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Abstract
We describe an algorithm for generating fiber-filled volume elements for use in computational homogenization schemes. The
algorithm permits to prescribe both a length distribution and a fiber-orientation tensor of second order, and composites with
industrial filler fraction can be generated. Typically, for short-fiber composites, data on the fiber-length distribution and on
the volume-weighted fiber-orientation tensor of second order is available. We consider a model where the fiber orientation
and the fiber length distributions are independent, i.e., uncoupled. We discuss the use of closure approximations for this case
and report on identifying the describing parameters of the frequently used Weibull distribution for modeling the fiber-length
distribution. We discuss how to integrate these procedures in the Sequential Addition and Migration algorithm, developed for
fibers of equal length, and work out algorithmic modifications accounting for possibly rather long fibers. We investigate the
capabilities of the introduced methodology for industrial short-fiber composites, demonstrating the rather low dispersion of
the effective elastic moduli for the generated unit cells.

Keywords Short-fiber composite · Representative volume element · Fiber-length distribution · Weibull distribution ·
Sequential addition and migration

1 Introduction

1.1 State of the art

Due to their favorable stiffness-to-weight ratio, fiber-
reinforced composites are frequently used when designing
lightweight components. When a high design freedom is
required, injection molding with discontinuously reinforced
polymers is typically the first choice. Due to the anisotropy of
the fiber reinforcements, the effective mechanical properties
of such fiber-reinforced composite materials are anisotropic,
aswell.Moreover, as a consequence of the complexmanufac-
turing process, the material microstructure varies throughout
the component. For instance, the fiber-volume fraction, the
fiber orientation and also the fiber-length distribution may
are typically subject to non-homogeneity.

To improve upon the predictive capability of mean-field
models [1–3], computational homogenization techniques [4]
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are typically employed to determine the effective mechani-
cal properties of such composites. Based on themathematical
theory of homogenization [5,6], computational homogeniza-
tion represents a well-defined and flexible strategy to under-
stand the influence of the constituents and themicrostructural
composition on the effective mechanical properties which
complements the pertinent experimental procedures in an
effective way.

Modern image-processing techniques provide a detailed
impression about the complexity of fiber-reinforced materi-
als [7,8]. To reduce the the influence of randomness and to
keep the number of parameters manageable, microstructure-
generation tools [9] are highly valuable prerequisites for
accurate computational multiscale modeling procedures. For
short-fiber composites, the fibers do typically show little
bending, and an approximation by a straight cylinder is
appropriate. Simple algorithms based on random sequen-
tial addition (RSA) [10,11] fail to produce microstructures
with industrial volume fraction and moderate fiber aspect-
ratio, i.e., the quotient of fiber length and diameter, and
this limitation is intrinsic [12,13]. Therefore, a number of
improved RSA methods was introduced [14–17]. Sequential
deposition [18,19], flexible fiber based [20,21] and collec-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02201-x&domain=pdf
http://orcid.org/0000-0001-7017-3618


Computational Mechanics

tive re-arrangement algorithms [22–24] are more successful
when it comes to reaching the desired volume fractions.
As a particular example of the latter group, the sequential
addition and migration (SAM) method [25] was shown to
generate short-fiber microstructures with straight cylinders
and high fiber-volume fractions. Moreover, a fourth-order
fiber-orientation tensor could be prescribed to the SAM
algorithm, and the produced microstructure was shown to
match the prescribed orientation tensor to high accuracy.
This close match of a number of pre-defined statistical desir-
ables implied that different computational cells produced
closelymatching effectivemechanical properties. Evenmore
striking, the size of the considered unit cells could be
chosen to be extremely small, and still be representative
[26–28]. Such a property is extremely desirable, in par-
ticular when it comes to nonlinear material properties of
composites, and turned out to be critical when undertak-
ing a number of scientific studies, including fatigue [29,30],
fracture [31,32] and thermomechanically coupled problems
[33,34].

1.2 Contributions

This work is concerned with an extension of the SAM
method [25] to fibers of variable length, preserving the
positive characteristics of the method shown for constant
fiber lengths. Such an augmentation is less trivial than one
might think initially. The challenges are actually twofold.
The first, more obvious challenge, concerns the presence of
very long fibers in unit cells. The classical SAM method
[25] required the cell size to exceed the fiber length. If
we retained this prerequisite, the cell would have to be
larger than the longest considered fiber. In particular, such
an approach would be computationally inefficient. Alterna-
tively, we need to account for fibers that are longer than the
cell edge-length. As we consider periodic boundary condi-
tions, such a fiber may wrap around the cell several times, as
shown in Fig. 1. In particular, it may intersect itself. Appro-
priate strategies are required to reliably deal with such a
situation.

The second challenge is more subtle, and concerns the
statistical data to be prescribed, balanced by the actual data
that is available. Indeed, although micro-computed tomog-
raphy (μCT) scans of fiber composites are readily available,
extracting the full fiber length-orientation distribution from
voxel data is far from trivial. Indeed, algorithms for segment-
ing individual fibers from voxel data are still subject of the
latest research [35], yet only detect around 80% of the fibers.
Thus, we need to live with the available data. For extracting
the length-weighted fiber-orientation tensors of second and
fourth order from voxel data, reliable algorithms are avail-
able [36–38]. Moreover, the fiber-length distribution may be

Fig. 1 An example of a unit cell with edge length of 200μm; a single
rather long fiber of length 392.9μm is highlighted

determined from classical incineration (see Tab. 1 in Goris
et al. [39]).

For the work at hand, we assume that the fiber orienta-
tion and the fiber-length distribution are independent. Recent
experimental data [40] suggests that there is a coupling
between fiber length and fiber orientation, yet only weakly
so. In particular, our working assumption may be a good
starting point, in particular in view of the data available. We
consider the volume-weighted fourth-order fiber-orientation
tensor as the target statistical quantity. In the computational
experiments, it turns out that prescribing this statistical quan-
tity indeed keeps the statistical fluctuations rather low for the
considered scenario.

For concreteness, we consider the Weibull distribution
[41] for modeling the statistics of fiber lengths, as it was
shown previously to accurately model length data of short
fibers [42–44]. We introduce a strategy to determine the gov-
erning parameters from prescribed (volume-weighted) mean
length and its standard deviation,which appears to be innova-
tive. Moreover, we introduce a quasi-random based strategy
to sample the fiber lengths, minimizing stochastic artifacts in
the process.

This work is organized as follows. Section 2 introduces
the players of our game in a mathematically precise context,
i.e., fiber-length and orientation distributions, the Weibull
distribution and the relevant closure approximations for the
fiber-orientation tensor. The algorithmic counterparts con-
cerning the sampling of both length as well as orientation
and the required modifications of the SAM algorithm are
described in sect. 3. We demonstrate the capabilities of the
introduced procedures in sect. 4 for a commercial PA6GF35,
studying the necessary resolution, RVE (representative vol-
ume element) size and the influence of the mean as well as
standard deviation of the length distribution on the effective
elasticmoduli.Moreover, we validate the approachwith pub-
lished experimental data [40]. The appendices provide details
for determining theWeibull parameters and shed light on the
similarities and differences of the exact and the maximum-
entropy closure.
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2 Describing short-fiber microstructures

2.1 Fiber-orientation and fiber-length distributions

We consider short-fiber reinforced composites, i.e., we
assume that each fiber in such a composite may be described
by a straight cylinder with length �, principal axis p and
diameter d. Typically, the variations of the diameter between
different fibers of a composite is negligible, whereas both the
fiber length � and the fiber orientation p vary significantly.
The latter two characteristics may be described in terms of a
length-orientation distribution function

ψ : R>0 × S2 → R≥0, (�, p) �→ ψ(�, p), (2.1)

where S2 denotes the unit sphere in R3. The length-
orientation distribution function is a probability distribution
which satisfies the symmetry condition

ψ(�, p) = ψ(�,−p) for all � > 0 and p ∈ S2, (2.2)

which reflects the sign ambiguity when describing a cylinder
in terms of its principal axis.

In practice, the full length-orientation distribution func-
tion ψ is not known, and only partial information and
estimates are available. A classical way to estimate the fiber-
length distribution ρ : R>0 → R≥0,

ρ(�) =
∫
S2

ψ(�, p) dS, � > 0, (2.3)

proceeds via incineration of the matrix material (see Tab. 1 in
Goris et al. [39]), and counting the fiber length of the individ-
ual fibers under the microscope. In particular, the connection
between fiber length and orientation is lost.

