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ABSTRACT
Microgrids are a promising solution for providing renewable elec-
tricity access to rural populations in the Global South. To ensure
such renewable microgrids are affordable, careful planning and
dimensioning are required. High-resolution data on electricity gen-
eration and consumption is necessary for optimal design. Unfor-
tunately, real-world electricity data for microgrids in the Global
South is scarce, and the limited data that is available has a low
temporal resolution. Therefore, in this paper, we introduce a unique
high-resolution real-world electricity data set from three micro-
grids in the Democratic Republic of the Congo, Rwanda, and Haiti.
The data has a temporal resolution of up to five seconds and focuses
on microgrids with renewable generation from either hydropower
or photovoltaic systems. Furthermore, we include data from both
residential and industrial microgrids. We describe the recorded data
and highlight the advantages of the high resolution. We demon-
strate how this resolution offers insight into consumption patterns
and enables the analysis of grid voltage and frequency, which is
highly relevant for the planning and dimensioning of affordable
renewable microgrids in the Global South.
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1 INTRODUCTION
In 2019, approximately 800 million people worldwide were with-
out access to electricity with 74% of this population living in rural
areas, especially in the Global South1 [28]. Connecting this rural
population to a public power grid is often complex and expensive
[28] and thus, decentralised microgrids are an affordable alternative
[13]. Therefore, it is expected that these decentralised microgrids
will play a major role in expanding energy access in the Global
South [13, 29]. These microgrids not only provide economic and
social benefits to the consumers but also allow for the replace-
ment of traditional fossil-based generators, e.g. diesel, with sustain-
able renewable generators, such as solar, hydroelectric, and wind
power [8, 29, 36].

Given the potential for microgrids in the Global South to enable
electricity access in a sustainable manner, developing methods to
accurately plan and dimension affordable and renewable microgrids
is crucial [9, 14]. Numerous tools for planning and dimensioning mi-
crogrids exist [15, 17, 25–27, 36, 40, 45], which all rely on modelling
generation and load profiles and the related assumptions about
the pattern and volume of electricity generation and consumption.
Many tools utilise hourly-resolved profiles due to data availability
and simplicity, which is often sufficient, especially for grids with
dispatchable power plants such as diesel generators. However, for
microgrids with a high share of renewables, electricity data with a
higher temporal resolution, i.e. one minute or higher, can be useful.
For example, short-term phenomena, such as short-term power
peaks and their effects on voltage and frequency stability can be in-
vestigated. The high-resolution data sets could also be used as input
1In this paper, we use the terminology ”Global North” and ”Global South” common to
the development literature, cf. [33].
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for simulations, for example, to design microgrids with tools such
as “Offgridders” [25] or to improve and validate inverter control
algorithms. For tasks such as dimensioning the photovoltaic (PV) or
battery inverter capacity, power lines, measurement equipment, and
fuses or circuit breakers, high temporal resolution data is important
as well, since hourly-averaged power profiles underestimate short
term power peaks.

Unfortunately, microgrid electricity data for the Global South
is scarce, and the limited available data, e.g. [51, 52], only focuses
on average hourly consumption patterns. Furthermore, existing
electricity data focuses purely on residential microgrids, despite the
importance of industrial consumers for microgrids in the Global
South. Through the productive use of energy, industrial and com-
mercial consumers often have the opportunity to refinance or even
expand the microgrid and thus ensure a positive impact for the
region in the long term [12, 31]. Another motivation for collecting
real-world high-resolution electricity data is that if these industrial
consumers see and understand when and how much energy they
consume, they could significantly reduce the cost of the grid by
adjusting their consumption behaviour to electricity generation
through demand side management (DSM) [3, 4].

Although load profile modelling tools could provide a viable
alternative to real data, these tools, e.g. [24, 38], also offer a low
temporal resolution and focus almost exclusively on residential
load profiles as well.

