture

Table 4.3: ARMv7-A operations relevant for control flow monitoring [121].

Instructions Details

B <addr> Unconditional Direct Branch to <addr>.
BL <label> Call a subroutine to to a PC-relative address.
BLX <label> Call a subroutine to to a PC-relative address and changes

the instruction set to the one used by the subroutine.
BX LR Return from subroutine. Branches to the instruction block

pointed by the Link Register (LR) and changing instruc-
tion set.

POP {..., PC} Load values from the stack to a list of registers that include
the PC. Return from subroutine if a previous LR value is
loaded to the PC.

SUBS PC, LR, #4 Used as a return from exception. Branches to the previous
word aligned instruction from the one pointed to by LR.

execution units. Therefore, any executed waypoint instruction is only available
to the PTM for trace generation once theCPU commits the instruction at the end
of the pipeline on the write-back stage. The main functional blocks of the PTM
are shown in Fig. 4.5. The PTMcollects everywaypoint instruction on the Input
first in, first out (FIFO) and sends them to the packet generator when the CPU
commits them. The Trace generator compresses the instruction signals and
passes them to the main FIFO buffer that manages the ATB interface transfer.
The Filtering and Triggering resources are used to define the start and stop
points for trace generation, PFT configuration parameters, and synchronization
with other CoreSight components.

The PFT architecture consists of a byte-aligned trace data stream and defines
the following packets [122]:

• Alignment Synchronization (Async): It identifies a boundary on the data
stream, with the first byte of data after an Async packet being the header
of a new packet.

87

4 Debug and Trace Architectures

Figure 4.5: Cortex-A9 PTM functional block diagram [121].

• Instruction Synchronization (Isync): This packet specifies the complete
processor state for the next instruction to be executed.

• Atom: An Atom packet informs whether the branch instruction passed
its condition code check. This packet has different encodings if cycle-
accurate tracing is enabled or not. If cycle-counting is enabled, each
packet holds the information of a single branch. If it is not enabled, each
packet may inform the execution of up to 5 branches.

• Branch Address: This packet can imply the execution of two different
control-flow operations. It can either imply the execution of a branch
that passed its condition code check with the branch’s target address or
indicate an incoming exception with the corresponding exception vector
address.

• Waypoint Update: It contains the address information of a non-waypoint
instruction after it is updated to a waypoint. The PTM generates a
Waypoint Update packet to indicate either the last executed instruction
before an exception occurred or after the execution of more than 1024
sequential instructions.

• Trigger: It indicates the occurrence of a configured trigger inside the
CoreSight subsystem.

88

4.3 ARM CoreSight Debug and Trace Architecture

• Context ID: This packet indicates a change in the Context ID register
and signals that every instruction executed after it is run with this new
ID.

• VMID: This packet indicates a change in the virtual machine ID (VMID)
of the processor for architectures that implement virtualization exten-
sions.

• Timestamp: A Timestamp packet enables correlation between multiple
trace streams through an absolute timestamp clock shared among trace
sources.

• Exception Return: It requires a single byte and indicates the return from
an exception handler.

• Ignore: This packet has no effect. It is used to complete any unused
bytes of a trace port if the PTM must output data.

According to PTM configurations and the amount of information that changed
between consecutive processor states, these packets may vary in length. For all
packets other than Isync, address information is compressed so that the packet
only contains the differing least significant bits (LSB) since the last state. Our
chosen PTM configuration does not focus on maximum trace compression but
on outputting new control-flow information as soon as possible andminimizing
decoder complexity. CFTC has the PTM broadcast all conditional or direct
branches and configures cycle-accurate trace packets when possible. Branch
broadcasting configurations force the PTM to generate Branch Address packets
for all taken for all branches. The PTM will only use Atom packets if a
conditional branch instruction is not taken with this configuration enabled.

Cycle-accurate tracing only affects the format of I-sync, Atom, and Branch
packets. When active, this option includes in each packet an explicit cycle
count. This cycle count always indicates the number of CPU cycles since the
last packet output by the PTM. With this information, the precise execution
time between any two branch instructions can be determined, i.e., the execution
time of all sequential code blocks.

89

4 Debug and Trace Architectures

4.3.2 Program Tracing with ETMv4

At its core, the A53 retains similar execution characteristics to the A9. It
comprises a 64-bit dual-issue in-order CPU with an 8-stage pipeline and 2+1
integer execution units [129]. The differences in in-order execution and smaller
integer execution stage mean that each core will have a similar average number
of executed instructions per cycle (IPC). However, it hasmore efficient floating-
point units (FPUs) and can typically run at much faster frequencies, 1GHz in
the ZCU102 instead of a maximum of 660MHz ZedBoard [123, 130]. The
ARMv8-A ISA used in this processor implements two different architectures,
the 32-bit AArch32 architecture compatible with the ARMv7 instructions with
its A32 (previously ARM) and T32 (previously Thumb) instruction sets, and
the 64-bit AArch64 architecture with its A64 instruction set [127]. Table 4.4
shows some of the existing branching operations implemented in the A64 ISA.
Some significant differences between the 32-bit and 64-bit ISAs include the
presence of system calls for virtualization, the requirement that only direct
branches can be conditional, and the locking of the PC register for almost all
instructions that are not direct branches.

The Cortex-A53 implements the latest version of the ETM trace source com-
ponent, called ETMv4 [126]. This unit includes instruction tracing similar to
the one presented in Section 4.3.1, with a its functional architecture presented
in Fig. 4.6. The diagram shows many blocks similar to those available at
Fig. 4.5. The main difference is the presence of an extra Processor Interface
Block. In the ETMv4, this block is responsible for generating and encoding
the instruction trace packet for executed instructions. The Trace Out block
controls the Output FIFO to ATB interconnect and makes the clock crossing
interface between the CPU clock and Bus clock domains.

One big difference from the trace protocol implemented by Cortex-A9 devices
is that Cortex-A53’s trace source module also traces speculative instructions.
The trace generator sends data about the speculative execution of instructions
and branches. It then uses "Commit" and "Cancel" data elements to either
confirm or not the actual execution of an operation. The ETMv4 architec-
ture defines trace messages called instruction trace elements. The information
transmitted in these elements corresponds in part to the information of PFT
packets. The instruction trace elements defined by this protocol and imple-
mented in the Cortex-A53 ETM unit are [126]:

90

4.3 ARM CoreSight Debug and Trace Architecture

Table 4.4: ARMv8 A64 operations relevant for control-flow monitoring [126].

Instructions Details

B <label> Unconditional Direct Branch to <label>.
BR <Xn> Unconditional Direct Branch to the address at reg-

ister <Xn>.
B.<cond> <label> Conditional Direct Branch to <label>.
BL <label> Call the subroutine at <label>.
BLR <Xn> Call a subroutine at the address pointed to by the

register <Xn>.
CBZ {<Xn>}, <label> Compare and branch to <label> if register <Xn>

is zero.
CBNZ {<Xn>}, <label> Compare and branch to <label> if register <Xn>

is not zero.
RET Return from subroutine to the address pointed to

by LR.
SVC #<imm> Causes a Supervisor Call exception defined by the

16-bit <imm> value.
HVC #<imm> Causes a Supervisor Call exception defined by the

16-bit <imm> value.
ERET Return from exception using the Exception Link

Register (ELR).

• Trace Info: It provides a synchronization point for the trace analyzer and
decoder to start interpreting the data stream.

• Trace On: Is used to indicate a discontinuity in the trace stream, either
after the ETM is first enabled, when it re-enters a tracing code region after
being idle, or when an information is lost after a trace buffer overflow.

• Discard: A Discard instruction trace element is generated if uncommit-
ted instruction elements remain when the trace unit enters a state where
it is no longer able to generate trace.

91

4 Debug and Trace Architectures

Figure 4.6: Cortex-A53 ETM functional block diagram. [129]

• Overflow: This element indicates an overflow of the internal trace buffer
of the trace Source. Therefore some of the trace data might have been
lost.

• Atom: An Atom element is used to trace branch instructions. For
conditional branches, it informs if the branch was taken or not, while
unconditional branches are always traced as being taken.

• Q element: These elements are used to indicate that at least one instruc-
tion, up to ’M’, has been executed, including possible branches and other
synchronization instructions.

• Exception: A Source generates this element whenever an exception
occurs. It informs the type of exception, e.g., Reset, IRQ, or Hardware
Faults, and the exception return address.

• Exception Return: This element indicates that an exception return oc-
curred, with the previous and most recent Atom or Q element indicating
the corresponding instruction that caused the return from an exception.

• Address: This element indicates the instruction set and instruction ad-
dress of the next instruction to be executed. An address element fol-
lows any other trace element that informs or updates the current execu-

92

4.3 ARM CoreSight Debug and Trace Architecture

tion state. This includes: Trace Info and Trace On elements, indirect
branches, direct branches on branch broadcast mode, exceptions, Q ele-
ments, and mis-speculation of instruction that must be updated.

• Context: This element defines the current execution context of the CPU
and includes information about: the Context ID, Virtual Context Iden-
tifier, security state, exception level, executing ISA (either AArch32 or
AArch64). This element is usually output whenever a change in the
context state occurs.

• Timestamp: This element inserts a global timestamp into the instruc-
tion trace stream. A timestamp value corresponds to the most recently
generated element among Atom, Exception, Event, or Q elements.

• Cycle Count: Cycle Count elements enable cycle-accurate tracing and
are only associated to Commit elements. It indicates the number of
processor clock cycles between two of themost recent Commit elements.
Only cycle counts larger than a programmed threshold are generated to
minimize trace bandwidth. The minimum threshold for the A53 is four
clock cycles.

• Event: This element indicates when a programmed system event occurs.
It also carries a value that identifies which event occurred.

• Commit: The Commit element is generated to indicate that Atom, Ex-
ception, or Q elements have been committed for execution. This trace
element also indicates how many uncommitted elements must be com-
mitted.

• Cancel: The Cancel element indicates the number of most recent un-
committed instructions to be canceled. The ETM may cancel elements
because a branch is wrongly speculated or an exception occurs before
the CPU has time to commit the branch instruction. Any element that
must be associated with a Commit element can instead be associated
with a Cancel element.

• Mispredict: It indicates that the most recent Atom element has the
incorrect taken or not-taken status. For direct branches, this element
also indicates that the target address for the branch is recalculated.

93

4 Debug and Trace Architectures

Compared to the PFT protocol implemented onA9 processors, this architecture
is muchmore complex. Mainly, it requires that the trace decoder handles which
instructions are committed by the core and discarded instead of only outputting
committed instructions. Nonetheless, ETMv4 implements all the features most
important for our control-flow monitoring system. These include tracing all
direct, indirect, and conditional branches and exceptions with explicit target
address propagation.

4.4 Leon3 and Leon4 Debug Support Unit (DSU)

The LEON3 and LEON4 are synthesizable VHDL 32-bit processors com-
pliant with the SPARC V8 architecture and developed by Cobham Gaisler
AB [76]. They are also available as dedicated fault-tolerant devices focus-
ing on aerospace applications available as LEON3FT and LEON4FT. Both
architectures implement a trace and debug interface through their DSU. They
implement a circular trace buffer that stores information about executed in-
structions.

Each entry of the trace buffer is 128 bits wide and gives detailed information
about the executed instructions. They inform the full state of the program
counter and the full opcode of the last executed instruction. Therefore, all
executed instructions and their linear addresses can be identified. Once a
branch instruction’s opcode is recognized in the trace, the following entry’s PC
value will correspond to the branch’s executed target.

Gaisler’s Leon3 and Leon4 processors are SPARC V8 architectures with a
7 stage integer pipeline, with the Leon4 version also implementing branch
prediction units [131]. Leon3 processor architectures are resilient and valu-
able for many safety-critical environments [132]. These processors can be
found in radiation-hardened hard-core chipsets as well as in programmable
logic architectures implemented as soft-core processors [133]. One example
architecture is the InvasIC Network-on-Chip (NoC) [134, 135]. This platform
promises a novel paradigm for the design and resource-aware programming of
future parallel computing systems. For systems with several hundred cores on
a chip, resource-aware programming is of utmost importance to obtain high
utilization and computational and energy efficiency. Each processing node in
this NoC can contain up to four configured Leon3 processors. The trace-based

94

4.4 Leon3 and Leon4 Debug Support Unit (DSU)

method proposed here can be used as an error-detection solution in this or
other performance-focused platforms.

The Leon3 and Leon4 cores implement each a version of a trace generator
component called the DSU. TheDSUs for each Leon3 and Leon4 are the DSU3
and DSU4. They both implement the same trace data information format,
described in Table 4.5. They also implement circular buffers that collect all
instruction and processor state information from the last stage of the pipeline,
storing it before being sent to an external debugger. The lack of speculative or
super-scalar execution makes this a good and straightforward architecture for
non-invasive tracing. However, this approach creates a considerable bandwidth
as each completed instruction generates 128-bit data packets, 1.6 Gbit/s for a
processor running at 100 MHz.

Table 4.5: DSU3/4 - Leon3/4 Hardware Debug Support Unit trace data format [76].

Bits Name Description

127 - Unused.
126 Multi-Cycle Instruction Set on the second instance of a multi-cycle

instruction such as load or stores.
125:96 Time Tag Value of the 30-bit cycle counter imple-

mented in the DSU.
95:64 Load/Store Value/Param. Value of the loaded data or parameters of

store operation.
63:34 Program Counter Value of the PC register for the executed

instruction.
33 Instruction Trap Set if the instruction caused a Trap excep-

tion.
32 Processor Error Mode Set if the instruction caused the processor

to go into a Error Mode.
31:0 Operand Opcode of the last executed instruction.

The DSU Time Tag generates complete cycle-accurate information for each
executed instruction. It uses the CPU clock frequency and keeps counting as
long as the processor runs and the DSU is enabled. The time tag value of two

95

4 Debug and Trace Architectures

consecutive branches can be compared to quickly obtain the number of CPU
clock cycles between two control-flow points. TheDSU also implements filters
that can collect trace packets for instructions that cause control-flow changes.
The possible filtered instructions include all subroutine or system routine calls
and branch and trap instructions, including branch target instructions contain-
ing a branch’s target addresses. These filtering options imply that conditional
branches’ results are always known after verifying the branch target packets’
PC value.

Other similar works on CFC have already been implemented on Leon3 based
processors [133,136]. However, these control-flowmonitoring techniques rely
on the ability to modify the soft-core processor description. They require
access to the instruction fetch stage of the CPU pipeline and be reliant on
the particular Opcode and PC information given by the DSU instruction trace
data as shown in Table 4.5. Therefore, these techniques are constrained to
the particular implementation of the Leon architecture and cannot be easily
applied to our target ARM processors.

4.5 IEEE-ISTO NEXUS 5001 Standard

Nexus 5001 is a debug standards initiative based on the IEEE ISTO 5001 debug
specification that addresses the diverse challenges for embedded-processor and
digital-system debug interfaces. Developers require more comprehensive de-
bug features and will benefit from more standardized interfaces to address the
constant increasing complexities of modern embedded applications (data com-
munication, automotive powertrain, computer peripherals, wireless systems,
and other control applications)

The initial 5001 Nexus specification was developed in 1999. It is an IEEE
standard for debug interfaces of embedded systems and processors. It has since
been implemented in numerous devices, such as Synopsys, Freescale, andNXP
processors and microcontrollers [114]. It defines four device implementation
classes with different compliance requirements. Classes 2 and above require
real-time program tracing features such as what is needed to enablemonitoring.
The standard outlines program trace packets that provide branch target address
information only for indirect branches. On the other hand, direct branch packets

96

4.5 IEEE-ISTO NEXUS 5001 Standard

provide only the number of executed instructions since the last branch, while
the target is assumed to be statically known.

This architecture is based on a packet-based messaging scheme, which sup-
ports debugging complex multi-core systems. Control of the multi-core debug
processes based on a transaction protocol (TCODE) that allows data to be sent
in packets, using a packet header to provide information on the source and
assumed destination of the data on-chip components as well as information on
the subsequent data packets containing trace or other information. This simpli-
fies the interleaving of multiple trace sources and concurrent communication
with multiple Nexus instruments. Each message is made up of a 6-bit TCODE
header followed by a variable number of packets. The Nexus specification
defines a standard set of TCODEs for common identification and trace opera-
tions, which is also extensible to user-defined debug commands. The standard
defines fixes a value of 4 for the TCODE that precedes program trace packets,
see Table 4.6.

Table 4.6: Indirect Branch packet format for Nexus protocol [114].

Program Trace Packets

Min Size (bits) Name Description

6 TCODE Value = 4.
0 TSTAMP Number of cycles message was held in the

buffer or the full timestamp value.
1 U-ADDR The unique portion of the branch target ad-

dress for a taken indirect branch or excep-
tion.

1 I-CNT Number of instruction units executed since
the last taken branch.

0 B-TYPE Branch type.
0 SRC Client (Processor) that is source of mes-

sage.

Nexus program trace is limited to instruction discontinuities, e.g., branches,
conditional jumps, and interrupts. By mapping these values to an assembled

97

4 Debug and Trace Architectures

program, trace analyzers can interpolate branch locations in the program and
reconstruct the instruction flow.

4.6 Aurix Multi-Core Debug Solution (MCDS)

Infineon MCDS is a multi-core debug solution developed for their Aurix pro-
cessor devices. Similar to other debug solutions, it consists of configurable IP
building blocks, which provide trace compression, trace qualification, times-
tamping, and complex cross-target triggering. It also enables simultaneous
measurement of different performance indicators with timestamped trace re-
sults.

Figure 4.7 shows the MCDS subsystem architecture example consisting of a
trace kernel and on-chip trace memory (TMEM). In this example, communi-
cation between the on-chip debug environment and the debug tool is imple-
mented based on a JTAGTAPwith optional data trace interfaces. As a previous
member of the consortium behind the Nexus 5001 standard, its interfaces are
partially compliant with Nexus ports, see Section 4.5. Each debug target, i.e.,
processor core, is connected to the MCDS through an adaptation logic block.
However, the design of its trace component block may be target-specific.

Each block adapts the target’s custom interface to a generic, standardized
interface that MCDS uses. It also synchronizes signals from the target side
to the clock domain of the MCDS in case they are in different clock domains.
The architecture of the MCDS kernel depends on the number and type of
debug targets and consists of so-called observation blocks (OB), a multi-core
cross-connect (MCX), and a debug memory controller (DMC), with MCX
being connected to all OBs and the DMC. It is responsible for distributing
programmable cross-triggers and provides a central timestamp for all trace
messages. Additionally, MCXprovidesmany counters, which can count events
and trigger an action after an event has occurred # times or a specific period
has elapsed. MCX provides the functionality to observe a systemwith multiple
processor cores. Interactions between multiple cores are also traceable, and
complex conditions can be evaluated to recognize a specific event. Each target
signal within the SoC is connected to its dedicated OB.Within this block, trace
qualification and trace message generation take place. Each OB may contain
several custom trace units of different types.

98

4.6 Aurix Multi-Core Debug Solution (MCDS)

Figure 4.7: MCDS subsytem architecture [137].

The primary trace interface provided by MCDS is a synchronous tagged data
protocol without handshakes. This type of interface is similar to ARM’s TPIU,
requiring a reader interface that must match the interface’s frequency. The
sender places the data in well-defined packets on the data port and concurrently
indicates which kind of packet is present through the mode port. The mode
port must express at least two different values: Idle and Valid. The smallest
common implementation of this interface for program branch tracing has two
parts:

• Base Address: After power on and after each discontinuity of the
control–flow, the trace logic needs to know the exact and complete
current PC value.

• PC Increment: Once the base address is known, only incremental
updates are sent to keep the local copy in sync with the original PC.

The interface defines discontinuities as either:

• Direct Branches: They are caused by jump instructions in the executed
program. In such cases, the target address is a constant in the source

99

4 Debug and Trace Architectures

code and can be easily obtained. A branch of this kind is indicated by
Forget(see Table 4.7) on the increment port.

• Indirect Branches: They occur from jump instructions with calculated
target–address, e.g., a return from a subroutine, or by exceptions, e.g.,
interrupts and traps. The target address must be contained in the trace
memory in these cases. Forget on the base port is used to indicate such
a branch. Each Forget received on any of the two ports invalidates the
current base address. The exact protocol definition is given in Table 4.7.

Table 4.7: MCDS program trace protocol with Mode and Data port pair meanings [137].

Mode Port Encoding Data Port Description

Base Address Protocol

Idle Data port holds no value.
Valid Target address after a preceding discon-

tinuity, optionally the current instruction
pointer otherwise.

Forget Target address after a preceding disconti-
nuity. This base must only be used for one
clock cycle and discarded thereafter. Don’t
care otherwise.

PC Increment Protocol

Idle Data port holds no value.
Valid Instruction pointer increment. This is the

number of bytes the instruction pointer was
advanced since the last time the Mode Port
was not Idle.

Forget Instruction pointer increment. This is the
number of bytes the instruction pointer was
advanced linearly since the last time the
Mode Port was not Idle. In case of a taken
branch this includes the branch instruction.

100

4.7 Intel Processor Trace (PT)

4.7 Intel Processor Trace (PT)

The Intel Processor Trace (Intel PT) is an extension of Intel processor archi-
tectures that captures information about software execution using dedicated
hardware facilities that cause minimal performance perturbation to the soft-
ware [138]. Intel PT’s implementations offer control-flow tracing, which
generates a variety of packets to be processed by a software decoder. The
packets include timing, program flow information, e.g., branch targets, branch
taken/not taken indications, and program-induced mode related information,
e.g., Intel TSX state transitions, CR3 changes. For monitoring purposes, this
architecture generates two main types of control-flow data packets: one for
conditional direct branches, called Taken Not-Taken (TNT) packets, and one
for indirect branches, called Target IP (TIP) packets, from instruction pointer
(IP) the given for the PC or instruction address counting register inside the Intel
architecture. An additional packet type called Flow Update Packet (FUP) is
also available. FUPs provide the source IP addresses for asynchronous events
(interrupt and exceptions), as well as other cases where the source address
cannot be determined from the binary.

TNT are analogous to CoreSight Atom packets. They track the direction of
conditional branches, i.e., the outcome of the branch signaling if it was taken
(executed branch) or not taken (branch not executed). The format used for TNT
packet is shown in Fig. 4.8. This packet has two sub-format: a short TNT and
a long TNT. Short TNTs packets can hold information related to between 1
and 6 executed conditional branches. In contrast, long TNTs packets can hold
between 1 and 47 bits, each related to a single branch’s execution condition.
The packet’s payload bits are interpreted as:

• 1 indicates a taken conditional branch, or a compressed RET instruction
(procedure return).

• 0 indicates a not-taken conditional branch.

TIP packets are the Intel version of the Branch Address packets present in
ARM’sCoreSight architecture. The processor generates this packet typewhen-
ever the executionflowencounters an indirect branch (including un-compressed
return instructions), far branch, interrupt, and exception. It contains a header
with value 0xD, 01101 in binary, and up to 8 bytes containing the new least

101

4 Debug and Trace Architectures

(a) Short TNT

(b) Long TNT

Figure 4.8: Intel PT TNT packet format [138].

significant bytes of IP since the last transmitted packet, see Fig. 4.9. Anytime
a TIP is encountered, it indicates that the CPU transferred control to the IP
provided in the payload. The source of this control-flow change, and hence the
IP or instruction to which it binds, depends on the packets that precede it. If
this packet is encountered in the trace stream and all preceding packets have
already been bound, it will apply to the upcoming indirect branch or similar
jump instruction.

Figure 4.9: Intel PT TIP packet format [138].

FUPs are analogous to CoreSightWaypoint Update Packets, its format is shown
in Fig. 4.10. It is generated by asynchronous Events, such as interrupts and

102

4.8 Summary

exceptions, and provides the address where the asynchronous event occurred.
It is never sent alone, always sent with an associated TIP, and potentially
other packets. If there were a preceding unbound FUP, it would bind to the
next TIP packet. Therefore, the TIP provides the target of the corresponding
asynchronous event or abort that occurred at the IP given in the FUP payload.

Figure 4.10: Intel PT FUP packet format [138].

FUPs header value corresponds to 0x1D, 11101 in binary, and its payload
follows the same format as TIP packets, compressing the IP value to only the
bytes that changes since the last sent packet.

4.8 Summary

This chapter presented the functionalities and protocol specifications of dif-
ferent commercial off-the-shelf (COTS) processor architectures. One central
point of interest is the similarities between many of these architectures, such
as between ARM and Intel program traces and between Infineon MCDS and
the Nexus Standard. Each one implements the same functionalities in different
ways.

Once having analyzed the trace architectures of Cortex-A9, Cortex-A53, and
Leon3 processors, we can now look at their similarities, focusing on the min-
imum required data that could be used for a proper control flow monitoring
implementation. As such, this chapter proposed an abstracted and general in-
struction trace protocol able to give enough information for monitoring or trace

103

4 Debug and Trace Architectures

analysis tools to recreate all control-flow sequences. This definition is later
used in Chapter 6 to implement an architecture-independent CFC monitor.

