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Abstract
We study the shortest smooth path problem (SSPP), which is motivated by traffic-aware routing in
road networks. The goal is to compute the fastest route according to the current traffic situation
while avoiding undesired detours, such as briefly using a parking area to bypass a jammed highway.
Detours are prevented by limiting the uniformly bounded stretch (UBS) with respect to a second
weight function which disregards the traffic situation. The UBS is a path quality metric which
measures the maximum relative length of detours on a path. In this paper, we settle the complexity
of the SSPP and show that it is strongly NP-complete. We then present practical algorithms to solve
the problem on continental-sized road networks both heuristically and exactly. A crucial building
block of these algorithms is the UBS evaluation. We propose a novel algorithm to compute the
UBS with only a few shortest path computations on typical paths. All our algorithms utilize Lazy
RPHAST, a recently proposed technique to incrementally compute distances from many vertices
towards a common target. An extensive evaluation shows that our algorithms outperform competing
SSPP algorithms by up to two orders of magnitude and that our new UBS algorithm is the first to
consistently compute exact UBS values in a matter of milliseconds.
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1 Introduction

Over the past years, mobile navigation applications have become ubiquitous. A core feature
of these applications is to compute routes between locations in road networks. These routes
can be obtained by computing shortest paths on a weighted graph representing the road
network with travel times as weights. To present users with good routes, it is crucial to take
the current traffic situation into account. However, integrating the current traffic situation
comes with its own challenges. As traffic feeds are derived from live data, they are inherently
noisy and incomplete. Simply exchanging free flow for live traffic travel times and then
solving the classical shortest path problem may lead to problematic routes. For example,
such routes may include undesired detours such as briefly using a parking area to bypass a
jammed highway.
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We therefore study an extended problem model, the shortest smooth path problem
(SSPP) [8]. To avoid undesired detours, a second weight function is taken into account. The
first volatile weight function models the current traffic situation. The second smooth weight
function models the free flow travel times and may include additional penalties, for example
to avoid residential areas. The goal is to find the shortest path with respect to the volatile
weights without too severe detours with respect to the smooth weights.

Related Work. The classical shortest path problem on weighted graphs can be solved with
Dijkstra’s algorithm [11]. To this day, no asymptotically faster algorithm is known. However,
for many practical applications on continental-sized road networks, it is too slow. During
the past decade, this has motivated a lot of research effort on engineering faster shortest
path algorithms on road networks. Results from this research have played an important
role in enabling modern routing applications. By introducing an offline preprocessing phase
where auxiliary data is precomputed, queries can be accelerated by more than three orders of
magnitude over Dijkstra’s algorithm. For an extensive overview on these speed-up techniques,
we refer to [2]. One particularly popular technique which we also utilize in this work is
Contraction Hierarchies (CH) [14]. During preprocessing, additional shortcut arcs are inserted
into the graph, which skip over unimportant vertices. On continental-sized road networks
with tens of millions of vertices and arcs, CH preprocessing typically takes a few minutes.
Shortest path queries can be answered in less than a millisecond. Applying CH to extended
problem models is not always trivially possible. We therefore utilize CH indirectly as an
A* [15] heuristic. This approach is called CH-Potentials [18]. CH-Potentials is built on Lazy
RPHAST [18], a CH-based many-to-one algorithm to incrementally compute exact distances
from many vertices towards a common target.

So far, research on route planning algorithms and traffic has mostly focused on the
interactions between traffic and the preprocessing. For live traffic, speed-up techniques which
have two preprocessing phases have been proposed. The first one may be slow but must
be independent of any weight function. The second one, called customization, typically
takes few seconds or less and allows regular traffic updates. Multi-Level Dijkstra, commonly
referred to as CRP, was the first such three-phase technique and has since been extended
into a comprehensive framework of routing algorithms [2]. With Customizable Contraction
Hierarchies (CCH), CH has also been extended to support a three-phase setup [10]. Another
line of research studies the integration of predicted traffic [7, 3, 4, 17]. Here, edge weights
are functions of the daytime instead of scalar values.

The SSPP was initially introduced by Delling et al. in [8]. The authors discuss the
complexity of the problem and show some relations between SSPP and Knapsack but no
definitive conclusions could be drawn in their work. The paper also includes two CRP-based
algorithms for the SSPP. Iterative Path Blocking (IPB) is presented as an exact algorithm
for the SSPP. However, it has two issues: First, it takes several seconds even on short-range
queries. This makes it unsuitable for practical applications. Second, as we show in this work,
it is, in fact, not exact. The authors also present a heuristic algorithm based on the via-node
paradigm, i.e. it finds solutions which are concatenations of two shortest paths. It is much
faster but may miss promising paths because only via-paths are considered and the UBS is
checked heuristically. We are not aware of any other works studying the SSPP.

In the SSPP, limiting the relative length of detours is formalized with the uniformly
bounded stretch (UBS). The UBS is a path quality measure and quantifies how much longer
detours on a path are than their respective fastest alternative. So far, it has been primarily
studied in the context of alternative routes [1]. While quite useful, it is expensive to compute
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and requires evaluating all subpaths of a path. The authors of [1] state that it would be ideal
to check the UBS in time proportional to the length of the path and a few shortest path
queries, though they are not aware of any way to do that. To the best of our knowledge, this
goal has not been achieved to this day.

Contribution. In Section 3, we settle the complexity of the SSPP by proving that it is
strongly NP-complete. Section 4 contains algorithmic results. First, we show that IPB as
described in [8] may not find optimal results. Second, we describe necessary adjustments to
make it exact. Third, we present an alternative realization based on A* and CH-Potentials [18].
Fourth, we present an efficient algorithm to compute exact UBS values, typically with only
a few shortest path queries and in time proportional to the path length as the authors
of [1] had hoped for. Fifth, we present Iterative Path Fixing, a new SSPP heuristic. All
our algorithms utilize Lazy RPHAST as a crucial ingredient to achieve fast running times.
Section 5 contains a thorough evaluation of our algorithms. It clearly shows the effectiveness
of our UBS algorithm and our CH-Potentials-based IPB realization, outperforming the state
of the art by up to two orders of magnitude.