The present paper introduces high-resolution real-world elec-
tricity data from three microgrids in the Global South. From data
loggers installed in microgrids located in the Democratic Republic
of the Congo (DRC), Rwanda, and Haiti, we present open-source
data2 recorded with a resolution of either five seconds (DRC), or one
minute (Rwanda and Haiti). The microgrid electricity data includes
not only two residential microgrids in Rwanda and Haiti but also an
industrial campus in DRC. The microgrids incorporate various re-
newable energy sources, such as hydropower in DRC and Rwanda,
and photovoltaic generation in Haiti. We describe and analyse the
characteristics of the recorded electricity data before highlighting
the benefit of the high temporal resolution. We demonstrate that
this high resolution offers more insight into consumption patterns,
allows for an analysis of the voltage and frequency stability, and, as
a result, is useful for the planning and dimensioning of affordable
renewable-based microgrids in the Global South.

The remainder of the paper is structured as follows. In Section 2,
we provide an overview of existing electricity data from the Global
South detailing both load profile modelling tools and real recorded
data. Section 3 then describes the design of the considered mi-
crogrids and how data is collected. In Section 4, we describe the
recorded electricity data, consider power consumption character-
istics, analyse variations in power, frequency, and voltage, and
highlight the benefits of the high temporal resolution. Finally, we
summarise our findings and discuss future work in Section 5.

2 EXISTING ELECTRICITY DATA FROM THE
GLOBAL SOUTH

Currently, microgrid planning and dimensioning are based on
synthetically-generated load profiles or real measured data. In this

2The data is freely available at KITopenData under the DOI 10.5445/IR/1000143466

section, we provide overviews of load-profile modelling techniques
and real-world electricity data from Global South microgrids.

Load Profile Modelling. There are numerous approaches to mod-
elling microgrid load profiles, however, most of them are based
on residential households in developed countries [39], or require
extensive training data [7, 16, 35]. In the Global South, extensive
training data is not available and whilst the consumption patterns
of the high-income bracket mirror those of the standard residen-
tial household in a developed country [2], the patterns of typical
households differ based on their socioeconomic status [5]. There-
fore, alternative approaches with a focus on the Global South are
required.

A summary of load profilingmodels focusing on the Global South
is presented in Table 4 in Appendix A. Whilst numerous models
exist, we observe that they all have a low temporal resolution of
one hour, do not usually focus on microgrids, and almost always
consider residential load. A detailed analysis of the identified load
profile models can also be found in Appendix A.

Real-World Electricity Data. Whilst modelled load profiles can
assist with microgrid planning and dimensioning, these are usually
not given in a high temporal resolution necessary for renewable
microgrids. Furthermore, real data contains anomalies and uncer-
tainties [50] not accounted for in modelled load profiles, which
may be important for the planning process. Therefore, ideally, real
data should also be considered when planning and dimensioning a
microgrid in the Global South.

In developed countries, there is a wide range of recorded con-
sumption and generation data that can be used in the planning
process [42, 44, 48], however, such data is scarce for the Global
South. Table 1 presents an overview of the small number of identi-
fied real-world data sets focusing on the Global South.The temporal
resolution of almost all data sets is hourly or lower with only Tous-
saint and Dekenah [49] considering a higher temporal resolution of
five minutes. Further, only Williams et al. [51, 52] consider micro-
grid data, with the other data sets focusing on minigrids3 [6, 43], or
the main electrical grid for the country or region [19, 21, 23, 49]. Fur-
thermore, all data sets focus solely on residential load profiles, and
only Banerjee et al. [6] and Giles et al. [23] include solar generation
profiles.

A key observation is that only Toussaint and Dekenah [49] pro-
vide raw data, although this data is only available with a data access
agreement. All other data sets consist of average load profiles cal-
culated on all available data [6, 23, 43, 51, 52], or all the data in
a predetermined group of villages [19, 21]. From these load pro-
files, only Williams et al. [51, 52] and Scott and Coley [43] provide
their data in an open-source format, whilst Dominguez [19] and
Dominguez et al. [21] provide open-source metadata but not the
recorded data.

We conclude that although real-world data focusing on electricity
data for the Global South does exist, none of the identified data sets
consists of openly accessible, measured data from a microgrid with
a high temporal resolution.

3In the present paper, we consider a microgrid as a grid with a capacity of 3 to 200 kW.
On the other hand, a minigrid has a larger capacity and is also capable of connecting
to the central grid to exchange power when not operating independently.
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Table 1: An overview of real-world data sets concerning consumption and generation data for the Global South.