Comparing the information required by the generic interface defined here and
the trace protocols in the previous sections, we see that they all contain the re-
quired features. CoreSight based protocols do not output the current instruction
address as the DSU based protocol does, but it generates special packets before
exceptions that serve the same purpose. On the other hand, while CoreSight
protocols are always able to output the destination address of taken branches,
the DSU does not. It overcomes this by later outputting a packet for the next
executed instruction after any branch operation. Therefore, the taken target ad-
dress is known, as DSU packets always contain the PC’s value. This analysis
shows that these instruction trace protocols are equivalent, and it is possible
to create a component that transforms the information acquired through these
three protocols into a single generic interface that follows the layout described
in Table 4.2. As a result, any control flowmonitoring mechanism based on this
generic interface will be usable by any architecture accompanied by a proper
protocol translating module.

A distinction is sometimes made in these systems between direct and indirect
branches, in which cases only indirect branch targets are explicitly given in
the trace packet. Quick transformation can be performed at the binary level,
transforming direct branch operations into indirect ones and storing its branch
target in a register or dedicated memory region near the function space. This
transformation causes little to no overheads to the execution and allows the
generation of complete trace packets by any of the protocols described here.
Our proposed functional safety concept for CFE detection can be employed
in any system that contains branch target address propagation for all taken
branches. Analyzing traces from simultaneous execution units can provide a
more comprehensive temporal and logicalmonitoring of a program’s sequence.

104

5 Binary Program Analysis for
Embedded Trace Monitoring

Most programs are written in high-level languages like C or C++, which
processing systems cannot run directly. However, to be admissible, each trans-
formation requires a set of static guarantees, in this case, for global control-flow
analysis and refinement. As the de facto standard in the embedded domain, the
C language is somewhat tricky in this sense. Its permissive, low-level memory
model and type system emphasize aggressive local performance optimizations
over accurate global analysis. Consequently, either some language features
have to be omitted (e.g., function pointers, computed goto’s) to again facilitate
global analysis, or one can resort to type-safe languages, such as Java, in the
first place.

5.1 Generating the Binary Application Code

Binary executable files are produced through the compilation of text files that
conform to specific language syntax and structure. This process translates
human-readable source codes, such as C or C++, into machine code that
processing units can execute. The steps involved in the compilation process of
a typical C code are shown in Fig. 5.1. The full compilation process involves
four phases: pre-processing, compilation, assembly, and linking. In modern
compilers, some or all of these phases may be merged. Each step nonetheless
corresponds to a required and defined output or state in the chain.

The pre-processing stage is responsible for combining the header and source
files that make up the design and resolving all pre-processor instructions in
the code. In this phase, any #define and #include directives are resolved
and expanded so that the resulting output is pure C code ready to be compiled.
After this phase is complete, the source is ready to be compiled.

105

5 Binary Program Analysis for Embedded Trace Monitoring

Figure 5.1: C compilation process from source to executable binary.

The compilation phase translates the pre-processed code to the target proces-
sor’s assembly language, e.g., ARM’s AArch32, AArch64, or Intel’s x86_64.
This step is where most compilers typically perform their hardest code op-
timizations. GCC for example allows for the configuration of optimization
levels, such as -o0 and -03, in this phase. Section 5.1.2 explains the effects of
some of the most relevant options.

The assembly is tied to the final generation of machine code from the still
human-readable assembly. This phase’s inputs are the set of processor-specific
assembly language files, and its output is a set of object files, or modules.
These files contain, in theory, machine-executable code but just from their
corresponding source code files. Usually, one source file will generate one
assembly file, later turned into an object file. Therefore any links and function
calls, external libraries, and the entry point to start the code execution may be
missing in object files.

The final phase of this process is the linking phase, performed by a program
called a linker, usually separate from the primary compiler tool. All machine
code object files are linked and put together to create a single executable binary.

106

5.1 Generating the Binary Application Code

Some modern compilers introduce at this stage additional optimization passes,
called link time optimization (LTO). Object files are generated independently,
without assumptions of their memory placements or particular base addresses.
The linker’s job is to take all the object files belonging to a program and merge
them into a single and coherent executable, typically intended to be loaded at
a particular memory address. The linker is also responsible for resolving all
symbolic references, i.e., all references to data or code addresses unknown to
the specific object.

Depending on the program’s types of libraries, the linker may also possibly
resolve any library calls present. Static libraries aremerged into the final binary
executable, allowing any references to be completely resolved. Dynamic or
shared libraries are loaded in memory separately from the program and are
shared among all programs that run inside the same system.

After the compilation process is over, the generated executable file is loaded
into memory before the processor executes it. This object usually follows a
file format depending on the underlying OS or program loader, in the case of
embedded systemswith no underlyingOS. In 32 and 64-bitMicrosoftWindows
systems, this is the portable executable (PE) file format, while executable and
linkable format (ELF) files are used in most Unix, Unix-like, or embedded
systems. Our analysis is performed by retrieving assembly level data from a
finalized ELF executable file in a process called disassembly.

5.1.1 Binary Execution and Memory Maps

Executable binary files have to follow their own standards depending on system
and processor architecture. Any system must conform to an application binary
interface (ABI). An ABI defines how data structures or computational rou-
tines are accessed in machine code, which is a low-level, hardware-dependent
format. These standards typically describe the different processor instruction
details, such as the register file structure, heap and stack organizations, and
memory access types. Similarly, an embedded-application binary interface
(EABI) specifies standard conventions for file formats, data types, register us-
age, stack frame organization, and function parameter passing of an embedded
software program for use within an embedded system environment.

107

5 Binary Program Analysis for Embedded Trace Monitoring

Typically, in systems with separate virtual and physical address spaces, the
loader utilitywill load the program to its physical range and configure theMMU
accordingly. Inside the user application, all memory accesses are done using
virtual memory addresss (VMAs). These addresses are directly encoded in
the program’s binary. A program’s corresponding physical memory addresss
(PMAs) are only known after MMU translation, allowing complex OSs to
reallocate all or parts of a program to manage a small shared memory space
better. This translation scheme means that a processor always deals internally
with VMAs. Therefore, the target of branch operations as executed by the
processor will match the same addresses used inside a program’s binary. From
the processor core’s point-of-view, as it fetches and executes instructions, these
addresses are the only available, as the translation step is invisible. Program
trace mechanisms also typically use this virtual representation when operating,
directly matching the binary machine code.

Figure 5.2 present an example of a loaded ELF binary inside a Linux-based
platform. While stack organization and region of growth depend on the specific
ABI or EABI, all modern systems implement a stack architecture variation.
The stack holds function local values and is used to save the CPU’s state before
a procedure call. When the current function comes to an end, the previous
function’s state is restored. For trace monitoring purposes, the only value of
interest saved inside the stack is the LR. This value corresponds to the return
target address of the currently running function and must be saved to the stack.
Otherwise, when nested functions are called, the values would be lost.

When procedure calls are identified inside the binary, the following sequential
address corresponds to the return address. While the exact function may
have multiple allowed return addresses, a single calling instance of a function
has only one possible return point. Our analysis model focuses on these
calling instances, identifying a function’s return address dynamically rather
than statically. This dynamic value identification reduces the total number of
outgoing paths in the CFG of a function, simplifying the data that need to be
stored and used by the monitor.

108

5.1 Generating the Binary Application Code

Figure 5.2: Memory map and load scheme of an ELF binary inside a Linux-based system.

5.1.2 Control-Flow Optimizations

In compilation tool suites such as GCC, parameters can be passed before
starting the compilation process to optimize the resulting binary code. These
optimizations can target different measures such as speed performance or total
code area. Therefore, a single source code program can have multiple valid
machine code representations in practice. GCC was our compiler suite of
choice, it implements 5 optimization levels: no optimization (-O0), "optimize"

109

5 Binary Program Analysis for Embedded Trace Monitoring

(-O1), "optimize more" (-O2), "optimize yet more" (-O3), and optimize for
size (-Os).

Each optimization level, from 1 to 3, adds different optimization techniques
so that -O3 implements all techniques in -O2 plus additional ones. Chapter 7
presents tests of multiple benchmarks in two optimization configurations: -O0
and -O3. Using -O3 can drastically change the resulting binary control-flow.
Most control-flow optimizations only change internal loop structure or branch
targets to minimize code or reduce the number of required branches for a
function. These effects are transparent when generating the CFG from the
binary code. However, the hardware monitor’s use of a dynamic function
return identification required that all function start and end blocks be well
defined. The most important optimization techniques that can complicate the
control-flow analysis are tail call and tail merging optimizations and function
inlining.

When a function �1 returns the value of a call to a second function �2, this is
a tail call, see Fig. 5.3. When the compiler optimizes a tail call, it removes
the return block of the function �1 and the preamble of the function �2 and
substitutes it for a direct branch operation. Therefore, when �2 ends, it can
return directly to the caller of function �1, as if �1 and �2 were a single
function.

Tail merging, also called cross-jumping optimizations, applies to basic blocks
whose last few instructions are identical and continue to the same location.
It replaces the matching instructions of one block with a branch to the corre-
sponding point in the other, see Fig. 5.4. Inline optimization (Fig. 5.4) work
similarly by optimizing away function calls and returns. Instead, the function’s
CFG is completely inserted into the calling point as if it were a part of the
caller’s code. These optimizations make it harder to identify where a function
starts and another function end. This identification is essential for our monitor
because procedure calls and procedure returns are treated differently by the
CFC hardware.

5.1.3 Coding Guidelines for Critical Systems

Current standards outline many coding practices and rules that should be fol-
lowed by software components so that the design and implementation shall

110

5.1 Generating the Binary Application Code

Figure 5.3: Example of function tail call optimization in binary code.

avoid unnecessary complexity and achieve testability and maintainability.
Given the importance of code verification and branch coverage and the dangers
of errors in the control-flow, the standards outline guiding principles for what
types of calling conventions and code structures are allowed. The most impor-
tant of these guidelines is MISRA-C:2012, the third edition of the MISRA-C
rule set made in compliance with the C99 C language standard. This standard
is the base for most coding rules for C/C++ systems, like those described in
the ISO-26262 standard and the AUTOSAR guidelines [139].

The described rules focus on code manageability, clarity, and avoidance of
structures that facilitate errors. Usage of function and instruction pointers, for
example, is one of the major concerns. Indirect branches, such as those that
target a function or other instruction address locations, make it much more
challenging to analyze and statically generate a binary control-flow graph.

111

5 Binary Program Analysis for Embedded Trace Monitoring

Figure 5.4: Example of function tail merge optimization in binary code.

112

5.2 Binary Control-Flow Analysis

Figure 5.5: Example of function inline optimization in binary code.

These software guidelines clarify that every instruction pointer must not be
part of pointer arithmetic calculations and must be explicitly stored in memory.
Therefore, every register associated with an indirect branch or call operation
target address should have its range of possible or allowed values immediately
known through static code analysis.

5.2 Binary Control-Flow Analysis

The binary analysis framework uses a code structure called a control-flowgraph
(CFG) (Fig. 5.6) to reconstruct the program’s internal structure and its func-

113

5 Binary Program Analysis for Embedded Trace Monitoring

tions after disassembly. This structure reduces the program to only its basic
branch control-flow information. It has been demonstrated that any program
can be described through a directed control-flow graph, where all program
branches correspond to edges and where its vertices are the sections of sequen-
tial code between two branches [87]. A walk in this graph from its input vertex
to its output codifies a complete and valid program execution. Therefore, only
the information about which edges have been taken is required, i.e., its program
branches, to follow any program execution in its entirety. By acquiring a pro-
gram’s binary CFG, we have all the information needed to verify if a sequence
of program trace packets is correct or not. However, this model best monitors
single tasks with no dynamic scheduling and no asynchronous servicing of
interruptions. Our program’s final representation is that of a disjoint set of
connected CFGs. Each fully connected CFG corresponds to a single function
or interruption handler. Whenever an asynchronous interruption occurs, the
current CFG is switched with that of the calling interruption handler until it is
finished or a new higher priority interruption is called. After it is over, the last
CFG resumes its execution.

Figure 5.6: Control-Flow Graph model of an application.

The process used to perform the code disassembly and generate the final
CFG is shown in Fig. 5.7. First, the machine code is transformed back to its
assembly representation with a utility such as GCC’s objdump tool. Symbolic

114

5.2 Binary Control-Flow Analysis

information contained in the executable is used to identify labels and variable
names. After that, a single sequential pass is performed on the assembly
code, breaking down new blocks for every identified branch and procedure
call operation. When performing indirect call analysis, context-sensitive must
be taken into account. Therefore the second pass is used over the blocks to
identify any missing targets that the first sequential pass could not directly
identify.

Figure 5.7: CFG generation process from the executable binary code.

Once the tool performs the second pass, all basic block vertices of the CFG
are fully connected, and all functions are identified. An example CFG repre-
sentation is shown in Fig. 5.8, based on the C code presented in Listing 5.1.
Each block can represent three main types of nodes: a standard direct branch,
procedure call, or procedure return. Their main attributes besides branch type
are the pointers to the target and next nodes. Target nodes represent those
blocks containing the branch operation’s target address that defines the end of
the basic block. The Next nodes are those that start with the first instruction
that follows the end of the block.

Listing 5.1: Example Quicksort C code.

1 void swap (i n t ∗ a , i n t ∗ b) {
2 i n t t = ∗a ;
3 ∗a = ∗b ;
4 ∗b = t ;
5 }
6

115

5 Binary Program Analysis for Embedded Trace Monitoring

7 i n t p a r t i t i o n (i n t a r r [] , i n t low , i n t h igh) {
8 i n t p i v o t = a r r [h igh] ;
9 i n t i = (low − 1) ;
10 f o r (i n t j = low ; j <= high − 1 ; j ++) {
11 i f (a r r [j] <= p i v o t) {
12 i ++;
13 swap(& a r r [i] , &a r r [j]) ;
14 }
15 }
16 swap(& a r r [i + 1] , &a r r [h igh]) ;
17 re turn (i + 1) ;
18 }
19
20 void q u i c k s o r t (i n t a r r [] , i n t low , i n t h igh) {
21 i f (low < h igh) {
22 i n t p i = p a r t i t i o n (a r r , low , h igh) ;
23 q u i c kS o r t (a r r , low , p i − 1) ;
24 q u i c kS o r t (a r r , p i + 1 , h igh) ;
25 }
26 }

Direct branches are the most common and always connect to another block
through their branch target address. Procedure call blocks are similar to direct
blocks, but the monitor must execute additional operations given their block
type signals. If the monitor identifies a procedure call in the trace stream, the
Next block of this Procedure Call should be saved to its LR stack copy. It uses
this value to verify the target of the corresponding Procedure Return block
of this call. Any block can also contain a conditional type, meaning its next
block is an allowed possible jump target. As trace mechanisms usually do not
provide the address of a resulting not taken branch, this address must be part
of the CFG so the monitor is always aware of the current running basic block
and its corresponding branch operation.

116

5.2 Binary Control-Flow Analysis

Figure 5.8: Resulting CFG generated from example recursive Quicksort implementation.

117

5 Binary Program Analysis for Embedded Trace Monitoring

5.3 Program Trace and the Control-Flow Graph

As presented in this chapter, a CFG is generated from the application’s low-
level code to codify its allowed control-flow state changes. Signatures and
check operations are executed for each basic block and CFG transitions. A
standard CFG is composed of basic blocks that only have one entry point and
one exit point. Therefore not all transitions between blocks correspond to
branching instructions. A block may end while another may start in the middle
of a sequence of non-branch instructions if one of those operations targets a
branch somewhere else in the code.

However, instruction branch tracing only provides information for executed
branch instructions, so we cannot follow all transitions in a traditional CFG.
Therefore, a reduced CFG representation must be used. This new reduced
graph (�') is defined as the set of reduced vertices (+') and edges (�')
where �' = {+', �'}. Each reduced edge in this representation corresponds
directly to a branch operation obtained from our binary analysis of Section 5.2.
Therefore, this graph has no transitions that do not relate to a binary branch
operation in the program’s code. All implicit block transitions between two
sequential instructions are removed with this new definition, affecting the
meaning of basic blocks. Traditionally, basic blocks only contain one entry
point and one exit point. By removing implicit transitions, our BBs can have
multiple entry points butmaintain a single exit point. This exit pointwill always
correspond to one or two edges, one for the target of its branch operation and
one for its sequential block, in case of conditional branches that are not taken.
Finally, a reduced vertex is a sequence of instructions that execute sequentially
with possible branches coming into the sequence and always has a branch at
the last instruction.

Essentially, this corresponds to an edge contraction operation over the classical
definition of CFG as showed in Section 3.3. The graph’s resulting blocks are
defined as a chain of sequential instructions that end at a single branch, with
the first instruction of each block directly succeeding a branch. Figures 5.9a
and 5.9b show the corresponding classic and reduced CFGs of an example
ARMv7 assembly code presented in the Listing 5.2. In the reduced graph
shown, the original blocks �1 to �3 merged to form '�1, comprising the
instructions from lines 10 to 21 of the code. Every new block of this reduced
representation can have many different entry points but has only one exit

118

5.3 Program Trace and the Control-Flow Graph

point. Branch tracing allows us to check that all exit points are correctly taken,
ensuring at the same time that all preceding instructions, i.e., the sequential
instructions that are part of that block, have been correctly executed in order.

Listing 5.2: Example ARMv7 Assembler code.

1 _func1 :
2 push { fp , l r }
3 add fp , sp , #4
4 sub sp , sp , #8
5 mov r1 , #10
6 mov r0 , #2
7 add r4 , r2 , r3
8 cmp r4 , #100
9 b l t . L0
10 sub r4 , r4 , #3
11 s t r r3 , [fp , # −16]
12 . L1 :
13 sub r1 , #1
14 add r4 , r4 , #3
15 mov r3 , #0
16 s t r r2 , [fp , #−4]
17 . L0 :
18 s t r r4 , [fp , #−8]
19 sub r2 , #1
20 cmp r1 , #0
21 bne . L1
22 pop { fp , pc }

CFC techniques typically only check the correct execution of transitions inside
the target application’s control-flow graph They usually generate all possible
branches statically, including all possible return targets from a single function.
They also typically do not encode information on the specific types of branches.
In this approach, as shown in Section 5.2, blocks ending in functional calls
and returns are considered unique types. While common direct branches have
only one possible destination and conditional branches have two, the same
procedure may be called from many different program points. Therefore,
a subroutine’s first and last blocks have several predecessors and successor

119

5 Binary Program Analysis for Embedded Trace Monitoring

(a) Example of a classically defined CFG (b) Example of a reduced CFG

Figure 5.9: Example control-flow graph generated from the code in ??.

vertices. Typically, this creates several edges into and from the first and last
blocks of a function. This is simplified by identifying procedure calls statically
but only acquiring the correct procedure return value dynamically.

Once the processor dynamically executes a procedure call, we know its corre-
sponding return address, i.e., the following address from the call instruction.
This address is the Next block starting after the function call instruction’s
address. Therefore, whenever the CPU calls a function, we store its corre-
sponding return address, monitor its execution, and verify its return address
when it ends with the stored value. A similar approach is used to monitor
incoming interruption signals. The only difference is that asynchronous inter-
ruptions may occur at any point of the code and are not tied to specific static
operations. An interruption’s sub-graph corresponds to its ISR like a regular
function, with a single start block and one or more return blocks. Monitoring
the trace facilitates our ability to monitor asynchronous interruptions. All

120

5.4 Summary

modern trace protocols provide ways to identify a program’s preemption by an
interruption and the address where the interruption occurred. After it handles
the interruption with its ISR, the processor must resume the execution state
from this exact address. Therefore, this address directly corresponds to the
interruption’s return address and is stored in a similar structure used to store
the function return addresses. The hardware monitor must store and analyze
dynamic flow information if incoming instruction traces are to be properly
checked.

5.4 Summary

This chapter described and analyzed the compilation stages fundamental to
the generation of a binary application. Some of the most critical aspects of
this process were outlined regarding the final resulting executable binary file
and its structure. Mainly, function optimization and calling conventions are
fundamental in identifying function bounds. The chapter showed how the
iterative disassembly flow is performed from the machine code and how the
executable control-flow graph can be retrieved. This generated CFG structure
contains the minimum required information to decide if an incoming trace
packet corresponds to a valid branch or not. In other words, the CFG stores the
entire program control-flow, and the single traced execution corresponds to a
unique path in this graph. Our hardware monitor uses the trace to identify the
program’s active vertex, i.e., its current basic block. The currently active block,
in turn, uniquely identifies all allowed ensuing branch operations, depending
on the CFG edges leaving from this vertex.

121

6 Hardware Control-Flow Monitoring
Architecture

This chapter presents the proposed CFTCmonitoring platform. CFTC expands
earlier works on CFC by proposing an abstracted architectural model for trace-
based hardware CFC techniques. It breaks down differences in control-flow
complexity of embedded systems and how they influence the program’s proper
monitoring. The general idea behind this technique is exemplified by Fig. 6.1.
The data stream coming out of the trace subsystem through the TPIU is rerouted
from the typical JTAG path and sent instead to a dedicated monitor unit, in this
case residing in the FPGA. The data corresponds to the payload of the JTAG
unit before any encoding is done.

Figure 6.1: Diagram showing trace data rerouted away from the JTAG Connector and instead to
the FPGA.

123

6 Hardware Control-Flow Monitoring Architecture

This chapter describes how this data is parsed and used by the monitor. The
two main stages of this architecture are the trace translation and the verifica-
tion stages, see Fig. 6.2. First, the translation stage includes the architectural
dependent components, i.e., the trace parser and trace decoders, used to sep-
arate and decode trace packets. Then, the verification stage implements the
portable architecture independent components, i.e., the checker and configura-
tion memory, that correspond to the monitoring module’s heart. Architecture
dependence is associated with each system’s particular trace protocol and its
internal component mapping. At this stage, we cannot untie the specifics of
the protocol used and component topology to identify the source of generated
trace packets. Independent components can be used throughout different ar-
chitectures. They only depend on the information given by the trace and use a
generic interface. At the end of the Translation Stage, trace protocol encoding
and topology are abstracted away, and we are left with one interface for each
trace source that provides the control-flow changes encoded in the trace stream.

Figure 6.2: High-level diagrampresenting themajor components of the proposedCFCarchitecture.

This chapter describes in detail the implementation of the CFTC monitoring
architecture, one of the central contributions of this work, the first portable
and scalable trace-based hardware monitor architecture for modern multicore

124

6.1 Monitor Architecture

processors. This chapter’s proposed contributions and subsections are further
schematized as follows. Sections 6.1.1 and 6.1.2 present the trace decoupling
logic between the monitor detection units and the target ARM platform. Sec-
tion 6.1.1 focuses on the trace parser of Fig. 6.2, while Section 6.1.2 explains
the necessary decoders. Section 6.1.3 presents the checker architecture respon-
sible for monitoring the state of each individual CPU core and which allows
for easy customization for both fine- and coarse-granular monitoring. Sec-
tion 6.1.4 describes the necessary control-flow graph configuration memory.
It provides parameters for ease of implementation of different configuration
representations and the size of monitored code. Finally, Section 6.2 clarifies
the detectable errors and events possible with CFTC. This architecture is able
to monitor not only intra-process control-flow events but also inter-process
communications and synchronization events.

6.1 Monitor Architecture

This section describes the proposed scalable architecture for trace-based hard-
ware monitoring. This thesis focuses on one target, the ARM CoreSight trace
system, among the trace platforms presented until now. Embedded systems
heavily use ARM processors, and many SoC devices further integrate ARM
cores with FPGA fabrics, which allows for easy access to the integrated trace
port of the SoC. The test-case platform used here is Xilinx’s Zynq-7000 FPGA
with an embedded ARMCortex-A9 dual-core processor. This work introduces
a real-time trace decoding hardware unit and interface that can be used by CFC
and CFI monitors.

To fully track the control-flow, the interface must: inform whenever a new
branch is executed and if it was taken or not in case of conditional instructions;
notify when an asynchronous interruption occurs; and give instruction address
information to identify branch targets, current PC values, and interruption ad-
dress vectors; While this allows for full target address tracking, static analysis
of the executing binary is required to identify the types of branches the applica-
tion executes, e.g., procedure calls, returns, or conditional, as this information
is not available within the trace.

Before the trace can be decoded, the processor core responsible for generating
the packets must be identified. In Nexus-5001, this can be easily achieved

125

6 Hardware Control-Flow Monitoring Architecture

through the SRC field of its Program Trace Messages. Intel PT and ARM
CoreSight apply a second layer of formatting over their trace packets to identify
data from different sources over the same system trace bus. In Intel platforms,
this is done through the Intel Trace Hub (TH), while in CoreSight, this is done
in trace formatter units. These components combine trace data and id into
frames before they are sent through serial buses or stored in memory.

