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Abstract—Testing the performance of a battery management
system (BMS) is extensive and crucial due to its importance
for the overall battery safety and performance. In this paper,
a hardware-in-the-loop (HiL) test bench is presented for rapid
prototyping, testing and evaluation of BMS algorithms in real-
time. The system is designed to work with real cell packs without
any additional electronics or casing. This approach avoids the
high cost and effort of building a full battery system and
therefore simplifies algorithm testing on different cell types and
cell pack topologies. An extended Kalman Filter based state-
of-charge-algorithm is developed and compiled in C-Code in
MATLAB/Simulink to run on a digital signal processor (DSP) in
real-time. The capabilities and advantages of the setup are shown
with experimental HiL tests of the developed BMS algorithm in
comparison to software-in-the-loop (SiL) tests.

Index Terms—BMS, Hardware-in-the-Loop, real cells, rapid
prototyping, real-time

I. INTRODUCTION

Lithium-ion batteries (LIBs) are currently the most suitable
energy storage devices for powering electric vehicles (EV)
due to their attractive properties like high energy efficiency,
lack of memory effect, long service life, and high energy
and power density. Nevertheless, LIBs have to be operated
within predefined limits to ensure safe and efficient operation.
For this purpose, battery management systems (BMSs) are
developed. BMSs are embedded systems, which carry out mea-
surements from battery and run specific BMS-algorithms. The
main functions of BMS are data collection, state monitoring,
safety protection, charging control, energy management, bal-
ancing management, thermal management and communication
management. Internal states such as state-of-charge (SOC)
or state-of-health (SOH) of the battery cannot be measured
directly and have to be estimated with the help of advanced
algorithms. The BMS provides important state information to

the vehicle control unit (VCU) for energy management and
power distribution control of an EV. Therefore, performance
of BMS algorithms plays a key role for the complete EVs’
performance [1].

Developing more accurate estimation algorithms is the core
challenge in BMS development. In the last decade, numerous
algorithms, especially for SOC and SOH estimation were pro-
posed [2], [3]. Testing is an integral and inseparable part of this
software development process. Parallel execution of tests in
each phase of the development process allows to identify and
fix erroneous software earlier. Therefore, development efforts,
time and costs are reduced tremendously. At different stages
of the development process, different testing environments
as Model-in-the-Loop (MiL), Software-in-the-Loop (SiL) or
Hardware-in-the-Loop (HiL) are used respectively [4]. HiL test
systems with battery emulators are well established and widely
used to evaluate BMSs. In that case, instead of real batteries,
a battery emulator mimics the behaviour of cells with the help
of online cell models. Therefore, test costs and testing time are
decreased and critical states of the battery beyond the allowed
range of operation can be tested more safely. Battery emulators
have some limitations related to the accuracy, resolution and
iteration rate of the battery model and emulation hardware
[5]. Mathematical modelling of LIBs is a challenging task
and there are no perfect mathematical models to mimic all
complex features of a LIB, such as hysteresis, relaxation and
the effects of temperature and aging on parameters [6]. In [7], a
Cell-in-the-Loop approach is proposed where a single physical
cell is integrated within a battery model. However, upscaling
challenges like manufacturing tolerance of cells or thermal
imbalance in the battery are not handled in this approach.

The state-of-the-art estimation algorithms are model based.
While evaluating their performance, testing a model based



algorithm in the loop with a model based emulator is mislead-
ing. This effect can be crucial especially during benchmarking
of artificial intelligence based state algorithms, which can
cover battery characteristics in depth. The reliability of state
algorithms can be validated using real battery cells [8]. Hence,
a new concept for a HiL test environment for evaluation of
BMS algorithms with real cell packs without any additional
battery electronics or casing is presented. The proposed HiL-
System avoids the high costs and efforts of building a full
battery system and allows straightforward algorithm testing
with different cell types and cell pack topologies. Relying
on measurements of a real cell pack, the effects of battery
emulators on test results are ruled out by getting one step
closer to real-life conditions without disproportionately high
effort.

First, the system structure with hardware and software de-
sign is described. Second, exemplary experimental test results
of an extended Kalman filter (EKF) based SOC-Algorithm
with a 36V cell pack are presented to demonstrate the
capabilities of the proposed system. In the final section the
conclusions are given.

II. SYSTEM STRUCTURE

Figure 1 shows the structure of the proposed HiL-System.
The system consists of five main parts: an environmental test
chamber, programmable power supplies and electronic loads to
charge and discharge the cell packs, a DSP-System to run the
BMS-algorithms in real-time, two independent parallel DAQ-
Systems for sensing and a host PC with a HiL-Software which
is developed in MALTAB to control and monitor the test
process, record test data and evaluate the results. This modular
concept allows intensive and fast testing and validation of
advanced estimation algorithms under realistic conditions.