Fiber-orientation data is typically encoded via fiber-
orientation tensors [45,46], which can be determined from
μCT images [36–38,47,48]. Fiber-orientation tensors corre-
spond to moments of the length-orientation distribution ψ ,
and the two most popular fiber-orientation tensors are of sec-
ond and fourth order,

A =
∫ ∞

0

∫
S2

� p ⊗ pψ dS d�

/ ∫ ∞

0
�ρ d� and

A =
∫ ∞

0

∫
S2

� p ⊗ p ⊗ p ⊗ pψ dS d�

/ ∫ ∞

0
�ρ d�

(2.4)

Fiber-orientation tensors have their roots in injection-
molding simulations where the second-order fiber-
orientation tensor A is often the only information available
[49,50]. Although considering higher moments in the length
variable � is conceivable, the length-averaged form (2.4) is

the most natural, as it corresponds to a volume averaging of
the cylinders. In particular, this form typically arises when
computing fiber-orientation tensors from μCT images [51].

Classically, for short-fiber reinforced composites, the
details of the fiber-length distribution are ignored, and only
the mean fiber length �̄ is considered (with different possibil-
ities to determine this mean). Put differently, the fiber-length
distribution ρ is assumed to be concentrated at the specific
fiber length �̄. In this case, the fiber-orientation distribution

ϕ : S2 → R≥0, p �→ ϕ(p), (2.5)

carries all relevant information about the length-orientation
characteristics of the composite.

Apparently, there is a gap between the data which is avail-
able and the data which would be necessary for estimating
the effectivemechanical properties of short-fiber composites.
More precisely, (at least) three shortcomings are evident from
the discussion.

1. The length-orientation distribution function (2.1) is usu-
ally unavailable. The latest computational algorithms
[35,52–54] identify only about 80% of the fibers, leav-
ing incomplete statistical information. Rather, data on
the fiber-length and the fiber-orientation distributions is
available separately.

2. Experimental data on the fiber-length distribution (2.3)
is usually presented by counting and binning [42,44,55].
Such results are typically rather sensitive to the size of the
bins with a significant influence on statistical quantities
of interest, like mean and standard deviation.

3. Only rather partial information is available on the fiber-
orientation tensor in terms of the second-order fiber-
orientation tensor (2.4).

In this manuscript, we deal with these challenges from an
engineering perspective. To deal with the first item, we
make the working assumption that the fiber-length and the
fiber-orientation distribution are uncoupled, i.e., the length-
orientation distribution (2.1) may be written in product form

ψ(�, p) = ρ(�) ϕ(p) (2.6)

in terms of a fiber-length distribution (2.3) and a fiber-
orientation distribution (2.5). Mathematically speaking, the
random variables � and p are assumed to be independent.

From a physical point of view, it appears plausible that
there is some coupling between the fiber length and the fiber
orientation. Indeed, for longer fibers to arrange properly at
high volume fractions, it is advantageous to align, at least
locally, whereas a high degree of orientational dispersion is
possible for the shorter fibers. However, for short fibers, these
differences of the orientation distribution for different fiber
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lengths is not very pronounced [35, Fig. 14]. In particular,
our assumption appears reasonable as a working assumption.

To deal with the second item on the list of challenges, we
consider specific fiber-length distributions to be able to work
with a concise description of the fiber-length distribution.
For the work at hand, we consider the Weibull distribution
[41], which was found to be a flexible and accurate model
for describing fiber-length distributions in short-fiber com-
posites [42,43]. The details comprise sect. 2.2.

Last but not least, the use of fiber-orientation tensors is
standard in injectionmolding, and the independence assump-
tion (2.6) permits us to conclude

∫ ∞

0

∫
S2

� p⊗k ψ(�, p) dS d�

=
∫ ∞

0
� ρ(�) d�

∫
S2

p⊗k ϕ(p) dS, k = 0, 2, 4, . . . ,

(2.7)

i.e., the expressions for thefiber-orientation tensors (2.4) sim-
plify to expressions,

A =
∫
S2

p ⊗ p ϕ(p) dS and

A =
∫
S2

p ⊗ p ⊗ p ⊗ p ϕ(p) dS, (2.8)

that are familiar from investigations with only a single
fiber length. In particular, the fiber-orientation closure-
approximation technology [56–58] developed for this sce-
nario becomes available, see sect. 2.3. Indeed, going beyond
the independence assumption (2.6) for the length-orientation
distribution requires innovative closure techniques to be
developed, and represents a promising research field for
future contributions.

2.2 TheWeibull distribution

The Weibull probability distribution [41] has been used fre-
quently to model the fiber-length distribution in short-fiber
composites [40,42,43]. Its density function [59, eq. (4-43)]
reads

ρλ,k(�) = k

λ

(
�

λ

)k−1

e−(�/λ)k , � > 0, (2.9)

where k and λ are positive parameters known as the the shape
and scale parameter. The shape parameter k is sometimes
referred to as Weibull modulus and is dimension-free. The
scale parameter λ has dimensions of length for the model at
hand. In practice, it is often more convenient to prescribe ele-
mentary statistical quantities instead of the parameters k and

λ. For instance, it would be possible to prescribe the (number-
weighted) mean μ and standard deviation σ , defined via

μ =
∫ ∞

0
� ρλ,k(�) d� and

σ 2 =
∫ ∞

0
(� − μ)2 ρλ,k(�) d�, (2.10)

and to determine the Weibull parameters λ and k. In engi-
neering practice, it is more common to work with volume-
weighted quantities instead of number-weighted ones. For
the problem at hand and with the assumption of cylindrical
fibers with equal diameters, the volume-weighted mean m
and standard deviation s are given by the expression

m = 1

μ

∫ ∞

0
�2 ρλ,k(�) d� and

s2 = 1

μ

∫ ∞

0
(� − m)2� ρλ,k(�) d�. (2.11)

For given (positive) values ofm and s, the parameter k solves
the equation

�
(
1 + 1

k

)
�

(
1 + 3

k

)
�

(
1 + 2

k

)2 = 1 + s2

m2 , (2.12)

formulated in terms of Euler’s �-function

�(z) =
∫ ∞

0
t z−1e−t dt, (2.13)

defined for general complex numbers z with positive real
part. Once Eq. (2.12) is solved, the parameter λ is calculated
from the expression

λ = m
�

(
1 + 1

k

)
�

(
1 + 2

k

) . (2.14)

A derivation of Eqs. (2.12) and (2.14) is given in Appendix
A.

Examples for Weibull probability distributions are shown
in Fig. 2 for varying (volume-weighted) mean and standard
deviation. We observe that, for fixed mean, once the standard
deviation gets too large, the probability distribution develops
a pole at zero, leading to a monotonically decreasing func-
tion. In contrast, for sufficiently large standard deviation, the
probability density function attains a more familiar bell-like
shape.

Last but not least, let us point out that the inequality

μ ≤ m (2.15)

between the number-weighted mean length μ and the
volume-weighted mean length m holds for any fiber-length
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(a) (b)

Fig. 2 Weibull probability-density functions for varying (volume-weighted) meanm and standard deviation s. a Varying meanm for fixed standard
deviation s = 100μm. bVarying standard deviation s for fixed mean m = 250μm

distributionwith equality only for the Dirac distribution, i.e.,
where all fibers have the same length. The relation (2.15) is
a direct consequence of the Cauchy–Schwarz inequality

∫ ∞

0
� ρλ,k(�) d� ≤

√∫ ∞

0
�2 ρλ,k(�) d� (2.16)

applied to a probability distribution.

2.3 Fiber-orientation closure approximations

When manufacturing components made of short-fiber rein-
forced materials the microstructure is typically varying
throughout the component. In particular, the microstructure
characteristics like the fiber-orientation distribution (2.5)

ϕ : S2 → R≥0, p �→ ϕ(p), (2.17)

vary throughout the component. Moreover, the fiber-
orientation distribution contains rather fine details, which
are surplus to requirements when considering process sim-
ulations and a subsequent evaluation of the mechanical
properties.

Therefore, it is more convenient to work with the second-
and fourth-order fiber-orientation tensors (2.8)

A =
∫
S2

p ⊗ p ϕ(p) dS and

A =
∫
S2

p ⊗ p ⊗ p ⊗ p ϕ(p) dS, (2.18)

introduced by Advani–Tucker [46]. Indeed, the most pop-
ular model for the evolution of the fiber orientation in fiber
suspensions, the Folgar–Tucker equation [49], involves these
two tensors. Moreover, it is well known that the fourth-order
fiber-orientation tensor characterizes the effective elastic
behavior of short-fiber composites [25,60,61], at least for
fibers with uniform length.