Paper Location Temp.
Res.

Grid
Type

Load
Type

Averaging Per-
formed

Load Pro-
file

Gen. Pro-
file

Raw
Data

Open
Source

Notes

[52]
[51]

East
Africa

Hourly Micro Resi-
dential

All data 3 7 7 (3)1 11 Microgrids. Tabular presentation.
Variance according to season and day of
week analysed in paper.

[43] Tanzania Hourly Mini Resi-
dential

All data 3 7 7 3 Data from two PV diesel hybrid mini-
grids.

[6] Koury,
Mali

Hourly Mini Resi-
dential

All data 3 Solar 7 7 Graphical representation. 556 house-
holds, average consumption level of
24 kWh per month.

[23] Various2 Hourly-
Monthly

Main Resi-
dential

All data 3 Solar 7 7 Monthly solar profile for USA and
Bangladesh. Load profiles for a single
house3 , small community, and village.

[19]
[21]

Kenya Hourly Main Resi-
dential

Each group 3 7 7 3 17 Rural villages in Kenya classified into
four groups. Only survey metadata avail-
able.

[49] South
Africa

Five
minute

Main Resi-
dential

None 7 7 3 (3)4 Electrified houses with a focus on low-
income households.

1 Only with IEEE Xplore access, available through many tertiary institutes.
2 Dominican Republic, Bangladesh, USA, India, Mexico, Philippines.
3 The house was built for the purposes of the study and designed to replicate a typical load profile. However, it was the only household with a TV in the
village leading to higher energy consumption than typical for the other houses in the village and is therefore not representative.
4 Data (CC-BY-NC) may be available after conclusion of a data access agreement. Requirements for a successful data access agreement unclear.

3 MICROGRID DESIGN AND DATA
COLLECTION

In the present paper, we introduce a sample of data collected from
three real-world microgrids in the Global South. This data is, how-
ever, only useful when coupled with a description of the microgrids
and knowledge of the data recording mechanism. Therefore, we
introduce the considered microgrids and explain where and how
the data loggers were used.

3.1 Microgrid Design and Description
Thefirst microgrid is an industrial campus in the Democratic Repub-
lic of the Congo (DRC), which is powered by a micro-hydropower
plant (MHP) and alternatively a backup diesel generator (DG). The
second microgrid is an MHP in Rwanda that provides electricity to
households in a village community, and the third grid is a stand-
alone PV system with battery storage that supplies an orphanage
with electricity. In this section, we describe the design and layout
of these three microgrids.

3.1.1 Industrial Campus with MHP+DG in DR Congo. The indus-
trial campus is located in Kalenge, on the eastern coast of Idjwi
Island in Lake Kivu in DR Congo, close to the border to Rwanda4.
The campus is operated by the local development organisation
PROLASA to offer apprenticeships, create jobs and improve the
local value chain. The island has about 290,000 inhabitants [30]
but is not connected to the public electricity grid of the mainland,
partly due to its remote location. In the past, PROLASA has built a
hydroelectric power plant5 for the campus with an estimated ca-
pacity of 20 kW, however, this has not yet been sufficient to power
all activities on the campus satisfactorily. A diesel generator with
a capacity of 200 kW can alternatively supply the campus when

4GPS coordinates: -2.0864, 29.0712
5GPS coordinates: -2.0925, 29.0689

energy-intensive processes that cover the cost of diesel consump-
tion are carried out.

Several facilities are accommodated on the campus, including a
wood and a metal workshop, a beverage production (including wa-
ter purification, juice manufacturing and a PET blowing machine),
a fish farm, two corn mills, a chicken farm with two hatcheries,
and a coffee cooperative that processes coffee beans. In addition,
there are approximately ten residential buildings as well as a guest
house on the campus. The topology of the hydropower plant and
the microgrid is shown in Figure 5 in Appendix B.