These frames are composed of 16 bytes that interlace data andmixed-use bytes.
These mixed-use bytes contain either data or a new source id value, and the bit
0 of each byte defines the value it contains. The protocol complements their
content with a final auxiliary byte (AUX) at the end of the frame, as shown
in Fig. 6.3. The direct approach to parse such a frame is to serialize all bytes
into a buffer, verifying which data bytes belong to which ID. However, this is
non-optimal in hardware, creating a bottleneck as a frame would need at least
16 cycles to be completely read.

This thesis focuses on one target, the ARM CoreSight trace system, among
the trace platforms presented until now. CFC techniques have historically
focused only on single CPU systems. Multiple concurrent processing units
affect significantly affect the hardware. The monitor must deal with multiple
incoming trace streams, with at least one for every processing unit.

Figure 6.2 presents an overview of our major implemented hardware compo-
nents. The first two component types on top are the Source Parser and Trace
Decoder. According to their source, the parser separates the different trace
packets on the trace bus or interfaces. It then provides a dedicated interface
for each monitored trace source. Each interface connects to one trace decoder
component. This unit is bound to interpret all incoming trace packets and
reconstruct the processor’s internal state.

The following two main blocks are the Checker, responsible for verifying the
correctness of received CPU states, and the Configuration Memory, responsi-
ble for holding the copy of the CFG and verification information used by the
monitor. These components are the core of the monitoring system and im-
plement the structures required to perform the different checking operations.
They are described in detail in Section 6.1.3. A detailed implementation of
the first single task monitor for an ARM Cortex-A9 processor architecture is
presented in the later sections. This first monitor architecture is an example of

126

6.1 Monitor Architecture

the separation between components that depend on the architecture and those
reusable across different hardware systems.

6.1.1 Source Parser

The trace monitoring pipeline’s first two components are responsible for col-
lecting, separating, and decoding trace data from each monitored processing
unit. The Source Parser component must be generated for the correct number
of trace sources and configured with their respective IDs to parse these frames
correctly. This component has three main functions. It parses and extracts the
data from the first protocol layer of ARM’s trace architecture. It aggregates
multiple payload sizes into a standard 128bit bus that the decoder can more
easily handle. Finally, it also works as a switch, driving trace payloads from
different sources to the correct decoder and checkers units for each CPU.

This unit rebuilds the trace stream corresponding to each source present in the
system. It receives and routes the packets to the correct output interface. After
the decoder handles the data, it is available in a generic interface independent of
the underlying trace architecture. This abstract interface builds on the analysis
performed and results presented from Chapter 4. Each trace packet originates
from a single core or processing unit. These packets cross through a system-
wide trace bus to the dedicated trace analyzer or capture device. To differentiate
each packet’s source when inside the bus, plus other information that might be
available regarding system-wide events, each data packet is associated with a
unique identification (ID) value.

This work’s implementation test-case is ARM’s CoreSight trace architecture
with the ATB interconnect [125]. ATB belongs to and is a part of the Advanced
Microcontroller Bus Architecture (AMBA), an open-standard, on-chip inter-
connect specification developed and maintained by ARM. To send all packets
and their source information to a source external to this interconnect, usually
serial interfaces are used. The packets are then combined into larger frames,
composed of trace data and identification values. In the ARM trace system,
each frame has 16-bytes that interlace data and mixed-use data or source ID
bytes. The first bit of each mixed-use byte tells if it is being used for data or a
new source value. The content of mixed-use bytes is complemented by a final
auxiliary byte (AUX) at the end of the frame (Fig. 6.3). This extra byte holds

127

6 Hardware Control-Flow Monitoring Architecture

one additional bit of information for each mixed-use byte. It holds bit 0 for
mixed-use data bytes and the update delay for mixed-use ID bytes, i.e., if the
ID is immediately updated or delayed for one cycle. All data values inside a
frame and subsequent frames always relate to the source ID value of the last
active value informed. Using this or similar frame formats to encode source
IDs increases the trace port bandwidth. The CoreSight frame protocol shown
here adds an overhead of 6% to the bandwidth requirement of a trace port.

Figure 6.3: CoreSight frame format definition [117].

The CoreSight frame has a regular size and format, which favors an optimized
hardware implementation. However, its payload contents’ irregularity makes
it hard to implement a parser that can offer high-output bandwidth. Figure 6.4
shows the straight finite state-machine (FSM) implementation to parse such
a frame and its accompanying hardware diagram. This approach serializes
all payload bytes into two buffers, one for data and one for the accompany-
ing source ID. While easy to implement, this straightforward implementation
requires 15 cycles to read a frame wholly.

This approach’s reading latency creates a significant input bottleneck and
significantly increases the system’s detection time. Therefore the Parser needed
to be optimized to solve this problem. The possible payload configurations
and how to decrease the latency to decode a frame were analyzed. While not
detailed in the protocol’s documentation, the frame generation unit prioritizes
the formation of frames with a single ID. Two typical cases were clear: a new
frame with no new ID packets, meaning the payload is only composed of data
packets from the previously identified source ID; and a packet with a single ID
change on the first payload byte. Thus the Parser could immediately parse the
frame and move the payload to the correct decoding unit within a single cycle.

128

6.1 Monitor Architecture

Figure 6.4: Direct state-machine description to parse a CoreSight Frame.

After optimizing the Parser for single ID payloads, the advantages in the simi-
larity between frame rows were used to identify other common cases. Table 6.1
presents the possible source ID payloads for a single row of a CoreSight Frame.
Each row can have a maximum of 2 new source IDs, and each new ID present
can be immediately applicable or delayed by one data byte. A row is composed
of four bytes, from which bytes 0 and 2 can either encode a new ID or a data
byte, depending on the Auxiliary frame byte (frame byte 15). Whenever byte
0 encodes a new source ID, it is defined as the first ID of the row. Similarly,
byte 2 is the second ID of the row if it encodes a new ID, independent of the
presence of a first ID or not.

Given the possible resulting row payloads of Table 6.1, we see that in the best-
case scenario, there is one cycle to output the payload contained in the row and
two cycles in the worst case, one cycle for each ID and corresponding data.
Two cases are not present in the table, the row payload configuration where two
new IDs are present, and the first ID is delayed. This possible configuration
never happens in practice, as a second immediate ID would overwrite the first
delayed ID. Similarly, two new delayed IDs in the same line can be optimized
away by one immediate ID in the current row and one in the next row. Further,
these two configurations were never observed during testing.

The optimized frame parser requires, on average, between 1 and 4 cycles to
parse such a frame completely. Figure 6.5 shows the internal architecture for

129

6 Hardware Control-Flow Monitoring Architecture

Table 6.1: Possible row payload’s ID configuration for a CoreSight Frame.

New IDs Applicability Resulting Payload

No new ID - 4 bytes with last ID
First ID Immediate 3 bytes with First ID
First ID Delayed 1 byte with last ID, 2 bytes with

First ID
Second ID Immediate 2 bytes with last ID, 1 byte with

Second ID
Second ID Delayed 3 bytes with last ID and update

ID to Second
First and Second IDs 1BC Immediate,

2=3 Immediate
1 byte with First ID, 1 byte with
Second ID

First and Second IDs 1BC Immediate,
2=3 Delayed

2 bytes with First ID and update
ID to Second

Figure 6.5: The Source Parser internal components with frameUnpacker and data aggregator units.

optimized frame parser. The first subunit is the frame unpacking stage of the
optimized Parser. After it receives a new frame, it outputs a new source ID
every cycle, the payload data for that ID in the frame, and the payload size in
bytes. The payload sizes can range from 15 for a frame with no new IDs or 1
for a frame line with 2 ID changes. First, it identifies the total number of new
source IDs present in the packet. If no new IDs are present or all data bytes
share the same ID, all 15 to 14 data bytes can be output at once, accelerating

130

6.1 Monitor Architecture

the process. Otherwise, the frames are analyzed line by line using the cases
defined in Table 6.1. This approach takes 4 to 6 cycles to retrieve all data,
depending on where the new ID source is. After analyzing the typical output
of execution traces, it was noticed that the trace formatter tends to group data
from the same sources into a single frame. Therefore most frames usually have
a single ID change, and frame decoding takes, on average, one to two cycles.

After parsing the data payload with its corresponding source ID, this infor-
mation must move to the Trace Decoder. However, to facilitate the decoding
pipeline’s implementation, the irregular payload outputs must be aggregated
inside the parser, and the data is combined to form regular-sized chunks. After
parsing, the output can have the following sizes: 15 bytes, 14 bytes, 4 bytes, 3
bytes, 2 bytes, or 1 byte. Each of these payload sizes can be given in a cycle as
input to a single trace packet stream that must be written to the decoder’s input
buffer in order. Therefore, a Data Aggregator subunit is used after the Un-
packer unit. This unit provides a standard interface of 16 bytes to the decoder,
as shown in Fig. 6.6.

Figure 6.6: Architecture for a single data aggregator subunit.

The frame parser provides the number of acquired data bytes at each parsing
cycle. The aggregator implements a ping-pong-buffer architecture where the
input payload is shifted andwritten to a double ring buffer with two output lines
for either half of the complete buffer. When one half of the ring buffer is being
written to, the other can be read by the decoder. Each buffer is 16 bytes wide,
and whenever one is complete, the aggregator transmits the data to the decoder.

131

6 Hardware Control-Flow Monitoring Architecture

This highly parallel architecture enables us to quickly separate and send the
packet data contained in the frames. However, as shown in Chapter 7, the
aggregator requires many resources to accommodate its parallel-shift scheme.
The Source Parser is not needed if only a single-core is monitored, but for
multicore systems, such a fast component is crucial. However, for multicore
systems, such a fast component is crucial.

6.1.2 Trace Decoder

The trace decoder component is responsible for unpacking all trace packets
for a given trace source and providing the CPU state interface required by the
monitoring component. This interface should contain the necessary informa-
tion to support our defined control flow monitoring operations. The output
interface implemented for our trace decoders is shown in Table 6.2. Through
this interface, the monitor can know all events that affect the control flow of the
processor. Some extra signals help distinguish between system interruptions
related to detected faults and programmed interruptions.

System aborts are sent when the program tries to access an invalid memory
region or execute a wrong operation. Update events are sent right before an
interruption. They are used to update the trace decoder and inform from which
section the program was last executing. With this, the monitor knows what the
exact point inside the block the ISR must return to is. Cycle count information
is helpful to make sure the system conforms to real-time constraints. Each
retrieved cycle count can be accumulated from sequential elements to obtain
time measures of certain code regions or function sequences. The deadlines of
such functions or events can be pre-programmed to detect any time violations
of the program. Not all information provided by this interface needs to be
used by the Checker. Which information is used depends on the granularity or
complexity of control flow monitoring performed.

After identifying the origin of trace data packets, one decoding unit for each
system core is generated. For this work’s target system, a real-time decoding
unit conforming to the PFTv1.1 standard [122] is created. The Decoder pro-
cesses the trace packets and makes the CPU state available through a generic
interface. Once the state information is retrieved, it can be used by control
flow monitor architectures.

132

6.1 Monitor Architecture

Table 6.2: Signal output interface of a trace decoder unit.

Signal Definition

new_trace Informs the monitor that a new trace information is avail-
able to be read on this cycle.

address[31:0] Either informs the target address of a taken branch or the
last executed address before an interruption.

branch_event The trace packet corresponds to a normal branch.
cycle_count[31:0] (Optional) Unsigned integer informing the number of pro-

cessor cycles executed since the last event.
cond_taken If branch_event is set, it informs that the branch corre-

sponds to a conditional branch and that it was taken.
cond_not_taken If branch_event is set, it informs that the branch corre-

sponds to a conditional branch and that it was not taken.
update_event The trace packets is used to update the last address in the

PC. Usually sent before interruptions.
irq_event The trace packet corresponds to a received interruption

request or software exception.
abort_event The trace packet informed of a taken hardware interrup-

tion or abort. They are sent when the system detects an
internal error.

The two most essential packets for online monitoring are Branch Packets and
Atom Packets, corresponding to TIP and TNT in the Intel PT architecture.
Their formats are given in Fig. 6.7. The total number of bytes in each packet
is only known during execution. The protocol uses C bits in every byte to only
output as much data as it needs to inform which states have changed in the
CPU. If the C bit is set, the next byte in the stream belongs to the same packet.
Atom packets use an F bit that is set in case a conditional branch fails its check.
These packets can optionally give cycle count information: the number of
CPU clock cycles since the last branch. These counts help monitor techniques
that incorporate timing analysis, but as shown in Section 7.4.5, increasing the
packet size can add considerable increases to trace bandwidth.

133

6 Hardware Control-Flow Monitoring Architecture

Figure 6.7: Data formats for Atom and Branch CoreSight PFTv1.1 traces.

This type of packet format, also similarly implemented in Intel PT and Nexus-
5001, makes it challenging to implement an optimized parallel decoding
scheme, as it would require complex distributed shift registers and comparison
networks. However, by analyzing the actual average output of an execution
trace, it was noticed that most Branch Packets output only 1 to 2 bytes of
address data, with most branches having relative target addresses to near areas
of code. Similarly, most cycle count data has only a single byte, as the average
size of basic execution blocks in a program is relatively small. These factors
indicate that serializing the packet stream would not add large overheads to
the decoding time and could help reduce the hardware accelerator’s resource
usage.

The hardware decoder architecture is presented in Fig. 6.8. Every byte of
the trace packet stream is read and scheduled to an appropriate decoder FSM
depending on the current packet header. A dedicated state-machine pipeline

134

6.1 Monitor Architecture

is implemented for every standard packet type to decode incoming traces
optimally. A set of global state flags are used with a global FSM to synchronize
the start of the packet stream and every decoder state-machines simultaneously.

Figure 6.8: Internal architecture of the trace decoder hardware unit.

The main synchronization state-machine is shown in Fig. 6.9. It follows the
ARM CoreSight specification PFTv1.1. It enables all packet state-machines
once an A-Sync packet followed by an I-Sync packet is correctly decoded. The
A-Sync packet informs the data stream’s boundary and where the following
packet header lies, Fig. 6.10. The I-Sync packet provides all the information
regarding the current CPU state, Fig. 6.11. This information includes the
current PC address, security state, hypervisor and virtualization modes, and
active ISA.

The state-machines responsible for branch and atom packet decoding are shown
in Figs. 6.12 and 6.13. Both FSMs can update the decoder’s output interface
according to the last incoming packet’s new state information. Due to its
compressed encoding, a single atom packet may represent multiple sequential
not-taken branches (up to 5 in a row). If a single atom packet contains multiple
control-flow state changes, one cycle is required to output every state. In

135

6 Hardware Control-Flow Monitoring Architecture

Figure 6.9: Decoder synchronization state machine for the Cortex-A9 use case.

Figure 6.10: Packet stream synchronization with A-Sync packets.

such a scenario, the atom decoder generates back-pressure to the input stream
controller, which stalls other decoder units unit it has finished translating its
current packet. If the processing core is asynchronously interrupted, the trace
system sends an update packet to inform the current PC address before a branch

136

6.1 Monitor Architecture

Figure 6.11: CPU state synchronization with I-Sync packets.

Figure 6.12: PFT Branch Packet decoder diagram.

137

6 Hardware Control-Flow Monitoring Architecture

Figure 6.13: PFT Atom Packet decoder diagram.

Figure 6.14: PFT Update Packet decoder diagram.

packet notifies the type of interruption and target interruption vector address.
Figure 6.14 shows the corresponding FSM used to decode Update packets.

138

6.1 Monitor Architecture

The decoder component as a whole holds the last state of the CPU. The decoder
has to hold these previous values to complement the partial address values
given by each packet. It also uses this information to correctly decompress the
instruction address according to the processor’s operation mode and current
ISA. When it identifies a branch packet, its address bytes only inform the
least-significant bit changes since the last jump. The ISA state informs the
expected alignment of incoming addresses. The Checker can use context ID,
Hypervisor, and security state information to identify illegal operations or
changes in the control, depending on the implemented basic software model.

The decoder can require an extremely complex architecture due to the trace
protocol’s nature. Its implementation can change considerably depending on
the target processor architecture. The simplicity of the Leon 4 processor’s
trace packet, for example, only requires a single cycle to parse a packet that
already convenes all the information needed by the decoder output interface
(Section 4.4).

6.1.3 Control-Flow Checker Core

The architecture-independent components correspond to those that can be
used across different processors and trace hardware architectures. They only
require the implementation of the generic trace interface provided by the De-
coder. The monitor’s verification stage is separated into two units, one tasked
with performing the correctness checking operations and another responsible
for storing and providing access to encoded control-flow information. They
correspond to the control-flow Checker and the configuration memory units.

The Checker is the central unit of the error detection stage. It receives the
current CPU state changes through the trace and compares these changes to the
latter possible states with the configuration memory. The Checker’s general
execution flow and checking operations are shown in the diagram in Fig. 6.15.
A target address check is performed depending on the type of branch executed.
The component’s internal structures are updated accordingly if the branch is
correct. For example, if the program makes a function call, its return address
is pushed to a call stack implemented in hardware. When it executes a return
instruction, it is dynamically compared to the top of this stack to check for
errors. An error signal is sent to the processor if any CFEs are detected.

139

6 Hardware Control-Flow Monitoring Architecture

Figure 6.15: Operational diagram of control-flow checker after a new CPU state.

A pipelined FSM architecture and hardware structures are required to im-
plement this checking mechanism. They hold replicated software data for
sub-routines and interruption stacks, as shown in Fig. 6.16. In the configura-
tion memory, the CFG corresponding to the different tasks and interruption
routines of the current binary is stored. Given an address query, this dedicated

140

6.1 Monitor Architecture

memory must inform the program checker of all related information of the next
sequential branch from the input address.

Figure 6.16: Hardware structure of main control-flow checker component.

This Checker holds hardware structures that replicate software systems and
information about the processor’s current execution state. The first of such
structures are the last state registers, which hold the last known PC state of the
processor, current nesting level, i.e., the number of nested calls that have not
returned yet, as well as secure execution state information, e.g., if the processor
is running in a privileged execution mode or similar. This PC state is updated
after every branch with the value of its destination. When the CPU handles
interruptions, it must first update the PC with the interrupted instruction’s
address. This address is acquired with Update packets and saved in the stack

141

6 Hardware Control-Flow Monitoring Architecture

to be checked at the interruption’s return. Soon after this Update, a Branch
packet informs the interruption’s vector address that will be executed.

The main structures handled by the Checker are the replicated stacks for pro-
cedure calls and interruption requests. Each stack saves the LR values needed
to know return branches’ targets dynamically. These stacks must be updated at
every branch that corresponds to a procedure call or procedure return instruc-
tion. The type of branch is retrieved from the configuration memory using the
current state’s address. Whenever the processor is executing a block related to
a procedure call or return, the program checker knows that the next incoming
branch must be checked against a function address or the topmost address on
the stack.

Using the current PC state, the Checker retrieves the configuration memory
data on the current basic block. Each block holds the information of its
corresponding branch, executed as the last instruction in the block. This
information is used to know what type of verification and update operation
must be performed. Our single task checker must perform the following
operations depending on the current block:

1. Direct Branch Check: The trace packet must correspond to a direct
branch and its address must match the current block target address. The
PC copy is then updated with the new address.

2. Conditional Branch Check: The next trace packet must correspond to
a conditional branch, if it is marked as taken, the address and block target
address must match. The PC copy is updated with the target address if
the branch is marked as taken or with the sequential next block if marked
as not taken.

3. Procedure Call Check: The verification is done the same as for a Direct
Branch Check. The update operation however must update the PC copy
and push the next sequential block address to the stack.

4. Procedure Return Check: A return from a subroutine must be im-
plemented as a direct branch, it is only valid if the target address of
the packet corresponds to the value on top of the stack. This value is
removed from the stack and used to update the internal PC.

142

6.1 Monitor Architecture

The Checker uses different pipeline stages to manage each of its essential
operations. To perform all the described operations with minimal stalling or
hindering of the input trace interface. The pipeline architecture is presented in
Fig. 6.17. It comprises five execution stages and one error stage, only reached
if a control-flow error is identified. The five stages correspond to an input
stage, a stage to request data to the CFG memory, one synchronization stage,
one memory read stage, and a final checking stage. If the checking stage finds
a discrepancy, the error detection stage is triggered where an interruption is
sent with the precise error resulting information.

Figure 6.17: Example of the information flow through each pipeline stage.

The input stage is responsible for accessing and communicating to the decoder
interface to get incoming trace information. It determines if the new CPU
address is off-bounds from the limits of the current function, quickly informing
if a jump to a forbidden region has occurred. In the example in Fig. 6.17 we
see the arrival of different packets between cycles 0 through 5. Packets that
give address information are shown as A0-3 in the pipeline. That is the current
address pointer by the PC. Atom packets provide a packet with a single N in
our implementation. That is a signal that a conditional branch was not taken.

The configuration memory read request stage uses the input information to
fetch the current block information combined with the current internal CPU
state. In the request stage, the address in the trace packet combined with

143

6 Hardware Control-Flow Monitoring Architecture

the Checker’s copy of the CPU state is used to get the data about the next
branch following from this address. Meanwhile, new packets with branch
trace information arrive. In the example, address A0 will be used to find the
information needed to check if address A1 is correct. The CFG entry for A0,
shown as E(A0), contains the data for the next branch that will be executed
following sequentially from A0. All entries E(x) are determined through static
analysis and stored in the configuration memory.

With this setup, the first branch is always assumed to be correct. The Checker
can keep treating incoming packets as correct so long as the checking stage
does not trigger an error. The final comparison check stage will trigger an error
at the very first mismatch between a CFG entry trace and its corresponding
packet data. The data used to fetch the entry is one cycle before the currently
checked packet. Therefore the retrieved CFG information corresponds to a
correct state. If an error is detected, it will have been the first error in the
pipeline sequence, and all following packets are discarded. Finally, the check
stage compares this read CFG information with the trace data and the top of
its internal stacks.

N packets complicate the process since they only implicitly inform where the
current PC is. To find out the actual current address, we need the instruction
address value of the last branch. The N packet tells us that the PC now points
to the following address from it, i.e., the last branch’s instruction address plus
four. The pipeline must stall for one cycle so that the entry fetched from the
last packet can be used for the current request stage.

This architecture detects all deviations from a binary application’s control-flow
operation targets. These deviations are, for example, the creation or deletion
of branch instructions, stack overflows or underflows, the modification of any
target addresses, and the execution of unallowed interruptions. The correct
execution of loops and the correctness of conditional branches could also be
verified with a more complex binary analysis. For example, monitoring how
many times a conditional loop is taken before its condition is not taken. This
work’s fined-grained yet straightforward analysis does not require complex
signature generations and calculations to identify incoming errors. The com-
plexity of what types of errors are identifiable lies with the trace architecture
and the available information given by the CFG configuration memory.

144

6.1 Monitor Architecture

6.1.4 Configuration Memory

The configuration memory is responsible for providing the results of block
queries made by the program checker. The Checker uses this to evaluate new
incoming trace packets. The process used to acquire the CFG information
that fills this memory is described in Chapter 5. The memory must give the
corresponding block information for every instruction address, i.e., the block’s
branch information. Trace data inherently works with instruction address
values regarding currently executed instructions or target branch addresses.
Another constraint imposed by branch tracing is the need to use a reduced
CFG model, contracting all edges of the graph that do not correspond to a
transition due to a branch instruction. This contraction results in blocks having
multiple input points and multiple addresses as valid incoming branches.

The CFG memory also has to be as fast as possible to minimize any detection
delays. Therefore, incoming addresses must be mapped with their respective
block information, optimizing the memory for total size and access times. The
solution proposed in this work is based on an associative memory with variable
block sizes. Therefore, this configuration memory takes the form of a type of
content-addressable memory (CAM). The general architecture of our memory
is shown in Fig. 6.18.

Many optimized architectures exist for this type of associative memory. This
implementation uses a two-stage access method. First, the current CPU in-
struction address is used to retrieve its corresponding block’s key. This key
is 12 bits wide and is then used to retrieve the basic block entry from the
CFG memory. This intermediary key table has one entry for every instruction
of the monitored function, similar to an inverted list. First, the instruction
address is normalized by subtracting the monitored function’s base address.
Bits 15 to 2 of the instruction address are used as a tag to access the Key
values of the instruction’s block. We discard the address’ least significant
two bits because instructions are 32-bit aligned in memory. A tag with 14
bits allows us to uniquely identify instructions in a contiguous region of 64kB
(141→ 214 = 64kB).

The key table memory contains one entry for every monitored branch instruc-
tion. The block key size : retrieved by this table can be set according to the
number of blocks in the program (: = ;>62 (#�)). Using a 12-bit key allows
us up to 4096 blocks, more than any of our tested benchmarks. The total

145

6 Hardware Control-Flow Monitoring Architecture

Figure 6.18: Configuration memory architecture with key access and entry retrieval stages.

table size is then 32bit Afterward, the memory controller immediately uses the
block Key to retrieve the final CFG entry that holds the desired basic block
information. Figure 6.19 shows the layout of a single entry in this memory.