2 Preliminaries

Let G = (V, A) be a directed graph with n = |V | vertices and m = |A| arcs. We use uv

as a short notation for arcs. A weight function w : A → N maps arcs to positive integers.
The reversed graph ←−G := (V, {vu | uv ∈ A}) contains all arcs in reverse direction. The
corresponding reversed weight function is ←−w (vu) := w(uv). A sequence of vertices P =
(v1, . . . , vk) where vivi+1 ∈ A is called a path. We denote by Pi,j = (vi, . . . , vj), 1 ≤ i < j ≤ k

a subpath of P . The length of a path with respect to a weight function w is denoted by
w(P ) =

∑
w(vivi+1). We refer to a shortest path between two vertices s and t by OPTw(s, t)

and call its length the distance Dw(s, t) between s and t.
Dijkstra’s algorithm [11] computes Dw(s, t) by traversing vertices by increasing distance

from s until t is reached. Vertices are inserted into a priority queue when they are discovered.
In each iteration the closest vertex u is popped from the queue and settled. Its distance is
now final. Outgoing arcs uv are relaxed, i.e. the algorithm checks if the path from s to v via
u is shorter than the previously known distance from s to v. If this is the case, v will be
inserted into the priority queue. To keep track of the best-known distances, the algorithm
maintains for each vertex v a tentative distance D[v]. By storing the predecessor vertex
on the shortest path from s to v in a parent array P[v], shortest paths can be efficiently
reconstructed. By construction, Dijkstra’s algorithm visits all vertices closer to s than the
target. The visited vertices are sometimes called the search space. It can be reduced with
the A* algorithm [15] by guiding the search towards the target. Here, the queue is ordered
by D[v] + ht(v) where ht is a heuristic which estimates D(v, t).

2.1 (C)CH-Potentials
Contraction Hierarchies (CH) is a two-phase speed-up technique to accelerate shortest path
computations on road networks through precomputation. For a detailed discussion we refer
to [14]. Here, we only briefly introduce necessary notation and algorithms used in this
paper. In a preprocessing phase, vertices are ordered totally by “importance” where more
important vertices should lie on more shortest paths. Intuitively, vertices on highways are
more important than vertices on some rural street. For CH, such an ordering is obtained
heuristically. Then, all vertices are contracted successively by ascending importance. To
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contract a vertex means to temporarily remove it from the graph while inserting shortcut
arcs between more important neighbors to preserve shortest distances among them. The
result is an augmented graph G+ with original arcs and shortcuts. G+ can be split into G↑

and G↓ where G↑ only contains arcs uv where u is less important than v and G↓ vice versa.
The augmented graph has the property that for any two vertices s and t, there always exists
an up-down st-path of shortest distance which first uses only arcs from G↑ and then only
arcs from G↓. Such a path can be found by running Dijkstra’s algorithm from s on G↑ and
from t on the reversed downward graph

←−
G↓ graph. Reconstructing the full path without any

shortcuts is possible by recursively unpacking shortcuts. For this, one can store for each
shortcut the vertex which was contracted when the shortcut was inserted. The set of vertices
reachable in G↑ and

←−
G↓ is called the CH search space of a vertex.

Algorithm 1 Computing the distance from a single vertex u to t with Lazy RPHAST.

Data: D↓[u]: tentative distance from u to t computed by Dijkstra’s algorithm on
←−
G↓

Data: D[u]: memoized final distance from u to t, initially ⊥
Function ComputeAndMemoizeDist(u):

if D[u] = ⊥ then
D[u]← D↓[u];
for all arcs uv in G↑ do

d← ComputeAndMemoizeDist(v);
if d + w(uv) < D[u] then

D[u]← d + w(uv);

return D[u];

Lazy RPHAST [18] is a CH-based algorithm to quickly compute distances from many
sources to a single target. Lazy RPHAST starts by running Dijkstra’s algorithm from t on←−
G↓, similar to a standard CH query. The forward search space, however, is explored through
a recursive DFS-like search while memoizing distances to t as depicted in Algorithm 1. This
allows reusing the already computed distances for following sources. Lazy RPHAST can be
used analogously to compute distances from one vertex to many targets by swapping G↑ and←−
G↓. Using Lazy RPHAST as an A* heuristic is called CH-Potentials [18].

Customizable Contraction Hierarchies (CCH) [10] is a three-phase variant of CH. It allows
fast updates to the preprocessing, for example to integrate information on the current traffic
situation. However, this only affects the preprocessing. The result of the CCH preprocessing
is also an augmented graph, only with some additional properties. The CH query algorithms
and Lazy RPHAST can be applied without any modification. For the algorithms we discuss
in this paper, there is no practical difference between CH and CCH, and we describe our
algorithms based on augmented graphs. Our implementation is built on CCH-Potentials
to support quick updates to live traffic weights. For a detailed discussion of the differences
between CH and CCH and the changes to the preprocessing see [10].

2.2 Smooth Paths
The stretch of a path is defined as Sw(P ) = w(P )

Dw(v1,vk) , i.e. the ratio between the path
length and the shortest distance between its endpoints. The uniformly bounded stretch
UBSw(P ) = max0≤i<j≤k Sw(Pi,j) indicates the maximum stretch over all subpaths. We
observe the following useful property of UBS:
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Figure 1 Illustration of our transformation from HamiltonPath to ShortestSmoothPath.
The first arc weight is the smooth weight, the second the volatile weight. The thick arcs indicate a
Hamiltonian path and the corresponding shortest ϵ-smooth path.

