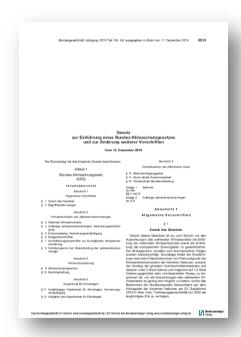
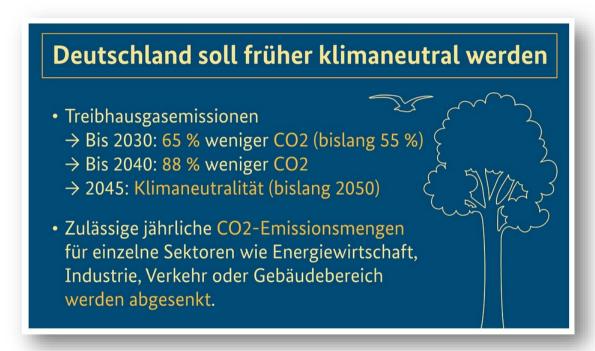


H₂-basierte reFuels als Baustein einer CO₂-neutralen Mobilität

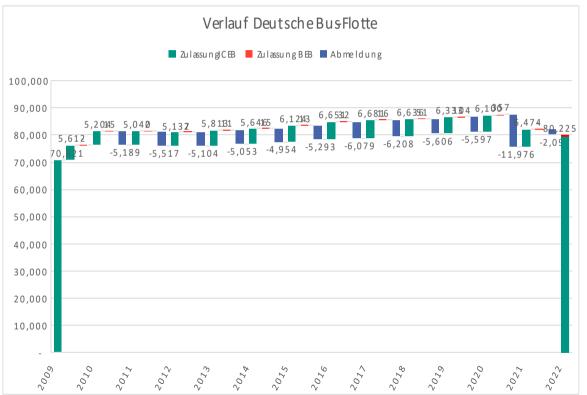

Wasserstoff für die Wärmeversorgung und den öffentlichen Nahverkehr Session: Wasserstoff im ÖPNV – Erfahrungen und Ausblicke


1. Juli 2022 Dr.-Ing. Olaf Toedter

Motivation: Gestaltung der Verkehrswende

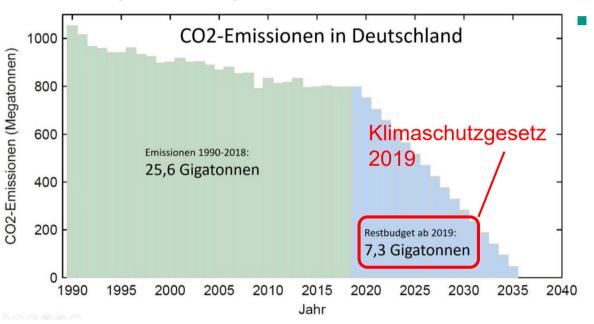
24.06.2021: Überarbeitung des KSG

Quelle: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/ksg_aendg_2021_3_bf.pdf https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672


Eine gesamte Reduzierung der CO₂ Emissionen von 65% bis 2030 ist im KSG verankert.