Most of the facilities on the campus are operated by PROLASA
itself. The power of the installed equipment and machines exceeds
the hydropower capacity by far. Therefore, it is not uncommon
that consumption is adapted to the available electricity generation,
for example, by coordinating the shifts of different facilities with
each other. When energy-intensive tasks are performed, the diesel
generator is used, which can supply the industrial grid instead of
the hydroelectric power plant. This is done by turning a load switch
at the feed-in point of the main distribution station, causing the grid
to have a power outage for a few seconds to minutes. Electronic
load controllers (ELC) with heating resistors ensure that the grid
frequency does not exceed the nominal frequency of 50Hz when
the run-of-river hydropower plant (using a Bánki-Michell turbine),
generates more power than is consumed. During the period of data
collection, one or more ELCs were defective, which is why the grid
frequency is often far above the nominal frequency.

3.1.2 Residential electricity supply with MHP in Rwanda. This mi-
crogrid in Nyakiramba in the eastern part of the Muhanga district
in Rwanda is only fed by a small hydropower plant6. It is estimated
to supply between 200 and 300 private households with electricity.

The local operating company, consisting of a technician, a hy-
draulic engineer and an accountant, offers different monthly tariffs

6GPS Coordinates: -1.8811, 29.6804
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for the surrounding households depending on the connection ca-
pacity (1A, 2A or 6A). By far most households use the smallest
connection, which is sufficient to power light bulbs and smaller
devices such as cell phone chargers; some households also own
television sets.

The MHP used to generate about 11 kW of electricity according
to the operators, however, the generator was impaired in operation
during the measurement campaign because two of its three-phase
windings were defective. Provisionally, all three phases of the power
grid were connected to one phase of the generator, so that they
operate without a phase offset. During the measurement, about 3
to 4 kW were available. In addition, the ELC was broken in this
microgrid as well, so that the grid frequency can exceed 50 Hz.
However, since the power grid is relatively overloaded most of the
time, the frequency is typically in the range of 30 to 50Hz. The grid
topology is shown in Figure 6 in Appendix B.

3.1.3 Orphanage powered by PV + battery in Haiti. The third micro-
grid is a stand-alone PV system in Beaumont, Haiti. It provides
electricity to an orphanage with approximately 35 children, a medi-
cal station and a canteen.

The system consists of 28 PV modules with a peak power of
200Wp each. Since the modules are already aged, in total only
about 4.5 to 5 kWp are available instead of the nominal 5.6 kWp.
A DC charge controller is used to charge wet lead-acid battery
with a nominal voltage of 48V and a nominal capacity of 856Ah
(41.1 kWh). The usable net capacity of the cells is limited to 50 %.
An inverter with a continuous power rating of 3.0 kVA (3.3 kVA for
30 min, 4.8 kVA for 5 seconds) powers the single-phase grid with a
nominal voltage of 230 to 235V and a nominal frequency of 50Hz.

The electrical devices used on-site are two laptops, a fridge (for
medication), a medical ultrasonography device, a medical steriliser
(with a peak power of up to 2 kW), a water pump for the freshwater
supply of the houses (550W nominal), multiple LED light bulbs
and mobile phone chargers. During the first twelve days of data
logging (until the end of November), small electrical construction
equipment and tools were used as well. The topology of the system
is shown in Figure 7 in Appendix B.

3.2 Data Collection
To record the microgrid data we used two different types of data log-
ging systems.The first type was only installed in the DRC industrial
campus, the second type in both Rwanda and Haiti.

3.2.1 DRC industrial campus. All measured electricity values (such
as power, voltage, frequency, also see Table 5 in Appendix C) are
recorded in the main distribution station every 5 seconds. The
overall electricity demand of the campus supplied either by the hy-
dropower plant or the diesel generator is recorded by a Schneider
Electric PM5310 power meter at the feed-in point of the main dis-
tribution station. The outgoing power lines to the corn mill and the
coffee factory are connected via Schneider Electric PM3250 power
meters. All other outputs (metal workshop, wood workshop, fish
farm, sub-distributions 1-3) are connected via Schneider Electric
iEM3350 energy meters.

All data is read out viaModbus RTU from anAccuenergyAcuLink
810-868 Data Acquisition Server, which is connected to the WLAN

of a GSM router, and sends the data to a remote server. On the
server, the data is unpacked, processed and stored in a database,
after which it can be visualised in a Grafana web interface.

