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Data-driven capacity estimation of commercial
lithium-ion batteries from voltage relaxation
Jiangong Zhu 1,2,7, Yixiu Wang3,7, Yuan Huang1,2, R. Bhushan Gopaluni3, Yankai Cao3, Michael Heere2,4,

Martin J. Mühlbauer2, Liuda Mereacre2, Haifeng Dai 1✉, Xinhua Liu 5, Anatoliy Senyshyn 6, Xuezhe Wei1,

Michael Knapp 2✉ & Helmut Ehrenberg 2

Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion

batteries. In particular, exploiting the relaxation voltage curve features could enable battery

capacity estimation without additional cycling information. Here, we report the study of three

datasets comprising 130 commercial lithium-ion cells cycled under various conditions to

evaluate the capacity estimation approach. One dataset is collected for model building from

batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used

for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive elec-

trodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes.

Base models that use machine learning methods are employed to estimate the battery

capacity using features derived from the relaxation voltage profiles. The best model achieves

a root-mean-square error of 1.1% for the dataset used for the model building. A transfer

learning model is then developed by adding a featured linear transformation to the base

model. This extended model achieves a root-mean-square error of less than 1.7% on the

datasets used for the model validation, indicating the successful applicability of the capacity

estimation approach utilizing cell voltage relaxation.

https://doi.org/10.1038/s41467-022-29837-w OPEN

1 Clean Energy Automotive Engineering Center, School of Automotive Engineering, Tongji University, 201804 Shanghai, China. 2 Institute for Applied
Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany. 3 Department of Chemical and Biological Engineering,
University of British Columbia, Vancouver, BC V6T 1Z3, Canada. 4 Technische Universität Braunschweig, Institute of Internal Combustion Engines, Hermann-
Blenk-Straße 42, 38108 Braunschweig, Germany. 5 School of Transportation Science and Engineering, Beihang University, 100083 Beijing, China. 6Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching b, München, Germany. 7These authors contributed
equally: Jiangong Zhu, Yixiu Wang. ✉email: tongjidai@tongji.edu.cn; michael.knapp@kit.edu

NATURE COMMUNICATIONS |         (2022) 13:2261 | https://doi.org/10.1038/s41467-022-29837-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29837-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29837-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29837-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29837-w&domain=pdf
http://orcid.org/0000-0002-3780-4286
http://orcid.org/0000-0002-3780-4286
http://orcid.org/0000-0002-3780-4286
http://orcid.org/0000-0002-3780-4286
http://orcid.org/0000-0002-3780-4286
http://orcid.org/0000-0001-5322-2019
http://orcid.org/0000-0001-5322-2019
http://orcid.org/0000-0001-5322-2019
http://orcid.org/0000-0001-5322-2019
http://orcid.org/0000-0001-5322-2019
http://orcid.org/0000-0002-4111-7235
http://orcid.org/0000-0002-4111-7235
http://orcid.org/0000-0002-4111-7235
http://orcid.org/0000-0002-4111-7235
http://orcid.org/0000-0002-4111-7235
http://orcid.org/0000-0002-1473-8992
http://orcid.org/0000-0002-1473-8992
http://orcid.org/0000-0002-1473-8992
http://orcid.org/0000-0002-1473-8992
http://orcid.org/0000-0002-1473-8992
http://orcid.org/0000-0003-0091-8463
http://orcid.org/0000-0003-0091-8463
http://orcid.org/0000-0003-0091-8463
http://orcid.org/0000-0003-0091-8463
http://orcid.org/0000-0003-0091-8463
http://orcid.org/0000-0002-5134-7130
http://orcid.org/0000-0002-5134-7130
http://orcid.org/0000-0002-5134-7130
http://orcid.org/0000-0002-5134-7130
http://orcid.org/0000-0002-5134-7130
mailto:tongjidai@tongji.edu.cn
mailto:michael.knapp@kit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Lithium-ion batteries have become the dominant energy
storage device for portable electric devices, electric vehicles
(EVs), and many other applications1. However, battery

degradation is an important concern in the use of lithium-ion
batteries as its performance decreases over time due to irrever-
sible physical and chemical changes2,3. State of Health (SoH) has
been used as an indicator of the state of the battery and is usually
expressed by the ratio of the relative residual capacity with respect
to the initial capacity4. The accurate battery capacity estimation is
challenging but critical to the reliable usage of the lithium-ion
battery, i.e., accurate capacity estimation allows an accurate
driving range prediction and accurate calculation of the max-
imum energy storage capability in a vehicle. Typically, the battery
capacity is gained by a full discharge process after it has been fully
charged. In a real-life usage scenario, the battery full charge is
often achieved while the EVs are parking with grid connection,
however, the battery discharge depends on the user behavior with
uncertainties in environmental and operational conditions, a
complete discharge curve is seldom available for on-board battery
health monitoring. The battery charging and discharging voltage,
as one of the easily obtained parameters, depend on both, ther-
modynamic and kinetic characteristics of the battery. Thus, those
methods using a charge/discharge process are proposed to esti-
mate capacity for practical applications5,6, in which the input
variables are extracted from the measured voltage curves, and the
data-driven methods using statistical and machine learning
techniques have been popular in battery research recently due to
their strong data processing and nonlinear fitting capabilities6,7.
The data-driven methods do not need a deep understanding of
battery electrochemical principles, but large numbers of data are
required to ensure the reliability of model8. Severson et al.9

reported a promising route using machine learning to construct
models that accurately predicted graphite ||LiFePO4 (LFP) com-
mercial cell lives using charge-discharge voltage data. Zhang
et al.10 identified battery degradation patterns from impedance
spectroscopy using Gaussian process machine learning models.
Ding et al.11 introduced a machine learning method for the
improvement of the efficiency of membrane electrode assembly
design and experiment. Such data-driven methods focus on the
relationships among the input and output features, and a key part
of data-driven battery state estimation is the extraction of
degradation features, which largely determines the estimation
performance12–14.