Gestaltung der Verkehrswende Entwicklung des Bus Fahrzeugmarktes

39,6 t BEB in 8 Jahren



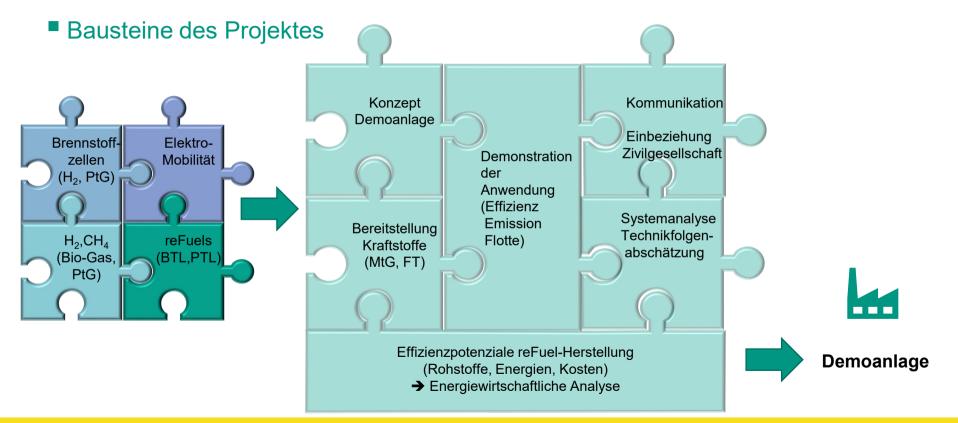
Gestaltung der Verkehrswende

Betrachtung des Restbudgets

Treibhausgas-Restbudget

- Der "Sachverständigenrat für Umweltfragen" nennt für 2020 ein Restbudget von
 - 4,2Gt CO_{2äq} für die Erreichung der Paris-Ziele (1,5°C @ 50%)
 - 6,6 Gt CO_{2äq} 1,75°C @ 50% → identisch Ziel aus KSG 2019

Rahmstorf, S, 2019, Spectrum.de SciLogs https://scilogs.spektrum.de/klimalounge/wie-viel-co2-kann-deutschland-noch-ausstossen/



reFuels als Baustein zur CO₂-neutralen Mobilität

Wasserstoff-basierte Energieträger

H₂ –Nutzung in CO₂- neutralen Antriebssträngen H₂-Eindüsung ICEV_{H2} **Direkte Nutzung** Brennverfahren PEM-Elektrolyse CH₄ ICEV_{CH4} **Methanisierung AEL-Elektrolyse** H_2 Methanolsynthese Dampfreformierung MeOH -MeOH Fischer-Tropsch- $ICEV_{MeOH}$ Kraftstoff- System Methanpyrolyse Brennverfahren ⁻-Diesel ICEV_D paraffinischer Diesel