3.2.2 Microgrids in Rwanda and Haiti. At the other sites, enerserve
SmartPi 2.0 are used, which log all measured values everyminute. In
Rwanda, two devices are used to measure the generation (between
the generator and the load controller) and the consumption of
all grid users (behind the load controller, out to the power line).
However, due to the malfunctioning ELC, the measurements in
generation and consumption are almost identical. In Haiti, only one
device measures the consumption of all connected consumers at
the output of the inverter. Via GSM routers the data is sent to the
previously mentioned server as well.

4 MICROGRID DATA DESCRIPTION AND
DISCUSSION

The high-resolution real-world electricity data introduced in this
paper is available at KITopenData.7 In this section, we describe and
analyse this data.8. Firstly we briefly describe the collected data,
illustrating its key properties. In a second step, we analyse how vari-
ations in power consumption affect voltage and frequency stability.
We then discuss the effect of the data resolution before present-
ing some of the challenges we encountered during the microgrid
electricity data measurement campaign.

4.1 Data Description
Due to the differing capabilities of the different measurement de-
vices, the limited data transmission rates between measurement
devices and gateway, and to reduce data usage for cellular data
transmission, not all measurement variables were recorded for each
measurement point (see Table 5 in Appendix C). All locations in-
clude phase voltage (+?ℎ) and current (� ) as well as active power (% )
measurements. For three-phase grids, line-to-line voltages (+!−!)
are measured as well. For large consumers in DRC, the reactive (&)
and apparent power (() is recorded, for all others only, the power
factor (% .� .) is given. At least once per grid, the frequency (5 ) is
acquired. The main distribution station in DRC also includes mea-
surements of the total demand distortion ()��), total harmonic
distortion ()��) and harmonics (�1/2/3/5/7/9).

Due to various factors, discussed in Section 4.5, all data sets
contain periods during which no grid data could be collected. The
duration and data availability is summarised in Table 2, and the
active power visualised in Figure 8.

Table 2: Properties of the data sets

Duration Entries Availability Resolution

DRC 35.6 days 399 620 64.94 % 5 s
Rwanda 17.8 days 24 856 97.19 % 60 s
Haiti 31.3 days 44 928 99.76 % 60 s

7The data is freely available at KITopenData under the DOI 10.5445/IR/1000143466
8The data analysis code is available at https://git.scc.kit.edu/migs/microgrid-electricity-
data-analysis
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4.2 Power consumption
Table 3 summarises the properties of mean and peak power as well
as daily energy consumption and variability for different days.

In the industrial DR Congo microgrid, the time step variability
is comparatively low and the mean power is similar for weekdays
and weekends. This is probably due to large consumers that draw
a relatively constant power over several hours or even days (espe-
cially the chicken hatchery). However, the peak power is higher
on weekdays, because multiple facilities work in parallel. Some
businesses are off on Saturdays, some on Sundays, and some on
both days. The day-to-day variability is quite high. On some days
the power consumption is significantly higher and for this purpose,
the diesel generator is used, because the power of the MHP is not
sufficient for some applications.

Demand curves of all days with hourly resolution can be seen
in Figure 1. In Figure 2, both the overall active power demand in
the main distribution station as well as the demand of individual
consumers that were active at the time are shown for one specific
day with the highest available resolution. Sub-distribution station
1 has the highest demand: We suppose that the chicken hatchery
was running the whole day with relatively constant power and the
water, juice and bottle production was active during the daytime.
Over longer periods of time, short but quite high power peaks can
be seen at distribution station 3 due to welding work. A similar
pattern with lower peak powers is present for the wood workshop.

In the residential microgrid in Rwanda, the total power con-
sumption is extremely uniform at about 3.1 kW almost all the time.
We suspect that the reason for this is not on the demand side, but
because the hydropower plant cannot produce more electricity, and
the power demand would actually be much higher if more power
was available. Since supply cannot match demand, the data from
Rwanda presented in this paper is not very useful for generating
informative load profiles.