▶ Observation 1. The UBS of a path P = (v1, . . . , vi, . . . , vj . . . , vk) where P1,i = OPT(v1, vi)
and Pj,k = OPT(vj , vk) is equal to UBS(Pi,j).

This is because the stretch of any subpath only decreases when appending optimal segments
to the beginning or end.

In [8], Delling et al. introduce the shortest smooth path problem (SSPP). A path P

is ϵ-smooth with respect to a weight function w when UBSw(P ) < 1 + ϵ. Given a graph
G, vertices s and t, a smooth weight function w and a volatile weight function w∗ and a
parameter ϵ > 0, the shortest smooth path problem is to find the shortest path with respect
to w∗ that is ϵ-smooth with respect to w.

3 Complexity

In this section, we prove that SSPP is strongly NP-complete for any ϵ ∈ Q>0. We define
the decision variant of the problem as follows: An instance (G, w, w∗, s, t, k) of the of ϵ-
ShortestSmoothPath-Dec problem admits a feasible solution if and only if there exists a
path P = (s, . . . , t) in G with w∗(P ) ≤ k and UBSw(P ) < 1 + ϵ.

▶ Theorem 2. ϵ-ShortestSmoothPath-Dec is strongly NP-complete for any ϵ ∈ Q>0.

Proof. A solution can be verified in polynomial time. Determining the path weight in
w∗ takes running time linear in O(|P |). To check the UBS, shortest distances have to be
computed for all O(|P |2) subpaths. This shows that ShortestSmoothPath-Dec ∈ NP.

To prove the hardness, we give a reduction from the strongly NP-complete HamiltonPath
problem [13]. The goal is to find a Hamiltonian path, i.e. a simple path which traverses every
vertex exactly once. Let G = (V, A) be the HamiltonPath instance. To distinguish them
from the vertices in the SSPP instance, we will denote the vertices in the HamiltonPath
instance as nodes. We construct the vertices of our SSPP instance by copying each node |V |
times (forming |V | layers) and creating two additional vertices s and t. Arcs only connect
successive layers. There are arcs between vertices corresponding to the same node and arcs
corresponding to arcs from the HamiltonPath instance. Any (s, . . . , t) path has exactly
|V |+ 1 arcs and has to traverse all layers. We will choose the arc weights in such a way that
the shortest ϵ-smooth path between s and t has to use a different node in each layer. Paths
using the same node in different layers will always be non-ϵ-smooth in w or too long in w∗.

Formally, we construct the graph G′ = (V ′, A′) for our SSPP instance as follows: We
set the vertices V ′ = {vi | v ∈ V, i ∈ [1, n]} ∪ {s, t}. The arc set A′ is the union of three
groups of arcs Aorig, Aself and Aterminal where Aorig = {(ui, vi+1) | uv ∈ A, 1 ≤ i < n}

SEA 2022



3:6 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

are the arcs between the layers corresponding to arcs in the HamiltonPath instance,
Aself = {(vi, vi+1) | v ∈ V, 1 ≤ i < n} are the additional arcs between the same nodes in
successive layers and Aterminal = {(s, v1) | v ∈ V } ∪ {(vn, t) | v ∈ V } are the arcs connecting
the terminals with the first and last layer. In both weight functions, all arcs aterm ∈ Aterminal
get the weight w(aterm) = w∗(aterm) = 1. The arcs in aself ∈ Aself get a smooth weight
w(aself) = 1 and a volatile weight w∗(aself) = 2. The arcs in aorig ∈ Aorig get a smooth
weight w(aorig) = 1 + ϵ and a volatile weight w∗(aorig) = 1. Setting k = |V |+ 1, this forms
our ShortestSmoothPath-Dec instance. This transformation has a running time in
O(n · (n + m)). See Figure 1 for an illustrated example of the construction. For the sake of
readability, we use non-integer weights of 1 + ϵ in this proof. The weights can be turned into
integers by multiplying them with the denominator of ϵ.

Now, assume that the HamiltonPath instance admits a Hamiltonian path P =
(v1, . . . , vn). Then, P ′ = (s, v1

1 , . . . , vn
n , t) is a solution to the SSPP problem. The path

uses two arcs from Aterminal and |V | − 1 arcs from Aorig. Thus, w∗(P ′) = |V |+ 1 = k. Also,
its UBSw(P ′) must be smaller than 1 + ϵ. Due to Observation 1, it is sufficient to show
that the UBS is small enough for P ′′ = (v1

1 , . . . , vn
n). For any subpath P ′′

i,j = (ui, . . . vj) for
i < j, u must not be equal to v because P is a Hamiltonian path. As all arcs are from Aorig,
w(P ′′

i,j) = (j − i) · (1 + ϵ). The shortest path (with respect to w) between ui and vj has to
use at least one Aorig arc because u ̸= v. Thus, Dw(P ′′

i,j) ≥ (j − i− 1) + (1 + ϵ). This yields

UBSw(P ′′
i,j) =

w(P ′′
i,j)

Dw(P ′′
i,j) ≤

(j − i) · (1 + ϵ)
j − i + ϵ

<
(j − i) · (1 + ϵ)

j − i
= 1 + ϵ

which proves that P ′ is a valid solution for the SSPP instance.
Conversely, suppose that our SSPP instance has an ϵ-smooth path P ′ = (s, v1

1 , . . . , vn
n , t)

of weight w∗(P ′) = |V |+ 1. Such a path cannot contain any arcs from Aself because their
volatile weight is 2. We now show that no two vertices in the path can correspond to the
same node and thus that P = (v1, . . . , vn) is indeed a Hamiltonian path in G. Suppose for
contradiction that P ′

i,j = (vi, . . . , vj) was a subpath of P ′. The length w(P ′
i,j) is (i−j) ·(1+ϵ).