Due to reasons of storage economy, the second-order
fiber orientation tensor A is usually the primary quan-
tity of interest, and the fourth-order fiber-orientation tensor
A is approximated by a so-called closure approximation
[49,56,58], a tensor-valued function F which establishes a
relationship

A = F(A). (2.19)

As the second-order fiber-orientation tensor may be recov-
ered from the fourth-order fiber-orientation tensor via the
relationship A : Id = A in terms of the 3 × 3-identity Id,
the information content of the fourth-order fiber-orientation
tensor exceeds that of its second-order counterpart. The
additional information is lost when working with a closure
approximation (2.19). Yet, working with closure approxima-
tions is the rule rather than the exception [50,62,63], both for
process simulations and mechanics. The success of closure
approximations lies in their construction which accounts for
constraints imposed by the underlying physics and selects
suitable “plausible” fourth-order fiber-orientation tensors.
We refer to Kugler et al. [58] for a recent review article.
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The original point of view (2.19) permitted certain
pathologies,which lead to unphysical ormathematically con-
tradictory properties of the estimated higher-order tensors.
For instance, the quadratic, the linear and the hybrid clo-
sure, introduced by Advani–Tucker [46], do not arise from a
fiber-orientation distribution, in general.

Over time, it became apparent that it is more convenient
to consider closure approximations which provide an esti-
mate of the entire fiber-orientation distribution function ϕ

based on prescribed fiber-orientation tensors, reducing the
computation of the higher-order moments to a simple post-
processing of the entire distribution function ϕ. The twomost
popular closures of this type, taking the second-order fiber-
orientation tensor A as input, are the exact closure [64,65]
and the maximum entropy closure [57,60].

The exact closure is based on the angular central Gaussian
distribution [66]

ϕex
B (p) = 1

4π

(
pT Bp

)− 3
2
, p ∈ S2, (2.20)

parametrized by a symmetric and positive definite 3 ×
3-matrix B which is moreover unimodular, i.e., satisfies
det B = 1. It can be shown that the ACG distributions (2.20)
represent exact solutions of the fiber-orientation dynamics
(with vanishing Folgar–Tucker diffusivity [49]), see Verley–
Dupret [67].

The maximum entropy closure [57,60] utilizes the Bing-
ham distribution [68]

ϕmE
B (p) = cB exp

(
pT Bp

)
, p ∈ S2, (2.21)

which involves a symmetric 3 × 3-matrix B and a prefactor
cB > 0 which ensures that the total mass is one. This closure
maximizes the information-theoretic entropy.

In either of the two cases, for prescribed second-order
fiber-orientation tensor A, the matrix B may be determined
(numerically) as a solution of the equation∫
S2

p ⊗ p ϕB dS
!= A. (2.22)

Some care has to be taken if the second-order fiber-
orientation tensor is singular or close to singular, i.e., the
equation det A 	 1 holds [64,65,69]. In any case, with the
estimated fiber-orientation distribution ϕ at hand, the nec-
essary higher-order information can be post-processed, e.g.,
the fourth-order fiber-orientation tensor

A =
∫
S2

p ⊗ p ⊗ p ⊗ p ϕB dS. (2.23)

Moreover, we may draw orientation vectors from the identi-
fied distribution. The exact and themaximumentropy closure
give rise to rather similar effective elastic properties for most

fiber-orientation states, see Appendix B. For the work at
hand, we rely upon the exact closure approximation (2.20)
due to its closer connection to the underlying physics and the
simpler sampling, see sect. 3.

Let us conclude this section by discussing how to solve
Eq. (2.22) for the exact closure (2.20)with a robust numerical
strategy. For this purpose, integrals of the form

1

4π

∫
S2

f (p)
(
pT Bp

)− 3
2
dS, (2.24)

where f (p) is amonomial in the components of the vector p,
need to be evaluated. Montgomery–Smith et al. [64,65] pro-
posed a numerical strategy to evaluate such integrals based
on the Carlson form of the elliptic integrals [70]. Efficient
strategies for solving eq. (2.22) based on this strategy, in
particular concerning a clever initial guess, are discussed by
Ospald&Herzog [69].However, the case of degenerate fiber-
orientation tensor A, i.e., whenever det A = 0, requires some
attention. In such a case, the fiber-orientation distribution
is concentrated on a plane, and the expression (2.20) is no
longer meaningful. Clearly, the special case det A = 0 can
be handled explicitly, see Görthofer et al. [71], for elabora-
tion. Yet, it is clear that a scenario with small but nonzero
determinant of the tensor A is numerically challenging and
a more robust strategy is useful.

For this purpose, we note that the change of coordinates

TB : S2 → S2, q �→ B−1/2q∥∥B−1/2q
∥∥ (2.25)

transforms the integral (2.24) into the form

1

4π

∫
S2

f (p)
(
pT Bp

)− 3
2
dS(p)

= 1

4π

∫
S2

f (TB(q)) dS(q), (2.26)

see Ospald et al. [72]. In particular, integrating against the
ACG density (2.20) gets translated into an integration task
for the uniform distribution on the unit sphere S2 ⊆ R3.With
this insight at hand, suppose a set q1, . . . , qN ∈ S2 of integra-
tion points with corresponding positive weightsw1, . . . , wN

is given, which permits to approximate integrals of the form

1

4π

∫
S2

g(q) dS(q) ≈
N∑
i=1

g(qi ) wi . (2.27)

Then, we may approximate the integral (2.26) by the expres-
sion

1

4π

∫
S2

f (p)
(
pT Bp

)− 3
2
dS(p)

≈
N∑
i=1

f (TB(qi )) wi .x . (2.28)
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Returning to our original task (2.22), we are thus left with
solving the equation

N∑
i=1

TB(qi ) ⊗ TB(qi ) wi
!= A (2.29)

for B provided A is given. Still, the problem with the
determinant remains. For this purpose, we record that the
transformation (2.25) is invariant w.r.t. the scaling B �→ λ B
for any λ > 0. Moreover, computing the inverse square
root of a matrix comes with a certain degree of compu-
tational effort. Therefore, we introduce the quantity C =
B−1/2/ tr

(
B−1/2

)
, so that

TB(q) ≡ B−1/2q∥∥B−1/2q
∥∥ = Cq

‖Cq‖ (2.30)

holds. Whenever detC > 0, the matrix B may be recovered.
However, the matrix C also makes sense in the degener-
ate case. For instance, if all orientations are contained in
the 1-2-plane, setting the (i, 3)-components of the matrix B
(i = 1, 2, 3) to zero projects all vectors q onto the 1-2-plane.
Therefore, we are led to solving the equation

N∑
i=1

pi ⊗ pi wi
!= A with pi = Cqi

‖Cqi‖ (2.31)

for the symmetric matrix C ∈ R3×3 with unit trace. As the
matrices A and C share the same eigenbasis [64,65], it is
numerically convenient to diagonalize the Eq. (2.31) with
non-increasing diagonal elements in A and to eliminate the
33-component of the C-matrix explicitly

0 = tr(C) precisely if C33 = 1 − C11 − C22. (2.32)

Then, Eq. (2.31) becomes a nonlinear equation for only two
variables, and conventional numerical root finding strategies
may be applied.

To conclude this section, let us remark that we found using
symmetric (antipodal) spherical t-designs [73] quite useful as
general-purpose integration pointswith equalweights.More-
over, having the matrix B at our disposal is not necessary for
the developments in this article. Rather, the matrix C is suf-
ficient. For instance, the fourth-order fiber-orientation tensor
A may be computed as follows

A =
N∑
i=1

pi ⊗ pi ⊗ pi ⊗ pi wi with pi = Cqi
‖Cqi‖ . (2.33)

3 Computational methods

3.1 Efficient sampling from aWeibull distribution

Suppose a rectangular computational cell Q = [0, Q1] ×
[0, Q2]×[0, Q3]with positive edge lengths Qi (i = 1, 2, 3)
is given, together with a fiber-length distribution ρ , a fixed
diameter d and a targeted fiber-volume fraction φ. We wish
to sample a number N of cylindrical fibers with lengths
�1, . . . , �N which follow the distribution ρ and realize the
desired volume fraction φ as closely as possible, i.e., the
condition

πd2

4Q1Q2Q3

N∑
i=1

�i
!≈ φ (3.1)

should hold. If the fiber lengths are uniform, i.e., �i ≡ �̄ holds
for all indices i , we may choose

N =
[
4Q1Q2Q3φ

πd2�̄

]
, (3.2)

where the brackets denote rounding to the nearest integer. For
a general fiber-length distribution, a similar approach could
be pursued with the (number-weighted) mean

μ =
∫ ∞

0
� ρ(�) d� (3.3)

in place of the parameter �̄ in Eq. (3.2). However, such
an approach suffers from inaccuracies when computing the
empirical number-weighted mean compared to the exact
value. In particular, errors may be introduced compared to
the desired volume fraction φ.