In practical electric transport applications, battery charging is
essential and happens regularly compared to the random dis-
charge process affected by the driving behaviors and road envir-
onments. Therefore, extracting voltage features from the charging
process has attracted wide attention. Taking into account the
state-of-the-art literature, three classes of voltage-based extraction
methods can be defined: (I) CC (constant current) charge voltage-
based, (II) CC-CV (constant current–constant voltage) charge
voltage-based, and (III) rest voltage-based as listed in Supple-
mentary Table 1. The partial charge process in a specific voltage
range for feature extraction is commonly used for capacity
estimation15, and the estimation accuracy of the state of art is
ranging from a root-mean-square error (RMSE) of 0.39% to a
RMSE of 4.26% based on in-house experiments and different
public datasets5,6,16. The transformations of the partial voltage
curves, i.e., differential voltage analysis17,18 and incremental
capacity analysis19–21, are used for battery aging mechanism
identification and capacity fade evaluation. Typically, SVR (Sup-
port Vectors Regression)22, GPPF (Gaussian Process Particle
Filter)23, BPNN (Back-Propagation Neural Network)24, and linear
model20 are applied to estimate battery capacity using the partial
incremental capacity curve. Compared to the charge voltage-based
methods, studies extracting features from the rest voltage are few.

A representative battery capacity estimation method utilizing the
resting process was proposed by Baghdadi et al.25. They proposed
a linear model to estimate battery capacity using the voltage after
30 min rest when the cell is fully charged, and the capacity esti-
mation percentage error is ranging from 0.7 to 3.3% for three
different commercial batteries. Schindler et al.26 and Lüders
et al.27 took the voltage relaxation for the lithium plating detection
in the battery capacity fade process. Qian et al.28 used an
equivalent circuit model (ECM) to describe the voltage relaxation
and found that the extracted parameters provided an evaluation of
the battery SoH and aging mechanisms. Attidekou et al.29 mod-
eled the battery capacity decay during rest periods at 100% SoC
using a dynamic time constant derived from the resistor-capacitor
(RC) network model. However, as the amount of RC links
increases, the complexity of the ECM will increase accordingly,
which makes it difficult to use in an on-board application30.
Besides, the accuracy and robustness of capacity estimation are
difficult to evaluate because of the differences in battery types and
working conditions8,9.

It has been proven that the relaxation process including the
relaxation voltage value at a specific time and the voltage curve
during a specific period shows a relationship with the battery
SoH26–29,31. From the review of battery charging studies32–34, the
real-time data of EVs35,36, and a survey of real-world EV charging
(Supplementary Note 1, Supplementary Table 2 and 3, and
Supplementary Figs. 1 and 2), in addition to the CC charging
strategy, the multistage current charging algorithm using a SoC
dependent charging current is a promising method to maximize
the charging efficiency. The start of charge for the EVs is nor-
mally distributed around intermediate SoCs as expected from the
statistics35,37,38. The various multistage current charge strategies
and the uncertain start of charge points bring difficulties to the
acquirement of specific voltage ranges under constant current in
the voltage-based methods. The relaxation after being fully
charged is relatively unaffected by the charging process and is also
easy to obtain since the battery is fully charged with high prob-
ability in real EV usage35,37,38, there is also no need for additional
devices as the voltage data can be directly obtained from the
battery management system. However, to the best of our
knowledge, the relaxation voltage curve of the battery has not yet
been studied systematically with machine learning methods for
large-scale data from different battery types. Herein, an approach
based on features extracted from the battery relaxation voltage is
proposed, which focuses on short-term battery capacity estima-
tion without any previous cycling information for on-board
implementation.

In this study, base models using machine learning methods, i.e.,
the linear model (ElasticNet39), and nonlinear models (XGBoost40

and Support Vector Regression (SVR)41), using large datasets from
three kinds of commercial lithium-ion batteries are employed. The
model inputs are statistical features extracted from the voltage
relaxation curve. Batteries with LiNi0.86Co0.11Al0.03O2 positive
electrode (NCA battery) cycled at different temperatures and cur-
rent rates are used for base model building, showing the best test
performance with a RMSE of 1.0%. The transfer learning method is
applied on batteries with LiNi0.83Co0.11Mn0.07O2 positive electrode
(NCM battery) and batteries with 42 (3) wt.% Li(NiCoMn)O2

blended with 58 (3) wt.% Li(NiCoAl)O2 positive electrode
(NCM+NCA battery), obtaining 1.7% RMSE and 1.6% RMSE
respectively, and enabling the generalizability of our approach.

Results
Data generation. Large cycling datasets on NCA battery, NCM
battery, and NCM+NCA battery are created in this study. The
batteries are cycled in a temperature-controlled chamber with
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different charge current rates. The battery specifications are listed
in Supplementary Table 4. Long-term cycling is conducted on all
cells with a summary of cycling conditions in Table 1. The
temperatures chosen are 25, 35, and 45 °C. Current rates ranging
from 0.25 C (0.875 A) to 4 C (10 A) are used. The current rate is
calculated from the nominal capacity of batteries, i.e., 1 C is equal
to 3.5 A for the NCA battery and NCM battery, and 1 C is equal
to 2.5 A for the NCM+NCA battery. The cells are named as
CYX-Y/Z according to their cycling conditions. X means the
temperature, Y/Z represents the charge/discharge current rate.
The number of cells assigned to each cycling condition in Table 1
is aimed to obtain a dataset covering possible variations between
cells. One data unit comprises a relaxation voltage curve after full
charge with the following discharge capacity. Each relaxation
voltage curve is transformed into six statistical features, i.e., var-
iance (Var), skewness (Ske), maxima (Max), minima (Min), mean
(Mean), and excess kurtosis (Kur). The mathematical description
of the six features is depicted in Supplementary Table 5. The
datasets collected from NCA, NCM, and NCM+NCA cells are
named as dataset 1, dataset 2, and dataset 3 in this study,
respectively. Dataset 1 is used for base model training and test.
Dataset 2 and dataset 3 are used for assessing and improving the
generalizability of the proposed approach by transfer learning.