Since start and end vertex correspond to the same node, the shortest path with respect to
w between these vertices is made up of arcs from Aself and has distance Dw(vi, vj) = i− j.
Thus, UBSw(P ′

i,j) = (1 + ϵ) which means that this subpath must not be part of a solution
for the SSPP instance. This is a contradiction. Thus, the SSPP solution induces a valid
solution for the HamiltonPath instance. ◀

4 Algorithms

In [8], the Iterative Path Blocking (IPB) algorithm is proposed to solve the SSPP optimally.
The algorithm repeats two steps until a valid path is found. It maintains a set of blocked
paths, which is initially empty. In the first step, a shortest path with respect to w∗ is
computed while avoiding any blocked paths. In the second step, the obtained path is checked
for subpaths violating the UBS constraint. Any violating subpaths are added to the list of
blocked paths and the algorithm continues with the next iteration. If no violating subpath is
found, the final path is returned.

This framework can be implemented with different concrete algorithms for both steps.
The implementation described in [8] is based on CRP [5]. In this paper, we propose optimized
implementations for both steps based on Lazy RPHAST and (C)CH-Potentials.
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Figure 2 Example graph where for ϵ = 1 the shortest ϵ-smooth path (s, v, t) is not prefix-optimal.
For all arcs except ut, the smooth and the volatile weight function are equal. For ut, the smooth
weight is 1 and the volatile weight 10.

4.1 Avoiding Blocked Paths

The authors of [8] describe their approach to the first phase as a variant of Dijkstra’s algorithm.
When relaxing an arc uv where v is the endpoint of a blocked path, they backtrack the
parent pointers of v, comparing the reconstructed path to the blocked path. Should the paths
match, the search is pruned at v. This algorithm correctly avoids blocked paths. However, it
also avoids some additional paths because Dijkstra’s algorithm by construction only finds
prefix-optimal paths. But optimal shortest smooth paths may not be prefix-optimal with
respect to the volatile weight function w∗. See Figure 2 for an example. To the best of our
understanding, IPB as described in [8] will not find the shortest smooth path in this example.
The algorithm will find the path (s, u, v, t) in the first iteration. This path is not 1-smooth
because (u, v, t) has stretch 3 and (u, v, t) will be added to the blocked path set. With (u, v, t)
blocked, the algorithm will find the path (s, u, t) in the next iteration and return it as the
final result. However, the shortest 1-smooth path is (s, v, t). It was missed because the prefix
(s, v) is not optimal in w∗ and was therefore pruned at v by (s, u, v). We will refer to this
variant from now on by heuristic iterative path blocking (IPB-H). IPB-H will still find an
ϵ-smooth path though it may not necessarily be the shortest.

To find shortest smooth path with Dijkstra’s algorithm, we need to adjust the notion of
optimality used to compare labels. It might be necessary to keep a label with suboptimal
distance from the start as in the example from Figure 2 where the label for (s, v) needs to
be kept at v despite being longer than (s, u, v). This leads to a label-correcting variation of
Dijkstra’s algorithm with possibly multiple labels per vertex. A label l at a vertex v consists
of a distance Dl from the source, a set of active blocked paths Al, and a pointer to the parent
vertex and label for efficient reconstruction of the labels’ path P (l) = (s, . . . , v). The active
blocked path set Al contains all blocked paths which have a prefix which is a suffix of P (l).
A label l can be discarded when v has another label l′ with Dl′ ≤ Dl and Al′ ⊆ Al.

The search is initialized with a single label at s with distance zero and an empty set of
active blocked paths. When a vertex u with a label lu is popped from the queue and an arc
uv is relaxed, we create a new label lv as follows: We set the distance Dlv = Dlu + w∗(uv)
and the parent label to lu. We also need to keep track of traversed blocked paths. If uv is
the first arc of a blocked path B = (u, v, . . . ), the path B needs to be added to Alv . For any
active blocked path B = (. . . , u, x, . . . ) ∈ Alu

, we need to check if x = v, i.e. uv lies on B.
If this is the case, B is contained in Alv

, or, if uv is the last arc of B, the label lv must be
dropped. If uv is not on B, the blocked path is not in Alv

.
An efficient implementation of this algorithm requires careful engineering. For each arc,

we keep track of the blocked paths it lies on. Labels use a bitset to store the active blocked
paths. This allows for efficient subset checks with bit-wise operations. The bitset size is
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Figure 3 Example path (solid, black) with shortest path tree from v1 to all vertices on the path
(dashed, blue) and reverse shortest path tree from all vertices on the path to v9 (dashed, red).

determined individually for each vertex by the number of blocked paths the respective vertex
lies on. In our implementation, we use at least one 128-bit integer which suffices for most
queries. Should the number of blocked paths for a vertex exceed 128, we switch to using
a dynamically sized array of integers for that vertex. Additionally, each vertex maintains
its own queue of labels ordered by distance from s. When the vertex is popped from the
queue, it pops the next label from its queue and propagates only this label. If there are any
remaining labels in the queue, the vertex is reinserted into the global queue. Finally, we
utilize A* with CCH-Potentials on the volatile weight function to guide the search towards
the target. As our experiments show, disallowing non-ϵ-smooth paths increases distances only
very slightly. Thus, the heuristic is close to perfect and A* very effective for this problem.

4.2 Efficient UBS Computation
According to Delling et al. [8], the UBS computation is one of the bottlenecks of the IPB
approach. They employ a many-to-many algorithm. Here, we introduce an algorithm which
can compute exact UBS values of typical paths with only a few shortest path queries. We
also present a worst-case example where each subpath has a distinct stretch value. This
suggests that achieving subquadratic worst-case running time may not be possible.