An alternative approach proceeds by sampling fiber
lengths �1, �2, . . . inductively and to stop whenever the run-
ning sum

πd2

4Q1Q2Q3

Ñ∑
i=1

�i (3.4)

exceeds the desired volume fraction φ. Then, the number of
sampledfibers N is either chosen as Ñ or Ñ−1, depending on
which number leads to a closer agreement with the targeted
fiber-volume fraction.

The simplest strategy proceeds by sampling the lengths
in a random fashion from the given probability distribution
ρ. However, a rather large number of samples is required
to approximate the desired characteristics of the prescribed
fiber-orientation distribution closely. Indeed, for any random
variable f : [0,∞) → R, the exact expectation

∫ ∞

0
f (�) ρ(�) d� (3.5)

123



Computational Mechanics

is approximated by the empirical expectation

1

N

N∑
i=1

f (�i ). (3.6)

For instance, in case f (�) = �, this difference concerns the
(number-weighted) mean length, and similarly for the stan-
dard deviation. For a random variable with finite variance,
random sampling leads to an errorwhich decreases as 1/

√
N .

Put differently, to decrease the error by one order of magni-
tude, the sample size needs to be increased by a factor 100.

For theWeibull distribution (2.9), the integral (3.5) attains
the specific form

∫ ∞

0
f (�) ρλ,k(�) d� ≡

∫ ∞

0
f (�)

k

λ

(
�

λ

)k−1

e−(�/λ)k d�,

(3.7)

which we may rewrite in the form

∫ ∞

0
f (�)

k

λ

(
�

λ

)k−1

e−(�/λ)k d�

=
∫ 1

0
f
(
λ(− ln u)1/k

)
du (3.8)

with the substitution u = e−(�/λ)k . In particular, the transfor-
mation

Tλ,k : (0, 1) → (0,∞), λ(− ln u)1/k, (3.9)

permits us to push forward any sampling method on the unit
interval to length space, giving rise to a sampling method
for the Weibull distribution. Instead of the classical random
sampling on the unit interval, which may be interpreted as a
Monte Carlo integration rule [74], we rely on quasi-random
sampling [75], which is based on low-discrepancy sequences
[76]. Assuming sufficient smoothness of the integrand f ,
quasi-random sampling leads to an error which decreases as
1/N up to a logarithmic correction [76]. Roughly speaking,
to reduce the error by an order of magnitude, the number
of sampling points needs to be increased by a factor of ten.
Further improvements may be reached by the scrambling
technique [77], which gives rise to an error which decreases
roughly as 1/N 3/2, sufficient smoothness of the integrand
premised.

Figure 3 shows a comparison for the different sam-
pling methods. We consider random sampling, together with
(scrambled and non-scrambled) Sobol sequences [78,79],
implemented in PyTorch [80]. To get reproducible results,
we ran the sampling 20 times and computed the average of
the relative error. Moreover, we consider theWeibull data set

Fig. 3 Relative error of the empirical mean relative to the exact
mean for different sampling strategies and with Weibull parameters
λ = 308.16μm and k = 2.26, see sect. 4.5, averaged over 20 sampling
runs

to be inspected in Sect. 4.4, corresponding to actual fiber-
length data from a μCT scan.

We observe that, for random sampling, the relative error
converges only slowly, roughly at the predicted N−1/2 rate.
Even for N = 1000 samples, the relative error exceeds one
percent. The Sobol sequence leads to a smaller error com-
pared to random sampling for all sample sizes. There is a
fluctuation by about an order of magnitude. Yet, even the
worst-case is much better than random sampling, typically
by roughly half an order of magnitude. For N = 1000 fibers,
the relative error in the number-weighted mean is smaller
than 0.5%. A relative error of 1% is already achieved at
N = 200 samples in the worst-case scenario. Thus, only one
fifth of the number of samples is necessary to reach the accu-
racy of the random sampling. Last but not least, we turn our
attention to sampling based on scrambled Sobol sequences
[77]. We observe an error scaling as N−1, which is slightly
than expected from theory. Still, the error scales roughly as
for non-scrambled Sobol sampling, but at half a magnitude
lower. In particular, for N = 1000 samples, the relative error
is below 0.1%. In turn, 1% relative error is reached for as
little as 80 samples. Please keep in mind that scrambled
Sobol sequences involve a degree of randomness as well,
enabling a statistical error estimation based on the empirical
(unbiased) variance in a similar way as for purely random
sampling. Thus, scrambled Sobol sequences represent the
method of choice for our purposes, and are-to a significant
extent-responsible for the high degree of reproducibility of
the results of the computations in Sect. 4.

3.2 Robust sampling from an ACG distribution

In this section, we discuss how to sample fibers when using
the exact closure approximation [64,65]. This is possible,
as the exact closure approximation comes with a full fiber-
orientation density function
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ϕex
B (p) = 1

4π

(
pT Bp

)− 3
2
, p ∈ S2, (3.10)

the angular central Gaussian distribution [66]. Sampling
from this distribution is straightforward. However, compli-
cations arise whenever the fiber orientation degrades to a
two-dimensional state. Such a state cannot be described by
a continuous distribution function, as a continuous function
on the sphere, which vanishes everywhere except for a plane,
has to vanish everywhere.

As a remedy, we re-use ideas from sect. 2.3. Recall that
using a symmetric positive semidefinite matrix C ∈ R3×3

with trace one turned out to be more convenient when
describing the exact closure approximation encompassing
the degenerate cases. Suppose the matrix C is identified as a
solution of Eq. (2.31). Let �1, . . . , �N denote the fiber lengths
drawn in the previous section. Then, we draw N vectors
qi ∈ R3 from a standard normal distribution in three dimen-
sions in a random fashion. Finally, the transformation

pi = Cqi
‖Cqi‖ , i = 1, . . . , N , (3.11)

gives rise to appropriate directions for the fibers in an asymp-
totically consistent and robust way. Please note that we rely
upon classical random sampling, as the eventual match of the
realized fourth-order fiber-orientation tensor with the exact
fourth-order fiber-orientation tensor will be ensured by the
SAM method, to be described in the next section.

3.3 An augmented SAM algorithm

The sequential addition and migration (SAM) algorithm
[25] is a method for generating periodic assemblings of
non-overlapping cylindrical fibers with a prescribed volume
fraction and fourth-order fiber-orientation tensor. Upon con-
vergence, the algorithm produces a fiber structure which is
perfectly periodic, where no pair of distinct fibers overlap
and where both the desired volume fraction and the targeted
fourth-order fiber-orientation tensor are realized up to the
prescribed numerical precision. Originally, the method was
introduced for fibers with an equal fiber length. In this work,
we report on an extension of the methodology.

For a the cell Q = [0, Q1]×[0, Q2]×[0, Q3] and a given
fourth-order fiber orientation tensor A, for instance aris-
ing from a closure approximation, we suppose that the fiber
lengths �1, . . . , �N and initial fiber orientations p01, . . . , p

0
N

have been drawn in such a way that the target fiber-volume
fraction is realized to the desired degree. Moreover, we
initialize the fiber centers x01 , . . . , x

0
N by drawing from a

uniform distribution on the cube [0,max(Q1, Q2, Q3)]3 and
discarding those centers which lie outside of the cell Q. The

SAM algorithm [25] proceeds by the iterative scheme

xk+1
i = xki + τ

N∑
j=1

δki j

ξ ki j

‖ξ ki j‖
mod Q,

pk+1
i =

{
pki , ‖dki ‖ = 0,
cos(‖dki ‖)pki + sin(‖dki ‖)dki /‖dki ‖, otherwise,

(3.12)

for i = 1, . . . , N and a step size τ , typically chosen
as 0.3. Here, the vector ξ ki j realizes the distance between

the spheroids described by the triples (xki , p
k
i , �i ) and

(xkj , p
k
j , � j ), and δki j = max(0, D − ‖ξ ki j‖) in terms of the

fiber diameter D. The vector dki computes as

dki = (Id−pki ⊗ pki )

[
�i

"i

N∑
j=1

δki j

ski j
2

ξ ki j

‖ξ ki j‖
+ (A − Ak) · · ·

pki ⊗ pki ⊗ pki

]
(3.13)

with the parameter

εi = D2

2
3 + ai

(
a3i
12

+ a2i
6

+ 3 ai
16

+ 1

15

)
, ai = �i/D,

(3.14)

the current orientation tensor

Ak =
N∑
i=1

�i p
k
i ⊗ pki ⊗ pki ⊗ pki

/ N∑
i=1

�i (3.15)

and ski j ∈ [−1, 1] defined by equation (4) in Schneider [25].
To illustrate the procedure, let us investigate what happens

when two fibers do intersect, as shown in Fig. 4a. In order to
remove the overlap, the fibers have the option to move their
centers xi and x j , respectively, or to rotate their directions pi
and p j appropriately. The distance to move is governed by
the overlap parameter δi j , and encoded by formula (3.12). Of
course, it is necessary to balance the shifts of the centers and
the rotations appropriately, seeFig. 4b. This is done implicitly
via the parameter "i in (3.3) that arises from the inertia tensor
of the corresponding spherocylinder.