Voltage and current are the basic data recorded in these
experiments, which include charging, discharging, and relaxation
processes. The cell cycling is performed with constant current (CC)
charging to 4.2 V with current rates ranging from 0.25 C (0.875 A)
to 1 C (3.5 A), followed by a constant voltage (CV) charging step at
4.2 V until a current of 0.05 C is reached. Constant current is then
employed for the discharge to 2.65 V for the NCA cells and 2.5 V
for the NCM and NCM+NCA cells, respectively. One complete
cycling curve using a 0.5 C charging rate for the NCA cell is shown
in Fig. 1a, which includes five processes, i.e., (I) CC charging, (II)
CV charging, (III) relaxation after charging, (IV) CC discharging,
and (V) relaxation after discharging. The CC discharging capacity
is treated as the battery residual capacity during cycling. The
relaxation time between the CV charging and CC discharging is
30min for the NCA battery and NCM battery with a real sampling
time of 120 s, and it is 60min for the NCM+NCA battery with a
sampling time of 30 s. The starting and ending voltage during the
battery relaxation show a declining trend with increasing cycle
number as presented in Fig. 1b.

Three datasets with capacity down to 71% of the nominal
capacity are generated. The battery capacity as a function of cycle
number for the NCA cells is shown in Fig. 1c. The cycle number

is ranging from 50 to 800 in the 100–71% capacity window. It is
evident that both, charging current and temperature have a
strong influence on the capacity decay, and the battery capacity
shows significant variance as depicted in the embedded plot in
Fig. 1c, indicating the degradation distribution of the cycled cells.
The worst scenario is the one with cells cycled at 1C charge at
25 °C (CY25-1/1), only 50 cycles can be obtained until the cells
reach 71% of the nominal capacity. In all, 71% capacity is reached
after 125 and 600 cycles at 25 and 35 °C respectively, for cells
charged with 0.5 C (CY25-0.5/1, and CY35-0.5/1). In total, 71%
capacity is reached after 250 cycles at 25 °C with 0.25 C charging
current (CY25-0.25/1) and in a range of 500–800 cycles at 45 °C
with 0.5 C charging current (CY45-0.5/1). The cycling data of the
NCM cells are shown in Fig. 1d. Fatigue down to 71% residual
capacity is found between 250 and 500 cycles (25 °C), 1250 and
1500 cycles (35 °C), and around 1000 cycles at 45 °C cycling
temperature. The capacity fade results indicate that increasing the
temperature to 35 and 45 °C has a beneficial effect on the capacity
retention and that the charging current is at the limit of what the
cells can handle. For NCA and NCM cells, a capacity spread for
the cells cycled under equal conditions is observed, which is
speculated to be ascribed to the intrinsic manufacturing
variations as this spread is already seen at the beginning of
cycling42,43. The cycling data of the NCM+NCA cells are shown
in Fig. 1e, exhibiting a linear degradation trend regardless of the
cycling discharge rates, and 71% residual capacity appears in a
range of 750 to 850 cycles showing the influence of the cell cycling
conditions.

Feature extraction. Summarizing statistics are proven to be
effective to illustrate numerically the shape and position change
of the voltage curve5,9. As mentioned above, the relaxation pro-
cess after fully charging is taken for feature extraction because of
its strong relationship with battery degradation and its easy
acquisition in battery real use. Each voltage relaxation curve is
converted to six statistical features, i.e., Var, Ske, Max, Min,
Mean, and Kur, as displayed in Fig. 2.

The relationship between battery capacity and the correspond-
ing features is dependent on the cycling conditions as presented
in Fig. 2. It can be seen that it is difficult to describe the
relationships only by linear functions. The Var in Fig. 2a
represents the distribution of the voltage points in one relaxation
process, a decrease of Var versus capacity fade means that the
relaxation voltages show a sharper distribution with increasing

Table 1 Cycled batteries and cycling conditions for the dataset generation.

Datasets Cell type Cycling temperature
(±0.2 °C)

Charge current rate (C)/discharge
rate (C)

Number of cells Number of
data units

Dataset 1 NCA battery 25 0.25/1 7 1853
Type: 18,650 0.5/1 19 3278
Cutoff voltage: 2.65–4.2 V 1/1 9 260
Nominal capacity: 3.5 Ah 35 0.5/1 3 1112

45 28 15,775
Dataset 2 NCM battery 25 23 5490

Type: 18,650 35 4 4712
Cutoff voltage: 2.5–4.2 V 45 28 17,600
Nominal capacity: 3.5 Ah

Dataset 3 NCM+NCA battery 25 0.5/1 3 2843
Type: 18650 0.5/2 3 2913
Cutoff voltage: 2.5–4.2 V 0.5/4 3 2826
Nominal capacity: 2.5 Ah

All cells are commercial 18,650 type batteries. The cycling temperature is controlled by climate chambers (±0.2 °C). The current rate is calculated from the battery nominal capacity (1C= 3.5 A for the
NCA battery and NCM battery, and 1C= 2.5 A for the NCM+NCA battery).
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cycle number, and vice versa. Both Ske and Kur are normalized
using Var, they are used to describe the shape of the
corresponding voltage curve. The Ske in Fig. 2b is positive for
almost all cycling conditions, indicating that more than half of the
sampled voltage data are below the average voltage (Mean), which
corresponds to the shape of the relaxation voltage curve, i.e., with

respect to the relaxation time, the voltage drops initially fast and
then gradually slows down. The Max in Fig. 2c presents a
monotonous decrease of the maximum voltage versus capacity
drop for all cycling conditions. The Min and Mean first increase
and then decrease versus the capacity reduction as displayed in
Fig. 2d, e, respectively. The Kur shown in Fig. 2f is the excess
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kurtosis obtained from the kurtosis of the raw data minus
the kurtosis of a normal distribution. The excess kurtosis is
negative for all cycling conditions, meaning that the distribution
of the relaxation voltage is gentler than a normal distribution.