Each block entry is a 32-bit value that holds the next sequential block’s target
address, the next sequential address, and the type of the corresponding branch.
Each stored address uses the reduced tag format, so the Checker can directly
request the key and entry for current PC addresses. The remaining four most
significant bits correspond to the block’s branch type information. It is used
to perform the correct branch monitoring operations in the Checker. They
correspond to the type of control-flow operation associated with the block. Bit
0 identified if the branch is conditional or not, signaling that the next address

146

6.1 Monitor Architecture

Figure 6.19: Entry format of the CFG configuration memory.

field is a possible target of the branching operation. The remaining 3 bits
inform the remaining complementary eight possible block types:

• 4’b000x: Direct Branch

• 4’b001x: Procedure Call

• 4’b010x: Procedure Return

• 4’b011x: Interruption

• 4’b100x: Interruption Return

• 4’b101x: Unused

• 4’b110x: Unused

• 4’b111x: Unused

Besides blocks having multiple input points, their sizes are also not uniform.
Although basic blocks have an average of 10 instructions for a program, their
actual sizes present a large variability, with many blocks having only one in-
struction and some as much as 385. The irregularity of basic block sizes and
base addresses makes it extremely hard to implement a suitable comparison
mechanism or hash function that retrieves a block key from an arbitrary instruc-
tion address. Our reduced block configuration allows a block to have multiple

147

6 Hardware Control-Flow Monitoring Architecture

input points. Therefore any instruction address that belongs to a specific block
can be a possible entry point. Dealing with diverse instruction addresses is
even more significant if the program implements asynchronous interruptions.
When the interruption ends, the Checker must restore the state previous to the
interruption. The interrupted address can correspond to any arbitrary point
inside the program, and the Checker needs to be able to retrieve the basic block
information related to that point.

Equation (6.1) gives the total memory size (<4< of our implementation, where
#� corresponds to the total number of contiguous monitored instructions, #�
the total number of basic blocks in the monitored function, C is the tag length,
and : the key length.

(<4< = 2;>62 (#�)−2 ∗ ;>62 (#�) +2;>62 (#�) ∗ (4+2∗ (;>62 (#�) −2))
= 2C ∗ : +2: ∗ (4+2∗ (C))
= 214 ∗12+212 ∗32
= 320kbit = 40kB

(6.1)

This configurationmemory is implemented in the FPGA test-case platform as a
read-only memory (ROM) in through dedicated Block RAM (BRAM) compo-
nents. The final memory size was 40 kB, or about 10% of the available BRAMs
resources of a common Zynq-7000 device, and 1% of BRAM resources in a
Zynq UltraScale+ device. Accessing this memory does not degrade the ap-
plication’s performance, as it does not share the main memory bus with the
device data and program memory. The configuration data is generated from
the binary executable corresponding to the monitored program. This flexible
scheme allows the system to configure the FPGA before executing a critical
function with its corresponding configuration data. Although this work uses a
12-bit key in its implementations, this value can be changed to accommodate
smaller or bigger program functions at the cost of larger configuration memory
requirements.

6.2 Detectable Control-Flow Errors

As the primary information-gathering interface used in this architecture, in-
struction branch tracing defines what errors can be detected. The pipeline

148

6.2 Detectable Control-Flow Errors

region used to trigger the creation of trace packets also influences the errors
that might be detected. The architecture presented here, called CFTC, can
detect any errors during a branch instruction execution if trace packets are
created after the pipeline commits the operations. If packets are transmitted
during the fetch stage, it can only verify that the control-flow was correctly
executed up to and including the last instruction before the trace, but not the
trace instruction itself. Trace packets from ARM’s PTM and ETMv4 modules
are generated during the fetch stage but transmitted differently. The PTM unit
only transmits packets after the corresponding instruction has been committed.
ETMv4 transmits them immediately and uses an additional commit or discard
packet to tell if possibly speculative instructions were committed or not.

Chapter 2 explains the major types of CFEs that can occur during program
execution. With trace data, any Incorrect Targets and the Branch Creation of
control instruction in non-control code sections can be easily identified. Their
detection delays are constant and determined by the total trace bus latency and
monitor unit latencies, which will be around the same order of magnitude as
the detection unit’s clock period. Branch Deletion CFEs can be detected, but
with a longer latency. They are detected the moment the next branch, which
sequentially follows the deleted one, is executed. A hardware monitoring unit
can detect and sign the wrong branch order, with the added time latency of the
next basic block’s execution time. We can add to these cases all other CFEs
that do not directly delete or create a branch but modify a conditional branch
to an unconditional or change any other part of the instruction opcode, causing
it to behave incorrectly.

Direct PC Errors can be similarly detected. Changing the PC’s value may
not cause the generation of a trace packet. Therefore, it cannot be directly
observed but inferred by the wrong sequence of instructions that the processor
will fetch. This specific type of error can cause three types of wrong fetches.
It may cause the processor to fetch from a memory region outside of the one
allowed by the program, in which case it will be directly detected by memory
management and protection mechanisms. Alternatively, it will cause a branch
to a region inside the program’s code. Once the processor starts to fetch from
the program region after the CFE, the first branch fetched and executed from
a code section not corresponding to the following allowed edges in the CFG
will trigger an error. Therefore, the only possible PC errors not detected by
our technique are those that cause the PC to point to an address inside the same

149

6 Hardware Control-Flow Monitoring Architecture

basic block to which it was already pointing. If such a fault occurs, the next
fetched branch will still be the expected one. In such a scenario, the processor
will have executed more or fewer instructions of the same basic block, possibly
causing data errors.

Finally, to detect Incorrect Condition Checks, the method used must either
implement NMR for branches and the comparison instructions that precede
them in a software-based approach. Hardware-based methods must use a
pre-computed reference execution of the correct comparison results or have
the means for a parallel runtime replication of the same operations using the
current input data. However, in both cases, the protection goes only as far
as the replicated instruction chain, with all condition codes and internal state
flags of the processor remaining unprotected. These schemes still propagate
any errors occurring to the compared data if it happens before the duplicated
comparisons. Therefore this data remains unprotected. The incorrect check
will be done both by the processor and the monitor. Hardware monitors
must know which kind of structure these conditional control-flow instructions
belong to. Loops that execute a fixed number of iterations are the easiest to
verify, and if-else statements with generic data checks are the hardest. Due to
these factors, detecting condition check errors is not currently in the scope of
this work.

6.3 Summary

This chapter presented the detailed architecture of the principal components
of the hardware monitor. It first presented the translation stage components
composed of the trace source parser and trace packet decoder. The objectives
of most trace protocols lie in reducing bandwidth and memory storage require-
ments. This focus on data compression means that decoding such data can be
very demanding. The most important aspect is that each packet is processed
in a single cycle or as fast as possible, e.g., all the packet’s data is consumed
and disseminated over the Decoder’s pipeline in a single cycle. It showed an
architecture that performs as desired for trace frames, separating the data into
different source streams. The chapter also showed how, for ARM CoreSight
traces, trace packets are so irregular that a single cycle process would cost
many hardware resources. However, the small size of packets allows for an

150

6.3 Summary

optimal byte-processing that can be more easily implemented in an FPGA and
depend only on the average packet size. In Chapter 7 it is shown that pack-
ets are usually between 1 and 2 bytes, meaning that they can still be quickly
processed through an FPGA accelerator.

The portable architecture for both the central Checker and ConfigurationMem-
ory components was also presented here. These components can function
independently of the branch architecture used. They are optimized for FPGA
resources and can detect a wide range of different CFEs. CFTC’s CFG config-
uration memory format can be changed according to the number of monitored
instructions and basic blocks. A modular architecture approach such as this is
ideal for fault tolerance and error detection methods. This technique opens the
space to focus on different optimization aspects such as trace decoding speeds,
configuration memory size, and detectable errors. These methods also allow
for extensions that can enable, for example, the detection of inter-process syn-
chronization errors by determiningwhich executed basic blocks are responsible
for synchronization operations and implementing suitable hardware structures
that can replicate current resource allocation chains.

151

7 Evaluation and Fault Injection
Results

This chapter evaluates the proposed control-flow monitor for an ARM Cortex-
A9 architecture case study implemented in a Zynq-7000 FPGA. First, the
platform is analyzed in terms of its hardware implementation results, examin-
ing its resource sub-component usage and comparing it to the protected CPU
estimated area in gate counts. One of the main contributions of this work
is also detailed here: a new error detection latency model for this and fu-
ture trace-based monitoring techniques to evaluate these systems’ usability in
real-time systems. Most safety-critical domains must also adhere to soft and
hard real-time constraints for executing software and system functionalities.
Here it is demonstrated how to use static binary analysis to estimate monitor
utilization pressure using Queue Theory models. This work also proposes a
new way to estimate the AVF of a black-box program-trace subsystem such
as the CoreSight, presenting collected measures for the case of the Cortex-A9
CoreSight.

Finally, this model and the proposed hardware architecture are validated by
collecting different benchmark program traces in single- and dual-core setups
under fault injections. The chosen benchmarks are initially evaluated running
in a single-core configuration through static fault injections based on a binary
modification scheme presented in Section 7.4.3. Later, the same benchmarks
are verified under an asynchronous dual-core configuration through runtime
fault injections based on an interruption scheme presented in Section 7.4.4.
The first injection analyzes this monitor’s ability to identify branch-opcode-
related faults, including almost 74% of masked faults. Runtime injections
allow for observing different latencies between trace packets according to how
far in its execution each program was. It shows the possible effects visible to
an isolated monitor from the trace interface and other opportunities in using
hardware tracing for fault tolerance and programmonitoring designs with these
evaluations. Through the model and evaluations presented here, the results of

153

7 Evaluation and Fault Injection Results

this thesis can precisely identify metrics and constraints on the employment of
such monitoring techniques for real-time systems.

7.1 Hardware Implementation Results

This section presents the resource usage of the proposed CFTC architecture in
comparison to different alternative solutions. Table 7.1 shows the implemen-
tation results of the full architecture described in Chapter 6, in the test-case
FPGA. It has an integrated dual-core Cortex-A9 application processor. The
proposed CFC scheme only required a total of 693 LUTs and 706 Registers, ac-
counting for 1.3% and 0.66% of available resources of the FPGA. Our monitor
required a total of 3654 LUTs and 2493 flip-flopss (FFs) in the multi-core con-
figuration, accounting for 6.9% and 2.3% of the available resources of the Zynq
platform. Meanwhile, the monitor’s single-core configuration required 4.3%
and 1.9% of available LUTs and flip-flops. The additional overhead is needed
for the implementation of the trace parser and source aggregator, described
in Section 6.1.1. These components parse and unpack trace frame informa-
tion used to combine multiple packets with their execution unit’s identification
number. An extensive pipeline structure is required to avoid bottlenecks in
parsing this frame, with many required comparison and shift operations.

Table 7.1: Total (and Percent) of used resources for our CFTC test-case implementation.

Module LUTs FFs Muxes BRAMs

Source Parser 1016 (1.91%) 729 (0.69%) 8 (0.02%) 1 (1.43%)
Source
Aggregator 1341 (2.52%) 422 (0.40%) 0 0

Trace Decoder 860 (1.62%) 731 (0.69%) 37 (0.09%) 16 (11.43%)
Checker 435 (0.82%) 610 (0.57%) 0 6 (4.29%)
Control Memory 2 (0%) 1 (0%) 0 14 (10%)

Total 3654 (6.87%) 2493 (2.34%) 45 (0.11%) 37 (26.43%)
Total (Single-
Core) 1297 (2.44%) 1342 (1.26%) 37 (0.09%) 36 (25.71%)

154

7.1 Hardware Implementation Results

It is standard for hardware monitors and complex FPGA components to be im-
plemented using a dedicated soft-core processor. Soft-core processors provide
flexibility, are usually small, and implement enough computation capabilities
for most tasks unrelated to high-bandwidth data processing. Table 7.2 presents
a comparison of resource requirements between different soft-core proces-
sors implemented in the Zyqn-7000 and our monitor architecture. Rocket
is a 5-stage in-order core implementing the Risc-V 32-bit and 64-bit general
architectures [140]. Taiga is a similar but optimized RISC-V 32-bit based
processor [141]. Meanwhile, Leon3 is a Spark V8-based soft-core [76, 131]
and MicroBlaze is a Xilinx soft-core processor optimized for FPGAs such as
Zynq. For this comparison, the Real-Time implementation of the MicroBlaze
processor was used. It provides timing guarantees and an average best case
between resource usage and performance.

The only soft-core that achieved a similar resource utilization to CFTC’s con-
figurations was Xilinx’s MicroBlaze, targeted and optimized for the Zynq
FPGA boards. In this comparison, the BRAMs used for the input FIFO buffers
of the decoder stage are omitted. Such soft-core processors as replacement ar-
chitectures would still require the same, or even more significant, input buffers.
The same applies to the memory used for the control memory. However, its
usage would depend on the configuration adopted for the control data, which
can change with design and implementation. Using soft-core for both decoder
and checking stages does not remove the difficulties inherent in processing the
incoming trace information and makes it harder to implement a meaningfully
portable and scalable system.

As discussed in Chapter 3, any additional overhead in the hardware area creates
new points where faults may occur. Due to the design of CFTC and its focus in
isolation from the central processor, errors due to SEUs inmonitor components
cannot influence or damage the executing software. However, any such faults
can cause de detection of false positives, as a particle hit causes the corruption
of information conveyed by the trace. The gate counts of the Cortex-A9 were
compared to the estimated gate count of CFTC given its total resources to
evaluate the size between the secured processor and monitor. Comparing gate
counts gives a good estimation likelihood of soft-errors, given two devices
implemented in the same technology and operating under the same conditions.
The Cortex-A9 has a total of 20 M transistors or around 7 M gates. Our CFTC
monitor estimate has 93 K gates, based on Xilinx’s proposed average of 15

155

7 Evaluation and Fault Injection Results

Table 7.2: Comparison of resource usage between the CFTC monitor and dedicated soft-core
implementations.

Resources LUTs Flip-Flops BRAMs* Total Resources

Rocket 17144 9058 10 26212
Taiga 3998 2942 10 6950
Leon3 6704 3640 2 9648

MicroBlaze 2465 2120 6 4591
CFTC 3654 2493 21 6168

CFTC Single-Core 1297 1342 20 2659

Ratio to CFTC Multi-Core Resources

Rocket 4.69 3.63 0.48 4.25
Taiga 1.09 1.18 0.48 1.13
Leon3 1.83 1.46 0.10 1.56

MicroBlaze 0.67 0.85 0.29 0.74
CFTC 1.00 1.00 1.00 1.00

CFTC Single-Core 0.35 0.54 0.95 0.43

Ratio to CFTC Single-Core Resources

Rocket 13.22 6.75 0.50 9.86
Taiga 3.08 2.19 0.50 2.61
Leon3 5.17 2.71 0.10 3.89

MicroBlaze 1.90 1.58 0.30 1.73
CFTC 2.82 1.86 1.05 2.32

CFTC Single-Core 1.00 1.00 1.00 1.00

gates per logical FPGA resource [142]. Therefore, our implemented multi-
and single-core configurations correspond respectively to 1.3% and 0.6% of
the total size of the hard-core CPU, further showing the minimal requirements
used for a dedicated trace monitor system.

Besides its advantages in size and resources, this work combines the use of
such a component with tested and validated protection techniques for hardware
components and FPGAs. Methods such as TMR, memory scrubbing, and
periodic resets can be used to improve the reliability of such components
significantly [143].

156

7.2 Models for Trace-Based Monitoring

Table 7.3: Approximate gate count in relation to implemented Cortex-A9 processor.

Module Gates Ratio to CPU Size

CFTC 92880 1.33%
CFTC (Single-Core) 40140 0.57%
Cortex-A9 2000000 100%

7.2 Models for Trace-Based Monitoring

This section explains a new model for trace profiling and identifies laten-
cies related to trace-based monitoring architectures. The trace mechanisms
available in the market can provide precise timing measurements of processor
events. This work uses these measurements from trace packets to identify
transmission and error detection latencies in the proposed architecture. Some
of these latencies are intrinsic to the trace and debug subsystem. The model
and measurements show how the different latencies and timing parameters re-
late to the detection latency and error response time. The two most important
measurements for this monitor architecture are:

• The detection latency, i.e., the time from the moment an error occurs
until the Checker identifies it.

• The response time, i.e., the detection time combined with the latency
taken by the CPU to respond or handle this arising error.

Most safety-critical environments have soft or hard real-time requirements
for executing different functionalities. These requirements also apply to any
safety mechanism therein. To properly use program branch traces with real-
time online monitors, we must be able to estimate the trace data bandwidth.
This bandwidth directly influences the response and detection times of the
system and monitoring unit. This estimation will shape the choice of hardware
component for the monitor’s implementation, e.g., if FPGA or ASIC, and the
target processor’s configuration.

157

7 Evaluation and Fault Injection Results

Figure 7.1: Timing diagram for the generation, transmission, decodification, and verification of a
trace packet.

7.2.1 Error Detection and Error Response Times

The most precise way to profile and measure the time of different events inside
the processor and SoC is through tracing. In offline profilers and tracers, this
data is saved and later analyzed. All recorded events show an instantaneous
timestamp relative to the CPU clock and can be directly related to one another
as they all occur inside the central execution unit. In online tracing and,
more specifically, online monitoring, multiple parallel components can create
events in response to the processor’s actions. However, these trace events
are not instantaneously related to their causes. Figure 7.1 shows a timing
diagram of a sample execution of a general program and the steps between
executing a branch and its observation by the monitor. In this diagram, the
monitor is represented by its two main processing stages, i.e., the translation
and verification stages.

We can achieve increased observation capabilities into internal processor events
through tracing. However, the observability functionalities only exist for the
processor and not the trace subsystem. Therefore we can only correlate and

158

7.2 Models for Trace-Based Monitoring

measure the time between different processor events. In the scenario presented
in Fig. 7.1, we only have the information on how many cycles transpired
between the 1BC and 2=3 branches. There are no direct means to measure the
timings between branches and monitor events directly. As a result, it is only
feasible to compare events that manifest inside the processor.

We must adequately characterize the error detection time of the system pro-
posed here for its use in real-time critical systems. The detection time (!34C)
can be expressed, as shown in Eq. (7.1) and Fig. 7.2, as the sum of the genera-
tion and transmission latency (!)), the decoder latency (!�), and the latency
to check and verify the branch information (!�). For a system with multiple
clock domains, such as the test case where the monitor is implemented in an
FPGA, we must consider the relation between CPU and monitor frequencies
(5 = ��%*/�"$#). This way, all presented times can be expressed in units
of processor clock cycles.

!34C = !) +
��%*

�"$#
(!� + !�) = !) + 5 (!� + !�) (7.1)

These latencies are directly related to the internal structure of each hardware
subsystem. The architecture proposed in this work can achieve decoding and
detection times on the order of 10s of cycles, However, !) is intrinsic to the
SoC tracing system, i.e., the Cortex-A9 CoreSight, and we cannot precisely
calculate it without access to the design descriptions. !34C cannot directly
be measured as its endpoint lies outside the processor. Nevertheless, it is
possible to measure the processor’s total error response time (!'), shown in
the diagram of Fig. 7.2. The difference is that this reaction or response time
has an additional term corresponding to the latency of the interruption service
routine (ISR) (!� (').

All examined trace mechanisms from ARM to Intel provide a relative time
in cycles between two elapsed branches. Each branch packet can inform how
many cycles elapsed since the last executed branch. Therefore, it is viable
to combine standard trace logging and profiling with the online monitor and
measure the relative times of different events in the processor, including the
execution of erroneous branches and the start of response routines.

159

7 Evaluation and Fault Injection Results

Figure 7.2: Timing diagram of error response time.

To characterize all latencies, the monitor generates an fast interruption request
(FIQ) to the processor in two situations, when a CFE occurs and when a branch
to a specific target address is taken. An external microcontroller configures
these twomodes before the benchmark executes. The FIQ is a fast, low-latency,
and high-priority interruption that will cause the program control-flow to jump
to a dedicated ISR. It is possible to know how long the trace packet took

160

7.2 Models for Trace-Based Monitoring

between being generated and being received by the hardware unit if the setup
collects branch execution times before the ISR is serviced, i.e., the time it
took traversing the bus system. After the processor executes the target branch
instruction, but before the FIQ is sent, the system will continue running and
sending trace packets until it receives and handles the FIQ. Thus, only the
cycle counts of packets between the interruption-triggering branch and the first
jump to ISR are required to know the amount of time between both events. By
performing this measurement several times at different execution points, one
can minimize other factors that could account for the latency, such as packet
sizes or execution time variance.

7.2.2 Trace Generation and Transmission Latency

The latency !) to generate and transmit the trace packets is unavailable in any
documentation. Therefore the system must be treated as a black box and work
around the error response time to try and estimate !) , as shown in Fig. 7.2.
Therefore, we must minimize all other latencies that make up the measurement
when running transmission latency investigations. Themonitor is configured to
send an interruption only when a specific branch occurs. The hardware waits
for the program to execute �1 and immediately sends an interruption once
the corresponding trace packet is received. Hence, the Monitor verification
stage is bypassed and only the necessary time to decode the packet needs to
be considered. In these experiments, the processor runs at a frequency of
600 MHz, and the monitor at 100 MHz, corresponding to a factor 5 = 6.

The triggering branch is chosen to be a jump to a nearby area of memory.
This choice reduces the total time required by the decoder, minimizing its
latency. Following the format described in Section 4.3, the final packet has
only 2 bytes, requiring a total of 12 cycles to be processed. The code for
the corresponding ISR function is locked in the L2 Cache to minimize the
interruption handling mechanism’s latency. Thus, it can be optimistically
assumed that the function will be ready for execution in the next couple of
cycles following the interruption’s arrival. The estimation for this latency is
finally given by Eq. (7.2).

161

7 Evaluation and Fault Injection Results

!) = !A4B? − 5 (!� + !�) − !� (' = !A4B? −12− !� (' ≈ !A4B? (7.2)

For this equation to be a reasonable estimate, the measurement setup must
also ensure that the triggering branch is the first branch traced by the system.
This requirement guarantees that the trace bus and the monitor are idle at
the moment of decoding and interruption generation, avoiding any additional
delays from previous packets’ execution. These extra difficulties are explored
in the coming sections of this chapter. A total of 1000 measurements were
executed to estimate the variable !) , finally obtaining an average or expected
value of:

� [!)] = 346cycles = 577.7ns

At a time scale of thismagnitude, the effects of !� (' become highly significant.
Therefore, !� (' was also independently estimated for the same L2 Cache
locked configuration. However, the measurements of this variable relied on
the internal Core timers and the software-generated interrupt feature of the
processor’s GIC. A command is issued to the GIC to cause an interruption that
is immediately handled. A timer is simultaneously started and then stopped
at the beginning of the ISR. Through these tests, final estimates of the desired
!� (' variable were obtained:

� [!� ('] = 250cycles =⇒ � [!)] ' 100cycles

7.2.3 Real-Time Trace Processing Model

As first described in Chapter 6 and presented in Eq. (7.1), the latencies intrinsic
to our monitor are relatively small but are dependent on the operation speed
factor 5 between components and on the size of incoming packets. Real-time
trace processing poses a problem. The system must balance the rate of packets
generation to the monitor’s processing speed. If a packet’s data is not fully
consumed before the next arrives, it generates a backlog of packets in the input
buffer.

162

7.2 Models for Trace-Based Monitoring

Figure 7.3: Queue model of an online real-time trace monitor for a single-core processor.

CFTC is analyzed in terms of a producer-consumer queue model such as the
example of Fig. 7.3 to calculate and understand better the trade-offs and design
constraints of the system. The objective is to model the evolution of the input
buffer fill size (V) and the waiting time (,) experienced by a recently arriving
packet. These two values are directly proportional and related through the
trace service time (() or its inverse, the service rate (`), more commonly used
in Queue Theory, see Eq. (7.3).

, = (V =
V

`
(7.3)

The service time corresponds to the time necessary to process a complete
packet, i.e., its decoding time. Due to all current trace architectures’ irregular-
ities and focus on data compression, multiple cycles are required to process a
packet. As shown in Chapter 6, to process an entire packet in a single cycle re-
quires many parallel comparators and shift-register networks for realignments.
The best cost-effective approach is implementing a pipelined decoder such
as the one implemented in our CoreSight use case. In this case, the service
time is directly equal to the packet’s size or payload in bytes (%?:C) times the
frequency factor 5 . The payload of a trace packet can vary greatly, but it stays
on an average of 1 to 2 bytes for a minimal configuration. Figure 7.4 shows the
distribution of packets sizes for all our test-case benchmarks. The benchmarks
used and these results are further explained in Section 7.4.5.

(= 5 %?:C (7.4)

163

7 Evaluation and Fault Injection Results

Figure 7.4: Distribution of packet sizes for all tested benchmarks.