Consider a path P = (s = v1, . . . , t = vk) as depicted in Figure 3. Our algorithm works
iteratively. We start with the full path and successively remove prefixes and suffixes until
the path is empty or only a shortest path remains. We start by computing shortest distances
from s to all vertices on the path. This can be done with a single run of Dijkstra’s algorithm
which can terminate once all vi have been settled. Beside the shortest distances, this yields
a shortest path tree represented though parent pointers. We also run Dijkstra’s algorithm
from t on the reversed graph which yields a backward shortest path tree to t. Now we find
the greatest index i such that P1,i is a prefix of all shortest paths OPT(s, vl) where i < l ≤ k,
i.e. the first branching vertex in the forward shortest path tree. In the worst case this may
be s. In the example in Figure 3 this is v3. We analogously obtain the first branching vertex
in the reverse shortest path tree to vk (v8 in our example). Stated formally, this is the
smallest index j such that Pj,k is a suffix of all shortest paths OPT(vl, t) where 1 ≤ l ≤ j.
By Observation 1, subpaths starting from vertices in the segment P1,i−1 and subpaths ending
at vertices from Pj+1,k are not relevant to the UBS computation. We exploit this and only
check paths starting from vi or ending at vj in the current iteration.

We check the stretch of all subpaths Pi,l where i < l ≤ j with a linear sweep over
the vl. Since P1,i is a prefix of all shortest paths from s, we can compute the distance
D(vi, vl) as D(s, vl) − D(s, vi). Thus, each stretch can be checked in constant time with
the distances computed by Dijkstra’s algorithm. When we are only interested in violating
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Algorithm 2 Path unpacking for Lazy RPHAST.

Data: P[u]: parent vertex on the shortest path from u to t, as computed by
Dijkstra’s algorithm on

←−
G↓ and an extended Algorithm 1

Data: U[u]: whether the path from u to t has been fully unpacked
Function Unpack(u):

if ¬(U[u] ∨ u = t) then
ComputeAndMemoizeDist(u);
Unpack(P[u]);
if (u, P[u]) is a shortcut for (u, v, P[u]) then

P[v]← P[u];
Unpack(v);
P[u]← v;
Unpack(u);

U[u]← true;

subpaths (rather than computing the exact UBS value of P ), the sweep can be stopped after
the first (i.e. shortest) violating segment has been found. Forbidding the shortest violating
segment starting at vi is sufficient because it is contained in all longer segments. Checking
the stretches of the subpaths Pl,j where i ≤ l < j works analogously.

Having checked all these stretches, we continue with the next iteration by applying the
whole algorithm to the subpath Pi+1,j−1. We can stop when i + 1 ≥ j − 1 or when the entire
considered path is a shortest path between its endpoints.

This algorithm can be adopted to efficiently compute other path quality measures such
as the local optimality [1].

4.2.1 Worst-Case Running Time
This algorithm performs great when long segments are shortest paths, which will often
be the case when searching shortest smooth paths. But in the worst case, it still has to
check Θ(n2) subpath stretches. Consider a complete graph with unit weights and the path
P = (v1, . . . , vn). In this graph, the shortest path between any two vertices is always the
direct arc and the distance is exactly one. Thus, the shortest path tree from any vertex is
a star with the direct arcs and our algorithm can only advance by a single vertex in each
iteration. This results in a worst case running time of n runs of Dijkstra’s algorithm.

We suspect that it is not possible to compute the UBS asymptotically faster. Consider
the same graph as before but with weights of unique powers of two for the arcs of the path.
Now any subpath has a unique length. As all subpaths of three or more vertices still have
a shortest distance of one between their endpoints, there are Θ(n2) unique stretch values.
Thus, computing the UBS of the whole path without checking all Θ(n2) stretch values should
be difficult if not impossible.

4.2.2 Lazy RPHAST with Path Unpacking
While this algorithm typically needs few stretch checks, running Dijkstra’s algorithm a
couple of times is still prohibitively slow on large road networks. Luckily, we can speed these
computations up drastically by employing Lazy RPHAST, which we already used as an A*
heuristic in the shortest path search phase. Recall that Lazy RPHAST allows us to select
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one target vertex and then to compute shortest distances quickly from many vertices to this
target. For the efficient UBS computation, we use two instantiations of this algorithm. In
each iteration, we select both endpoints of the considered path and compute distances from
and to the endpoints for all vertices on the path. However, we also need the shortest path
trees. We therefore extend Lazy RPHAST to also compute shortest path trees.

Dijkstra’s algorithm on
←−
G↓ yields initial parent pointers. We adjust Algorithm 1 to

continue to maintain these parent pointers during arc relaxation. Thus, after having called
ComputeAndMemoizeDist, we have the shortest path through the CH search space in G+. Al-
gorithm 2 depicts the routine to efficiently unpack shortcuts on this path and retrieve shortest
path trees in the original graph. We use a bitvector U (using a clearlist for fast reinitialization)
to mark vertices for which the shortest path has already been fully unpacked which is checked
before any actual work is performed. Then, we have to call ComputeAndMemoizeDist to
ensure that the path through the CH search space has been obtained for u. For vertices
encountered through recursive shortcut unpacking this might have not happened before. In
the next step, we can now recursively unpack the full path up to the parent P[u] of our
current vertex u. Now, all that remains is to unpack the arc (u, P[u]) if it is a shortcut. If
so, the middle vertex v is set in P as the vertex between u and P[u] and Unpack is invoked
recursively first for v and then again for u to unpack the arcs (v, P[v]) and (u, v).

4.3 Iterative Path Fixing

With an efficient algorithm to find UBS-violating segments we can introduce another natural
heuristic to find short smooth paths: Find the shortest path with respect to w∗ and replace
each UBS violating subpath (vi, . . . , vj) with OPTw(vi, vj). The result may still contain
UBS violating subpaths. In this case, we iteratively continue to replace violating segments.
When a path contains overlapping violating subpaths, we replace the first, ignore following
overlapping subpaths and continue with the next non-overlapping segment. We denote this
algorithm as iterative path fixing (IPF).