Capacity estimation. Based on the features extracted from the
relaxation voltage curve after charging, data-driven methods are
used for battery capacity estimation. Owing to the difference in
the order of magnitudes of the features, a standard normalization
for battery features is performed for dataset 1. The features of
dataset 2 and dataset 3 are normalized by applying the same
normalizing scales as used for dataset 1. The capacity is uni-
formized considering the difference in the battery nominal
capacity. The XGBoost40 is selected as the main machine learning
method. The ElasticNet39 as the multivariate linear model is used
for comparison, and the SVR41 is a support for the verification of
the transfer learning approach. For the base model training and
test, different data splitting strategies are compared with dataset 1
in Supplementary Note 2 and Supplementary Tables 6–9. The
best test result of the temperature dependence splitting method
shows a 1.5% RMSE. A 2.3% test RMSE is obtained from the
time-series data splitting method. The data random splitting and
cell stratified sampling methods achieve good estimation accuracy
with 1.1% RMSEs, implying that the variation of the working
conditions leading to different degradation patterns is essential to
improve the generalization of the model. The results of cell
stratified sampling method meaning that the data from the same
cell is either in the training set or in the test set are presented in
this study (Strategy D in Supplementary Note 2). The cells are
approximately in a 4:1 ratio for training and test (Supplementary
Table 9). In the model training process, the K-fold cross-valida-
tion with K= 5 is used to determine the hyperparameters of the
models. A feature reduction is performed by using different fea-
ture combinations to reduce the number of inputs and simplify
the model complexity. The cross-validation RMSEs under dif-
ferent feature combinations using the XGBoost method are
compared in Fig. 3. The i and j are used to represent different
feature combinations referring the Supplementary Table 10.

It shows that the RMSE gradually decreases as the number of
features increases, and the accuracy improvement is no longer
obvious after using three features in Fig. 3. The best estimation
result is obtained by the input [Var, Ske, Max] in a three feature
combination. The effect of the duration of the relaxation on the
capacity estimation is presented in Supplementary Fig. 3, in
which the RMSEs of training and test decrease as the relaxation
time increases in the XGBoost method, indicating that longer
relaxation time improves the model accuracy. Therefore, the Var,
Ske, and Max of the voltage relaxation after 30 min are extracted
as inputs for the base model. The hyperparameters of each
algorithm are available in Supplementary Table 11. The RMSEs of
different estimation methods on dataset 1 are summarized in
Fig. 4a. It can be concluded that the test RMSE of XGBoost and
SVR all reaches 1.1%, showing better performance than the linear
model, and the RMSEs of train and test are close to each other,
indicating the effectiveness of data splitting. The estimated
capacity versus real capacity is illustrated in Fig. 4b–d for
visualization purposes.

Performance of the proposed approach. The performance of the
proposed approach is benchmarked with state-of-the-art models
using voltage curves for battery capacity estimation as shown in
Table 2. One representative method is selected from each class of
the presented capacity estimation methods (Supplementary
Table 1). Since the datasets used in the literature are different in
battery material and test procedures from ours, the strategy to

solve this difference is to apply their algorithms to our datasets. A
detailed description of data processing and estimation results for
each method is presented in Supplementary Note 3 and Supple-
mentary Figs. 4–7. The performance of the linear model to esti-
mate the battery capacity based on the resting voltage in Baghdadi
et al.25 shows a 2.5% RMSE, which can be explained by the large
data volume and variety of working conditions in our dataset 1
highlighting the difficulty of capacity estimation only with
the linear model. In the CC charge voltage-based methods, the
random forest regression (RFR) method16 using the voltage
ranging from 3.6 V to 3.8 V achieves a RMSE of 1.0% on dataset
1, which is 0.1% less than our RMSE based on the voltage
relaxation. A method based on the remaining electrical charge
with a threshold according to the incremental capacity value is
proposed in Peri et al.20. The application of the same incre-
mental capacity transformation method on dataset 1 provides a
RMSE of 1.3%, indicating that our proposed approach has
better accuracy. The Gaussian process regression (GPR)
method44 using a full CC-CV charge voltage curve obtains good
estimation results on dataset 1 with a test RMSE of 1.1%.
Compared with the current research status, especially with
respect to large datasets, the proposed approach using resting
voltage can achieve a good estimation accuracy. As mentioned
in the introduction section, there are some challenges in the
acquisition of specific charging voltage curves because the start
of battery charge is usually dependent on the driver behavior
and the charge modes differ significantly from the charging
stations in the real application of EVs. The relaxation process of
a battery being fully charged is easily obtained without the
requirement of specific working conditions and voltage ranges,
which offers a new sight for battery capacity estimation.

Physical explanation. The alternating current (AC) electro-
chemical impedance provides information in the frequency
domain on the degradation mechanisms of the battery as proven
in ref. 45. The degradation mechanisms can be determined from
the change of electrochemical impedance parameters extracted by
fitting the impedance spectra with an ECM46. A schematic plot of
electrochemical impedance spectra during cycling and the cor-
responding ECM are complemented in Supplementary Figure 8.
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feature combination.
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Basically, an increase of R0 is likely due to contact loss and the
reduction of ionic conductivity in the electrolyte47. R1 represents
the resistance associated with the anode solid electrolyte inter-
phase (SEI) indicated by the semicircle at high frequencies46. R2
is the charge-transfer resistance describing the rate of electro-
chemical reaction, which is related to the loss of electrode
material through particle cracking18,48. The capacity loss of the
cycled cells in dataset 1 and dataset 2 has been investigated by
in situ neutron powder diffraction in our previous work42, which
exhibits that the decrease in lithium content in the positive and
negative electrodes correlates well with the observed discharge
capacity. Both positive and negative electrodes do not decompose
to other crystalline phases during cycling, but the lithium loss in
the electrodes leading to lithiated material loss is traced by
detecting changes in the lattices of the electrodes. The lithiated
material loss and the SEI formation are suspected to contribute to
the lithium loss.

Herein, the dominating aging factors for each cycling group are
discussed by fitted electrochemical impedance parameters in