The main concern is in determining the packet generation rate. We must look
at the running software and its branch execution rate. The packets’ arrival
rate (U) is defined as the inverse of the packets’ inter-arrival time (Λ). The
inter-arrival time is the time between the execution of two branch operations,
which is the execution time of the individual basic blocks of the program. This
block execution time is a random variable. Given delays in memory access
or variations in the core pipeline state, the execution time of individual blocks
can change. The whole program’s inter-arrival time (Λ(C)) can be modelled as
a mixture distribution of its individual basic block execution times (Λ��8 (C)),
shown in Eq. (7.5), by considering the inter-arrival time, or execution time of
any basic block in the program (Λ��)

Λ(C) =
#∑
8=0

?8Λ��8 (C) =
#∑
:=0

58

#��

���8

�%� (C) =
1
U

(7.5)

This distribution combines the distributions of all # blocks in the program,
weighted by their probability of execution (?8). This probability can be esti-
mated by the frequency with which the block is executed over the length of an
execution (58), divided by the total number of executed basic blocks (#��). It
is also the total number of branches into a block 8 divided by the sum of all ex-

164

7.2 Models for Trace-Based Monitoring

ecuted branches. The execution time of a block 8 can be further approximated
by its number of instructions (���8) and the processor’s instructions per cycle
(IPC), which can be seen as the random, varying variable over the program’s
execution.

Both static and dynamic binary analysis techniques were combined to find all
these values. A program’s structure and input dictate the number and frequency
of branches’ and basic blocks’ execution. Three benchmark algorithms were
taken, Quicksort, Dĳkstra’s Shortest Path, and AES-256, and used branch
analysis techniques described in Chapter 5 to estimate the total number of
branches given their input sizes. The total number of estimated and measured
branches and the model errors are shown in Figs. 7.5 to 7.7. The models’ error
tended to zero in all algorithms as the input size increased. As the input size
increases, each algorithm’s main processing sections are stressed, minimizing
the effect of other program blocks.

By combining typical worst-case execution time (WCET) analysis with branch
count analysis, it is possible to obtain the overall average time between branches
statically. This analysis also shows how the algorithm’s most executed basic
block can estimate their overall branch arrival rate. So, given the arrival rate
of the most executed basic block (Λ��<0G), the following relation is obtained:

Λ(C) ≈ Λ��<0G

The test-case algorithms were profiled, and their overall branch inter-arrival
time distribution was compared to an exponential gamma distribution to verify
this approximation. The profiled distributions and fits for three of the algo-
rithms in two different compiler optimizations are presented in Figs. 7.8 and 7.9
for Dĳkstra, Figs. 7.10 and 7.11 for fast fourrier transform (FFT), and Figs. 7.8
and 7.9 for Quicksort. Except for Fig. 7.8, all fits properly represented the
probability distributions, even if in a worst-case distribution scenario, of the
tested algorithms. The fit for the Dĳkstra algorithmwithout optimization failed
the basic assumption of an exponential distribution. Due to the algorithm’s
longer execution time, the inter-arrival time distribution is skewed to the right
and more closely determined by a binomial rather than exponential gamma fit.

A reasonable worst-case approximation value can be achieved after finding
proper arrival and service rates models. The service time can be approximated
to the average packet size times the frequency factor 5 . This approximation

165

7 Evaluation and Fault Injection Results

(a) Measured and estimated number of branches

(b) Error percent

Figure 7.5: Estimation and model error of trace data generated for Quicksort algorithm according
to input size.

is used to calculate the final average waiting time of incoming trace packets.
The arrival rate can also be similarly approximated through a constant by the
inverse of our fitted function mode, i.e., the most common inter-arrival time.
This approximation simplifies the buffer fill rate calculation, leading us to the
derivation of Eq. (7.6) for the buffer fill over time.

166

7.2 Models for Trace-Based Monitoring

(a) Measured and estimated number of branches

(b) Error percent

Figure 7.6: Estimation and sampling of trace data generated for Dĳkstra algorithm according to
input size.

V(C) = UC − `C
= (U− `)C

= `(U
`
−1)C

= `(d−1)C, C > 0, d > 1

(7.6)

As long the arrival rate is lower than the service rate, all packets can be
processed in time, and the buffer will remain bounded. The ratio d = U

`
is

defined as the buffer utilization factor. As long as the utilization remains

167

7 Evaluation and Fault Injection Results

(a) Measured and estimated number of branches

(b) Error percent

Figure 7.7: Estimation and sampling of trace data generated for AES encryption algorithm accord-
ing to input size.

below one, the backlog of packets will not increase. However, if d is greater
than one, the buffer will start to fill. Section 7.4.5 presents an analysis of how
the instantaneous utilization factor influences the buffer fill and, ultimately, the
waiting times of packets in the queue before they are verified. This increase in
buffer fill, in turn, can lead to a considerable increase in error detection times
(!34C) of our or any trace-based monitor architecture.

168

7.3 Vulnerability Analysis of Hardware Monitor

Figure 7.8: Branch Inter-arrival distribution for Dĳkstra (compiled with o0).

Figure 7.9: Branch Inter-arrival distribution for Dĳkstra (compiled with o3).

7.3 Vulnerability Analysis of Hardware Monitor

A big problem of complex safety mechanisms is the lack of an additional vul-
nerability analysis [9, 10]. Most Techniques end up not meeting their desired
or announced goals due to unforeseen overheads in program execution, the

169

7 Evaluation and Fault Injection Results

Figure 7.10: Branch Inter-arrival distribution for FFT (compiled with o0).

Figure 7.11: Branch Inter-arrival distribution for FFT (compiled with o3).

liveness of critical memory elements, or additional memory components. In
Rhisheekesan et. al. [10] the vulnerability of software CFC schemes was stud-
ied, including one hardware CFC, the CFCET technique [65]. This technique
was one of the principal ones to explicitly compare trace branch targets against
a CFG generated in compile time. Their analysis shows how using program
tracing gives a significant advantage for real-time monitoring as it has low vul-

170

7.3 Vulnerability Analysis of Hardware Monitor

Figure 7.12: Branch Inter-arrival distribution for Quicksort (compiled with o0).

Figure 7.13: Branch Inter-arrival distribution for Quicksort (compiled with o3).

nerability costs [10]. It is thus a necessity of CFC techniques to also explore
new trace architectures such as CoreSight and Nexus that do not incur time
overheads to the running software [114,125].

As these studies show, correctly understanding the added complexity and vul-
nerability of fault tolerance techniques is extremely important [9,10]. The final

171

7 Evaluation and Fault Injection Results

efficacy of techniques that aim to protect against faults depends on their not
failing or lowering the architectural vulnerability of the final system beyond
their added reliability benefits. Hardware monitors already have an advantage
against software-based approaches in which they do not require code modi-
fications and thus are isolated from the running application. However, this
independence between monitor and application is only valid if the monitor
unit does not share any system or memory buses with the processing units. It
might cause bus contention as it consumes bandwidth and increases the overall
execution time due to increased memory access times.

However, hardware-based methods present an extra system complexity from
the additional trace and checker hardware. Unlike other techniques, this in-
crease in complexity does not directly correspond to an increase in program or
system vulnerability as these additional components do not impair the software
execution if they fail. Failures in such components may generate, at worst false
negatives if an error is undetected or false positives if they identify an error that
did not occur. Calculating the components’ vulnerability is also crucial in this
case. If the monitor stops being operational or due to errors in the trace data,
it fails to detect an error in the control flow. By implementing the monitoring
components inside an FPGA we can profit from additional FPGA protection
mechanisms such as scrubbing, or architectural fault tolerance methods such
as TMR [80,144].

One of the drawbacks of working with hard-cores is the lack of micro-
architectural information about the implemented processors and their subsys-
tems. A direct architectural vulnerability factor (AVF) analysis of the whole
hardware platform cannot be performed. However, the AVF of the monitor
can be calculated by considering the monitoring system as composed of two
main parts: the trace bus and the CFC unit itself. Calculating the trace bus’s
average bandwidth allows us to estimate the average probability that a fault
may hit one of the packets. All trace data used by the monitoring system must
be counted as part of the vulnerable architecture. If a packet does not contain
the correct information, the monitor will not detect processor faults, or it may
accuse false CFEs to the system. With the complete architectural description
of the CFC unit, performing its AVF calculation is very straightforward. At
the same time, vulnerability analysis of its programmable FPGA description
can be performed based on the size of its configuration memory.

172

7.3 Vulnerability Analysis of Hardware Monitor

The vulnerability of error detection mechanisms can play a significant role in
the final system reliability [9, 10]. Radiation experiments on SRAM FPGAs
have shown that proper fault tolerance techniques such as TMR and scrubbing
can significantly increase the reliability of FPGA designs, also suggesting
that FPGAs may have ceased to be the weakest link in the overall system
reliability [145]. As it has been shown, the overall FPGA area and resources
required by this work’s CFTC technique are minimal. Therefore it can be
easily combined with other FPGA protection techniques to safely monitor
the processing system without significant risk of failure to the CFC unit itself.
However, the internal CPU trace bus is typically used only for test and validation
during software development and does not have any additional safety features.

The size and vulnerability of an FPGA design are associated with its config-
uration memory size and the number of critical bits in that design, i.e., the
design’s ACE bits configuration [146]. It has been shown that the number of
critical bits of programmable hardware components is very low, often not more
significant than 15% of the total configuration memory [147]. The critical bits
correspond to the ACE bits of the FPGA configuration, any modification of
such bits will cause the underlying FPGA architecture to incorrectly route
signals across modules or incorrectly calculate the result of a function.

An analytical AVF calculation of the tracing subsystem can be performed by
using Little’s Law and knowing the average number of trace bits generated for
each branch packet and the average duration of a program’s basic block [47].
Although the trace bus is part of the hard-core processor architecture and
generally no information about its implementation is available, the AVF of the
trace bus can be computed by knowing, on average, the amount of trace packet
data that stays on the bus. Assuming that every bit in a program trace packet
is an ACE bit, the residency of packets in the bus needs to be calculated before
they reach our hardware monitor, as this will be related to the probability that a
fault can corrupt this data before it is parsed. Little’s Law, defined in Eq. (7.7),
states that given a constant and steady system, the long-term average number
of elements inside the system (�) will be equal to the long-term average arrival
rate of elements in the system (U) times the average waiting time, or latency,
they spend in the system (!).

� = U! (7.7)

173

7 Evaluation and Fault Injection Results

The rate U, defined by the branch inter-arrival time, depends primarily on the
basic block’s size since a new packet is always generated at the end of a block.
The latency required here was also previously calculated in Section 7.2.2 and
found to be on the order of 100 cycles (!) ≈ 100) Since a fault in the trace bus
will prevent the correct reconstruction of the CPU state, the reliability of the
incoming data must be identified. To calculate its AVF, the number of average
vulnerable memory elements over time must be known [43]. Following the
definition laid out in Section 2.3.4, the expression for the internal trace system
takes the form of Eq. (7.8).

�+�) =
�)

#)
=
U!)

#)
=
%?:C

� %�
���

!)

#)
(7.8)

Where %?:C is the average branch trace packet payload in bytes, ��� is the
average number of instructions for executed basic blocks, and �%� is the
estimated or the given number of instructions per clock cycle for a single
processor core. The �+� represents the fraction of bits in the hardware
vulnerable to errors. We assume that all bits in a trace packet must be correct
for this calculation. AVF is approximated by the average arrival rate of trace
data (U) times the average time required to traverse the bus (!)). Finally, this
is divided by the bus’s total internal memory (#)) to reach the final factor.

Although #) is unknown, Eq. (7.8) can be used to find the average amount
trace data being sent �) . Section 7.4 delineates the performed fault injection
tests and also characterizes the benchmarks used for those tests. Tables 7.5
and 7.6 present the collected measurements for all benchmarks. With tested
values of �%� = 1.1, %?:C = 2B, ��� = 7, and !) = 100, the total average
number of critical data elements inside trace bus is estimated as:

�) =
2∗1.1∗100

7
≈ 32B

This value is smaller than the total amount of bytes present inside a single
core’s pipeline. Even using the maximum possible �%� of the Cortex-A9
processor only gives an average number of elements of:

�<0G) =
2∗2.5∗100

7
≈ 72B

174

7.4 Fault Injection Tests

Caches of modern processors can store data in the order of kilobytes or
megabytes. Thus, the trace system does not significantly add to the overall
number of vulnerable bits in the CPU architecture. Our theoretical results also
match with radiation experiments performed by Peña-Fernandez et al. [148]
where the trace mechanism was used to detect faults through their PDTC ar-
chitecture. To correct errors in the programmable logic that may affect their
component, a Xilinx’s soft-error mitigation (SEM) controller could correct and
detect faults in the FPGA. Thus, even a complex processor architecture such as
the Cortex-A9 CoreSight can reliably be operated in a dangerous environment.

7.4 Fault Injection Tests

This section describes the methodology for evaluating the CFTC error-
monitoring system under a fault injection environment. First, the methodology
behind fault injection tests is explained, and the possible types of tests available
are outlined. The section then explains the setups for the chosen types of tests
that best fit the current test-case scenarios. Finally, the error detection and
timing results are presented. They show a definite set of metrics and design
choices that can be used for the final application of this and similar monitors
in actual industry implementations.

7.4.1 Methods for Evaluating Fault Tolerance Techniques

One of the most common methods to evaluate the efficiency of fault protection
and detection mechanisms is through hardware or software fault injection.
A fault injection campaign consists of running the chosen application and
hardware system multiple times, either in an irradiated environment, such as
radiation-based FI, or in a controlled setup that inserts a single fault or bit-flip
during an execution, called simulated or software-based fault injection.

Such campaigns intend to approximate the system’s probability of failure,
%(�), depending on the used fault model, such as described in section 2.3.3.
During a fault injection run, if the system stops responding or reaches a state
from which it cannot recover to keep its functionality, it is said to have failed.
To calculate %(�), the total number of failure events, Ω� , is counted against

175

7 Evaluation and Fault Injection Results

the total number of executions or number of faults injected, # . Their ratio is
then used to predict the probability that a fault in the system causes a failure:

%(�) = Ω�
#

(7.9)

For radiation injection campaigns, where faults occur randomly and uncon-
trollably, # is the number of total executions under radiation, and %(�) is the
execution rate of application runs that did not execute correctly. In targeted and
controlled fault injections, where faults are inserted in specific simulated hard-
ware elements or specific software instructions, exactly one fault is injected
per execution, and # is the total number of injected faults. In such cases, %(�)
gives the rate of single faults, causing a system’s failure. These campaigns
are performed both for the unprotected application, called the baseline or un-
hardened configuration, and for the one protected through the method we wish
to validate, called the hardened version. If failure probability approximations
are run for both the baseline, %� (�), and hardened cases, %� (�), we can
calculate the reliability gain given by the technique:

A =
1−%� (�)
1−%� (�)

=
'�

'�
(7.10)

Where ' = 1− %(�) is called the system reliability, or the probability that
the system executed correctly and did not fail. For a sufficiently large #
with well-distributed faults, A will equal the real gain given by the technique.
Different approaches have different properties and correspond to trade-offs
in cost, accessibility, and controllability. Table 7.4 summarizes 5 common
approaches to fault injection.

Accelerated radiation testing, or heavy-ion radiation, uses radiation facilities
and particle accelerators to simulate the exact effects of environmental radiation
on the board. The tested device is placed in a sealed vacuum environment and
then irradiated with particles while the test application is executed. This
approach can test the whole device and stress all possible faults inside the
device. However, test facilities are costly, and depending on the radiation
source, the tested chips must be modified and decapsulated so that the particles
can affect the individual transistor gates.

176

7.4 Fault Injection Tests

Table 7.4: Summary and properties of different fault injection approaches [31, 149].

Property Accelerated
Radiation

Simulated
Hardware

Runtime
Software

Static
Software

Accessibility Very High Medium Low Low
Controllability Low High High High
Intrusiveness None Low High Low
Repeatability None to Low High High High
Injection Speeds Medium Variable Low Medium
Cost High Medium Low Low

Simulated hardware requires a system description and a tool to execute the
software application. They are highly dependent on the type and level of detail
the hardware description gives. Cycle accurate and bit accurate simulations
usually require a complete VHDL description of all hardware components
and their connections, usually producing simulation times several times that
the application requires to run on the actual hardware. Instruction accurate
simulation can be run much faster than the application requires, but at the
component detail and accessibility cost. It must also be noted that simulation
environments for complex systems, such as multi-core FPGA SoCs, usually
must be built from scratch and that access to model descriptions is very costly
and not easily accessible.

Software implemented fault injection presents themost negligible costs and has
limited access to injection targets. These approaches depend on defined inter-
ruption routines that stop the application at specific time points and insert faults
at specific memory addresses or registers. Other approaches work by creating
a modified execution binary with the fault pre-inserted in a specific instruc-
tion. These different binaries are then executed, and the modified instruction
simulates a possible upset in pipeline or register file memory components.
Although very cheap and reproducible, these last approaches overestimate the
effect of faults in instruction registers compared to other system elements.

The use of branch tracing hardware modules brings difficulties regarding eval-
uation procedures. Current modern simulators such as Gem5 and OVP lack a
proper simulation of architectural instruction trace mechanisms, opting to pro-

177

7 Evaluation and Fault Injection Results

vide debugging mechanisms as features of the simulators themselves. Avail-
able simulators are optimized for instruction level and architectural simulation.
They rarely provide the means to simulate a complete SoC or FPGA integrated
system. The best option for software-implemented hardware simulation would
be a completely customized and dedicated Register or Transaction Level sys-
tem simulator for each specific platform. Implementing such a simulator runs
outside of the scope of this work and could be a different topic of interest for
future extensions and analyses of this work.

For software fault injection, two approaches are possible: either directly modi-
fying the program at the binary level or using unique interruption routines that
modify the architectural register values to insert a fault before returning to the
application. Both approaches have trade-offs that must be analyzed. Using
interruption-based fault injection creates overheads and modifies system be-
havior as all cores in a multi-core setup must be simultaneously stopped while
the injection routine is running.

In binary injections, measures must be set to ensure that the faulty instruction
will execute only in one core. For asymmetric multi-processing (AMP)
setups, where each processing unit works on its independent binary code, this
can be easily done, but for symmetric multi-processing (SMP) setups, most
commonly used in OS-based systems, this is not the case. One solution for
SMP setups is creating similar but separate functions for processing units. Like
this, faults can be easily injected, but the advantages of SMP such as shared
synchronization data structures used by operating systems are still kept.

Many different fault injection approaches have been proposed in the literature
with trade-offs in cost, accessibility, and controllability. Due to trace, hard-
ware simulation approaches and injections through software interruptions are
challenging to adopt. Therefore, this work opts for static software injections
for the performed tests, i.e., modifying the code’s executed binary before each
execution. This chapter presents results for both runtime and static software
fault injection campaigns.

178

7.4 Fault Injection Tests

7.4.2 Fault Classification

After defining the proper fault-injection campaign setup, each run’s outcome
must be classified. In the campaigns performed here, the outcome of each
execution is classified according to the following categories:

• Masked: represents fault injection runs that ended correctly and with
the correct output.

• SDC: for silent data corruption (SDC), characterizes fault injections that
caused errors in the output data.

• Hang: indicates the runs that presented abnormal program termination.

• Timeout: for program runs that failed to terminate on time.

The resulting errors can be classified once the fault is injected and the applica-
tion finishes executing. The definitions from Chapter 2 are used and classified
as ACE bits or un-ACE bits, as first defined by Mukherjee et al. [43]. For a
narrower classification, the errors generated by ACE bit faults can be separated
in SDC or Hangs. If the application finishes normally, but its output differs
from the expected value, it is classified as an SDC. If the application fails to
meet its deadline or is aborted due to an internal error, it is classified as a
Timeout or Hang.

Timeouts are defined by all cases where the application did not complete its
function and the Host or control server stopped it. If the application stopped
responding for more than 1 s, it is considered unrecoverable and a Timeout.
Hangswere categorizedwhenever the processor detected an incorrect operation
and signaled it with a hardware abort. These are internal errors flagged by the
processor that generates a hardware exception interruption. The Cortex-A9
generates exceptions for:

• Undefined Instructions, for when the CPU tries to decode an invalid
Opcode;

• Data Aborts, flagged by the MMU when a data transfer instruction
attempts to load or store data at an illegal address; and

179

7 Evaluation and Fault Injection Results

• Prefetch Aborts, also thrown by the MMU when the system attempts to
execute an instruction pre-fetched from an illegal address.

Injected faults were similarly classified for the system running under our CFTC
monitor. The decision flow diagram for the classification of injected faults is
shown in Figs. 7.14 and 7.15. Figure 7.14 shows the classification tree for fault
injection runs without the CFTC protection mechanism. When the monitor is
present and a fault is undetected by the monitor, the same scheme is used to
classify it. Otherwise, if a fault was detected the scheme shown in Fig. 7.15
was used.

Figure 7.14: Fault classification diagram for unhardened injections and undetected faults.

Whenever the system detected a fault, an FIQ signal was generated to the
offending core. The program was then left to handle the interruption and
continue the execution of the application. All detected Hangs generated an in-
terruption back to the processor. After handling the interruption, the processor
was left to finish the execution of its function. If the CPU could respond to this
interruption and the application finished correctly, it was counted as a Masked
fault. If it finished with corrupted data, it was marked as a SDC, or as a Hang
if it was unable to finish. However, if the processor was unable to respond to

180

7.4 Fault Injection Tests

the interruption under 1 ms, it was counted as a Timeout. This classification
allowed us to identify the differences in outcome for the same injected faults
and the reduction in Timeouts through our error detection monitor.

Figure 7.15: Fault classification diagram for detected faults.

7.4.3 Static Fault Injections

In this first injection setup, the instruction opcodes of each of the benchmarks
are targeted. These fault injections are implemented through instrumented
binaries. The execution flow of an injection run is shown in Fig. 7.16. A
power-on reset was performed with an electrical switch to guarantee total
isolation of system states between runs between each execution. All detected
CFEs generated an FIQ signal back to the system. The monitor also provided
back to the system CFE information such as the instruction address which it
occurred and the expected and erroneously executed target branch addresses.
In injections without CFTC, Hangs were detected directly by the processor and
MMU whenever the application tried to access or execute an invalid memory
region or invalid operations. In all cases, if the CPU entered an infinite loop
and did not finish, the run was considered a Timeout.

181

7 Evaluation and Fault Injection Results

Figure 7.16: Injection interruption scheme for static injection.

Static tests allowed us to evaluate a more extensive set of possible CFEs with
a finer granularity. By directly changing branch opcodes of the target binary,
all the types of errors described in Section 2.3.3 can be evaluated. Even
a single bit-flip can drastically change the resulting operation. The opcode
representation of branch operations is shown in Fig. 7.17. Any changes to bits
0 to 23 of both branch and branch-and-link (procedure call) operations will
result in a false target address jump. For the POP operation, bits 0 to 16 select
which registers and how many values will be popped from the stack, pointed
by the SP register. Bit 0 selects register R0 as a destination, bit 1 R1, and so
forth. Bit 15 corresponds to the PC. If selected, we are loading a previous LR
value saved in the stack. This sequence corresponds to the standard operation
of function returns in the ARM ABI.

This type of injection also allows the evaluations to precisely target all regions
inside the code. However, its main drawback is the difficulty in adequately
evaluating the error detection time’s growth from the buffer fill (!34C). Be-
cause all faults are decided and injected statically, they are activated on the

182

7.4 Fault Injection Tests

faulty branch’s first execution before the application begins to run. This static
modification implies that branches part of long loop structures can only be
evaluated under faults at the beginning of the loop sequence and never at the
end. Dynamic injections are also performed to compensate for this, where
instead of branches, general-purpose registers were targeted and changed at
specific points throughout the program’s execution.

B (direct branch)
012345678910111213141516171819202122232425262728293031

cond. 1010 Immediate

BL (branch-and-link / procedure call)
012345678910111213141516171819202122232425262728293031

cond. 1011 Immediate

POP (pop stack / return from procedure)
012345678910111213141516171819202122232425262728293031

cond. 100010111101 Reg_List

Figure 7.17: Opcode representations for branch, procedure call, and return operations.

7.4.4 Runtime Fault Injections

The main objective behind runtime fault injection tests is to exercise our mon-
itor’s response to faults at different points across the application’s execution.
It analyzes the vulnerability of the register file of the Cortex-A9 processor
running sequential benchmarks in a single-core processor. For this runtime
injection, a SEU fault model is assumed, affecting the architectural register
file component of a single core of the processor. For each injection, precisely
one bit is flipped during a randomly chosen point of the program’s execution.
The SEUs are generated through a specific injection interruption routine. A
timer is configured and used to generate an interruption that will modify the
registers saved inside the program stack, see Fig. 7.18 At the beginning of the
ISR, registers R0 through R12 are saved in the stack together with the LR.
By modifying the LR, PC faults can be simulated on the return from function
calls.

183

7 Evaluation and Fault Injection Results

Figure 7.18: Hardware architecture configuration for the dynamic fault injection setup.

Once all registers are saved in the stack, the injection ISR starts execution, and
it modifies the selected bit of the targeted register directly in the stack. When
the handler routine ends, and the values are popped back to the registers, the
targeted register will now hold its old value plus the flipped bit simulating
an SEU. When the interruption ends, the modified stack values are re-loaded
to the physical registers, and the benchmark resumes from the same context
except for the newly injected fault. Figure 7.19 presents a diagram showing the
use of the dedicated interruption routine to insert the faults. When the program
starts, before the execution of the benchmark function, three random values
are generated: the timer’s timeout, the register number to be injected, and the
mask value to choose which bit to flip. These values are logged on the Host
and used to correlate results extracted from trace with the register affected.