Consumption in Haiti differs only slightly on weekends and
weekdays (see Figure 8), possibly because there are always chil-
dren and staff in the orphanage consuming electricity. The high
load peaks resulted from construction work that took place on the
orphanage campus in the first weeks of data acquisition. After con-
struction was completed at the end of November, the highest power
peaks at minute resolution are at around 1 kW. They occur only on
a few days and last only 1-3 minutes.

4.3 Power, frequency and voltage variations
In Figure 3 and Appendix E, power, frequency and voltage curves of
representative days of the three microgrids are shown. All grids are
nominally 50Hz and 230V. Since the electronic load controllers of
the hydropower plant in DRC are out of order, but theMHP provides
sufficient power most of the time, the frequency in the grid is very
high, often between 50 and 70Hz (the electricity meter limits the
measured frequency to 40 - 70Hz even if the real frequency is
outside of this range). The voltage is usually in the range of 200 to
250V, but is often well below that at 170V, transiently even well
below 100V. Frequency changes of more than 10Hz over a time
frame of 20 seconds as well as voltage drops and surges of 60V and
changes of power of 8 kW per 5 second time step can occur in the
grid. In the wood workshop and for welding work (sub-distribution

Table 3: Power and energy demand characteristics

DRC Rwanda Haiti

Mean power Mon-Fri 3.708 3.094 0.127
[:, ] Sat 3.244 3.081 0.132

Sun 3.383 3.193 0.121
All 3.590 3.106 0.127

Peak power Mon-Fri 26.753 3.493 1.819
[:, ] Sat 6.142 3.602 2.354

Sun 12.164 3.496 0.968
All 26.753 3.602 2.354

Mean daily Mon-Fri 88.994 74.253 3.051
energy consumption Sat 77.845 73.943 3.177
[:,ℎ] Sun 81.187 76.635 2.911

All 86.163 74.541 3.053

Day-to-day variability 31.26 % 4.19 % 21.78 %
Time step variability 17.35 % 1.91 % 57.02 %

3) the power fluctuates often by 1 - 4 kW per time step. When the
diesel generator is used instead of the hydroelectric power plant,
the voltage is stable at about 230V and the frequency between 50
and 51Hz.

The MHP in Rwanda supplies a large number of private con-
sumers (about 200-300 households), each with a very small individ-
ual power (e.g. for light and for charging cell phone batteries). Due
to the law of large numbers and the proportionally small contribu-
tion of most of the individual consumers, almost no abrupt changes
in power, frequency and voltage occur (see Figure 9 in the appen-
dix). However, there are large but smooth fluctuations: Especially
in the evening hours between 6 and 10 PM, frequency and voltage
drop significantly. This can be explained by the increased demand
for electricity for lighting and charging cell phones. Since the en-
tire available power plant capacity is used and there is no storage,
the generated and thus also overall consumed power %C>C barely
changes, only the distribution between the individual consumers
is shifted (compare %1 and %2 in Figure 9). As mentioned before,
the measured power does not represent the desired consumption
but rather the maximum available power generation at any given
time. The grid voltage measured at the MHP is usually very high
(around 270 to 290V) to compensate for the large voltage drop on
the power line to the consumers.

In comparison, the voltage and frequency curves from the PV
system in Haiti are comparable to an interconnected grid. The volt-
age varies only minimally between 230 and 235V and the frequency
is extremely smooth at about 49.995 ±0.002Hz. This is because the
PV system is completely sufficient for the current expansion of
the campus, including its electrical consumers. With the aid of the
battery and fast-acting power electronics, the inverter can regulate
the frequency much faster and more precisely than the two hydro-
electric power plants, which react mainly mechanically to power
changes due to the missing electrical load regulators.
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Figure 1: Overlay of daily power curves of the DR Congo microgrid with hourly resolution (grey) and mean values of all days
(red), days without diesel generator usage (blue) and with diesel generator usage (purple) as representative load profiles
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Figure 2: Active power consumption for all consumers (Main) and breakdown for the individual consumers (Wed, 9 Feb 2022)

4.4 Advantages of the high data resolution
In Figure 4, we compare different temporal resolutions of the overall
active power demand measurement of a typical weekday in the
DRC grid. Power fluctuations due to large changes in consumption
can hardly be detected in hourly resolved data, which also underes-
timates the magnitude of power peaks. This is also evident in the
frequency (not shown): averaging underestimates short-term fluc-
tuations, which are unfavourable for many industrial consumers.
The same comparison for the Rwanda and Haiti grids can be found
in figures 11 and 12 in Appendix F. As previously mentioned, there
are no rapid changes in the power demand. Consequently, the reso-
lution doesn’t often play a large role in these grids.