Fig. 5. The coefficient of determination (R2) of each measured
impedance spectrum between the raw and fitted data is
summarized in Supplementary Table 12. All R2 values are greater
than 0.999, indicating the credible fitting accuracy. All the raw
and fitted impedance data can be found from the data availability.
By comparison of the resistance increment from the initial value
(Rinit) for all three type cells, the increment of R0 is minimal
(Fig. 5a–c), followed by R1 (Fig. 5d–f). R2 shows the highest
increase during the battery capacity fade as shown in Fig. 5g–i.
The dominating degradation factors are different under different
working conditions. For the NCA cell, as shown in Fig. 5a, the
CY25-0.25/1 shows a steady and relatively small increase of R0,
nevertheless, its R1 in Fig. 5d shows an accelerated rise, indicating
the increase in the thickness of the SEI layer. The R2 of CY25-
0.25/1 in Fig. 5g presents a similar increasing trend to its R0. The
R0 of CY25-0.5/1 and CY25-1/1 in Fig. 5a remains the largest
resistive contribution throughout, but their R1 and R2 are
relatively lower than that of others, which indicates a more
serious cell degradation such as electrolyte dry-out or contact loss
likely caused by lithium plating47,49. For the results of NCM cells
in Fig. 5b, e, h, all resistances of CY25-0.5/1 increase slowly, while
resistances of cells cycled at 35 and 45 °C exhibit a large increase
rate. For the NCA+NCM cells, the influence of discharge rate is
mainly represented by R1 by comparing the results in Fig. 5c, f, i.
The CY25-0.5/4 SEI resistance increase in Fig. 5f is significantly
slower than that of other cycling conditions. The temperature
influence on the degradation mechanism can be seen in Fig. 5g, h,
in which the increase of R2 is associated mainly with the increase
of ambient temperature. The cells cycled at 45 and 35 °C mainly
lead to an increase of R2, which could be associated with the
positive active material loss, e.g., particle cracking and
pulverization50,51. The diversity of the battery internal degrada-
tion mechanisms results in various degradation paths, which can
explain the difficulty in applying a simple linear model on the
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Fig. 4 Results of battery capacity estimation with the input of three features [Var, Ske, Max] by different estimation methods. The capacity results are
uniformized by the nominal capacity for comparison. root-mean-square error (RMSE) of battery capacity estimation (a), test results of estimated capacity
versus real capacity by ElasticNet (b), XGBoost (c), and Support Vectors Regression (SVR) (d).

Table 2 Test means root-mean-square error (RMSE) of
different models using voltage-based features for battery
capacity estimation.

Features from Methods Test RMSE on
Dataset 1

Rest voltage-based Linear model25 0.025
Constant current charge voltage-
based

Random forest
regression16

0.010

Incremental capacity analysis
transformation

Linear model20 0.013

Constant current–constant voltage
charge voltage-based

Gaussian process
regression44

0.011
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battery capacity estimation. Additionally, it seems that different
battery types follow to some extent similar degradation rules, e.g.,
the exponential rise of R2, inspiring the use of transfer learning in
the following part.

Approach verification by transfer learning. The transfer learn-
ing (TL) method, which is applied to improve the learning ability
by rebuilding the machine learning model using a relatively small
amount of newly collected data, is proposed for easy adaption to
the variation of voltage features existing in dataset 2 and dataset 3
in which different batteries and cycling conditions are used. The
model weights are pre-trained through dataset 1 to obtain the
base model. Then, some new data units from dataset 2 and
dataset 3 are set as the input variable to re-train the TL model.
Different data selection methods are discussed in Supplementary
Note 4 and Supplementary Table 13, depicting that the variation

of working conditions is necessary to improve the accuracy of the
model estimation. One cell is randomly selected from each
cycling condition in dataset 2 and dataset 3, then the data units in
each cell are chosen with an interval of 100 cycles as the input
variables for the re-training of TL models (Strategy D in Sup-
plementary Note 4). The sizes of the input variable are sum-
marized in Supplementary Table 14 (occupying 0.06% of dataset
2 and 0.35% of dataset 3). Verification on dataset 2 and dataset 3
without changing any weights of the base model is used as a zero-
shot learning (ZSL) reference. The full base model is retrained
using the same input variables from dataset 2 and dataset 3
as a No TL comparison. Two TL methods (TL1 and TL2) with
fine-tuning strategies are activated to adjust the weights of a
newly added layer, while the weights of other layers remain
unchanged. TL1 means that a linear transformation layer is added
before the output of capacity. TL2 means that a linear transfor-
mation layer before the base model is constructed to adapt the
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Fig. 5 AC electrochemical impedance variations of the lithium-ion cells during cycling. The resistance increment from the initial value (Rinit) is calculated
for comparison. The ohmic resistance of NCA cells (a), NCM cells (b), and NCA+NCM cells (c). SEI resistance of NCA cells (d), NCM cells (e), and NCA
+NCM cells (f). Charge transfer resistance of NCA cells (g), NCM cells (h), and NCA+NCM cells (i). Only resistances before the capacity reducing to
71% of nominal capacity are shown to be consistent with the datasets in the study. The coefficient of determination (R2) between the raw and fitted
impedance data is summarized in Supplementary Table 12. The SEI resistances are not identified in some cycles (seen in Supplementary Table 12) for the
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input features as illustrated in Supplementary Fig. 9. The test
RMSEs are compared in Table 3.

The ZSL strategy obtains more than 3.4% test RMSE on all
datasets directly using the base models. The error between the
estimated capacity and real capacity is quite large as shown in
Supplementary Fig. 10, meaning that the differences in battery
types and materials cannot be ignored. When the base model is
retrained in the No TL strategy, the XGBoost reaches a 2.9% test
RMSE on dataset 2 and a 2.0% test RMSE on dataset 3, and the
SVR gives no obvious improvement in the accuracy (Supple-
mentary Fig. 11 and Supplementary Table 15). When the TL1 is
applied on dataset 2 and dataset 3, the test RMSE of the SVR
method goes down to 2.6 and 3.5% respectively, but a high
number of outliers still appears in Supplementary Fig. 12.
The results of estimated capacity versus real capacity by TL2
are presented in Fig. 6. The test RMSE is reduced to 2.4% by the
XGBoost using the TL2 on dataset 2, noting that the performance
of XGBoost using the No TL on dataset 3 is better than that of TL,
which could be ascribed to the narrow distribution of capacity
fade in dataset 3. The best accuracies on dataset 2 and dataset 3
are all reached by SVR using the TL2, showing test RMSEs of 1.7
and 1.6%, respectively. It can be concluded that the use of TL2

improves the estimation accuracy, and the reason behind the
accuracy improvement is that a linear transformation of the input
features helps the model adapt to the differences in battery types
but similarity degradation modes. Interestingly, we find that
the SVR is more reliable and suitable for transfer learning than
the XGBoost with a small amount of newly collected data. The
possible reason is that the XGBoost is a discrete gradient boosting
framework, the output of the model is limited by the base model
even if a new layer is added before the base model, whereas the
SVR is a kernel-based framework, in which the continuous
calculation achieves a better prediction under the designed TL2.
In summary, the proposed approach using the relaxation voltage
curve is useful to estimate the battery capacity, and the transfer
learning improves the accuracy of capacity estimation requiring
little tuning to adapt to the difference in batteries.