184

7.4 Fault Injection Tests

Figure 7.19: Injection interruption scheme showing the use of the stack.

7.4.5 Fault Injection Results

The objective of performing these fault injection experiments was to verify the
proposed architecture’s ability in detecting a specific set of processor errors,
CFEs. It is not to fully estimate the soft-error rate (SER) of the design but to
show its strengths, drawbacks, and ability to detect control-flow errors when
they occur correctly. Five thousand (5000) fault injections were executed per
benchmark use case through each explained fault injection method to evaluate
the final monitoring platform. Six different benchmarks from the embedded
MiBench suite were used, combined with two compiler optimizations for a
total of 12 different use-cases [150]. The six algorithms selected as use cases
were chosen due to their relatively complex or intricate control-flow. They
were selected according to the following domains: Cryptography and Security
(AES, LZO), data processing (FFT, Matrix Multiplication (MM)), and data
analysis and management (Dĳkstra Shortest Path, Quicksort).

All benchmarks were implemented in the C language in a baremetal envi-
ronment and compiled with Linaro’s version of the Gnu Compiler Collection
(GCC) for embeddedARM(GCCversion 8.2.0). Each algorithmwas compiled

185

7 Evaluation and Fault Injection Results

with and without optimizations through the use of -o0 and -o3 compilations
flags. These flags focus on structural optimizations of the code, which was the
primary influence of interest. The optimization -o3 flag of the gcc compiler
was detailed more extensively in Section 5.1.2. Also, SIMD and FPU opti-
mization flags were explicitly not used, as our main objective was to see the
effects of different control-flow compiler optimizations. Each resulting object
binary was statically linked to an optimized version (-o3) of the C library pro-
vided by GCC to generate the final application executables. Table 7.5 presents
a summary of each use-case’s binary structure. These results match other
reported CFG structures from common control-flow errors related studies for
average basic block sizes and percentages of branch instructions [9, 41, 66].

Table 7.5: Static analysis results from tested use-cases.

Benchmarks without optimizations (-o0)
Measures Dĳkstra FFT Quicksort AES LZO MM

Instruction Count 319 8077 567 842 2682 685
Function Calls 2 479 10 18 76 6
Basic Blocks (BB) 29 1438 76 66 493 108
Instructions per BB
(max/avg) 28/11 60/5.6 26/7.5 87/12.76 74/5.44 36/6.34

Benchmarks with optimization(-o3)

Instruction Count 280 4259 283 835 968 797
Function Calls 3 253 2 4 10 25
Basic Blocks (BB) 54 804 47 21 146 142
Instructions per BB
(max/avg) 18/5.2 89/5.3 20/6 385/39.76 50/6.63 21/5.61

Trace-based profiling was performed over the benchmarks under the same
configurations used for the fault injections to evaluate the model described in
Section 7.2. Each benchmark was executed with a randomly generated input
of a defined size. The trace data was collected inside the board’s BRAMs
buffers and sent through a dedicated ethernet connection back to the host pc.
The choice of input size had to be kept small so that the available buffers
could store the complete execution trace history. In previous tests, the data
was parsed by a dedicated external FPGA component to collect information
such as the total number of branches or the average branch inter-arrival time.

186

7.4 Fault Injection Tests

However, obtaining more detailed information required an analysis of all the
execution trace data of an execution. The obtained profiling results are given
in Table 7.6.

Table 7.6: Dynamic analysis results from profiling of full program trace.

Benchmarks without optimizations (-o0)
Measures Dĳkstra FFT Quicksort AES LZO MM

Input/Sample Size 30x30 30 150 64 8kB 9x9
Branch Inter-arrival (Λ) (avg) 13.18 7.23 9.84 25.01 13.80 8.38
Branch Inter-arrival (Λ) (std) 7.23 7.39 9.64 18.58 3.92 8.90
Execution Time (cycles) 99038 79680 93567 130956 83039 122547
IPC (avg) 0.85 1.13 0.98 0.88 1.13 1.27
IPC (std) 0.37 0.90 0.75 0.49 0.51 0.99
Taken Branches 5970 5843 7106 4644 3826 8047
Not-Taken Branches 1334 2819 1776 490 1127 3754
Packet Size (�?:C) (avg/std) 1.5/0.5 1.9/1.0 1.5/0.6 1.5/0.5 1.0/0.3 1.9/1.3

Benchmarks with optimizations (-o3)

Input/Sample Size 30x30 30 150 64 8kB 9x9
Branch Inter-arrival (Λ) (avg) 6.17 5.03 8.32 53.81 5.83 5.40
Branch Inter-arrival (Λ) (std) 5.66 6.95 6.69 103.09 5.42 5.51
Execution Time (cycles) 37530 11031 21148 18566 34616 78221
IPC (avg) 1.13 1.07 0.83 1.30 1.02 1.35
IPC (std) 1.0 0.71 0.85 0.91 0.39 0.95
Taken Branches 3913 1391 1229 199 3791 7194
Not-Taken Branches 1751 497 727 78 1092 4420
Packet Size (�?:C) (avg/std) 1.2/0.4 2.4/1.3 1.3/0.5 1.3/0.7 1.0/0.2 1.9/1.3

An increase in speed was observed from all benchmarks between the regular
and compiler-optimized binaries. However, the performance gains were pri-
marily due to fewer taken branches, with �%� varying very little between each
version. The average number of instructions per cycle was reduced in many
cases, such as FFT, Quicksort, and LZO algorithms. Average trace packet sizes
remained very similar, around 1.5, which corresponds to branches to very close

187

7 Evaluation and Fault Injection Results

code regions, as only the trace only produces the difference in bits between the
current and last branch target addresses. For non-optimized code, the average
inter-arrival roughly corresponded to the type of implemented algorithms, with
more significant arrival times for more data-bound applications. Also, after
optimization, a reduction in the average inter-arrival time was seen. Inter-
estingly it was also noted that almost all algorithms had the same average of
about five cycles between branches with full optimizations. The only exception
was the AES algorithm, which more than doubled its time between branches,
which could be explained by loop-unrolling directives considering the drastic
reduction in branch operation between both compilation configurations.

Each of the 12 benchmarks was tested under the two fault injection setups,
static and runtime. All use-cases were analyzed unprotected and under CFTC
monitoring protection. The frequency of the CPU was also scaled to verify
the effects of different frequency factors (5). During testing, the monitor was
run at 100 MHz. For the processor, three frequencies were chosen from the
highest configuration to the smallest, 600 MHz, 300 MHz, and 100 MHz. This
corresponds to factors of 5 = 6, 5 = 3, and 5 = 1 respectively. Ten thousand
(10000) random faults were generated for each use case, injecting the same
faults in each execution configuration. Only one fault is evaluated during an
application run for 360000 injections.

The static injection results are shown in Tables 7.7 and 7.8. CFTC was able
to detect 100% of CFEs that caused SDCs, Hangs, and Timeouts, while 74%
of Masked faults were also detected. Masked faults do not necessarily mean
that no data was corrupted, only that the execution reached the correct ending
point. A branch could have jumped to a nearby region, re-executing or skipping
some instructions. At the same time, they also correspond to modifications of
opcodes that do not change the execution. With the use of CFTC, a significant
decrease in the relative number of Timeouts was identified. One crucial aspect
observed was the reduction of system timeouts from ≈ 7% to ≈ 2%.

The first results from dynamic fault injection campaigns relating to this work
showed a strong correlation between register usage and fault location. These
results were published in the 14th International Symposium onApplied Recon-
figurable Computing (ARC) [1]. Without any optimization, the compiler will
choose the most straightforward method for memory access and data handling.
It will use R3 and FP to read from and write values to the stack, avoiding other
registers’ use to keep intermediary values. Figure 7.20 shows the error rates

188

7.4 Fault Injection Tests

for each register from our injection campaigns in our non-optimized injection
setup. Figure 7.20(a) shows that 70-80% of injections on the R3 register caused
SDCs, while Hangs were proportionally distributed between R11/FP and PC.
These distributions validate what is expected, given the functionalities asso-
ciated with each register. R3 keeps the operational data while frame pointer
(FP) stores the addresses used to access application memory.

During the first experiments, homogeneous injections across all architectural
registers were performed, Fig. 7.21(a). However, a strong dependence of
optimization options on the use of registers was seen, Fig. 7.21(b). Except
for the PC, without optimizations (O0), the compiler favors the use of R0-
R3. The register usage in both applications was tightly coupled to the ABI and
calling conventions used by the compiler. According to the "ARMArchitecture
Procedure Calling Standard (AAPCS)" [151], registers R0 to R3 are caller-save
registers used to hold temporary values that need not be preserved across calls.

Table 7.7: Fault injection results per benchmark.

Benchmark Masked SDC Recovered Unrecovered Total Injections

Dĳkstra 2676 6527 20031 766 60000
FFT 2749 6550 20256 445 60000
Quicksort 2522 6768 20274 436 60000
AES 2251 6905 20029 815 60000
LZO 2436 6442 20283 839 60000
Matrix M. 2016 6643 20724 617 60000

Table 7.8: Detected errors and total identified fault injection results.

FI Result Injections (% of Total) Detected (%)

Masked 27447 (7.6%) 20360 (74.2%)
SDC 79865 (22.2%) 79865 (100%)
Recovered 244809 (68%) 2448098 (100%)
Unrecovered 7879 (2.2%) 7879 (100%)
Total 360000 (100%) 3529132 (98%)

189

7 Evaluation and Fault Injection Results

(a) SDCs

(b) Hangs

Figure 7.20: Rate of SDCs and Hangs per targeted register.

While R0-R2 are the preferred registers to hold arguments through function
calls, R3 is the preferred working register. The standard also states that while
not enforced, R11 is set as the default FP. The FP is responsible for pointing
to the section of the stack allocated to the currently executing function.

190

7.4 Fault Injection Tests

TheMMU page bits caused Timeout failures instead of generating any measur-
able latency for both applications. The memory pages outside of the current
one used by the program never generated the execution of incorrect instruc-
tions. This effect is due to the faults leading the program to jump to empty
memory regions, whose "instructions" are evaluated as nops. In these first
published tests, PC errors were more strongly associated with Timeouts than
hardware aborts, with all jumps to different memory sections generating Time-
outs. Such errors can be detected by re-configuring the MMU; however, many
errors generated by jumps inside the same memory section would still be seen
and would not be detected. It is worth noting that all PC-related Aborts were
faults in bits that left it still pointing to the program’s memory section. There-
fore, implementing a CFTC module can quickly detect problems and return
the system to a functioning state.

Figure 7.22 presents the measured error response times (!A4B?) for all bench-
marks for a low buffer utilization (d < 1). One drawback CFTC presents is
waiting for trace packets to be processed. For d > 1, much higher response
times were observed, in some cases as high as 1 Mcycles. Most of these higher
utilization rates were directly related to higher frequency factors, reducing the
effective packet service rate of the monitor. If buffers are empty, the trace is
quickly processed, and the interruption is sent, but if they are full, all previous
packets must be processed, corresponding to a high waiting time, .

The timer responsible for triggering and initiating the fault injection was con-
figured to send a random interruption in times multiple of 5 kcycles. Faults
were injected in cycles spaced in such a way to equally evaluate the buffer
fills at different execution points of the code. It allows better observation of
the evolution of the programs. Appendix A presents each individual graph in
more detail. Figures A.1 to A.6 show the evolution in time of the optimized
benchmarks for 5 = 6. While Figs. A.7 to A.12 and Figs. A.13 to A.18 show
the evolution of the same benchmarks for 5 = 3 and 5 = 1, respectively.

Each graph represents the instantaneous buffer utilization over time (left Y-
axis) and the packets’ instantaneous waiting time evolution (right Y-axis). Both
graphs correspond to the normal execution of each benchmarkwithout any fault
effects or control-flow errors present. Overlapped with these graphs are the
error response time points collected for every one of our fault injection runs
(right). The X axis for the error response times corresponds to the point during
the execution when the fault injection interruption happened. The 5 kcycles

191

7 Evaluation and Fault Injection Results

(a) Injection rates per register

(b) Register usage rates for o0.

Figure 7.21: Register injection rates (a) and usage rates (b)

spacing between the collection of points correspond to the timer only injecting
a fault in multiples of elapsed 5 thousand cycles. In each of the graphs, the
error response time almost directly takes the form of Eq. (7.11).

!A4B? = !34C + !� (' u, + !� (' = (d−1)C + !� (' (7.11)

192

7.4 Fault Injection Tests

Figure 7.22: Error response times for low utilization tests (d < 1).

To calculate the utilization shown in the graphs, we divided the service time
necessary for the arriving block, i.e., (= 5 ×%? 5 C , by the expected inter-arrival
time for every block

d =
U

`
=
(��

Λ��

To obtain the expected inter-arrival time (Λ��) for each block, the trace con-
figured for time stamping of branches was again used. Once every block was
profiled and an average execution time was obtained, the benchmarks were
again profiled without timestamping packet payloads. The presence of time
stamping increases the payload size significantly, and therefore, the service
time for incoming packets increases their waiting time in the buffer queue. The
evolution of the utilization was plotted as a moving average to obtain a curve,
using a window of 100 values.

For large enough buffer fills, a packet’s waiting time in the buffer dominates,
with the evolution or derivative of this latency being given by (d−1). Other-
wise, for small d, the dominant factor is the processor’s interruption handling
latency. Therefore, by properly evaluating the utilization rate of a program,
either through profiling or an in-depth static analysis, the expected trace de-
coding times during the program’s execution can be assessed. This estimation

193

7 Evaluation and Fault Injection Results

gives us a defined and proper metric to work with, which can then be used in
future real-time architectures.

7.5 Summary

This chapter showed how to model and identify the intrinsic timings of our
proposed hardware monitor architecture. Here it was shown through different
targeted fault injection campaigns how CFTC’s monitoring components detect
98.03% of all injected faults and 100% of all CFEs. The chapter also analyzed
the system under different load scenarios, through different data-bound and
control-bound benchmarks, under specific optimizations and frequency scaling
configurations. The proposed architecture is general and usable in any modern
processor that provides a comprehensive program trace interface such as the
ones described in Chapter 4. It was shown here how to characterize the whole
of the trace system, from the black-box trace bus subsystem provided by the
COTS processor to our monitor IP. The chapter also showed how even as an
FPGA component, it requires minimal resource usage, even for a simple SoC
such as the Zynq-7000.

This chapter presented the essentialmetrics to be aware of in implementing such
monitors. Until now, no studies have shown the correlation of an application’s
control-flow execution, i.e., the rate at which branches are executed and the
bounds for detecting errors on the incoming trace. As nothing is presupposed
about the specific monitor architecture, the models should apply to any current
trace-based hardware monitoring architecture, be they CFC error detectors or
CFI security monitors against attacks. The adjustable variable required to
minimize the need for a buffer was also precisely shown, i.e., the utilization
factor d. Evidently, the faster the monitor runs, the better. However, it is shown
here precisely how fast the monitor must operate to verify the correctness of
an embedded program’s execution. To reduce these delays, we must rely on
design time trade-offs. Decreasing the CPU frequency or deactivating caches
can make the application run slower, providing the monitor enough time to
process each packet. More performance-driven FPGA architectures can also
be used that better match the processor’s speed or implement the CFCmodules
as dedicated ASIC components.

194

8 Summary, Conclusions and
Outlook

As we depend on embedded devices throughout our world, we must develop
more robust and quantifiable mechanisms to detect and protect them against
failures. Even after years of studies and proposed architectures, control-flow
errors are still a concern. Among the many different techniques proposed over
the years, two main types have emerged: software-based and hardware-based.
Hardware-based techniques are usually costly. They depend on modifications
to the platform and SoC, which results in the need to build new devices from
scratch. Nowadays, we call processors specifically built with such techniques
as Radiation Hardened (RadHard) processors. These processors are extremely
robust and reliable in critical and fault-prone environments. However, they
tend to have a much lower performance than standard commercial off-the-shelf
(COTS) processor.

The need to profit from the high-performance of multi-core COTS devices
has led to the emergence of new software-based protection and fault-tolerance
approaches. These fault detection and tolerance methods rely solely on mod-
ifications to the underlying code to achieve higher reliability. They usually
apply code transformation to achieve a certain measure of protection to cer-
tain aspects of the application’s data or control path. Nevertheless, it has
been recently shown that software-based techniques can detect faults in certain
code regions, increasing the processing unit’s total vulnerability overall. The
primary established problem is the increase in execution time and code area
required by these techniques. The new transformed code, in effect, increased
the total number of possible fault locations that generate errors.

Therefore, protection mechanisms should both avoid adding overheads to the
running application, not to increase the AVF of CPU components, and be
portable to different COTS architecture, to take advantage of their increased
performance. A new type of hardware-based technique tries to bridge this gap.

195

8 Summary, Conclusions and Outlook

Trace-based control-flow checking (CFC) relies on the presence of a dedicated
debug & trace interface to monitor in real-time changes to CPU state. These
changes can be followed with the help of the application’s control-flow graph
(CFG) representation. Any mismatches between CPU state and CFG imply an
execution by the processor of an unexpected operation not originally codified.
Using these interfaces, such external monitors do not need to modify the exist-
ing processor architecture, thus being implemented much more economically.
The re-emergence of fast FPGA architectures with embedded application pro-
cessors further allow such components to be dynamically implemented without
fabricating custom ASIC devices.

While some techniques were proposed based on online program trace analysis,
they assumed a specific trace interface used by their target platforms and did
not expand on ways to port such monitors to other systems [66, 148]. With
this in mind, this thesis proposes a novel trace-based technique with portability
as the primary focus. The analysis executed here started in Chapter 4 where
the trace architectures implemented in the most widespread COTS processors
were explored. These trace systems’ standard features were identified with the
information they provide about the control-flow’s current state.

Chapter 5 looked at the processor’s binary application and how it correlates
back to the generated trace packet information. It identified how the relevant
data could be retrieved to generate the corresponding binary CFG. This infor-
mation was then used as the basis of the checker and configuration memory
architecture presented in Chapter 6. The CFTC architecture is separated into
two stages, a translation stage that takes the architecture-specific trace packets
sent by the SoC and transmits only the information required to build the CPU’s
state. This independent state representation is then used to perform the final
error checking. The final monitor developed in this work was smaller and
faster than previous techniques and was demonstrated to be portable to other
systems as long as a suitable translation stage is implemented.

This method can reliably identify control-flow errors, as shown by the fault
injection campaign results in this work and those of other similar techniques.
A central point of struggle not explored by any trace-based methods thus far
was the feasibility of using program tracing in real-time constrained scenarios.
For this purpose, Chapter 7 develops a new execution model for binary appli-
cations able to detect bottlenecks in online trace generation and analysis. A
fault-injection analysis was performed over different sets of benchmarks and

196

8 Summary, Conclusions and Outlook

frequency scales. This study reliably demonstrated the limits of online tracing,
e.g., the minimum performance required by any hardware trace monitor to
achieve and maintain bounds on its detection latencies. Applications that run
too fast to the monitor generate a higher trace bandwidth than processed. This
distinction in times causes congestion of input buffers and increases the time to
process later trace packets. The models presented here can reliably predict the
trace congestion and possible increases in the latencies’ final error detection.

The global economy is seeing enormous growth in "smart mobility" domains
such as autonomous driving. The autonomous car sector could add as much
as $7 trillion to the world economy alone by 2050, as published by Intel
and the research company Strategy Analytics [152]. Over time, service and
application revenue generated by mobility-as-a-service will supplant the value
of vehicle sales as core sources of value. Inevitably, autonomous cars will
have a massive effect on our individual driving experiences, with comfort,
reliability, and safety all key factors. More importantly, autonomous cars are
an essential consideration in how our cities and towns of the future will be
designed and structured. Arguably, the future of our cities and communities is
inherently linked to the future of automobiles. We need to be taking a positive
and progressive approach toward this.

This thesis showed that trace-based error detection could bridge the gap be-
tween the need for software isolation given by hardware-based methods and
portability across different systems given by software-based methods. How-
ever, there is no silver bullet, and if the application generates considerable trace
bandwidth while the monitor lacks the required frequency or performance to
process it, stalls can happen, and significant detection times are observed.
Control-flow errors still represent a majority of different collected errors in
embedded systems. The results presented here show the actual metrics to be
observed if essential monitoring mechanisms are to be implemented in existing
systems. Therefore, designers who wish to use such methods can now identify
acceptable trace bandwidth constraints and how to achieve them. With this
information in hand, they can decide which monitor implementation best suits
such bandwidth and what latencies are expected to detect common CFEs.

197

List of Figures

1.1 Processor development by Intel [15]. 2
1.2 Speedup from Amdahl’s Law. 3
1.3 Speedup given by Gustafson’s Law. 4
1.4 Main and secondary contributions to this Thesis. 9

2.1 Diagram of the effects of an SET on a logic circuit. 15
2.2 Effects of an SET on a logic circuit. 16
2.3 SEU effects on a logic circuit. 16
2.4 Minimum Critical Charge in SRAM Cells by driving Voltage and

Technology Node [29]. 17
2.5 Block diagram of the processing system (PS) component of the

Zynq-7000 [32]. 22
2.6 Cortex-A9 MPCore Architecture [32]. 24
2.7 Cortex-A9 Internal Core Architecture [39]. 25
2.8 Simplified Cortex-A9 Pipeline Diagram. 25
2.9 Architectural register banks and modes of the Cortex-A architec-

ture [39]. 29
2.10 Control-flow of a program showing example of an error on a target

branch. 32
2.11 Control-flow graph diagram with different types of CFEs. 33
2.12 Equivalence between architectural CFEs and logical CFEs. . . . 34
2.13 Sensitive areas of a general CPU architecture under SEEs. . . . 35
2.14 ROP attack example in x86 architecture [58]. 46
2.15 Total citations per year for journal in the domain of safety CFC

architectures (data source: Web of Science [63]) 47
2.16 Total citations per year for journal in the domain of security CFI

architectures (data source: Web of Science [63]) 48

3.1 Taxonomy of fault tolerance techniques according to protection
goals and implementation methods. 51

199

List of Figures

3.2 Diagram implementation of NMR (M-out-of-N redundancy) and
its resulting reliability. 59

3.3 Evolution of performance between COTS and RadHard proces-
sors [82]. 60

3.4 Example control-flow graph partition of a program. 64

4.1 Detailed trace subsystem architecture based off of the Zynq-7000
platform. 75

4.2 Diagram showing relevant trace architectures and the processors
or companies that implement them. 77

4.3 Zynq-7000 CoreSight system block diagram [32]. 84
4.4 Zynq UltraSCale+ CoreSight system block diagram [115]. . . . 85
4.5 Cortex-A9 PTM functional block diagram [121]. 88
4.6 Cortex-A53 ETM functional block diagram. [129] 92
4.7 MCDS subsytem architecture [137]. 99
4.8 Intel PT TNT packet format [138]. 102
4.9 Intel PT TIP packet format [138]. 102
4.10 Intel PT FUP packet format [138]. 103

5.1 C compilation process from source to executable binary. 106
5.2 Memory map and load scheme of an ELF binary inside a Linux-

based system. 109
5.3 Example of function tail call optimization in binary code. 111
5.4 Example of function tail merge optimization in binary code. . . 112
5.5 Example of function inline optimization in binary code. 113
5.6 Control-Flow Graph model of an application. 114
5.7 CFG generation process from the executable binary code. 115
5.8 Resulting CFG generated from example recursive Quicksort im-

plementation. 117
5.9 Example control-flow graph generated from the code in ??. . . . 120

6.1 Diagram showing trace data rerouted away from the JTAG Con-
nector and instead to the FPGA. 123

6.2 High-level diagram presenting the major components of the pro-
posed CFC architecture. 124

6.3 CoreSight frame format definition [117]. 128
6.4 Direct state-machine description to parse a CoreSight Frame. . . 129