5 Evaluation

In this section, we present our experimental results. Our benchmark machine runs openSUSE
Leap 15.3 (kernel 5.3.18), and has 192 GiB of DDR4-2666 RAM and two Intel Xeon Gold
6144 CPUs, each of which has eight cores clocked at 3.5 GHz and 8 × 64 KiB of L1,
8 × 1 MiB of L2, and 24.75 MiB of shared L3 cache. All running times are sequential.
We implement our algorithms in Rust1 and compile them with rustc 1.58.0-nightly
(b426445c6 2021-11-24) in the release profile with the target-cpu=native option.

Table 1 shows the road networks we use in our experiments alongside sequential prepro-
cessing times. OSM Europe is the same network used in [8] and publicly available.2 The
DIMACS Europe instance was made available by PTV3 for the 9th DIMACS implementation
challenge [9]. It is not publicly available but can be obtained on request for research purposes4.
We derived the OSM Germany instance from an early 2020 snapshot of OpenStreetMap and

1 The code for this paper, all implemented algorithms, scripts to perform experiments and to aggregate
the results is available at https://github.com/kit-algo/traffic_aware

2 https://i11www.iti.kit.edu/resources/roadgraphs.php
3 https://ptvgroup.com
4 https://i11www.iti.kit.edu/resources/roadgraphs.php

https://github.com/kit-algo/traffic_aware
https://i11www.iti.kit.edu/resources/roadgraphs.php
https://ptvgroup.com
https://i11www.iti.kit.edu/resources/roadgraphs.php
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Table 1 Instances used in the evaluation with sequential preprocessing running times to construct
a CCH-Potential. Phase 1 needs to be run only once for each graph, Phase 2 once for each weight
function, or when a weight function changes.

Vertices Edges Preprocessing [s]

[·106] [·106] Phase 1 Phase 2

DIMACS Europe 18.0 42.2 2 260.7 11.3
OSM Europe 173.8 348.0 4 270.0 58.8
OSM Germany 11.1 26.2 1 314.0 7.5

converted into a routing graph using RoutingKit.5 For this instance, we have proprietary
traffic data provided by Mapbox6 which, unfortunately, we cannot provide. The data includes
two live traffic snapshots in the form of OSM node ID pairs and live speeds for the edge
between the vertices. One is from Friday 2019/08/02 afternoon and contains 320K vertex
pairs and the other from Tuesday 2019/07/16 morning and contains 185K pairs. For both
Europe instances, we do not have any real world traffic data. Thus, we resort to the approach
suggested in [8] and generate synthetic live traffic: For each road where the average speed is
greater than 30 kph, we reduce the speed to 5 kph with a probability of 0.5%.

We evaluate our algorithms by performing batches of point-to-point shortest ϵ-smooth
path queries. As the distance between source and target has a significant influence on the
performance, we generate different query batches. For each batch, we pick 1000 source
vertices uniformly at random. We then run Dijkstra’s algorithm from each source vertex on
the graph with the smooth weight function. Following the Dijkstra rank methodology, we
store every 2ith settled vertex [16]. This allows evaluating the performance development
against varying path lengths. In [8], 1-hour queries were performed. For comparison, we also
generate an 1h batch by picking the first settled vertex with a distance greater than one
hour. In addition, we generate a 4h batch for medium-range queries with the same method
and a random batch for long range queries where the target is picked uniformly at random.

Preliminary experiments showed that some queries take prohibitively long to answer.
Since we are solving an NP-hard problem, this is not very surprising. We abort queries if
the algorithm has not found a path with UBS < (1 + ϵ) after 10 seconds. We report these
queries as failed but, nevertheless, do include their running times in our measurements.

We start by evaluating different UBS algorithms in isolation. The paths checked by the
UBS algorithms are the paths we find while performing IPB-H to find shortest smooth paths
with ϵ = 0.2 on the Dijkstra rank queries. We limit the time per rank and UBS algorithm to
one hour. Thus, slow algorithms may not get to check all paths. Our baseline is computing
all distances between pairs of path vertices at once with SSE RPHAST [6], which to the
best of our knowledge is the fastest known many-to-many algorithm. The second algorithm,
denoted as Lazy RPHAST Naive, uses Lazy RPHAST to compute distances between all
pairs of path vertices. The third one is UBS Trees Dijkstra which is the non-accelerated,
i.e. Dijkstra-based, implementation of the efficient UBS algorithm introduced in Section 4.2.
UBS Trees Lazy RPHAST denotes the accelerated variant of this algorithm utilizing Lazy
RPHAST as described in Section 4.2.2.

5 https://github.com/RoutingKit/RoutingKit
6 https://mapbox.com
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Figure 4 Running times of different UBS checking algorithms for paths encountered by IPB-H
when answering queries of different ranks with ϵ = 0.2 on OSM Europe. The boxes cover the range
between the first and third quartile. The band in the box indicates the median, the whiskers cover
1.5 times the interquartile range. All other running times are indicated as outliers.

Figure 4 depicts the results of this experiment. We observe that SSE RPHAST is
consistently faster than the naive Lazy RPHAST variant by a roughly constant factor. SSE
RPHAST was designed as a many-to-many algorithm and is thus more efficient than naively
applying a many-to-one algorithm |P | times. The non-accelerated UBS Trees algorithm is
very fast for short paths but quickly becomes prohibitively slow for longer paths. Running
Dijkstra’s algorithm will traverse a large part of the network if source and target are sufficiently
far apart from each other. Doing this multiple times is not feasible. However, the accelerated
variant beats SSE RPHAST by about two orders of magnitude across all path lengths.

UBS Trees running times have significantly greater variance than the many-to-many
algorithms. This is because the amount of work which UBS Trees can avoid varies strongly
between different paths. In contrast, the many-to-many-based algorithms will always check
Θ(|P |2) subpath distances. Note that the UBS Trees Dijkstra outliers disappear because we
limit the time per rank and algorithm. If we checked all paths, the outliers would be present
too, but the experiment would take prohibitively long.