Discussion
Accurate identification of lithium-ion battery capacity facilitates
the accurate estimation of the driving range which is a primary
concern for EVs. An approach without requiring information
from the previous cycling to estimate battery capacity is pro-
posed. The proposed approach uses three statistical features
([Var, Ske, Max]) extracted from the voltage relaxation curve as
input to predict the capacity in the next cycle. The transfer
learning embedding machine learning methods is applied on 130
cells to establish a suitable model and for the verification of the
approach. The best base model achieves a root-mean-square error
of 1.1%. The transfer learning adding a linear transformation
layer before the base model shows good predictive ability within a
RMSE of 1.7% on different batteries. The retraining of
transfer learning only needs a small number of data units on the
condition that a variation of the input data needs to be guaran-
teed to improve the applicability of the proposed approach.

Table 3 Test RMSEs of battery capacity estimation using
zero-shot learning (ZSL) and different transfer learning (TL)
methods on dataset 2 and dataset 3.

Methods Dataset ZSL No TL TL1 TL2

XGBoost Dataset 2 0.038 0.029 0.027 0.024
Dataset 3 0.038 0.020 0.034 0.024

Support vectors
regression

Dataset 2 0.034 0.039 0.026 0.017
Dataset 3 0.073 0.052 0.035 0.016
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Fig. 6 Test results of estimated capacity versus real capacity by transfer learning. The capacity results are uniformized by the nominal capacity for
comparison. Results of TL2 embedding XGBoost method (a) and embedding SVR (b) on dataset 2. Results of TL2 embedding XGBoost method (c) and
embedding SVR (d) on dataset 3. Additional results are disclosed in Supplementary Figs. 10–12.
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The relaxation process of a battery after full charge is easily
obtained without the requirement of specific working conditions
and voltage ranges, providing a new possibility for battery
capacity estimation using data-driven methods in the system
implementation of EV applications.

Methods
Cell selection and cycling. Commercially available lithium-ion batteries, i.e., LG
INR18650-35E (3.5 Ah, 3.6 V), Samsung INR18650-MJ1 (3.5 Ah, 3.6 V), and
Samsung INR18650-25R (2.5Ah, 3.6 V), have been tested. More battery speci-
fications are listed in Supplementary Table 4. The positive electrode composi-
tions of the INR18650-35E battery and INR18650-MJ1 battery are
LiNi0.86Co0.11Al0.03O2 and Li(Ni0.83Co0.11Mn0.07)O2 respectively, and the nega-
tive electrodes for both cell types have roughly 97 wt% C and 2 wt% Si as well as
traces of H, N, and S from Sorensen et al.42. The positive electrode of the
INR18650-25R battery is the blend of 42 (3) wt.% Li(NiCoMn)O2 - 58 (3) wt.%
Li(NiCoAl)O2, and the negative electrode is graphite from ref. 18. The
INR18650-35E battery is named as NCA battery. The INR18650-MJ1 is named
as NCM battery. The INR18650-25R is named as NCM+NCA battery
according to the positive electrode. A potentiostat (BioLogic BCS-815, France) is
employed for cell cycling. The measurements are conducted at 25, 35, and 45 °C
in a climate chamber (BINDER, ±0.2 °C, Germany). Long-term cycling is con-
ducted on a total of 130 cells with a summary of cycling conditions as provided
in Table 1. A schematic connection of the potentiostat, chamber, and cells is
shown in Supplementary Figure 13. For the NCA and NCM batteries, the metal
taps are spot-welded to the cells, and the contact is soldered to the metal taps. A
four-wire holder is used for the NCM+NCA battery. For partially charged/
discharged NCA and NCM cells, the electrochemical impedance is measured in
the fully charged state using a frequency range of 10 kHz to 50 mHz (20 data
points per decade of frequency) and a potential amplitude of 20 mV. 30 min are
set at the open circuit voltage before the electrochemical impedance tests. The
electrochemical impedance is tested every 25 cycles for the NCA battery and
every 50 cycles for the NCM battery. For the NCM+NCA battery, the elec-
trochemical impedance is conducted every 50 cycles at full charge in a range of
10 kHz to 0.01 Hz (6 data points per decade of frequency) with a sinusoidal
amplitude of 250 mA. 60 min are set at the open circuit voltage before the
electrochemical impedance tests. The NCA cells and NCM cells are tested from
2016 to 2018, and the NCM+NCA cells are cycled in 2020. Different experi-
menters at different test periods are responsible for the difference in battery
connection methods and experimental parameters in AC impedance tests, e.g.,
perturbation modes, perturbation amplitudes, and open circuit voltage time.

Machine learning methods. Two transfer learning strategies embedding the
XGBoost method and SVR method are applied in our study, and an illustration of
the implemented transfer learning process is shown in Supplementary Fig. 9. The
algorithms of the ElasticNet method, XGBoost method, and SVR method are
introduced in Supplementary Note 5.

(1) The base model is trained on all experimental data of NCA batteries (dataset
1). Firstly, the base model is directly verified on dataset 2 and dataset 3
without changing model weights as a zero-shot learning (ZSL) reference.

(2) The base model is retrained using some new data units (Strategy D in
Supplementary Note 4) as input variables from dataset 2 and dataset 3 as a
No TL comparison.

(3) Two transfer learning strategies (TL1 and TL2) are proposed by adding
layers behind and in front of the base model. All weights in the base model
are frozen in the transfer learning strategies except the newly added layer. In
detail, TL1 means that a linear transformation layer is added before the
output of capacity, which is described as

Q0 ¼ wQþ b ð1Þ
TL2 means that a linear transformation layer is constructed to adapt the input

features, which is described as

Var0

Ske0

Max0

2
64

3
75 ¼ W

Var

Ske

Max

2
64

3
75þ b ð2Þ

w, W, and b are the weights in the added layer. The target dataset from dataset 2
and dataset 3 are selected to train the new layer weights.

The transfer learning models are verified on the remaining dataset 2 and dataset
3 respectively. The test RMSEs are compared in Table 3, and the estimation results
are presented in Fig. 6 and Supplementary Figs. 10–12 for visualization purposes.