200

List of Figures

6.5 The Source Parser internal components with frame Unpacker and
data aggregator units. 130

6.6 Architecture for a single data aggregator subunit. 131
6.7 Data formats for Atom and Branch CoreSight PFTv1.1 traces. . . 134
6.8 Internal architecture of the trace decoder hardware unit. 135
6.9 Decoder synchronization state machine for the Cortex-A9 use case. 136
6.10 Packet stream synchronization with A-Sync packets. 136
6.11 CPU state synchronization with I-Sync packets. 137
6.12 PFT Branch Packet decoder diagram. 137
6.13 PFT Atom Packet decoder diagram. 138
6.14 PFT Update Packet decoder diagram. 138
6.15 Operational diagram of control-flow checker after a new CPU state. 140
6.16 Hardware structure of main control-flow checker component. . . 141
6.17 Example of the information flow through each pipeline stage. . . 143
6.18 Configuration memory architecture with key access and entry re-

trieval stages. 146
6.19 Entry format of the CFG configuration memory. 147

7.1 Timing diagram for the generation, transmission, decodification,
and verification of a trace packet. 158

7.2 Timing diagram of error response time. 160
7.3 Queue model of an online real-time trace monitor for a single-core

processor. 163
7.4 Distribution of packet sizes for all tested benchmarks. 164
7.5 Estimation and model error of trace data generated for Quicksort

algorithm according to input size. 166
7.6 Estimation and sampling of trace data generated for Dĳkstra algo-

rithm according to input size. 167
7.7 Estimation and sampling of trace data generated for AES encryp-

tion algorithm according to input size. 168
7.8 Branch Inter-arrival distribution for Dĳkstra (compiled with o0). 169
7.9 Branch Inter-arrival distribution for Dĳkstra (compiled with o3). 169
7.10 Branch Inter-arrival distribution for FFT (compiled with o0). . . 170
7.11 Branch Inter-arrival distribution for FFT (compiled with o3). . . 170
7.12 Branch Inter-arrival distribution for Quicksort (compiled with o0). 171
7.13 Branch Inter-arrival distribution for Quicksort (compiled with o3). 171
7.14 Fault classification diagram for unhardened injections and unde-

tected faults. 180

201

List of Figures

7.15 Fault classification diagram for detected faults. 181
7.16 Injection interruption scheme for static injection. 182
7.17 Opcode representations for branch, procedure call, and return op-

erations. 183
7.18 Hardware architecture configuration for the dynamic fault injection

setup. 184
7.19 Injection interruption scheme showing the use of the stack. . . . 185
7.20 Rate of SDCs and Hangs per targeted register. 190
7.21 Register injection rates (a) and usage rates (b) 192
7.22 Error response times for low utilization tests (d < 1). 193

A.1 Packet waiting time and error response time over the execution
time of Dĳkstra (-o3), 5 = 6. 207

A.2 Packet waiting time and error response time over the execution
time of Quicksort (-o3), 5 = 6. 208

A.3 Packet waiting time and error response time over the execution
time of LZO (-o3), 5 = 6. 208

A.4 Packet waiting time and error response time over the execution
time of AES (-o3), 5 = 6. 209

A.5 Packet waiting time and error response time over the execution
time of FFT (-o3), 5 = 6. 209

A.6 Packet waiting time and error response time over the execution
time of MM (-o3), 5 = 6. 210

A.7 Packet waiting time and error response time over the execution
time of Dĳkstra (-o3), 5 = 3. 210

A.8 Packet waiting time and error response time over the execution
time of Quicksort (-o3), 5 = 3. 211

A.9 Packet waiting time and error response time over the execution
time of LZO (-o3), 5 = 3. 211

A.10 Packet waiting time and error response time over the execution
time of AES (-o3), 5 = 3. 212

A.11 Packet waiting time and error response time over the execution
time of FFT (-o3), 5 = 3. 212

A.12 Packet waiting time and error response time over the execution
time of MM (-o3), 5 = 3. 213

A.13 Packet waiting time and error response time over the execution
time of Dĳkstra (-o3), 5 = 3. 213

202

List of Figures

A.14 Packet waiting time and error response time over the execution
time of Quicksort (-o3), 5 = 3. 214

A.15 Packet waiting time and error response time over the execution
time of LZO (-o3), 5 = 1. 214

A.16 Packet waiting time and error response time over the execution
time of AES (-o3), 5 = 1. 215

A.17 Packet waiting time and error response time over the execution
time of FFT (-o3), 5 = 1. 215

A.18 Packet waiting time and error response time over the execution
time of MM (-o3), 5 = 1. 216

203

List of Tables

2.1 Acceptable failure rates according to IEC-61508 [50]. 40
2.2 Compatibility between safety-levels of the investigated domain

standards. 42
2.3 Possible failures modes for digital components. 44

3.1 Comparison of different HW CFC techniques according to re-
ported results. 52

4.1 Relevant features for online monitoring in each of the evaluated
Trace architectures. 78

4.2 Description of an abstract instruction trace packet sufficient for
general control-flow monitoring. 79

4.3 ARMv7-A operations relevant for control flow monitoring [121]. 87
4.4 ARMv8 A64 operations relevant for control-flow monitoring [126]. 91
4.5 DSU3/4 - Leon3/4 Hardware Debug Support Unit trace data for-

mat [76]. 95
4.6 Indirect Branch packet format for Nexus protocol [114]. 97
4.7 MCDS program trace protocol with Mode and Data port pair

meanings [137]. 100

6.1 Possible row payload’s ID configuration for a CoreSight Frame. . 130
6.2 Signal output interface of a trace decoder unit. 133

7.1 Total (and Percent) of used resources for our CFTC test-case im-
plementation. 154

7.2 Comparison of resource usage between the CFTC monitor and
dedicated soft-core implementations. 156

7.3 Approximate gate count in relation to implemented Cortex-A9
processor. 157

205

List of Tables

7.4 Summary and properties of different fault injection approaches [31,
149]. 177

7.5 Static analysis results from tested use-cases. 186
7.6 Dynamic analysis results from profiling of full program trace. . . 187
7.7 Fault injection results per benchmark. 189
7.8 Detected errors and total identified fault injection results. 189

206

A Response Time Analysis Graphs

This appendix presents the collected results from the response time analysis
evaluations performed in Chapter 7.

Figure A.1: Packet waiting time and error response time over the execution time of Dĳkstra (-o3),
5 = 6.

207

A Response Time Analysis Graphs

Figure A.2: Packet waiting time and error response time over the execution time of Quicksort
(-o3), 5 = 6.

Figure A.3: Packet waiting time and error response time over the execution time of LZO (-o3),
5 = 6.

208

A Response Time Analysis Graphs

Figure A.4: Packet waiting time and error response time over the execution time of AES (-o3),
5 = 6.

Figure A.5: Packet waiting time and error response time over the execution time of FFT (-o3),
5 = 6.

209

A Response Time Analysis Graphs

Figure A.6: Packet waiting time and error response time over the execution time of MM (-o3),
5 = 6.

Figure A.7: Packet waiting time and error response time over the execution time of Dĳkstra (-o3),
5 = 3.

210

A Response Time Analysis Graphs

Figure A.8: Packet waiting time and error response time over the execution time of Quicksort
(-o3), 5 = 3.

Figure A.9: Packet waiting time and error response time over the execution time of LZO (-o3),
5 = 3.

211

A Response Time Analysis Graphs

Figure A.10: Packet waiting time and error response time over the execution time of AES (-o3),
5 = 3.

Figure A.11: Packet waiting time and error response time over the execution time of FFT (-o3),
5 = 3.

212

A Response Time Analysis Graphs

Figure A.12: Packet waiting time and error response time over the execution time of MM (-o3),
5 = 3.

Figure A.13: Packet waiting time and error response time over the execution time of Dĳkstra (-o3),
5 = 3.

213

A Response Time Analysis Graphs

Figure A.14: Packet waiting time and error response time over the execution time of Quicksort
(-o3), 5 = 3.

Figure A.15: Packet waiting time and error response time over the execution time of LZO (-o3),
5 = 1.

214

A Response Time Analysis Graphs

Figure A.16: Packet waiting time and error response time over the execution time of AES (-o3),
5 = 1.

Figure A.17: Packet waiting time and error response time over the execution time of FFT (-o3),
5 = 1.

215

A Response Time Analysis Graphs

Figure A.18: Packet waiting time and error response time over the execution time of MM (-o3),
5 = 1.

216

Publications

[1] A. W. Hoppe, F. Kastensmidt, and J. Becker, “Control Flow Analysis
for Embedded Multi-Core Hybrid Systems,” Lecture Notes in Computer
Science book series (LNCS), vol. 10824, pp. 485–496, 2018.

[2] A. Hoppe, F. Kastensmidt, and J. Becker, “Fine Grained Control Flow
Checking with Dedicated FPGA Monitors,” in 2020 33rd IEEE Interna-
tional System-on-Chip Conference (SOCC), vol. 10824, 2020, pp. 485–
496.

[3] A. W. Hoppe, F. L. Kastensmidt, and J. Becker, “High-speed Hardware
Accelerator for Trace Decoding in Real-Time Program Monitoring,” in
2021 IEEE 12th Latin American Symposium on Circuits and Systems
(LASCAS), vol. 10824, 2021, pp. 485–496.

[4] A. Hoppe, F. L. Kastensmidt, and J. Becker, “Investigating real-time
control-flow error detection in hardware: How fast can we detect errors
and take action?” Microelectronics Reliability, vol. 126, p. 114264, 2021.

217

Bibliography

[5] J. Ohlsson, M. Rimen, and U. Gunneflo, “A study of the effects of
transient fault injection into a 32-bit RISC with built-in watchdog,” in
[1992] Digest of Papers. FTCS-22: The Twenty-Second International
Symposium on Fault-Tolerant Computing. IEEE, 1992, pp. 316–325.

[6] E. Chielle, G. S. Rodrigues, F. Kastensmidt, S. Cuenca-Asensi, L. A.
Tambara, P. Rech, and H. Quinn, “S-SETA: Selective Software-Only
Error-Detection Technique Using Assertions,” IEEE Transactions on
Nuclear Science, vol. 62, no. 6, pp. 3088–3095, 2015.

[7] R. Vemu and J. Abraham, “CEDA: Control-flow error detection using
assertions,” IEEE Transactions on Computers, vol. 60, no. 9, pp. 1233–
1245, 2011.

[8] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA:
Hybrid error-detection technique using assertions,” IEEE Transactions
on Nuclear Science, vol. 60, no. 4, pp. 2805–2812, 2013.

[9] S. Schuster, P. Ulbrich, I. Stilkerich, C. Dietrich, and W. SchröDer-
Preikschat, “Demystifying Soft-Error Mitigation by Control-Flow
Checking – A New Perspective on its Effectiveness,” ACM Transac-
tions on Embedded Computing Systems, vol. 16, no. 5s, pp. 1–19, 2017.

[10] A.Rhisheekesan, R. Jeyapaul, andA. Shrivastava, “Control FlowCheck-
ing or Not ? (for Soft Errors),” ACM Transactions on Embedded
Computing Systems, vol. 18, no. 1, p. 25, 2019.

[11] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” Computer, vol. 36, no. 12, pp. 68–75, dec 2003.

[12] S. Thompson, R. Chau, T. Ghani, K. Mistry, S. Tyagi, and M. Bohr, “In
Search of “Forever,” Continued Transistor Scaling One NewMaterial at
a Time,” IEEE Transactions on Semiconductor Manufacturing, vol. 18,
no. 1, pp. 26–36, feb 2005.

219

Bibliography

[13] R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE De-
sign and Test of Computers, vol. 22, no. 3, pp. 258–266, may 2005.

[14] TSMC, “TSMC: 5nm Technology,” 2021. [Online]. Available: https:
//www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm

[15] “Technology Quarterly after Moore’s Law - Double, double, toil and
trouble.” The Economist, 2016. [Online]. Available: https://www.econ
omist.com/technology-quarterly/2016-03-12/after-moores-law

[16] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: Association for Computing Machinery, 1967, p.
483–485.

[17] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM, vol. 31,
no. 5, p. 532–533, May 1988.

[18] P. Leteinturier, S. Brewerton, and K. Scheibert, “MultiCore benefits &
challenges for automotive applications,” in SAE Technical Paper Series.
SAE International, Apr 2008.

[19] “A model of soft error effects in generic IP processors,” in 20th IEEE
International Symposium onDefect and Fault Tolerance in VLSI Systems
(DFT’05). IEEE Comput. Soc, 2005, pp. 334–342.

[20] J. R. Azambuja, S. Pagliarini, L. Rosa, and F. L. Kastensmidt, “Explor-
ing the limitations of software-based techniques in SEE fault coverage,”
Journal of Electronic Testing, vol. 27, no. 4, pp. 541–550, Apr 2011.

[21] T. Rains, M. Miller, and D. Weston, “Exploitation Trends: From Poten-
tial Risk to Actual Risk,” in Proceedings of the RSA Conference 2015,
San Francisco, California, USA, 2015.

[22] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th USENIX Security Symposium, 1998.

[23] M. Prasad and T.-c. Chiueh, “A Binary Rewriting Defense against Stack
based Buffer Overflow Attacks,” in Proceedings of the USENIX Annual
Technical Conference, 2003, pp. 211–224.

[24] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard: Pro-
tecting pointers from buffer overflow vulnerabilities.” in Proceedings

220

https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

Bibliography

of the USENIX Security Symposium. USENIX, Berkeley, CA, 2003, pp.
91–104.

[25] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment
of the real-time safety-related ARM Cortex-R5 CPU,” in 2016 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, sep 2016, pp. 91–96.

[26] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of
multi-bit soft error events in advanced SRAMs,” in IEEE International
Electron Devices Meeting 2003. IEEE, 2004, pp. 21.4.1–21.4.4.

[27] X. Li, K. Shen, and M. Huang, “A memory soft error measurement
on production systems,” 2007 USENIX Annual Technical, pp. 275–280,
2007.

[28] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly,” ACM SIGARCHComputer Architecture
News, vol. 43, no. 1, pp. 297–310, mar 2015.

[29] N. Seifert, S. Jahinuzzaman, J. Velamala, R. Ascazubi, N. Patel, B. Gill,
J. Basile, and J. Hicks, “Soft Error Rate Improvements in 14-nm Tech-
nology Featuring Second-Generation 3D Tri-Gate Transistors,” IEEE
Transactions on Nuclear Science, vol. 62, no. 6, pp. 2570–2577, Dec.
2015.

[30] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33,
jan 2004.

[31] I. Koren and M. C. Krishna, Fault-tolerant systems. San Francisco,
CA, USA: Elsevier/Morgan Kaufmann, 2007.

[32] Zynq-7000 All Programmable SoC - Technical Reference Manual, Xil-
inx, Oct 2017, version 1.12.

[33] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing,”
Computer, vol. 41, no. 7, pp. 27–32, 2008.

[34] V. W. Lee, P. Hammarlund, R. Singhal, P. Dubey, C. Kim, J. Chhugani,
M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, and
S. Chennupaty, “Debunking the 100X GPU vs. CPU myth,” in ACM
SIGARCH Computer Architecture News, vol. 38, no. 3, 2012, p. 451.

221

Bibliography

[35] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, 2007.

[36] ARMArchitecture ReferenceManual – ARMv7-A and ARMv7-R edition,
ARM, May 2014.

[37] A. Holdings, “ARM Limited Roadshow Slides Q2 2020,” 2018.
[Online]. Available: https://group.softbank/system/files/pdf/ir/presenta
tions/2020/arm-roadshow-slides_q2fy2020_01_en.pdf

[38] ARM Cortex-A Series – Programmer’s Guide, ARM, Jan 2014, version:
4.0.

[39] Cortex-A9 – Technical Reference Manual, ARM, Jul 2011, revision
r3p0.

[40] M. Manoochehri, M. Annavaram, and M. Dubois, “CPPC,” in
Proceeding of the 38th annual international symposium on Computer
architecture - ISCA '11. ACM Press, 2011. [Online]. Available:
https://doi.org/10.1145/2000064.2000091

[41] M. A. Rouf and Soontae Kim, “Low-Cost Control Flow Protection via
Available Redundancies in the Microprocessor Pipeline,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 1,
pp. 131–141, jan 2015.

[42] “ISO 26262:2018 – Road Vehicles – Functional Safety,” Geneva, CH,
Standard, 2018.

[43] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
Annual International Symposium on Microarchitecture, MICRO, 2003,
pp. 29–40.

[44] S. Raasch, A. Biswas, J. Stephan, P. Racunas, and J. Emer, “A fast and
accurate analytical technique to compute the AVF of sequential bits in
a processor,” in Proceedings of the 48th International Symposium on
Microarchitecture - MICRO-48. New York, New York, USA: ACM
Press, 2015, pp. 738–749.

[45] A. Biswas, N. Soundararajan, S. S. Mukherjee, and S. Gurumurthi,
“Quantized AVF : A Means of Capturing Vulnerability Variations over
Small Windows of Time,” in In IEEE Workshop on Silicon Errors in
Logic - System Effects, 2009.

222

https://group.softbank/system/files/pdf/ir/presentations/2020/arm-roadshow-slides_q2fy2020_01_en.pdf
https://group.softbank/system/files/pdf/ir/presentations/2020/arm-roadshow-slides_q2fy2020_01_en.pdf
https://doi.org/10.1145/2000064.2000091

Bibliography

[46] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online Estimation of
ArchitecturalVulnerability Factor for Soft Errors,” in 2008 International
Symposium on Computer Architecture. IEEE, jun 2008, pp. 341–352.

[47] J. D. C. Little, “A Proof for the Queuing Formula: ! = _, ,”Operations
Research, vol. 9, no. 3, pp. 383–387, Jun 1961.

[48] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” in ISCA ’07 Proceedings of
the 34th annual international symposium on Computer architecture,
2007, pp. 460–469.

[49] A. Biswas, P. Racunas, J. Emer, and S. S. Mukherjee, “Computing Ac-
curate AVFs using ACE Analysis on Performance Models : a Rebuttal,”
IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 21–24, 2008.

[50] “IEC 61508:2010 Functional safety of electrical/electronic/pro-
grammable electronic safety- related systems,” Standard, 2010.

[51] “DO-178C: Software Consideration in Airborne Systems and Equip-
ment Certification,” Washington, D.C., USA, Standard, 2011.

[52] “DO-254: Design Assurance Guidance For Airborne Electronic Hard-
ware,” Washington, D.C., USA, Standard, 2000.

[53] V. Lefftz, J. Bertrand, H. Casse, C. Clienti, P. Coussy, L.Maillet-Contoz,
P. Mercier, P. Moreau, L. Pierre, and E. Vaumorin, “A design flow for
critical embedded systems,” in International Symposium on Industrial
Embedded System (SIES). IEEE, jul 2010, pp. 229–233.

[54] R. Berger, L. Burcin, D. Hutcheson, J. Koehler, M. Lassa, M. Mil-
liser, D. Moser, D. Stanley, R. Zeger, B. Blalock, and M. Hale, “The
RAD6000MC System-on-ChipMicrocontroller for Spacecraft Avionics
and Instrument Control,” in 2008 IEEE Aerospace Conference. IEEE,
mar 2008, pp. 1–14.

[55] L. Gagea and I. Rajkovic, “Designing devices for avionics applications
and the DO-254 guideline,” in 2008 International Semiconductor Con-
ference, vol. 2. IEEE, 2008, pp. 377–380.

[56] L. R. Eveleens, “Integrated Modular Avionics Development Guidances
and Certification Considerations,” in Mission Systems Engineering 2,
Nov 2006.

[57] H. Shacham, “The geometry of innocent flesh on the bone,” in Proceed-
ings of the 14th ACM conference on Computer and communications

223

Bibliography

security - CCS ’07. New York, New York, USA: ACM Press, 2007, p.
552.

[58] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses,” in Proceedings of the 23rd USENIX Conference on Secu-
rity Symposium, ser. SEC’14. USA: USENIX Association, 2014, p.
385–399.

[59] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 340–353. [Online].
Available: https://doi.org/10.1145/1102120.1102165

[60] “Fine-Grained Control-Flow Integrity for Kernel Software,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, mar 2016, pp. 179–194.

[61] N. Carlini, A. Barresi, E. T. H. Zürich, M. Payer, D. Wagner, T. R.
Gross, E. T. H. Zürich, N. Carlini, A. Barresi, D. Wagner, and T. R.
Gross, “Control-Flow Bending : On the Effectiveness of Control-Flow
Integrity This paper is included in the Proceedings of the,” in
USENIX Security Symposium, 2015, pp. 161–176. [Online]. Available:
http://dblp.uni-trier.de/db/conf/uss/uss2015.html{#}CarliniBPWG15

[62] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security, vol. 13, no. 1, pp. 1–40,
2009.

[63] “Web of Science Core Collection,” Clarivate, 2015, Accessed:
2020-12-13. [Online]. Available: https://www.webofknowledge.com/

[64] R. Baumann, “The impact of technology scaling on soft error rate per-
formance and limits to the efficacy of error correction,” in Digest. Inter-
national Electron Devices Meeting. IEEE, 2003, pp. 329–332.

[65] A. Rajabzadeh and S. G.Miremadi, “CFCET: A hardware-based control
flow checking technique in COTS processors using execution tracing,”
Microelectronics Reliability, vol. 46, no. 5-6, pp. 959–972, 2006.

[66] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-García,
A. Lindoso, andL. Entrena, “Online Test of Control FlowErrors: ANew
Debug Interface-Based Approach,” IEEE Transactions on Computers,
vol. 65, no. 6, pp. 1846–1855, 2016.

224

https://doi.org/10.1145/1102120.1102165
http://dblp.uni-trier.de/db/conf/uss/uss2015.html{#}CarliniBPWG15
https://www.webofknowledge.com/

Bibliography

[67] M. Pena-Fernandez, A. Lindoso, L. Entrena,M.Garcia-Valderas, Y.Mo-
rilla, and P. Martin-Holgado, “Online Error Detection Through Trace
Infrastructure in ARM Microprocessors,” IEEE Transactions on Nu-
clear Science, vol. 66, no. 7, pp. 1457–1464, jul 2019.

[68] M. Fazeli, R. Farivar, and S. G. Miremadi, “A software-based concur-
rent error detection technique for powerPC processor-based embedded
systems,” in Proceedings - IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 2005.

[69] R. G. Ragel and S. Parameswaran, “A hybrid hardware–software tech-
nique to improve reliability in embedded processors,”ACMTransactions
on Embedded Computing Systems, vol. 10, no. 3, pp. 1–16, 2011.

[70] R.Nathan andD. J. Sorin, “Nostradamus: Low-cost hardware-only error
detection for processor cores,” in Proceedings -Design, Automation and
Test in Europe, DATE. EDAA, 2014, pp. 1–6.

[71] S. Bergaoui, P. Vanhauwaert, and R. Leveugle, “IDSM: An improved
disjoint signature monitoring scheme for processor behavioral check-
ing,” LATW 2014 - 15th IEEE Latin-American Test Workshop, vol. 6,
pp. 5–10, 2014.

[72] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-Garcia,
A. Lindoso, and L. Entrena, “Exploiting the debug interface to support
on-line test of control flow errors,” in 2013 IEEE 19th International
On-Line Testing Symposium (IOLTS). IEEE, jul 2013, pp. 98–103.

[73] B. Du, M. S. Reorda, L. Sterpone, L. Parra, M. Portela-Garcia, A. Lin-
doso, and L. Entrena, “A new solution to on-line detection of Control
Flow Errors,” in 2014 IEEE 20th International On-Line Testing Sympo-
sium (IOLTS), vol. 675. IEEE, jul 2014, pp. 105–110.

[74] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas,
S. Philippe, Y. Morilla, and P. Martin-Holgado, “PTM-based hybrid
error-detection architecture for ARMmicroprocessors,”Microelectron-
ics Reliability, vol. 88-90, no. May, pp. 925–930, sep 2018.

[75] OpenCores, “miniMIPS – Overview,” 2004, available at https://openco
res.org/projects/minimips, accessed 26th Apr. 2019.

[76] GRLIB IP Core User’s Manual, Gaisler, Dec 2017.
[77] F. L. Kastensmidt, J. Tonfat, T. Both, P. Rech, G. Wirth, R. Reis,

F. Bruguier, P. Benoit, L. Torres, and C. Frost, “Aging and voltage

225

https://opencores.org/projects/minimips
https://opencores.org/projects/minimips

Bibliography

scaling impacts under neutron-induced soft error rate in SRAM-based
FPGAs,” in 2014 19th IEEE European Test Symposium (ETS). IEEE,
may 2014, pp. 1–2.

[78] D. J. Lu, “Watchdog Processors and Structural Integrity Checking,”
IEEE Transactions on Computers, vol. C, no. 7, pp. 681–685, 1982.

[79] T.Michel, R. Leveugle, and G. Saucier, “A new approach to control flow
checking without program modification,” in [1991] Digest of Papers.
Fault-Tolerant Computing: The Twenty-First International Symposium.
IEEE, 1991.

[80] J. R. Azambuja, C. Pilotto, and F. L. Kastensmidt, “Mitigating soft
errors in SRAM-based FPGAs by using large grain TMR with selective
partial reconfiguration,” in Proceedings of the European Conference
on Radiation and its Effects on Components and Systems, RADECS.
IEEE, sep 2008, pp. 288–293.

[81] P. Ezhilchelvan, I. Mitrani, and S. Shrivastava, “A performance evalu-
ation study of pipeline TMR systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 1, no. 4, pp. 442–456, 1990.

[82] A. S.Keys, J. H.Adams, J.D.Cressler, R.C.Darty,M.A. Johnson,M.C.
Patrick, and M. S. El-Genk, “High-Performance, Radiation-Hardened
Electronics for Space and Lunar Environments,” in AIP Conference
Proceedings, vol. 969. AIP, 2008, pp. 749–756.