Wasserstoff-basierte Energieträger

Unterschiedliche Anwendungen nutzen unterschiedliche Vorteile

H₂-basierte Energieträger

0,0899 kg/m³

volum. E-Dichte 7200 MJ/L

graph. E-Dichte 118,8 MJ/kg

Transport

Dichte

Speicherung

Pipeline/

Lkw/Schiff Druckspeicher,

Kryospeicher, LOHC-Speicher,

Kaverne

0,657 kg/m³

0,0317 MJ/L

50 MJ/kg

MeOH

792 kg/m³

15,6 MJ/L

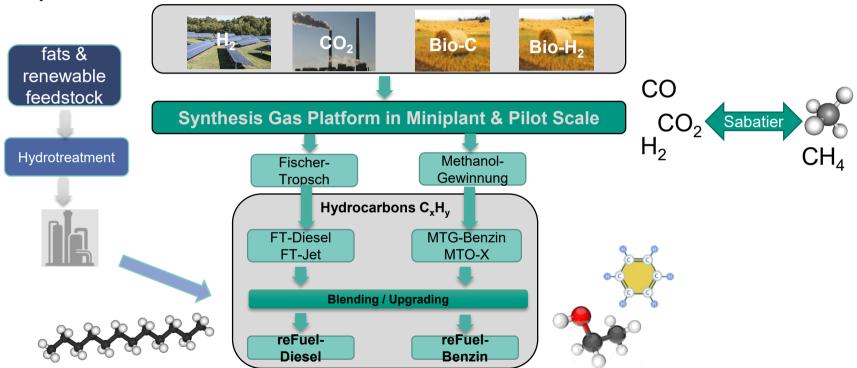
19,7 MJ/kg

FT-Diesel

765-780 kg/m³

36 MJ/L

42,8 MJ/kg

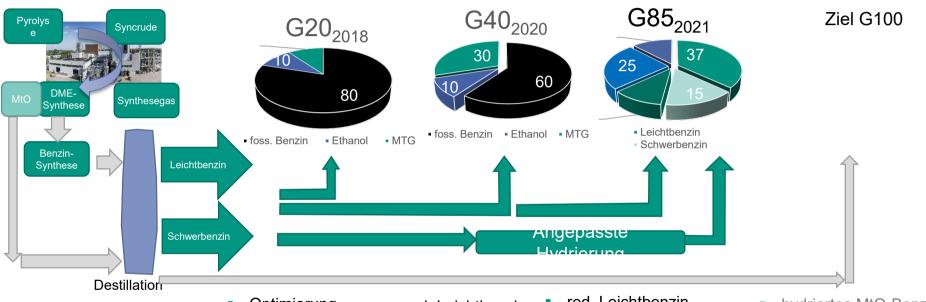


H₂ ist ein essentielles Element vieler chemischer Prozesse

Synthese-Pfade zu reFuels

Kraftstoffe

Foto: Amadeus Bramsiepe, KIT



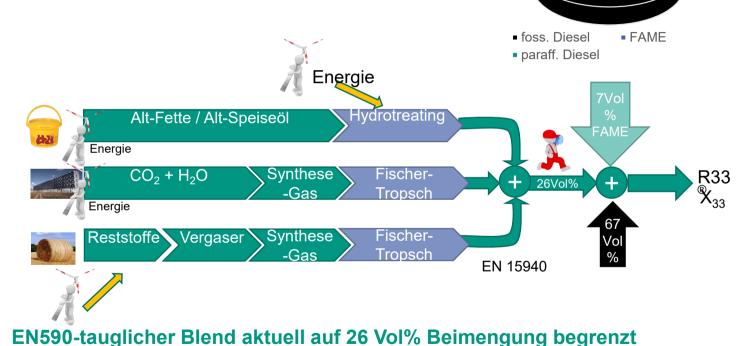
Steuerkreis reFuels

Benzin-Synthese-Strategie zu 100% regenerativem Normkraftstoff

Methanol-to Gasoline (MtG) – Blending von EN 228-Kraftstoffen

- Optimierung Ausbringung
- hoher Aromaten-Anteil
- red. Leichtbenzin
- optimierter Aromatenanteil
- red. Leichtbenzin
- hydriertes Schwerbenzin
- Hydriertes FT-Wachs
- ETBE + MTBE

- hydriertes MtO-Benzin
- FTBE + MTBE aus MtO



reFuels - Kraftstoffe neu denken reFuels Verfügbarkeitsbetrachtung

Diesel-Kraftstoff

EN15940 - Freigabe für alle Nutzfahrzeug-Antriebe ab ca. 2015

EN590:

R33-Bestandteile

67

26

Kraftstoff-Anwendung

-

■ Tests G40 an Motoren bei Ford

E	inzylindermotor	Vollmotor	Fahrzeug
■ Partikel (PM und PN)	\checkmark	\checkmark	\checkmark
■ CO	\checkmark	\checkmark	\checkmark
■ HC	\checkmark	\checkmark	\checkmark
■ NOx	\checkmark	\checkmark	\checkmark
Ölverdünnung		\checkmark	
■ Kaltstart Partikel		✓ 	√ +

Keine unerwarteten Emissions-, Komponenten- oder Öl-Effekte

→ >30% CO₂-Reduktionspotenzial in der Flotte

Wasserstoffmotor als THG-neutrale Option

- Bestehende Aggregate (Diesel oder CH4) lassen sich umbauen
- Indizierter Wirkungsgrad η>>40% sind darstellbar
- >>20 bar indizierter Mitteldruck sind darstellbar
- NOx-Emissionen < 1g/kWh sind darstellbar
- Saugrohreinspritzung als etablierte Technologie verfügbar
- Direkteindüsung als "Enabler" für Effizienz- und Leistungssteigerung bei gleichzeitiger Rohemissionsabsenkung sind in fortgeschrittenem Entwicklungsstadium

Indizierter Mitteldruck

Flottenversuch paraffinischer Diesel

Flottenversuch bei Lila Logistik in Zusammenarbeit mit Porsche Logistik
>>500.000 km, Versuch laufend

Höherer volumetrischer Verbrauch wegen geringerer Dichte stellte sich nicht ein

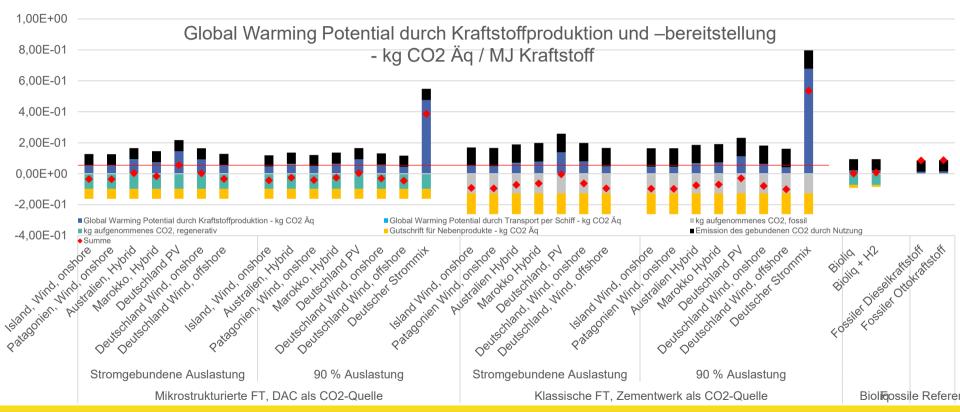
Deutliche Reduktion der Partikelemission→ weniger DPF-Regeneration