Data availability
The data generated in this study have been deposited in the Zenodo database under
accession code [https://doi.org/10.5281/zenodo.6379165].

Code availability
The data processing is performed in python and is available at [https://github.com/Yixiu-
Wang/data-driven-capacity-estimation-from-voltage-relaxation]. Code for the modeling
work is available from the corresponding authors upon request.

Received: 1 August 2021; Accepted: 1 April 2022;

References
1. Bresser, D. et al. Perspectives of automotive battery R&D in China, Germany,

Japan, and the USA. J. Power Sources 382, 176–178 (2018).
2. Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature

575, 75–86 (2019).
3. Waag, W., Käbitz, S. & Sauer, D. U. Experimental investigation of the lithium-

ion battery impedance characteristic at various conditions and aging states and
its influence on the application. Appl. Energy 102, 885–897 (2013).

4. Xiong, R., Li, L. & Tian, J. Towards a smarter battery management system: a
critical review on battery state of health monitoring methods. J. Power Sources
405, 18–29 (2018).

5. Roman, D., Saxena, S., Robu, V., Pecht, M. & Flynn, D. Machine learning
pipeline for battery state-of-health estimation. Nat. Mach. Intell. 3, 447–456
(2021).

6. Li, W. et al. Online capacity estimation of lithium-ion batteries with deep long
short-term memory networks. J. Power Sources 482, 228863 (2021).

7. Liu, K., Shang, Y., Ouyang, Q. & Widanage, W. D. A data-driven approach
with uncertainty quantification for predicting future capacities and remaining
useful life of lithium-ion battery. IEEE Trans. Ind. Electron. 68, 3170–3180
(2020).

8. Hu, X., Xu, L., Lin, X. & Pecht, M. Battery lifetime prognostics. Joule 4,
310–346 (2020).

9. Severson, K. A. et al. Data-driven prediction of battery cycle life before
capacity degradation. Nat. Energy 4, 383–391 (2019).

10. Zhang, Y. et al. Identifying degradation patterns of lithium ion batteries from
impedance spectroscopy using machine learning. Nat. Commun. 11, 1–6
(2020).

11. Ding, R. et al. Designing Ai-aided analysis and prediction models for
nonprecious metal electrocatalyst-based proton-exchange membrane fuel
cells. Angew. Chem. Int. Ed. 59, 19175–19183 (2020).

12. Lin, C., Cabrera, J., Denis, Y., Yang, F. & Tsui, K. SOH estimation and SOC
recalibration of lithium-ion battery with incremental capacity analysis & cubic
smoothing spline. J. Electrochem. Soc. 167, 090537 (2020).

13. Tagade, P. et al. Deep Gaussian process regression for lithium-ion battery
health prognosis and degradation mode diagnosis. J. Power Sources 445,
227281 (2020).

14. Chen, K. et al. Practical failure recognition model of lithium-ion batteries
based on partial charging process. Energy 138, 1199–1208 (2017).

15. Tang, X. et al. A fast estimation algorithm for lithium-ion battery state of
health. J. Power Sources 396, 453–458 (2018).

16. Li, Y. et al. Random forest regression for online capacity estimation of lithium-
ion batteries. Appl. Energy 232, 197–210 (2018).

17. Goh, T., Park, M., Seo, M., Kim, J. G. & Kim, S. W. Capacity estimation
algorithm with a second-order differential voltage curve for Li-ion batteries
with NMC cathodes. Energy 135, 257–268 (2017).

18. Zhu, J. et al. Investigation of lithium-ion battery degradation mechanisms by
combining differential voltage analysis and alternating current impedance. J.
Power Sources 448, 227575 (2020).

19. Dubarry, M. & Beck, D. Analysis of synthetic voltage vs. capacity datasets for
big data Li-ion diagnosis and prognosis. Energies https://doi.org/10.3390/
en14092371 (2021).

20. Pei, P. et al. Capacity estimation for lithium-ion battery using experimental
feature interval approach. Energy https://doi.org/10.1016/j.energy.2020.117778
(2020).

21. Qiao, D. et al. Online quantitative diagnosis of internal short circuit for
lithium-ion batteries using incremental capacity method. Energy 243, 123082
(2021).

22. Li, X., Yuan, C. & Wang, Z. State of health estimation for Li-ion battery via
partial incremental capacity analysis based on support vector regression.
Energy https://doi.org/10.1016/j.energy.2020.117852 (2020).

23. Lyu, Z., Gao, R. & Li, X. A partial charging curve-based data-fusion-model
method for capacity estimation of Li-Ion battery. J. Power Sources https://doi.
org/10.1016/j.jpowsour.2020.229131 (2021).

24. Zhang, C. et al. An adaptive battery capacity estimation method suitable for
random charging voltage range in electric vehicles. IEEE Trans. Ind. Electron.
https://doi.org/10.1109/tie.2021.3111585 (2021).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29837-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2261 | https://doi.org/10.1038/s41467-022-29837-w |www.nature.com/naturecommunications 9

https://doi.org/10.5281/zenodo.6379165
https://github.com/Yixiu-Wang/data-driven-capacity-estimation-from-voltage-relaxation
https://github.com/Yixiu-Wang/data-driven-capacity-estimation-from-voltage-relaxation
https://doi.org/10.3390/en14092371
https://doi.org/10.3390/en14092371
https://doi.org/10.1016/j.energy.2020.117778
https://doi.org/10.1016/j.energy.2020.117852
https://doi.org/10.1016/j.jpowsour.2020.229131
https://doi.org/10.1016/j.jpowsour.2020.229131
https://doi.org/10.1109/tie.2021.3111585
www.nature.com/naturecommunications
www.nature.com/naturecommunications


25. Baghdadi, I., Briat, O., Gyan, P. & Vinassa, J. M. State of health assessment for
lithium batteries based on voltage–time relaxation measure. Electrochim. Acta
194, 461–472 (2016).

26. Schindler, S., Bauer, M., Petzl, M. & Danzer, M. A. Voltage relaxation and
impedance spectroscopy as in-operando methods for the detection of lithium
plating on graphitic anodes in commercial lithium-ion cells. J. Power Sources
304, 170–180 (2016).