The iterative scheme (3.12) is terminated whenever the
fibers are in a non-overlapping condition and the match
between the fourth-order fiber-orientation tensors is suffi-
ciently good. We use a relative difference in Frobenius norm
of the Voigt representations of the tensors below 10−4 for
this article throughout.

The bulk of the computational effort of the SAMalgorithm
(3.12) is hidden in determining the inter-particle collisions.
Indeed, for N fibers, a naive implementation requires N (N+
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(a) (b)

Fig. 4 Illustration of the update formula (3.12) for two individual fibers

1)/2 overlap checks. To reduce this effort, we utilize nested
Verlet lists as proposed in Schneider [25].

When it comes to a fiber-length distribution, an addi-
tional difficulty arises. In the original work [25], fibers were
assumed to be shorter than half the cell dimensions. In this
way, periodic distance computations could be carried out
with minimum effort. However, when considering a distri-
bution of the fiber length it is rather typical that there are a
few rather long fibers. If the cell dimensions were required
to exceed the maximum length by a factor of two, the con-
sidered cells would be rather large. Thus, a workaround is
required.

Suppose we wish to compute the distance between two
fibers (xi , pi , �i ) and (x j , p j , � j ) on a periodic cell Q =
[0, Q1] × [0, Q2] × [0, Q3]. Suppose that the fiber length
�i exceeds Q/2 for Q = min(Q1, Q2, Q3). Then, we break
the first fiber into K individual segments, each of which is
shorter than Q/2, and compute the K distances between the
fiber segments and the j-th fiber. This strategy is illustrated
in Fig. 5a, where the red fiber is decomposed into K = 7
segments. The shortest distance among these computed dis-
tances is then selected as the distance between the entire i-th
fiber and the j-th fiber. Clearly, if the j-th fiber exceeds the
length requirements, a similar approach is successful.

Last but not least let usmention the possibility that a rather
longfiber intersects itself. Such a situationmay be handled by
a modification of the proposed strategy. The fiber is broken
into K segments. Then, overlap is checked between the non-
adjacent segments. This is illustrated in Fig. 5b for a fiber
that is decomposed into K = 5 segments. Only between the
pairs with a

√
sign, an overlap check needs to be made. Due

to symmetry, six checks need to be made for the example at
hand. In case of overlap, an additional term (for i = j) arises
in the sums (3.12) and (3.13).

4 Computational investigations

4.1 Setup

The presented algorithms were implemented in Python with
Cython extensions. Most of the code runs in serial, only
the inter-fiber distance computations were parallelized with
OpenMP. The timings were recorded on a PC with a six-core
Intel i7 CPU and 32GB RAM.

For computing the effective elastic properties, we rely
upon an FFT-based computational homogenization code
[81,82]. We utilize a discretization on a staggered grid [83],
which is solved by a conjugate gradientmethod [84–86] up to
a relative tolerance of 10−5. We refer to the overview article
[87] for background.

To compute the effective elastic constants, we compute
the effective stresses corresponding to six independent strain
loadings. Subsequently, the effective elasticity tensor is
approximated by an orthotropic fourth-order tensor [88] to
enable interpreting the corresponding engineering constants.

As our point of departure, we consider a commercially
available PA6GF35, i.e., a polyamide-6 matrix with 35% (by
weight) glass-fiber reinforcement. As our “standard setup”
we select fibers with a diameter of 10μm and a length of
250μm. The data is summarized in Table 2. The matrix and
fiber are furnished with the isotropic elastic parameters given
in Table 1 , following Hessman et al. [40].
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(a) (b)

Fig. 5 Illustrating the decomposition approach of fibers to handle both fiber-fiber overlap checks and self-intersection

4.2 On the necessary resolution

To compute the effective mechanical properties of compos-
ites, a number of error sources needs to be quantified. The
most obvious such error source is the resolution, i.e., the
mesh size of the discretization. Under appropriate hypothe-
ses, the effective properties converge upon mesh refinement
[89–91]. In particular, a sufficiently fine mesh is mandatory
for accurate results. On the other hand, finemeshes also come
with a higher number of degrees of freedom, increasing the
computational effort significantly. Indeed, for regularmeshes
in three spatial dimensions, the effort of FFT-based solution
techniques were shown to roughly increase by a factor of
eight when halving the mesh width [83,86], which is close to
optimal for these kinds of problems. Therefore, a suitable

Table 1 Model parameters adjusted to experimental data [40]

Material E in GPa ν

E-glass fibers 72.0 0.22

PA6 matrix 3.0 0.4

Table 2 Typical properties of the unit cells, serving as point of departure

Fiber volume fraction 19.3%

Closure approximation Exact, Eq. (2.20)

Fiber length 250μm

Fiber diameter 10μm

compromise between accuracy and manageable computa-
tional effort needs to be chosen.

We consider the setup shown in Table 2, in particular with
a uniform fiber length. Such an approach eliminates other
sources of error, e.g., coming from the fiber-length distribu-
tion.We generated cubicmicrostructures with an edge length
of 300μm, one for the three second-order fiber-orientation
tensors

Aiso = diag(1/3, 1/3, 1/3),

Apiso = diag(1/2, 1/2, 0) and

Aud = diag(1, 0, 0),

(4.1)

corresponding to isotropic, planar isotropic and uni-
directional (i.e., aligned) fiber-orientation states.

We set the isolation distance between fibers to 2μm,
i.e., 20% of the fiber diameter consistently throughout the
manuscript.

We change the resolution by considering different voxel
sizes 4μm, 2μm, 1μm and 0.5μm, giving rise to voxel
models with 753, 1503, 3003 and 6003 hexahedron elements,
see Fig. 6 for an illustration in the case of an isotropic fiber
orientation. For the finest resolution, a single fiber is resolved
by 20 voxels across the diameter. This resolution decreases
to ten and five voxels per diameter for a voxel size of 1μm
and 2μm. The coarsest resolution, h = 4μm, works with
only 2.5 elements per fiber diameter, on average.

The effective directionalYoung’smoduli of the orthotropic
approximation of the effective elastic properties are shown in
Fig. 7 for the three considered fiber-orientation states (4.1).
For the isotropic orientation, we observe that the three direc-
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(a) h = 4.0µm (b) h = 2.0µm (c) h = 1.0µm (d) h = 0.5µm

Fig. 6 Illustration of a (300μm)3-microstructure with isotropic fiber orientation, resolved with different voxel edge-lengths h

Fig. 7 Influence of the voxel
edge-length h on the effective
directional Young’s moduli

tional Young’s moduli are almost identical for all resolutions
considered, conforming to our expectations. Decreasing the
resolution also decreases the effective Young’s modulus. For
h = 4μm, the effective Young’s modulus E1 differs by
4.36% from the highest resolution. This deviation decreases
to 0.9% and 0.2% for h = 2μm and h = 1μm, respectively.
For the other two Young’s moduli, the deviations are rather
similar.

For the planar isotropic case, the in-plane Young’s mod-
uli E1 and E2 exceed the out-of-plane Young’s modulus E3.
Coarsening the resolution has little influence on E3. Even
the coarsest resolution deviates only by 1.3% from the finest

resolution. For the Young’s moduli E1 and E2, such a coars-
ening leads to a slight underestimation of the moduli. For
the coarsest resolution, there is an 6.6% deviation in E1. For
h = 2μm and h = 1μm, the relative deviations decrease to
1.6% and 0.3%, respectively. For E2, the relative errors are
similar. For the out-of-plane modulus E3, the relative devia-
tion to the finest resolution is at 1.3%. Refining the resolution
leads to even lower errors, at 0.01% and 0.15%.

For the uni-directional case, the transverse Young’s mod-
uli E2 and E3 coincide to the naked eye. They are much
smaller, almost by a factor of three, than the parallel Young’s
modulus E1. At the coarsest resolution , E2 is already 0.3%-
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close to the value at the highest resolution. Similarly, the
coarsest resolution overestimates the modulus E1 1.1%.