Keine Probleme während der Laufzeit mit 6 LKW's innerhalb 2 ½ Jahren

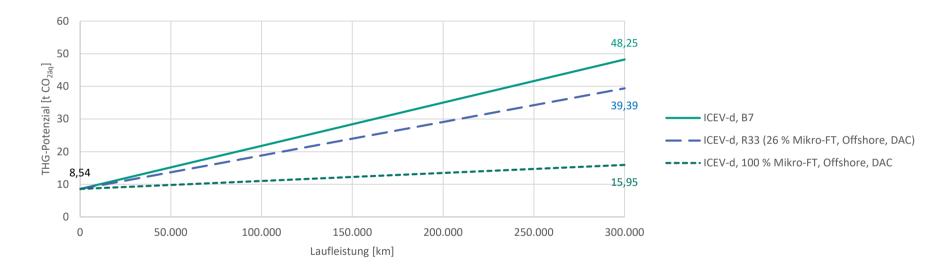
→ Ausweitung des Fuhrparks und der Testszenarien auf weitere Routen

Ökobilanz der Kraftstoffbereitstellung – internationale Ansätze

- Importszenarien mit Transport der Produkte per Schiff
 - Windanlage: Enercon E112, Wetterdaten von Pfenninger und Staffell (2016)
 - PV-Anlage: 1-Achsen-Tracking
- Marokko, Agadir
 - Hybrid PV-Wind, onshore
 - Kapazitätsfaktor Wind 17 %, Solar PV 30 %
- Argentinien, Patagonien
 - Windkraft, onshore
 - Kapazitätsfaktor Wind 56 %
- Australien
 - Hybrid PV-Wind, onshore
 - Kapazitätsfaktor Wind 30 %, Solar PV 30 %
- Island
 - Windkraft, onshore
 - Kapazitätsfaktor Wind 45 %

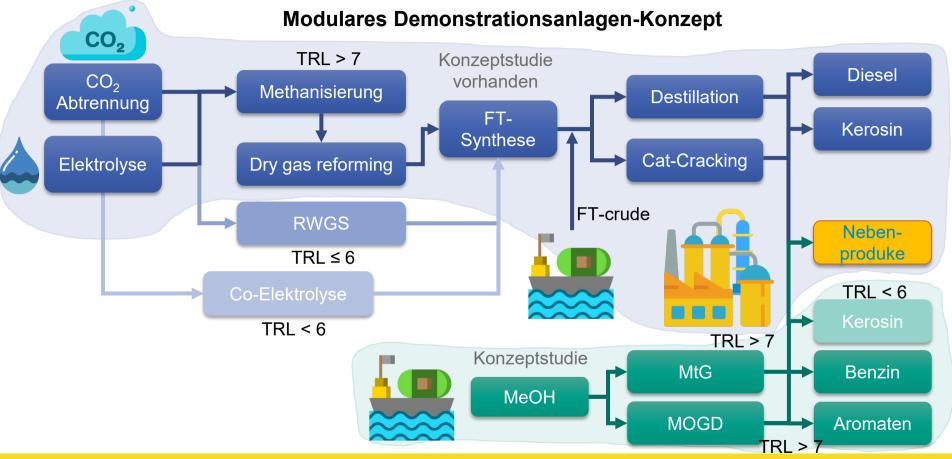


Ökobilanz der Kraftstoffbereitstellung – Treibhausgaseffekte



LCA von Fahrzeugen mit reFuels

Variation des Dieselkraftstoffes


Paraffinischer Diesel aus Micro-FT und DAC-CO₂ schafft mit Offshore-Windenergie-Versorgung auch als Beimengung (R33) eine 22%-ige CO₂-Reduktion in der Nutzung

Projektentwicklung Demonstrationsanlage