Next, we evaluate the performance of our query algorithms on realistic queries and
instances. Table 2 depicts the results. Both the query set and the instance have a strong
influence on the running time. Note that random queries on OSM Germany are on average
shorter than four hours which is the reason why the running times on OSM Germany for
random queries are faster than for 4h queries. The length increase of the solutions primarily
depends on the instance and less on the query set. The synthetic traffic affects DIMACS
Europe more strongly than OSM Europe. We suspect that this is because OSM is modeled
in much greater detail and contains more shorter arcs. In terms of running time, IPB-H is
significantly faster than IPB-E and IPF is significantly faster still, which is roughly what
we expected. Conversely, the heuristics find somewhat longer paths than the exact IPB-E
algorithm and IPF appears to find worse paths than IPB-H. However, one has to be careful
interpreting these numbers as a non-negligible amount of queries did not terminate with
IPB-E and IPB-H. Because the length increase numbers are averages over different sets, it is
not immediately clear if the differences appear because the heuristics find worse paths or
because the heuristics find long solutions where the exact algorithm did not finish within
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Table 2 Average performance of our implementations of IPB-E, IPB-H and IPF for different
query sets on all instances with ϵ = 0.2. The Increase column denotes the length increase with
respect to w∗ of the obtained path over OPTw∗ and includes only successful queries. The running
time column also includes the running time of queries aborted after 10 seconds.

Increase [%] Running time [ms] Failed [%]

IPB-E IPB-H IPF IPB-E IPB-H IPF IPB-E IPB-H IPF

1h

DIMACS Eur Syn 0.8 2.5 4.1 718.0 168.4 1.5 6.4 1.6 0.0
OSM Eur Syn 0.2 0.3 0.3 59.8 22.4 2.7 0.4 0.2 0.0
OSM Ger Fri 0.2 1.5 2.2 1 373.7 219.1 4.7 12.7 1.2 0.0
OSM Ger Tue 0.1 0.3 0.4 261.5 9.2 1.8 2.2 0.0 0.0

4h

DIMACS Eur Syn 0.8 3.4 5.1 3 513.6 435.4 6.1 33.1 3.1 0.0
OSM Eur Syn 0.2 0.3 0.3 331.4 73.2 8.4 2.1 0.6 0.0
OSM Ger Fri 0.2 2.1 4.2 6 597.1 2 568.1 89.2 63.4 15.8 0.0
OSM Ger Tue 0.1 0.4 0.5 1 449.3 93.1 9.8 13.1 0.0 0.0

R
an

do
m

DIMACS Eur Syn 0.8 2.8 5.3 6 700.6 2 436.7 30.6 64.2 17.1 0.0
OSM Eur Syn 0.2 0.4 0.4 4 758.3 654.2 140.3 38.9 3.1 0.0
OSM Ger Fri 0.2 2.1 4.1 5 771.1 2 419.8 84.5 56.0 16.3 0.0
OSM Ger Tue 0.1 0.4 0.5 1 366.0 111.6 9.6 12.0 0.0 0.0

10 seconds. For running times, the averages are also difficult to interpret. They are heavily
skewed by outliers and there is no reason to assume a normal distribution. In fact, median
running times for 1h queries of all algorithms on all instances are all below 2 ms. Clearly,
drawing statistically sound conclusions from this experiment requires a closer look.

Figure 5 depicts performance profiles [12] for running times and obtained path lengths
on all queries from Table 2 combined. Investigating queries across all instances combined
is reasonable because we study the relative performance of the different algorithms on
each query. Let A be the set of algorithms, Q the set of queries and obj(a, q) denote the
considered measurement from the computation of a ∈ A to answer q ∈ Q. In our case,
this is either the running time or the length with respect to w∗ of the computed path.
The performance ratio r(a, q) = obj(a,q)

min {obj(a′,q)|a′∈A} indicates by what factor a deviates from
the best solution or the shortest running time for the query q. The performance profile
ρa : [1,∞)→ [0, 1], τ 7→ |{q∈Q|r(a,q)≤τ}|

|Q| of a is the fraction of queries for which a is within a
factor of τ of the best measurement. For computations that were aborted after 10 seconds,
obj(a, q) =∞. For the sake of completeness, we also include the same performance profiles
separated per instance and query set in the appendix (see Figure 6 and 7). However,
discussing the results in such detail is beyond the scope of this paper.

The running time performance profile in Figure 5 allows for some more nuanced observa-
tions: IPF is the fastest algorithm on about 65% of the queries and almost never more than
10 times slower than the fastest one. Surprisingly, IPB-H is also sometimes the fastest to
answer a query (in 35% of the queries) but it may also be up to 300 times slower than the
fastest algorithm. However, for 83% of all queries it stays within a factor of 10. The exact
algorithm is never the fastest but still within a factor of 10 for 65% of the queries. It still
may be several thousand times slower than the fastest algorithm in extreme cases, even with
the running time limited to 10 seconds.
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Figure 5 Relative performance profiles of our algorithms on all queries from Table 2.

The path length performance profile also yields useful insights. Since IPB-E is an exact
algorithm, its performance profile contains only a single data point, i.e. for all queries which
terminated successfully IPB-E finds the shortest path. The line for IPB-H is almost constant.
This means, there are only few queries where it does not find the best solution. Even when it
does not find the best solution, it is close to the best one, i.e. the maximum length increase
factor over the best solution is 1.36 and all other values are below 1.1. It is quite possible
that IPB-H found the optimal solution even for some queries where IPB-E did not terminate.
The qualitative performance of IPF varies more strongly. It also finds the best solution on
85% of the queries. More than 99% of the obtained solutions are within a factor of 1.2 to
the best found. In the worst case IPF found a path 1.96 times the length of the best one
found by another algorithm.