1) Environmental test chamber: In order to get a realistic
performance validation, tests have to be run under different
environmental conditions such as temperature or humidity.
These conditions can have a large influence on the state of
the batteries. Real cells without integrated electronics, casing
or cooling system are used. For this reason, an environmental
test chamber with two layers of 3mm thick stainless steel
and thermal insulation in-between to protect personnel and
equipment is utilized. A Huber Ministat 240 is integrated to
manipulate the temperature. All electronic equipment of the
HiL-System remains outside of the test chamber.
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Fig. 1. Structure of HiL-System

2) Programmable Power supplies and electronic loads: To
realize the test scenarios with dynamic charge and discharge,
a high power, high accuracy test machine is necessary. In
the presented test bench Elektro-Automatik programmable
laboratory power supplies (PS) and electronic loads (EL) are
used. The HiL-Software controls them in real-time via USB
by standardized (IEC 60488-2-2004) instrumentation program-
ming protocol SCPI [9]. The implemented setup supports
currents up to 80A and voltages up to 100V. This allows full
scale testing of commercial light electric vehicle applications
(LEV) as well as reduced mock-up testing of hybrid and
battery electric vehicles [8]. Furthermore, the system can be
easily upscaled with new equipment due to the usage of a
standardized SCPI protocol. A relay switch box is installed to
switch between test machines or to add new test machines to
the system easily. The main test machine is a combined system
of 4 power supplies (EA-PSI 91000-30 3U) and 4 electronic
loads (EA-ELR 91500-30 HP 3U), which support up to 120A
current, 1000V voltage and 40 kW power. In addition, two
bidirectional test machines are integrated i.e. EA-PSB 9080-
360 3U and EA-PSB 9100-40 3U to show the flexibility of
the system.

3) DSP-System: The in-house developed DSP-System is
based on a well-established System On Chip-Platform Zynq-
7030 [10]. It enables rapid prototyping due to the automated
code generation from MATLAB/Simulink to C-Code. The
offline developed algorithms are compiled in C-Code and
flashed onto the DSP. The DSP executes these algorithms in
real-time and utilizes Control Area Network (CAN) Bus for
communication. The measurement data of the cell pack and
the results of the BMS-algorithm are received and transmitted
via CAN-BUS, respectively.

4) Data acquisition (DAQ): Cell voltages, pack voltage,
pack current and temperatures are the main measurements of
a battery. The state-of-the-art BMS-algorithms are based on
this information. Since the measurement quality has a direct
effect on the algorithm performance, two parallel working
data acquisition systems are implemented for comparison and
safety reasons: A high accuracy DAQ-System [11] and an
industry standard DAQ-IC based analog front end (AFE)
interface board.

The high accuracy DAQ-System (HA-DAQ) communicates
via TCP/IP and the HiL-Software logs the measured reference
data with a 2 kHz sample rate. Based on the measured data
and system limits, the HiL-Software ensures safe operation
of the system. When a critical limit such as maximum cell
temperature or minimum cell voltage is reached, the test is
stopped. The implemented system supports up to 16 cell
voltage and 11 temperature measurements. PT-100 sensors are
used for temperature measurements. The reference current is
measured over a precision Manganin shunt resistor (± 0.25%).
The high sample-rate minimizes integration errors for the
Coulomb-counting approach. This allows to calculate accurate
reference values for SOC and SOH estimations.

The accuracy of the BMS-Hardware in practice is lower
than laboratory measurements. Compensation of measurement



TABLE I
COMPARISON OF MEASUREMENT ACCURACY OF THE IMPLEMENTED DATA

ACQUISITION-SYSTEMS

HA-DAQ System AFE-Board DAQ-System
Current ± 0.29% ± 1.03%

Cell voltage ± 2.0mV ± 10.0mV
Temperature ± 0.75K ± 3.4K

errors is another important challenge of the BMS development
process. Validation based on laboratory measurements can
be also misleading. Therefore, an analog front end interface
board with an industrial battery monitor is developed. The
AFE is based on the IC BQ76952 by Texas Instruments. The
developed AFE circuit board (AFE-board), shown in Figure 2,
substitutes the BMS-slave board in a distributed master-slave
BMS architecture and provides real measurement information
to the tested BMS-algorithms via CAN-BUS.