[83] T. M. Lovelly and A. D. George, “Comparative Analysis of Present
and Future Space-Grade Processors with Device Metrics,” Journal of
Aerospace Information Systems, vol. 14, no. 3, pp. 184–197, 2017.

[84] A. Mahmood and E. McCluskey, “Concurrent error detection us-
ing watchdog processors-a survey,” IEEE Transactions on Computers,
vol. 37, no. 2, pp. 160–174, 1988.

[85] T. Austin, “DIVA: a reliable substrate for deep submicronmicroarchitec-
ture design,” inMICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE Comput. Soc,
2003, pp. 196–207.

[86] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance, 1st ed. Springer
US, 2006.

226

Bibliography

[87] F. E. Allen, “Control flow analysis,” in Proceedings of a symposium on
Compiler optimization -. New York, New York, USA: ACM Press,
1970, pp. 1–19.

[88] G.Kanawati, V.Nair, N.Krishnamurthy, and J. Abraham, “Evaluation of
integrated system-level checks for on-line error detection,” in Proceed-
ings of IEEE International Computer Performance and Dependability
Symposium. IEEE Comput. Soc. Press, 1996, pp. 292–301.

[89] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 10, no. 6, pp. 627–641, 1999.

[90] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111–122, 2002.

[91] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-
line fault detection using control flow assertions,” in Proceedings - 9th
IEEE International On-Line Testing Symposium, IOLTS 2003, 2003, pp.
137–143.

[92] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-
error detection using control flow assertions,” in Proceedings - IEEE
International Symposium on Defect and Fault Tolerance in VLSI Sys-
tems, vol. 2003-Janua, 2003, pp. 581–588.

[93] H. Schirmeier, C. Borchert, andO. Spinczyk, “Avoiding Pitfalls in Fault-
Injection Based Comparison of Program Susceptibility to Soft Errors,”
in Proceedings of the International Conference on Dependable Systems
and Networks, vol. 2015-Septe, 2015, pp. 319–330.

[94] OpenCores, “Amber ARM-compatible core – Overview,” 2010, avail-
able at https://opencores.org/projects/amber, accessed 29th Apr. 2019.

[95] G. Rodrigues, F. ROSA, A. de Oliveira, F. Lima Kastensmidt, L. Ost,
and R. Reis, “Analyzing the Impact of Fault ToleranceMethods in ARM
Processors under Soft Errors running Linux and Parallelization APIs,”
IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 1–1, 2017.

[96] T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems for embedded SoC,” Proceedings of the European
Conference on Radiation and its Effects on Components and Systems,
RADECS, vol. 2015-Decem, pp. 2–6, 2015.

227

https://opencores.org/projects/amber

Bibliography

[97] S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle, F. R.
Palomo, H. Guzman-Miranda, and M. A. Aguirre, “A Novel Co-Design
Approach for Soft Errors Mitigation in Embedded Systems,” IEEE
Transactions on Nuclear Science, vol. 58, no. 3, pp. 1059–1065, jun
2011.

[98] M. A. Schuette and J. P. Shen, “Processor Control FlowMonitoring Us-
ing Signatured Instruction Streams,” IEEE Transactions on Computers,
vol. C-36, no. 3, pp. 264–276, 1987.

[99] J. B. Eifert and J. P. Shen, “Processor Monitoring Using Asynchronous
Signatures Instruction Streams,” in Proceedings of FTCS-25, vol. III.
IEEE, 1995, pp. 394–399.

[100] K. Wilken and J. P. Shen, “Continuous Signature Monitoring: Efficient
Concurrent-detection of Processor Control Errors,” in Proceedings of
the 1988 International Conference on Test: New Frontiers in Testing.
IEEE, 1988, pp. 914–925.

[101] N. R. Saxena and E. J. Mccluskey, “Control-flow checking using watch-
dog assists and extended-precision checksums,” IEEE Transactions on
Computers, vol. 39, no. 4, pp. 554–559, 1990.

[102] G. Giaconia, A. Di Stefano, and G. Capponi, “FPGA-based concurrent
watchdog for real-time control systems,” Electronics Letters, vol. 39,
no. 10, p. 769, 2003.

[103] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak, “Software-based
control flow checking against transient faults in industrial environ-
ments,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
pp. 481–490, 2014.

[104] A. Rajabzadeh and S. G. Miremadi, “Transient detection in COTS pro-
cessors using software approach,”Microelectronics Reliability, vol. 46,
no. 1, pp. 124–133, jan 2006.

[105] J. Freitag and S. Uhrig, “Dynamic interference quantification for mul-
ticore processors,” AIAA/IEEE Digital Avionics Systems Conference -
Proceedings, vol. 2017-Septe, 2017.

[106] F. Khosravi, H. Farbeh, M. Fazeli, and S. G. Miremadi, “Low cost
concurrent error detection for on-chip memory based embedded pro-
cessors,” Proceedings - 2011 IFIP 9th International Conference on
Embedded and Ubiquitous Computing, EUC 2011, pp. 114–119, 2011.

228

Bibliography

[107] H. Madeira and J. G. Silva, “On-line signature learning and checking:
experimental evaluation,” in [1991] Proceedings, Advanced Computer
Technology, Reliable Systems and Applications. IEEE, 1991.

[108] N. J. Wang and S. J. Patel, “ReStore: Symptom-based soft error detec-
tion in microprocessors,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, pp. 188–201, 2006.

[109] N. Farazmand, M. Fazeli, and S. G. Miremadi, “FEDC: Control flow
error detection and correction for embedded systems without program
interruption,” in ARES 2008 - 3rd International Conference on Avail-
ability, Security, and Reliability, Proceedings, 2008, pp. 33–38.

[110] A. B. T. Hopkins and K. D. McDonald-Maier, “Debug support for
complex systems on-chip: a review,” in IEE Proceedings - Computers
and Digital Techniques, vol. 153, no. 4. IET, 2006, p. 197.

[111] A.Mayer, H. Siebert, and K. D.McDonald-Maier, “Boosting debugging
support for complex systems on chip,” Computer, vol. 40, no. 4, pp. 76–
81, 2007.

[112] B. Vermeulen, R. Kühnis, J. Rearick, N. Stollon, and G. Swoboda,
“Overview of debug standardization activities,” IEEE Design and Test
of Computers, vol. 25, no. 3, pp. 258–267, 2008.

[113] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and R. Lasslop,
“Runtime verification for multicore SoC with high-quality trace data,”
ACMTransactions on Design Automation of Electronic Systems, vol. 18,
no. 2, pp. 1–26, mar 2013.

[114] “IEEE-ISTO 5001-2012 the nexus 5001 forum – standard for a global
embedded processor debug interface,” Standard, Jun 2012, available at
https://nexus5001.org/, accessed 18th Apr. 2019.

[115] Zynq UltraScale+ Device - Technical Reference Manual, Xilinx, Nov
2017, version 1.6.

[116] Intel Corporation, “Intel SoC FPGAs,” 2019, accessed 18th Apr. 2019.
[Online]. Available: https://www.intel.com/content/www/us/en/produc
ts/programmable/soc.html

[117] ARM CoreSight Architecture Specification, ARM, Feb 2017, version
3.0.

[118] N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel,
M. Schmitz, and A. Weiss, “Rapidly adjustable non-intrusive online

229

https://nexus5001.org/
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html

Bibliography

monitoring for multi-core systems,” in Formal Methods: Foundations
and Applications. Springer International Publishing, 2017, pp. 179–
196.

[119] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, “Using CoreSight
PTM to Integrate CRA Monitoring IPs in an ARM-Based SoC,” ACM
Transactions onDesign Automation of Electronic Systems, vol. 22, no. 3,
pp. 1–25, apr 2017.

[120] W. He, S. Das, W. Zhang, and Y. Liu, “BBB-CFI: Lightweight CFI
ApproachAgainst Code-ReuseAttacksUsingBasicBlock Information,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 19,
no. 1, pp. 1–22, feb 2020.

[121] CoreSight PTM-A9 – Technical Reference Manual, ARM, Jul 2011,
revision r1p0.

[122] CoreSight Program Flow Trace – PFTv1.0 and PFTv1.1 – Architecture
Specification, ARM, Mar 2011.

[123] ZedBoard (Zynq Evaluation and Development) - Hardware User’s
Guide, Digilent, Jan 2014, version 2.2.

[124] ARM CoreSight Components – Technical Reference Manual, ARM, Jul
2009.

[125] ARM CoreSight SoC-400 – Technical Reference Manual, ARM, Sept
2013, revision r3p1.

[126] ARM Embedded Trace Macrocell Architecture Specification – ETMv4.0
to ETMv4.3, ARM, Apr 2017.

[127] ARM Architecture Reference Manual – ARMv8, for ARMv8-A architec-
ture profile, ARM, Dec 2017.

[128] ARM Compiler armasm User Guide, ARM, Nov 2016, version 5.06.
[129] ARM Cortex-A53 MPCore Processor – Technical Reference Manual,

ARM, Jul 2011, revision r0p4.
[130] ZCU102 Evaluation Board - User Guide, Xilinx, Jan 2019, version 1.5.
[131] Leon3 / Leon3-FT – SPARC V8 32-Bit Processor Companion Core Data

Sheet, Gaisler, Mar 2010, accessed 21st Apr. 2019. [Online]. Available:
http://www.actel.com/ipdocs/LEON3_DS.pdf

[132] A. M. Keller and M. J. Wirthlin, “Benefits of Complementary SEU
Mitigation for the LEON3 Soft Processor on SRAM-Based FPGAs,”

230

http://www.actel.com/ipdocs/LEON3_DS.pdf

Bibliography

IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 519–528,
2017.

[133] A. Lindoso, L. Entrena, M. Garcia-Valderas, and L. Parra, “A Hybrid
Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End
SRAM FPGA,” IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 374–381, jan 2017.

[134] S. Clerc, F. Abouzeid, G. Gasiot, J.-M.Daveau, C. Bottoni, M.Glorieux,
J.-L. Autran, F. Cacho, V. Huard, L. Dugoujon, R. Weigand, F. Malou,
L. Hili, and P. Roche, “Space radiation and reliability qualifications on
65nm CMOS 600MHz microprocessors,” in 2013 IEEE International
Reliability Physics Symposium (IRPS). IEEE, apr 2013, pp. 6C.1.1–
6C.1.7.

[135] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hubner, R. K. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe,
“Invasive manycore architectures,” in 17th Asia and South Pacific De-
sign Automation Conference. IEEE, jan 2012, pp. 193–200.

[136] L. Parra, A. Lindoso, F. Restrepo-Calle, M. Portela, S. Cuenca-Asensi,
L. Entrena, and A. Martinez-Alvarez, “Efficient Mitigation of Data
and Control Flow Errors in Microprocessors,” IEEE Transactions on
Nuclear Science, vol. 61, no. 4, pp. 1590–1596, 2014.

[137] N. Stollon, On-Chip Instrumentation: Design and Debug for Systems
on Chip, 1st ed. Springer US, 2011.

[138] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Intel,
Oct 2019.

[139] “Guidelines for the use of thec++14 language in critical andsafety-
related systems.”

[140] K. Asanović, R. Avizienis, and J. a. Bachrach, “The rocket chip
generator,” Tech. Rep., Apr 2016, Accessed: 2021-01-31. [Online].
Available: https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-
17.pdf

[141] E. Matthews and L. Shannon, “TAIGA: A new RISC-V soft-processor
framework enabling high performance CPU architectural features,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, sep 2017, pp. 1–4. [Online]. Available:
http://ieeexplore.ieee.org/document/8056766/

231

https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-17.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-17.pdf
http://ieeexplore.ieee.org/document/8056766/

Bibliography

[142] “XA Zynq-7000 SoC Data Sheet: Overview,” Xilinx, 2018, Accessed:
2019-11-18. [Online]. Available: https://www.xilinx.com/support/doc
umentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf

[143] A. B. de Oliveira, L. A. Tambara, F. Benevenuti, L. A. C. Benites,
N. Added, V. A. P. Aguiar, N. H. Medina, M. A. G. Silveira, and F. L.
Kastensmidt, “Evaluating Soft Core RISC-V Processor in SRAM-Based
FPGAUnderRadiationEffects,” IEEETransactions onNuclear Science,
vol. 67, no. 7, pp. 1503–1510, jul 2020.

[144] J. Tonfat, F. Lima Kastensmidt, P. Rech, R. Reis, and H. M. Quinn,
“Analyzing the Effectiveness of a Frame-Level Redundancy Scrubbing
Technique for SRAM-based FPGAs,” IEEE Transactions on Nuclear
Science, vol. 62, no. 6, pp. 3080–3087, dec 2015.

[145] L. A. C. Benites, F. Benevenuti, A. B. De Oliveira, F. L. Kastensmidt,
N. Added, V. A. P. Aguiar, N. H. Medina, and M. A. Guazzelli, “Re-
liability Calculation With Respect to Functional Failures Induced by
Radiation in TMR Arm Cortex-M0 Soft-Core Embedded Into SRAM-
Based FPGA,” IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1433–1440, jul 2019.

[146] R. Lee, “Soft Error Mitigation Using Prioritized Es-
sential Bits,” Application Note, 2012, available at
https://www.xilinx.com/support/documentation/application_notes/xapp538-
soft-error-mitigation-essential-bits.pdf, accessed 6th May. 2019.

[147] L. A. Tambara, “Analyzing the impact of radiation-induced failures in
all programmable system-on-chip devices,” Ph.D. dissertation, Univer-
sidade Federal do Rio Grande do Sul (UFRGS), 2017.

[148] M. Pena-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas,
“Error Detection and Mitigation of Data-Intensive Microprocessor Ap-
plications Using SIMD and Trace Monitoring,” IEEE Transactions on
Nuclear Science, vol. 67, no. 7, pp. 1452–1460, jul 2020.

[149] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H.
Leber, “Comparison of physical and software-implemented fault injec-
tion techniques,” IEEE Transactions on Computers, vol. 52, no. 9, pp.
1115–1133, 2003.

[150] M.Guthaus, J. Ringenberg, D. Ernst, T.Austin, T.Mudge, andR.Brown,
“MiBench: A free, commercially representative embedded bench-
mark suite,” in Proceedings of the Fourth Annual IEEE International

232

https://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf

Bibliography

Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538).
IEEE, 2001, pp. 3–14.

[151] Procedure Call Standard for the ARM Architecture, ARM, Nov 2015.
[152] S. Analytics, “Accelerating the future: The eco-

nomic impact of the emerging passenger economy,” 2017.
[Online]. Available: https://newsroom.intel.com/newsroom/wp-
content/uploads/sites/11/2017/05/passenger-economy.pdf

[153] E. W. Dĳkstra, “Solution of a problem in concurrent programming
control,” Communications of the ACM, vol. 8, no. 9, p. 569, sep 1965.

[154] J. Clark and D. Pradhan, “Fault injection: a method for validating
computer-system dependability,” Computer, vol. 28, no. 6, pp. 47–56,
jun 1995.

[155] R. Vemu, S. Gurumurthy, and J. A. Abraham, “ACCE: Automatic cor-
rection of control-flow errors,” in Proceedings - International Test Con-
ference, 2007, pp. 1–10.

[156] W. Chao, F. Zhongchuan, C. Hongsong, B.Wei, L. Bin, C. Lin, Z. Zexu,
W. Yuying, and C. Gang, “CFCSS without aliasing for SPARC architec-
ture,” Proceedings - 10th IEEE International Conference on Computer
and Information Technology, CIT-2010, 7th IEEE International Confer-
ence on Embedded Software and Systems, ICESS-2010, ScalCom-2010,
no. Cit, pp. 2094–2100, 2010.

[157] S. Mitra, K. Brelsford, Y. M. Kim, H. H. K. Lee, and Y. Li, “Robust
system design to overcome CMOS reliability challenges,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 1,
pp. 30–41, 2011.

[158] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault Injection
Attacks on Cryptographic Devices: Theory, Practice, and Countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, nov
2012.

[159] J. Zhang, R. Hou, W. Song, S. A. Mckee, Z. Jia, C. Zheng, M. Chen,
L. Zhang, and D. Meng, “RAGuard: An Efficient and User-Transparent
HardwareMechanism against ROP Attacks,” ACM Transactions on Ar-
chitecture and Code Optimization, vol. 15, no. 4, pp. 1–21, jan 2019.

[160] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model-
ing the effect of technology trends on the soft error rate of combinational

233

https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/05/passenger-economy.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/05/passenger-economy.pdf

Bibliography

logic,” inProceedings International Conference onDependable Systems
and Networks. IEEE Comput. Soc, 2002, pp. 389–398.

[161] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
Software Implemented Fault Tolerance,” in International Symposium on
Code Generation and Optimization. IEEE, 2005, pp. 243–254.

[162] R. G. Ragel and S. Parameswaran, “Hardware assisted pre-emptive
control flowchecking for embedded processors to improve reliability,” in
Proceedings of the 4th international conference on Hardware/software
codesign and system synthesis - CODES+ISSS ’06. New York, New
York, USA: ACM Press, 2006, p. 100.

[163] F. Wang and V. D. Agrawal, “Single Event Upset: An Embedded Tuto-
rial,” in 21st International Conference on VLSI Design (VLSID 2008).
IEEE, 2008, pp. 429–434.

[164] M. Grosso, M. S. Reorda, M. Portela-Garcia, M. Garcia-Valderas,
C. Lopez-Ongil, and L. Entrena, “An on-line fault detection technique
based on embedded debug features,” in 2010 IEEE 16th International
On-Line Testing Symposium. IEEE, jul 2010, pp. 167–172.

[165] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-J. Wu, “Quanti-
tative Analysis of Control Flow Checking Mechanisms for Soft Errors,”
in Proceedings of the The 51st Annual Design Automation Conference
on Design Automation Conference - DAC ’14. New York, New York,
USA: ACM Press, 2014, pp. 1–6.

[166] M. Duricek and T. Krajčovič, “Interactive hybrid Control-flow check-
ing method,” in International Conference on Applied Electronics, no.
January. IEEE, 2014, pp. 79–82.

[167] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practi-
cal solution to detect code reuse attacks on ARM mobile devices,” in
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy - HASP ’15, vol. 14-June-20. New
York, New York, USA: ACM Press, 2015, pp. 1–8.

[168] E. Chielle, B. Du, F. L. Kastensmidt, S. Cuenca-Asensi, L. Sterpone,
and M. S. Reorda, “Hybrid soft error mitigation techniques for COTS
processor-based systems,” in LATS 2016 - 17th IEEE Latin-American
Test Symposium, 2016, pp. 99–104.

[169] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, “Integration of ROP/JOP
monitoring IPs in an ARM-based SoC,” in Proceedings of the 2016

234

Bibliography

Design, Automation and Test in Europe Conference and Exhibition,
DATE 2016. EDAA, 2016, pp. 331–336.

[170] I. Agirre, J. Abella, M. Azkarate-Askasua, and F. J. Cazorla, “On the
tailoring of CAST-32A certification guidance to real COTSmulticore ar-
chitectures,” in 2017 12th IEEE International Symposium on Industrial
Embedded Systems, SIES 2017 - Proceedings, vol. 2017-June, 2017, pp.
1–8.

[171] N. Decker, B. Dreyer, P. Gottschling, C. Hochberger, A. Lange,
M. Leucker, T. Scheffel, S. Wegener, and A. Weiss, “Online analysis of
debug trace data for embedded systems,” in Proceedings of the 2018 De-
sign, Automation and Test in Europe Conference and Exhibition, DATE
2018. EDAA, 2018, pp. 851–856.

[172] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert,
“Analyzing control flow integrity with LLVM-CFI,” in Proceedings
of the 35th Annual Computer Security Applications Conference on -
ACSAC ’19. New York, New York, USA: ACM Press, 2019, pp.
584–597.

[173] S. Canakci, L. Delshadtehrani, B. Zhou, A. Joshi, and M. Egele, “Ef-
ficient context-sensitive cfi enforcement through a hardware monitor,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
C. Maurice, L. Bilge, G. Stringhini, and N. Neves, Eds. Springer
International Publishing, 2020, pp. 259–279.

[174] ARAMIS-II, “ARAMIS-II Project Homepage,” https://www.aramis2.
com/, 2019, Accessed: 2017-11-12.

[175] Oberhumer, “LZO Compression Library,” http://www.oberhumer.com/
opensource/lzo/, 2017, Accessed: 2017-11-12.

[176] AWS, “The FreeRTOS™Kernel,” https://freertos.org/, 2017, Accessed:
2019-11-12.

[177] S. Segars, “ARM Processor Evolution,” Hot Chips (HC23)
Keynote, Standford University, 2011, Accessed: 2019-11-18.
[Online]. Available: https://www.hotchips.org/wp-content/upload
s/hc_archives/hc23/HC23.18.2-zkeynote1/HC23.18.keynote1.Arm-
Hot%20Chips%202011%20SS%20Final.pdf

[178] M. Wolfe, “Compilers and More: Is Amdahl’s Law Still Relevant?”
2015. [Online]. Available: https://www.hpcwire.com/2015/01/22/co
mpilers-amdahls-law-still-relevant/

235

https://www.aramis2.com/
https://www.aramis2.com/
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://freertos.org/
https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-zkeynote1/HC23.18.keynote1.Arm-Hot%20Chips%202011%20SS%20Final.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-zkeynote1/HC23.18.keynote1.Arm-Hot%20Chips%202011%20SS%20Final.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.2-zkeynote1/HC23.18.keynote1.Arm-Hot%20Chips%202011%20SS%20Final.pdf
https://www.hpcwire.com/2015/01/22/compilers-amdahls-law-still-relevant/
https://www.hpcwire.com/2015/01/22/compilers-amdahls-law-still-relevant/

Bibliography

[179] MicroBlaze Processor Reference Guide, Xilinx, Jun 2020, v22020.1.
[Online]. Available: https://www.xilinx.com/support/documentation/s
w_manuals/xilinx2020_1/ug984-vivado-microblaze-ref.pdf

[180] Cortex-A9 MPCore – Technical Reference Manual, ARM, Jun 2012,
revision r4p1.

[181] “Position Paper CAST-32A: Multi-core Processors,” Tech.
Rep., 2016, accessed 18th Apr. 2019. [Online]. Avail-
able: https://www.faa.gov/aircraft/air_cert/design_approvals/air_sof
tware/cast/cast_papers/media/cast-32A.pdf

236

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug984-vivado-microblaze-ref.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf

	Abstract
	Resumo
	Zusammenfassung
	Table of Contents
	Introduction
	Motivations and Problem Statement
	Objectives and Contributions
	Thesis Organization

	Definitions and Background
	Concepts in Safety of Semiconductor Devices
	Sources of Defects, Faults, and Upsets
	Error, Failures, and Fault-Tolerance
	Reliability and Failure Rates

	Target Architecture
	Heterogeneous Programmable Logic Devices
	The Cortex-A9 MPCore

	Radiation Effects on Semiconductor Devices and CPUs
	Soft-Errors in Processor Sub-components
	Data-Flow Error Effects
	Control-Flow Error Effects
	Architectural Vulnerability and CPU Faults

	Safety Standards for Critical Systems
	Safety Levels
	Safety Monitoring

	Security Vulnerabilities and Control-Flow Attacks
	Summary

	Related Works
	Comparison of Hardware CFC Techniques
	Fault Tolerance Techniques for Embedded Processors
	Control-Flow Error Detection Techniques
	Software-Based Techniques
	Weaknesses of Software-Based Techniques
	General Hardware-Based Methods

	Summary

	Debug and Trace Architectures
	Common Trace Architecture Features
	Debugging and Tracing Software Systems
	Differences between Tracing and Profiling

	ARM CoreSight Debug and Trace Architecture
	Program Tracing with PTM
	Program Tracing with ETMv4

	Leon3 and Leon4 Debug Support Unit (DSU)
	IEEE-ISTO NEXUS 5001 Standard
	Aurix Multi-Core Debug Solution (MCDS)
	Intel Processor Trace (PT)
	Summary

	Binary Program Analysis for Embedded Trace Monitoring
	Generating the Binary Application Code
	Binary Execution and Memory Maps
	Control-Flow Optimizations
	Coding Guidelines for Critical Systems

	Binary Control-Flow Analysis
	Program Trace and the Control-Flow Graph
	Summary

	Hardware Control-Flow Monitoring Architecture
	Monitor Architecture
	Source Parser
	Trace Decoder
	Control-Flow Checker Core
	Configuration Memory

	Detectable Control-Flow Errors
	Summary

	Evaluation and Fault Injection Results
	Hardware Implementation Results
	Models for Trace-Based Monitoring
	Error Detection and Error Response Times
	Trace Generation and Transmission Latency
	Real-Time Trace Processing Model

	Vulnerability Analysis of Hardware Monitor
	Fault Injection Tests
	Methods for Evaluating Fault Tolerance Techniques
	Fault Classification
	Static Fault Injections
	Runtime Fault Injections
	Fault Injection Results

	Summary

	Summary, Conclusions and Outlook
	List of Figures
	List of Tables
	Response Time Analysis Graphs
	Publications
	Bibliography