To sum up, we observe that the largest errors occur for
the planar isotropic fiber orientation, and for the in-plane
Young’s moduli. Selecting h = 2μm ensures that the
Young’s moduli are computed with less than 2% relative
error, giving us sufficient confidence in the obtained results.

4.3 On the size of the representative volume
element

Due to the randomness of the geometry of fiber-reinforced
composites, the computed apparent elastic properties on unit
cells involve a degree of randomness, as well. The effec-
tive properties, which are deterministic, emerge only upon
considering sufficiently large cells, so-called representative
volume elements [26–28]. A large body of studies were
devoted to this concept (see Doškář et al. [92] for a recent
overview), in particular as an increased size of the consid-
ered volume element necessarily increases the computational
effort, as well. Therefore, it is desirable to work with volume
elements that are large enough to closely approximate the
effective properties and, at the same time, as small as possi-
ble to keep the effort manageable.

The errors emerging when working with finite-sized cells
may be naturally classified into two categories. Suppose we
work with a cubic cell with an edge length Q. In this section,
we write Q to emphasize that we work with a cubic cell.
The apparent elastic properties computed for cells of this
size fluctuate around a mean, and the associated variance
quantifies the stochastic fluctuations of the elastic proper-
ties. This so-called random error (or dispersion) depends on
the cell size and becomes smaller as the cell edge-length Q
increases, with a rate that depends on the underlying stochas-
tic model for the microstructure [28,93,94]. In addition to the
random error, there might be a difference between the mean
properties computed for a fixed cell size and the effective
properties [28,95]. This error is called systematic error (or
bias), and is more difficult to assess and grasp. Typically, the
random error is much larger than the systematic error, and
the attention focuses on a suitable estimation of the random
error.

Previous studies have shown that both the random and the
systematic error increase when using traction or displace-
ment boundary conditions or working with non-periodized
geometries [28,96,97]. As our generated microstructures are
intrinsically periodic, the periodic boundary conditions that
come naturally with FFT-based solvers do help us in this
regard.

We would like to understand whether increasing the vari-
ance in the fiber length also necessitates working with larger
unit cells. For this purpose, we consider a uniform fiber-
length distribution as our point of departure.

We investigate the three extreme fiber-orientation states
(4.1) with the setup described in Table 2, the material param-
eters of Table 1 and the previously identified voxel size
h = 2μm.We consider three cubic unit-cell sizes, with edge
lengths Q = 300μm, Q = 600μm and Q = 900μm. The
smallest edge length, Q = 300μm, only slightly exceeds the
fiber length �̄ = 250μm.

The results of ten runs are recorded in Fig. 3. The
orthotropic approximation error lies around 1%, and is thus
smaller than the error induced from the resolution. In par-
ticular, it is meaningful to only consider the orthotropic
engineering constants. We observe that the standard devia-
tions of the directional Young’s moduli are on a rather small
level-they do not exceed 0.5% of the corresponding mean for
Q = 300μm. Increasing the cell size decreases the standard
deviation, as well. For Q = 600μm, the standard devia-
tions do not exceed 0.2%, and drop to less than 0.09% for
Q = 900μm.

Concerning the systematic error, the highest deviation is
reached for E1 in the unidirectional case with a relative devi-
ation of 1.2% compared to the large-scale modulus.

With these reference results at hand, we consider a
Weibull-distributed fiber-length distribution with a (volume-
weighted) mean fiber length m = 250μm and a standard
deviation s = 100μm, see also Fig. 2 for an illustration of
the fiber-length distribution function. The statistical measure
of ten runs are collected in Table 4. Further complications
arose for the unidirectional case and the smallest considered
edge length Q = 300μm. If a fiber of length � is axis-aligned
in a cubic cell with edge length Q, it will always intersect
itself if � ≥ Q, i.e., if the fiber length is larger or equal to
the cell edge-length. For the considered standard deviation,
a non-trivial number of fibers were simply too long to fit into
the cell with Q = 300μm. Therefore, after drawing the fiber
length �, we restricted it as follows

� ← min(�, 0.99 Q). (4.2)

For non-UD fiber orientations, this issue did not arise.
Taking a look at the results collected in Tabble 4, we

observe that the mean values do in fact differ from the
reference results with zero variance, but the standard devia-
tions of the apparent Young’s moduli are on a similar level.
Indeed, Fig. 8 compares the relative standard deviations of
the considered orthotropic Young’s moduli for the investi-
gated orientations and varying cell edge-length. The standard
deviations do not exceed 0.5% for the smallest cells, and
decreases for increasing cell size. For Q = 300μm, the
standard deviations are a bit larger than for s = 0, but not sig-
nificantly so. Similarly, the systematic error is also on a rather
low level. Indeed, even for E1 in the aligned case, the relative
deviation between the means of the smallest and the largest
cell is as low as 1.6%, even for the cropped fiber lengths (4.2).
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Table 3 Orthotropic Young’s
moduli (mean ± standard
deviation for ten runs) for RVE
study with uniform fiber length
�̄ = 250μm

orientation Q in μm E1 in GPa E2 in GPa E3 in GPa errorth in %

iso 300 5.875 ± 0.011 5.875 ± 0.014 5.868 ± 0.013 1.041 ± 0.061

600 5.868 ± 0.005 5.868 ± 0.005 5.868 ± 0.003 1.057 ± 0.018

900 5.867 ± 0.003 5.867 ± 0.003 5.869 ± 0.002 1.060 ± 0.015

piso 300 6.947 ± 0.029 5.526 ± 0.014 5.529 ± 0.011 1.052 ± 0.048

600 6.925 ± 0.008 5.521 ± 0.002 5.520 ± 0.003 1.022 ± 0.011

900 6.921 ± 0.006 5.518 ± 0.002 5.518 ± 0.002 1.014 ± 0.004

ud 300 14.030 ± 0.065 4.816 ± 0.023 4.811 ± 0.023 0.594 ± 0.048

600 13.861 ± 0.025 4.814 ± 0.003 4.813 ± 0.006 0.589 ± 0.014

900 13.834 ± 0.011 4.812 ± 0.003 4.813 ± 0.003 0.584 ± 0.006

Table 4 Orthotropic Young’s
moduli (mean ± standard
deviation for ten runs) for RVE
study with (volume-weighted)
mean fiber length m = 250μm
and standard deviation
s = 100μm

orientation Q in μm E1 in GPa E2 in GPa E3 in GPa errorth in %

iso 300 5.813 ± 0.022 5.821 ± 0.019 5.818 ± 0.015 1.021 ± 0.046

600 5.801 ± 0.013 5.801 ± 0.008 5.797 ± 0.009 1.053 ± 0.028

900 5.799 ± 0.004 5.798 ± 0.003 5.801 ± 0.004 1.039 ± 0.017

piso 300 6.864 ± 0.025 5.478 ± 0.025 5.477 ± 0.020 0.967 ± 0.081

600 6.818 ± 0.014 5.465 ± 0.006 5.462 ± 0.008 0.998 ± 0.029

900 6.819 ± 0.006 5.464 ± 0.004 5.465 ± 0.003 0.997 ± 0.010

ud 300 13.635 ± 0.030 4.819 ± 0.020 4.815 ± 0.022 0.604 ± 0.037

600 13.414 ± 0.024 4.812 ± 0.004 4.811 ± 0.003 0.592 ± 0.008

900 13.413 ± 0.019 4.811 ± 0.003 4.809 ± 0.004 0.592 ± 0.006

(a) (b)

Fig. 8 Relative standard deviation of directional Young’s moduli for increasing cubic edge length Q, mean fiber length m = 250μm and two
different standard deviations s

123



Computational Mechanics

To sum up, we could show that working with a considerable
fiber-length variability in the fiber-length distribution does
not negatively affect the necessary cell size when computing
the effective elastic properties of short-fiber composites.

4.4 Results of varying fiber-length parameters

In this section, we investigate the effects of varying the
parameters of the Weibull fiber-length distribution. For
this purpose, we continue to investigate the commercial
PA6GF35 with parameters summarized in Table 1 and
Table 2. To keep the number of changing parametersmanage-
able, we restrict to a fixed fiber-orientation state, described by
the exact closure of the second-order fiber-orientation tensor

A = diag(0.7855, 0.1962, 0.0183), (4.3)

as determined byHessman et al. [40]with a μCT-based algo-
rithm which identifies individual fibers [35]. Fig. 9 shows
the influence of a change in the fiber-length distribution on
the computed effective orthotropic Young’s moduli of the
composite. We consider variations of the (volume-weighted)
mean and standard deviation individually. These changes cor-
respond to the fiber-length distribution functions shown in
Fig. 2. We start with a fixed standard deviation s = 120μm
and a continuously changing standard deviation, see Fig. 9a
and 9b. We observe that the transverse Young’s moduli E2

and E3 are scarcely affected by such a change. In contrast, the
longitudinal Young’s modulus E1 increases with increasing
mean fiber length. Between m = 250μm and m = 325μm,
the modulus E1 increases by roughly half a GPa. This dif-
ference increases even more when approaching the highly
aligned case, e.g., unidirectional fibers.