Simultaneously, the HiL-Software logs all these measure-
ments. The AFE supports 3 to 16 cell voltage and 5 tempera-
ture measurements with 4Hz sampling rate [12]. The current
is measured using a compact shunt resistor (± 1%) and the
temperature with NTC thermistors. Table I summarizes the
accuracy of the both systems with mentioned sensors.

5) Host computer and HiL-Software: The HiL-Software is
developed using the MATLAB Parallel Computing Toolbox.
The main tasks controlling, monitoring and data logging are
run asynchronously but simultaneously on different CPU-cores
of the host PC. During the test, all data is collected and logged
via TCP/IP and CAN-Bus protocol. The limits of the cells and
cell packs are monitored continuously and the test is stopped
immediately in critical states.

A graphical user interface (GUI) is developed with the help
of the MATLAB App Designer to enhance the user experience.
Figure 3 shows the main screen of the developed GUI. The
user can select the desired test machine, load cell parameters
and set the pack topology to configure the battery. Predefined
testing procedures as CCCV-charging, CC-charging, capacity
test, WLTP, NEDC and DST are provided to specify the

Fig. 2. AFE-Board with TI BQ76952 BMS-Chip

Fig. 3. Main screen of the developed GUI

test scenario. Additionally, user can load time- or SOC-
dependent custom current profiles. All the test procedures are
limited according to configured battery and are down scaled
if necessary. In idle mode, live measurements are shown and
test results can be analyzed.

Figure 4 shows the implemented laboratory HiL-Sytem test
bench.

III. EXPERIMENTAL RESULTS

A state-of-the-art SOC estimator to introduce the HiL-test
bench is developed and tested for a 36V cell pack. The pack is
built with commercial 18650 type cylindrical Li-NMC cells.
Figure 6 shows the cell pack at the test bench. The estimation
algorithm is based on an extended Kalman Filter (EKF), one
of the most commonly used methods to estimate the SOC.

Fig. 4. Implemented HiL-System
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A. Cell modeling and parameter identification

Thevenin equivalent circuit model (ECM) with 1 RC branch
is used to mimic the electrical behaviour of the LIB and to
develop the model-based SOC estimator. Figure 5 visualizes
the well-known Thevenin model, where UOCV is the cell
open circuit voltage (OCV), UCell the cell terminal voltage,
U1 the polarization voltage, R0 the ohmic resistance, R1 the
polarization resistance and C1 is the polarization capacitance.
I is the cell current with negative value for discharging
and positive for charging. Equations (1) and (2) can be
deduced from the Thevenin model with the help of Kirchoff’s
current and voltage laws to describe the electrical behaviour
mathematically. The implementation in MATLAB/Simulink is
realized based on these equations.

UCell = UOCV + U1 +R0I (1)

U̇1 =
−U1

C1R1
+

I

C1
(2)

The state of charge of LIB can be expressed as a function
of time as follows:

SOC(t) = SOC(t0) +
1

CN

Z t

t0

I(τ)dτ, (3)

where CN is the nominal capacity and SOC(t0) indicates
the initial SOC.

The cell parameters are identified using capacity tests and
hybrid pulse power characterization (HPPC) tests [13]. The
tests are performed by use of a BaSyTec XCTS battery cycler
and repeated under 6 different temperatures i.e. 5 °C, 15 °C,
25 °C, 35 °C, 45 °C, 55 °C to capture the thermal dependen-
cies. The hysteresis effect on the parameters is modeled by
testing in charge and discharge direction. HPPC tests are
executed with 10% SOC steps. The extracted values are saved
in 3-D lookup tables.

The implemented model is validated with measurement
data at 25 °C. The root mean squared error (RMSE) of the
simulation voltage is 18.4mV and the maximum absolute error
is 48mV.

B. State of Charge Estimation

EKF is a well-established variation of the standard Kalman
filter for state estimation of nonlinear systems. EKF linearizes
nonlinear systems like LIB at each time step with first order
Taylor approximation. Plett [14] adapted for the first time the
EKF method for state estimation of LIBs. EKF uses a discrete-
time cell model and measurement signals of current, voltage
and temperature. As a model-based recursive algorithm, it can
handle the main problems of SOC estimation i.e. measurement
noise, online estimation and initial value problem [15]. Hence,
many scholars have been focused on the development of EKF
based SOC estimators [16] [17] [18].