27. von Lüders, C. et al. Lithium plating in lithium-ion batteries investigated by
voltage relaxation and in situ neutron diffraction. J. Power Sources 342, 17–23
(2017).

28. Qian, K. et al. State-of-health (SOH) evaluation on lithium-ion battery by
simulating the voltage relaxation curves. Electrochim. Acta 303, 183–191 (2019).

29. Attidekou, P. S., Wang, C., Armstrong, M., Lambert, S. M. & Christensen, P.
A. A new time constant approach to online capacity monitoring and lifetime
prediction of lithium ion batteries for electric vehicles (EV). J. Electrochem.
Soc. 164, A1792 (2017).

30. Li, W. et al. Digital twin for battery systems: cloud battery management
system with online state-of-charge and state-of-health estimation. J. Energy
Storage 30, 101557 (2020).

31. Fang, Q., Wei, X., Lu, T., Dai, H. & Zhu, J. A state of health estimation method for
lithium-ion batteries based on voltage relaxation model. Energies 12, 1349 (2019).

32. Chen, C., Wei, Z. & Knoll, A. C. Charging optimization for li-ion battery in
electric vehicles: a review. IEEE Transactions on Transportation Electrification,
1-1, https://doi.org/10.1109/tte.2021.3135525 (2021).

33. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for
batteries with machine learning. Nature 578, 397–402 (2020).

34. Khan, A. B. & Choi, W. Optimal charge pattern for the high-performance
multistage constant current charge method for the Li-ion batteries. IEEE
Trans. Energy Convers. 33, 1132–1140 (2018).

35. Li, K. et al. Battery life estimation based on cloud data for electric vehicles. J. Power
Sources https://doi.org/10.1016/j.jpowsour.2020.228192 (2020).

36. Wang, Z., Hong, J., Liu, P. & Zhang, L. Voltage fault diagnosis and prognosis
of battery systems based on entropy and Z -score for electric vehicles. Appl.
Energy 196, 289–302 (2017).

37. Smart, J. & Schey, S. Battery electric vehicle driving and charging behavior
observed early in the EV project. SAE Int. J. Alternative Powertrains 1, 27–33
(2012).

38. Yang, J., Dong, J., Zhang, Q., Liu, Z. & Wang, W. An investigation of battery
electric vehicle driving and charging behaviors using vehicle usage data
collected in Shanghai, China. Transp. Res. Rec. 2672, 20–30 (2018).

39. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J.
R. Stat. Soc. Ser. B. (Stat. Methodol.) 67, 301–320 (2005).

40. Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 785–794
(Association for Computing Machinery, 2016).

41. Awad, M. & Khanna, R. in Efficient learning machines 67–80 (Springer, 2015).
42. Sørensen, D. R. et al. Fatigue in high-energy commercial li batteries while

cycling at standard conditions: an in situ neutron powder diffraction study.
ACS Appl. Energy Mater. 3, 6611–6622 (2020).

43. Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production caused
variation in capacity aging trend and correlation to initial cell performance. J.
Power Sources 247, 332–338 (2014).

44. Yang, D., Zhang, X., Pan, R., Wang, Y. & Chen, Z. A novel Gaussian process
regression model for state-of-health estimation of lithium-ion battery using
charging curve. J. Power Sources 384, 387–395 (2018).

45. Gaberšček, M. Understanding Li-based battery materials via electrochemical
impedance spectroscopy. Nat. Commun. 12, 1–4 (2021).

46. Meddings, N. et al. Application of electrochemical impedance spectroscopy to
commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

47. Schuster, S. F. et al. Nonlinear aging characteristics of lithium-ion cells under
different operational conditions. J. Energy Storage 1, 44–53 (2015).

48. Schindler, S. & Danzer, M. A. A novel mechanistic modeling framework for
analysis of electrode balancing and degradation modes in commercial lithium-
ion cells. J. Power Sources 343, 226–236 (2017).

49. Bauer, M., Guenther, C., Kasper, M., Petzl, M. & Danzer, M. A.
Discrimination of degradation processes in lithium-ion cells based on the
sensitivity of aging indicators towards capacity loss. J. Power Sources 283,
494–504 (2015).

50. Zhu, J. et al. Low-Temperature Separating Lithium-Ion Battery Interfacial
Polarization Based on Distribution of Relaxation Times (DRT) of Impedance.
IEEE Trans. Transportation Electrification 7, 410–421 (2020).

51. Stiaszny, B. et al. Electrochemical characterization and post-mortem analysis
of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging.
J. Power Sources 258, 61–75 (2014).

Acknowledgements
This work contributes to the research performed at CELEST (Center for Electrochemical
Energy Storage Ulm-Karlsruhe) and is supported in the frame of the Alexander von
Humboldt Postdoctoral Research Program. Jiangong Zhu would like to thank the
foundation of the National Natural Science Foundation of China (NSFC, Grant No.
52107230) and he is supported by the Fundamental Research Funds for the Central
Universities. Haifeng Dai would like to thank the foundation of the National Natural
Science Foundation of China (NSFC, Grant No. U20A20310).

Author contributions
Conceptualization, writing, and original draft preparation were done by J.Z., Y.W., and
H.D. The experimental studies were performed by J.Z., L.M., M.J.M., and M.H. The
computational studies are performed by Y.W., J.Z., and Y.H. R.B.G., Y.C., X.L., H.D.,
M.K., M.H., A.S., and H.E. were involved in the writing, review, and editing of this
manuscript. H.D., M.K., X.W., and H.E. supervised the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29837-w.

Correspondence and requests for materials should be addressed to Haifeng Dai or
Michael Knapp.

Peer review information Nature Communications thanks Penelope Jones, Shunli Wang,
and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29837-w

10 NATURE COMMUNICATIONS |         (2022) 13:2261 | https://doi.org/10.1038/s41467-022-29837-w |www.nature.com/naturecommunications

https://doi.org/10.1109/tte.2021.3135525
https://doi.org/10.1016/j.jpowsour.2020.228192
https://doi.org/10.1038/s41467-022-29837-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
	Results
	Data generation
	Feature extraction
	Capacity estimation
	Performance of the proposed approach
	Physical explanation
	Approach verification by transfer learning

	Discussion
	Methods
	Cell selection and cycling
	Machine learning methods

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