Taking a look at varying standard deviations with fixed
mean length m = 250μm, see Fig. 9b, we also observe
that the transverse Young’s moduli are hardly affected. The
longitudinal Young’s modulus E1 decreases with increasing
standard deviation. This result conforms with mechanical
intuition. It is not clear whether a saturation point is reached
for a → ∞, as generating the high standard deviations also
came with the challenge of dealing with very long fibers
(and exceedingly large volume elements).Moreover, for high
standard deviation, the “turning point” is reached where the
fiber-length distribution does not have a unique maximum
any more, but shows a consistently decreasing trend. Yet, we
observe a difference of roughly one GPa, i.e., about ten %,
between a state with uniform fiber lengths and a strongly
dispersed fiber-length distribution.

Last but not least, we investigate the runtime of the fiber-
generation process, and how it is influenced by the fiber-
length parameters.

Considering the three extreme orientations 4.1, we ran
ten simulations on cubic volume elements with edge length

Q = 600μm. For a start, we consider a PA6GF35 with
fixed standard deviation s = 120μm and increasing mean
length m. The results are shown in Fig. 10a. The runtime
for the unidirectional case is extremely small, as expected.
Indeed, even random sequential addition (RSA) methods
[14–17] are able to generate unidirectional states at high
filler fraction. Non-aligned fiber-orientation states are more
difficult to handle, and this is where most traditional algo-
rithms have their limitations. Both for the isotropic and the
planar isotropic fiber-orientation state, the overall runtimes
never exceeded one minute. Taking into account the runtime
of the subsequent computational homogenization, such an
effort is clearly acceptable. We observe that, for almost all
considered cases, generating the isotropic state required a
higher effort than for the planar isotropic state. Moreover,
increasing the mean fiber length also led to an increase in
the runtimes for the isotropic case. The runtimes for the pla-
nar isotropic case were not adversely affected for increasing
mean fiber length. Rather surprisingly, the runtime increased
for the smallest considered fiber length. This behavior is
rooted in the difficulty inherent to generating exactly pla-
nar fiber-orientation states. The problem comes from the fact
that for a smaller mean fiber length, the number of con-
sidered fibers increases. In turn, attaining a purely planar
fiber-orientation state becomes more difficult, i.e., the itera-
tion count increases superlinearly with the fiber count.

To demonstrate the capabilities of the algorithm, we
fixed the mean length as well as the standard deviation and
increased the considered volume fraction. The results, see
Fig. 10b, show that the algorithm was able to generate up to
30% filler fraction in less than three minutes in a reliable and
robust manner. For the non-aligned orientations, we observe
a strong increase in the runtimes necessary to generate the
volume elements for increasing volume fraction.

4.5 Comparison to experimental data

In this section, we compare the introduced methodology to
real data, both in terms ofmeasuredfiber-length data and con-
cerning measured directional Young’s moduli. Hessman et
al. [40] consider a PA6GF35 with short-fiber reinforcement.
Based on μCT-scans, individual fibers where identified, per-
mitting a subsequent statistical analysis. The fiber diameter
emerged as 10μm, as expected, and the determined fiber-
length distribution is shown in Fig. 11a. Moreover, the fiber-
orientation tensors (2.4) may be determined, as well. The
complete volume-averaged second-order fiber-orientation
tensor is given in Eq. (4.3). However, an analysis of the fiber
orientation across the thickness of the plate was also given
[40, Fig. 4]. The orientation follows the classical skin-core-
skin layering typical for short-fiber composites [98].

123



Computational Mechanics

(a) (b)

Fig. 9 Effect of varying (volume-weighted) mean fiber length and standard deviation for PA6GF35

(a) (b)

Fig. 10 Time to generate cubic volume elements with an edge length of 600μm

For a start, we fit the fiber-length data with a Weibull
distribution, essentially by hand. The overall fit, see Fig. 11a,
is rather accurate. The Weibull parameters

k = 2.26 and λ = 308.16μm (4.4)

correspond to a (volume weighted) mean m = 332.65μm
and a standard deviation s = 127.64μm. With the identified
Weibull distribution at hand, we generated suitable sandwich
structures with Q = 800μm, see Fig. 11b, where the top and
the bottom layer have a second-order fiber-orientation tensor

Askin = diag(0.8602, 0.1227, 0.0171), (4.5)

whereas the central layer, about 1/6th of the height, is char-
acterized by

Acore = diag(0.2255, 0.7424, 0.0321), (4.6)

augmented by the exact closure. The computed effective
Young’s moduli are recorded in Table 5. Compared to
the experimental data, the longitudinal Young’s modulus
is reproduced with high accuracy. The transverse Young’s
modulus is slightly overestimated, but still contained in the
99.9%-confidence interval.We ran the simulations ten times,
but the standard deviation of the effective moduli turned out
to be negligible, again.
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(a) (b)

Fig. 11 Probability distribution and generated microstructure with layers following the study of Hessman et al. [35]

Table 5 Comparison of
experimentally determined
Young’s moduli ± standard
deviation [40] and computed
results, including runtimes, with
different setups

Experiments Sandwich [40, Fig. 2] Mean data Fixed length

E1 in GPa 10.34 ± 0.4 10.42 ± 0.03 9.91 ± 0.03 10.14 ± 0.01

E2 in GPa 5.50 ± 0.1 5.78 ± 0.00 5.56 ± 0.02 5.54 ± 0.00

runtime in s – 69.00 ± 8.45 71.75 ± 19.0 14.98 ± 3.42

As a comparison to the three-layered structure, we gener-
ated a volume element with a homogeneous fiber-orientation
distribution (4.3) and the identified Weibull distribution, see
Fig. 11a. The results, see mean data in Table 5), show
that the longitudinal Young’s modulus is about half a GPa
lower than for the sandwich structure. Also, the transverse
Young’s modulus is about 0.2GPa lower. These results indi-
cate that the load-carrying capacity of the layered structure
is improved in both directions compared to the one with-
out layers. Moreover, the longitudinal Young’s modulus lies
below the experimental values, actually at the lower end of
the confidence interval, whereas the transverseYoung’smod-
ulus matched quite well with the experimental value. Last
but not least, we consider the case with only a single fiber
length, fixed at � = m ≡ 332.65μm. This case, labeled by
fixed length in Table 5 leads to a slightly higher longitudi-
nalYoung’smodulus,which lies belowboth the experimental
mean and theprediction for the sandwich structure.The trans-
verse Young’s modulus is rather close to themean data case,
as was already observed in the previous section.

Last but not least, a glance at the runtime reveals that the
runtime for the microstructure generation was significantly
less than two minutes, for all cases considered.

5 Conclusion

This work was devoted to extending the SAM algorithm to
varying fiber lengths and to studying the effects on the effec-
tive elastic properties of short-fiber reinforced plastics. We
draw the following conclusions.

• There are many moments of the fiber length-orientation
distribution (2.1)

Mm,k =
∫ ∞

0

∫
S2

�m p⊗k ψ dS d�, (5.1)

parametrized by non-negative integers m and k, which
could be enforced in the SAM algorithm. For the work
at hand, we considered m = 1 and k = 4, together
with approximations forMm,0 via the quasi-random sam-
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pling of the fiber lengths. Such a strategy turned out
to be successful in reducing the statistical variations
of the computed effective elastic properties to a mini-
mum. However, it might be of interest whether enforcing
higher-order moments is beneficial for the effective of
nonlinear and inelastic mechanical properties.

• We considered the Weibull distribution to describe the
fiber-length distribution. Working with other fiber distri-
butions is possible with little adaptation. For instance,
long-fiber composites may show two distinct maxima in
the fiber-length distribution function, as a result of fibers
breaking during the manufacturing process.

• Our studies revealed that an increase in the standard
deviation of the fiber length did not adversely affect the
necessary RVE size. Such a result is encouraging, and
should not be taken for granted. Indeed, a claim that
an increase in the standard deviation would necessitate
larger computational cells appears to be plausible. Yet,
the influence of the fiber-length distribution appears to be
more pronounced for inelastic material behavior, a topic
which may deserve further studies.