The process (4) and measurement (5) equations of EKF can
be expressed for LIB in discrete time domain as (6) and (8),
respectively, according to (1), (2) and (3) [19].

xk = f(xk−1, uk−1) + wk−1, (4)

yk = h(xk, uk) + vk, (5)

where k is discrete-time instant.

xk =

"
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SOCk
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(6)

h(xk, uk) = UOCV,k + U1,k +R0Ik, (7)

y(xk, uk) = UOCV,k + U1,k +R0Ik + vk, (8)

where xk is the state vector, f(xk, uk) the state transition
function, yk the cell voltage measurement vector, vk the mea-
surement noise, wk the process noise, h(xk, uk) the nonlinear
measurement function, ∆t is the sampling time in seconds, A
the state transition matrix, B the control input matrix and uk−1

is the input vector. EKF considers wk and vk as independent
zero-mean Gaussian noise with covariance matrices Q and R,
respectively.

According to the parameter identification results, the impact
of SOC on model parameters R0, R1 and C1 is limited.
Therefore U1 and R0 are treated as constant in (7) for sake of
simplicity. The extracted UOCV behaviour is expressed with
a six-order polynomial equation for each temperature level to
ensure the calculation of partial derivatives.

Jacobian matrix Ck is involved for the linearization. In this
work, the estimated values are denoted with a hat sign ( b. )
and a priori predictions with a minus sign ( .− ).

Ck =
∂h(xk, uk)

∂xk

����bx−
k
,uk

(9)



Fig. 6. 36V cell pack at HiL test rig

EKF is a recursive iterative algorithm with two main steps:
Time update (prediction) and Measurement update (correc-
tion).

In the time update step the state bx−
k is predicted by (10)

for the current time step k and the estimation error covariance
P−
k by (11) [20].

bx−
k = Abxk−1 +BIk−1 (10)

P−
k = AkPk−1A

T
k +Q (11)

In the measurement update step the state estimation bxk and
the predicted error covariance Pk will be corrected with the
help of calculated Kalman gain Kk.

Kk = P−
k CT

k [CkP
−
k CT

k +R]−1, (12)

bxk = bx−
k +Kk(y(k)− by(k)), (13)

Pk = [1−KkCk]P
−
k . (14)

The EKF based SOC estimator is implemented with the help
of the introduced equations and extracted cell parameters in
MATLAB/Simulink.
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Fig. 8. SiL- and HiL-Test results of an EKF based SOC estimator by testing
at 25 °C with WLTP

C. Tests and Results

To present the benefits of the proposed test bench, the
developed algorithm is tested first in a SiL environment with
battery simulation. Second, the algorithm is compiled in C-
Code and downloaded on DSP to be executed in real-time.
Finally, the SOC estimator is evaluated on the developed HiL
test rig with a cell pack with 10 serial connected cells.

The cell pack’s nominal voltage is 36V and its capacity is
3.3Ah. The maximum charging current is limited to 2.3A
and the maximum discharging current is limited to 5A. The
worldwide harmonized light vehicles test procedure (WLTP)
is used to simulate a dynamic driving scenario and to see the
realistic performance of the algorithm. WLTP current profile is
downscaled by HiL-System according to the cell pack limits.
Figure 7 shows the AFE-DAQ-System and HA-DAQ-System
measurements of the applied WLTP current profile.

The pack is charged with CCCV and discharged with WLTP
at 25 °C. The test is executed twice on SiL and HiL. A white
Gaussian noise is added to the current input on SiL-Tests to get
closer to the real operating conditions. The performance of the
SOC estimator is analyzed after each test and the parameters
Q and R of the estimator are tuned iteratively.

Figure 8(a) and Figure 8(b) visualize the estimated SOC
on the HiL-System compared to the reference SOC and the
estimation error on HiL- and SiL-Testing in the two executed
tests. In the first test the RMSE of the SiL based validation is



about 0.5% while the RMSE of the HiL is about 2.8%, which
shows the discrepancy between emulation and hardware. After
manipulating the parameters Q and R, a second test is exe-
cuted. In this case, the performance of the estimator on HiL
is improved significantly with an RMSE error of about 0.6%
and the RMSE of the SIL reduced under 0.1%. Thus, the
performance of the algorithm is identified in an early stage of
the development process and improved in a more agile way.
Benchmarking and testing of a BMS with emulation leads
to an overestimation of performance. In turn, this shows the
outstanding benefit of a hybrid test bench over a pure software
solution.

IV. CONCLUSION

This paper presents a new HiL test rig, which enables rapid-
prototyping of BMS-algorithms on real cells. In addition to
improving the BMS development process, the system can also
be used to benchmark different algorithms. The proposed HiL-
System is verified with an exemplary case. Therefore, an SOC
estimator is developed, implemented and tested to demonstrate
the capabilities of the setup. In the future, the system will be
extended with a custom balancing board to be able to test
balancing algorithms in real-time.
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