In combination with the averages reported in Table 2 we can now draw solid conclusions
on the performance of the algorithms. IPF is the algorithm with the most stable running time.
Even though it is not always the fastest, it is never much slower than any other algorithm.
It is the only algorithm able to answer all queries in less than 10 seconds. In fact, it usually
needs only a few milliseconds and only up to several hundreds of milliseconds for extreme
cases. It sometimes pays for this with worse solution quality but is still very close to the
best found for the vast majority of queries. This makes it an algorithm suitable for practical
applications. IPB-H is also a very effective heuristic. It is drastically faster than the exact
algorithm and sometimes even faster than IPF. Its performance in terms of quality is much
more stable than IPF and often IPB-H will find the best path or something very close to
it. The difference in average length increase between IPB-E and IPB-H was not because
IPB-H finds much worse paths but because it is able to answer queries which IPB-E cannot
answer. However, it still fails to answer about 5% of all queries in less than 10 seconds.
The running time of IPB-E varies even more strongly. On the one hand, many easy queries
can be answered in a few milliseconds, but on the other hand, 25% of all queries cannot be
answered in less than 10 seconds. The feasibility of solving the problem to exactness with
IPB-E strongly depends on the distance of queries and on the smoothness of w∗.

For our final experiment, we evaluate the performance of our algorithms with different
choices for ϵ with 1000 queries of 1h range on OSM Europe. Table 3 depicts the results. This
experiment was also performed in [8] but with only 100 queries. Given the observation from
the previous experiment, it should be clear that reported averages allow only for very rough
comparisons. However, it is the only data available to compare against related work. Also
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Table 3 Average performance of our implementations of IPB-E, IPB-H and IPF for different
values of ϵ with 1h queries on OSM Europe with synthetic live traffic. The Increase column denotes
the length increase with respect to w∗ of the shortest smooth path over the shortest w∗ path. It
includes only values from successful queries. All other columns indicate average values over all
queries, including the ones terminated after 10 seconds.

Increase Iterations Blocked Running time [ms] Failed

ϵ [%] paths A* UBS Total [%]

0.01
IPB-E 0.43 137.90 676.2 307.6 22.7 335.9 2.4
IPB-H 0.56 22.38 24.9 52.8 21.0 74.0 0.6
IPF 0.61 1.73 - - - 2.3 0.0

0.05
IPB-E 0.34 68.10 351.7 132.5 14.8 150.3 0.9
IPB-H 0.39 32.78 39.8 19.6 38.7 58.6 0.5
IPF 0.41 1.54 - - - 2.3 0.0

0.10
IPB-E 0.27 47.35 256.4 103.3 12.7 118.3 0.8
IPB-H 0.33 27.10 27.1 3.5 28.9 32.7 0.3
IPF 0.34 1.45 - - - 2.7 0.0

0.20
IPB-E 0.23 24.92 141.7 51.1 7.5 59.7 0.4
IPB-H 0.26 19.33 19.0 2.6 19.6 22.4 0.2
IPF 0.28 1.36 - - - 2.1 0.0

0.50
IPB-E 0.16 13.64 80.0 41.1 3.8 45.6 0.1
IPB-H 0.17 19.54 18.9 2.5 19.4 22.1 0.2
IPF 0.19 1.26 - - - 2.0 0.0

1.00
IPB-E 0.11 10.51 55.5 28.1 4.4 33.4 0.2
IPB-H 0.12 15.13 14.3 2.4 9.6 12.2 0.1
IPF 0.14 1.19 - - - 2.5 0.0

note that due to the presence of heavy outliers, performing too few queries can distort the
numbers drastically. For example, when we ran the same experiment with only 100 queries,
the average running times of IPB-H were an order of magnitude faster.

We observe similar trends as the authors of [8]. The smaller the choice of ϵ, the harder the
problem becomes. Consequently, the length increase, the number of iterations, the number
of blocked paths and the running time increase. However, for our implementation of IPB-H,
we measure slightly bigger path increases and slightly more iterations. Our implementation
of IPB-H achieves running times two orders of magnitude faster than the CRP-based IPB-H
implementation in [8]. One reason for this is our UBS algorithm which only needs a couple
of milliseconds for all values of ϵ. In [8], the UBS checking phase takes between 1.3 and
1.9 seconds. The CH-Potentials-based shortest path phase is also very efficient across the
entire range of ϵ values. Even with many blocked paths, the path lengths increase only little
and the CH-Potentials heuristic remains tight and yields good speed-ups. Our exact IPB-E
implementation is still an order of magnitude faster than the IPB-H implementation in [8].

6 Conclusion
In this paper, we studied the shortest smooth path problem and proved its NP-completeness.
We introduced a new algorithm for practically efficient UBS computation. This algorithm can
compute the exact UBS of typically occurring paths with very few shortest path computations.
It outperforms state-of-the-art exact UBS algorithms by around two orders of magnitude
and makes computing exact UBS values feasible in practice. Also, it can be used for other
path quality measures such as local optimality.
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We adapted the existing IPB-H algorithm and realized it with our new UBS algorithm and
A* with CH-Potentials. This realization of IPB-H outperforms the original implementation
by two orders of magnitude. Also, we present necessary modifications to make the algorithm
exact. IPB-E is still about an order of magnitude faster than the CRP-based heuristic
implementation. As IPB-H and IPB-E are not always able to find solutions in reasonable
time, we introduce another heuristic, IPF. It can consistently find smooth paths even for
random queries on massive continental sized instances in a few tenths of milliseconds.

For future work we would like to apply our algorithms not only to live traffic but also to
predicted traffic, i.e. find smooth paths in a time-dependent setting. Further, it would be
interesting to study what causes IPB-H to be so much faster than IPB-E while retaining
most of the quality. Maybe this could be traced to specific structures in road networks which
then could be exploited to speed up IPB-E.
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Figure 6 Relative performance profile for the running time of our algorithms on all queries from
Table 2 split by graph and query set.
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3:18 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST
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Figure 7 Relative performance profile for solution quality of our algorithms on all queries from
Table 2 split by graph and query set.
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