• It was possible to closely match the longitudinal Young’s
modulus of the experimental structure, whereas the trans-
verse Young’s modulus was overestimated a little. There
is a number of possible error sources. For a start, as only
80% of the individual fibers get segmented correctly,
there is still some uncertainty in both the fiber orien-
tation and the fiber-length distribution. Moreover, we do
not have access to the layer-wise fourth-order orienta-
tion tensors whose consideration may certainly enhance
the predictive quality. Last but not least, we consider
the fiber-length distribution to be uniform throughout the
thickness. Still, despite all these uncertainties, the match
is certainly sufficient for most engineering applications.

• In this work, we relied upon the hypothesis that the
fiber length and the fiber orientation are independent.
Experimental data suggests otherwise, and the introduced
error remains to be quantified. As a first step, it appears
promising to estimate the entire fiber length-orientation
distribution from the available data.

• We could show the benefits of the quasi-random sam-
pling of the fiber length. This is a key technology, and
we advocate it to become the standard for expressive
fiber-generation tools. Moreover, the developed technol-
ogy may also be used for long and flexible fibers.
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Appendix AWeibull parameters fromvolume
-weightedmean and variance

The purpose of this section is to derive the expressions (2.12)
and (2.14) for the parameters λ and k of the Weibull distri-
bution (2.9)

ρλ,k(�) = k

λ

(
�

λ

)k−1

e−(�/λ)k , � > 0, (A.1)

for prescribed volume-weighted mean m and standard devi-
ation s, given by the formula

m =
〈
�2

〉
〈�〉 and s2 =

〈
(� − m)2 �

〉
〈�〉 , (A.2)

where we use the shorthand notation

〈g〉 =
∫ ∞

0
g(�) ρλ,k(�) d� (A.3)

for the (number-weighted) mean of any random variable g
w.r.t. the Weibull distribution (A.1). Please notice that the
formulas (A.2) are equivalent to the expressions (2.11) in the
main body of the text.
To proceed, we record the formula [59, Tab. 5-2]

〈
�n

〉 = λn �
(
1 + n

k

)
, n = 1, 2, 3, . . . , (A.4)

for the expectation of the n-th power of the length, the so-
called n-th moment, of the Weibull distribution, involving
Euler’s �-function (2.13). To make use of this formula, we
expand the variance (A.2) in terms of moments

〈�〉 s2 =
〈
(� − m)2 �

〉
=

〈
(�2 − 2m� + m2) �

〉

=
〈
�3 − 2m�2 + m2�

〉
=

〈
�3

〉
− 2m

〈
�2

〉
+ m2 〈�〉 ,

(A.5)
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using the linearity of the expectation (A.3), to arrive at the
final expression

s2 =
〈
�3

〉
〈�〉 − 2m

〈
�2

〉
〈�〉 + m2 =

〈
�3

〉
〈�〉 − m2, (A.6)

where we used the formula (A.2) for the volume-weighted
meanm. Invoking the formula (A.4) for the moments, we get
the system

m = λ
�

(
1 + 2

k

)
�

(
1 + 1

k

)

s2 = λ2
�

(
1 + 3

k

)
�

(
1 + 1

k

) − m2

(A.7)

of equations. Solving for λ in the first equation

λ = m
�

(
1 + 1

k

)
�

(
1 + 2

k

) . (A.8)

and inserting this expression into the second equation yields
the condition

�
(
1 + 1

k

)
�

(
1 + 3

k

)
�

(
1 + 2

k

)2 − 1 = s2

m2 . (A.9)

The latter equation corresponds to Eq. (2.12), and condition
(A.8) coincides with equation (2.14) in the main body of the
text, as was to be shown.

Please note the Eq. (A.9) appears to be uniquely solvable
for any given and positive right-hand side s2/m2, see Fig. 12.
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Fig. 12 Left-hand side of Eq. (A.9) to be solved. The function is strictly
monotonically decreasing, converging to zeros as k → ∞, and blows
up as k → 0

Appendix B Comparing the effective elastic
moduli for the exact and the maximum-
entropy closure

In this section, we would like to compare the exact clo-
sure approximation (2.20) to the maximum entropy closure
(2.21). To separate the influence of the fiber-length distri-
bution, we consider a uniform fiber-length distribution, with
a length of 250μm and a diameter of 10μm. Moreover, we
consider PA6GF35, i.e., a commercial polyamide 6with 35%
(by weight) glass-fiber reinforcement. This corresponds to
19.3% filler content by volume. We use the material param-
eters given in Table 1, following Hessman et al. [40]. For the
computations, we use the mesh and volume-element sizes
identified in sect. 4, i.e., h = 2μm and Q = 600μm.

To evaluate the differences between the closures, it is nec-
essary to take a closer look at the set of possible input and
output values of corresponding computations. The second-
order fiber-orientation tensor A, see Eq. (2.18), serves as the
input for the computations, whereas the effective stiffness
Ceff arises as the output. We would like to cover all pos-
sible input tensors A. For this purpose, we notice that any
second-order fiber-orientation tensor may be written in the
form

A = U diag(λ1, λ2, 1 − λ1 − λ2)U
T (B.1)

with an orthogonal matrix U ∈ R3×3 and a pair (λ1, λ2) of
real numbers which satisfy the constraints

λ1 ≥ λ2, λ1 + 2λ2 ≥ 1 and λ1 + λ2 ≤ 1. (B.2)

As an orthogonal transformation of the fiber-orientation ten-
sor A leads to a suitable orthogonal transformation of the
effective stiffness Ceff it is actually sufficient to restrict
attention to diagonal second-order tensors A which satisfy
Eq. B.2. Geometrically, this phase space corresponds to a
triangle in two dimensions, the fiber-orientation triangle [99].

The effective stiffness Ceff depends continuously on
the fiber-orientation tensor A, provided all other parameters
remain fixed and the computational cells are sufficiently large
to render the computations representative [26–28]. There-
fore, it suffices to consider a (sufficiently fine) triangulation
of the fiber-orientation triangle (B.2), which reduces the
effort to a finite number of nodal computations. Here, we
follow Köbler et al. [99] and consider a triangulation with 15
nodes and linear FE ansatz functions.

Regarding the output of the computations, working with
the full stiffness tensor Ceff, an object with 21 indepen-
dent components, increases the difficulty in assessing the
fine details. From an engineering perspective, it is more
instructive to monitor the engineering constants associated
to the effective stiffness. Indeed, for both the exact and the

123



Computational Mechanics
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Fig. 13 Comparison between the exact closure (2.20) and the maximum entropy closure (2.21) on the fiber-orientation triangle [99]. We consider
a composite with the properties listed in Tables 1 and 2

maximum entropy closure, the effective stiffness tensors are
orthotropic. This is a direct consequence of the fact that
every second-order tensor is orthotropic, in particular the
second-order fiber-orientation tensor A, and the prescribed
probability density functions (2.20) and (2.21) for both clo-
sures reflect this symmetry condition.

Thus, we report on the engineering constants of the effec-
tive stiffness, considered as functions on the fiber-orientation
triangle. For the three directional Young’s moduli, the results
are shown in Fig. 13a. To the naked eye, both closures appear
to give rise to almost identical results. This is a consequence
of the following. For the three corners of the triangle, the
unidirectional, the planar isotropic and the spatially isotropic
fiber-orientation state, the fiber-orientation distributions for
the maximum-entropy and the exact closure coincide. In par-
ticular, the effective elastic moduli coincide as well. Thus,
the only possible differences arise in the interior of the fiber-
orientation triangle.

To study these differencesmore closely, we investigate the
relative difference between the engineering constants, where
we take the exact closure as the reference. Fig. 13b shows the
effective directional Young’s moduli and the effective shear
moduli for the three coordinate planes. The Young’s mod-
ulis E3 leads to the smallest difference between the closures
among the directional Young’s moduli, with a maximum dif-
ference of 3.1%. The difference for E2 is only slightly larger
at 4.6%. For E1, this difference increases to 7.1%. For all
three moduli, these maximum differences are realized for
λ1 ≈ 0.8. Yet, on average the difference is 2.6% for E1 and
at 1.3% and 1.6% for E2 and E3, respectively.

Inspecting the shear moduli paints a similar picture - the
moduli involving the 1-direction lead to larger differences
that the shearmodulus in the 2-3-plane.Onaverage, the errors
are 0.9%, 2.8% and 2.1% forG23,G13 andG12, respectively.

The maximum deviation is reached for G12 with 8.3% and
(λ1, λ2) = (7/8, 1/8).
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