4.5 Challenges of the data logging project
We encountered numerous difficulties during the installation and
operation of the data loggers, and believe it worthwhile to record

here the salient points for future projects and new energy metering
equipment for microgrids.

We had intended to install more data loggers than the three
documented here. However, without contact persons or intermedi-
aries in the respective countries and regions, it is difficult to locate
microgrids and establish contact with the operators. Furthermore,
microgrids are mainly used in remote regions. Since it is often
impossible to clarify all details of the grid with the operators in
advance, and it is also difficult to obtain components or tools in
these regions, all steps and contingencies for installation of the
equipment must be planned thoroughly.

Although some PV inverters offer the possibility to read out
many grid parameters or, for example, the battery state of charge,
this is often done via proprietary interfaces and cannot be integrated
into the data acquisition with little effort, especially not when
visiting new microgrids without much preparation and testing.
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Figure 3: Voltage and frequency variations in the DRC microgrid on a day without diesel generator usage (Wed, 2 Feb 2022)
and with generator usage at around 9 am and 10-11 am (Wed, 9 Feb 2022). For comparison, regular and irregular limits of
frequency (49.8 to 50.2Hz and 47.5 to 51.5Hz) and voltage (−10 % or −15 % to 10 %) of the European integrated grid are marked
semi-transparently in grey (see [22]).

Although many of the manufacturers of the measurement data
acquisition equipment state that the devices work reliably, we found
the user interface of one tested commercial device underdeveloped
and experienced numerous bugs and sporadic outages despite many
updates. Therefore, the selected equipment should be tested exten-
sively well in advance before scheduling it for installation.

As described earlier, very high voltage and frequency fluctu-
ations appear in some microgrids (especially in grids with small
micro-hydropower plants). It may occur that these power plants are
operated far outside usual grid specifications, either temporarily
(e.g. in case of defects) or more or less intentionally (e.g. due to
lack of available budget for repairs or better power lines and long
delivery times for spare parts). Thus, the measuring instruments, as

well as the power supplies, should be robust against very low and
high voltages (e.g. 60 - 480V) and also be able to measure atypical
grid frequencies (e.g. 15 - 85Hz). In the case of the microgrid in
Rwanda, the GSM router power supply was damaged twice due to
an overvoltage.

If data transmission via GSM is envisaged, it should be noted that
mobile data tariffs with automatic renewal (i.e. without physical
access to the SIM card) are not easy to obtain in every country or
are only available to residents. In any case, it is extremely beneficial
(or even a precondition for success) if there is a known local contact
person in the grid (e.g. the grid operator or a technician) who has
an intrinsic interest in data collection, e.g. for billing purposes or
to better assess the condition of the grid.
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Figure 4: Comparison of the temporal resolution of the power demand in the DR Congo microgrid on Tuesday, 15 Feb 2022.

5 CONCLUSION
To assist with the planning and dimensioning of affordable renew-
able microgrids in the Global South, this paper introduces high-
resolution real-world electricity data from three microgrids in the
Global South. This data, with a temporal resolution of up to five
seconds, is from an industrial campus in the Democratic Repub-
lic of Congo and two residential microgrids in Rwanda and Haiti.
All three grids include renewable generation from hydropower or
photovoltaic arrays. We describe and analyse the characteristics
of the recorded microgrid electricity data, show benefits of the
high temporal resolution, and discuss some challenges we encoun-
tered. We demonstrate how this resolution offers extra insight into
consumption patterns, allows for an analysis of the voltage and
frequency, and, as a result, is useful for the planning, dimension-
ing and demand-side management of, and research into, affordable
renewable-based microgrids in the Global South.

We believe the presented electricity data will be a valuable tool
for microgrid planners now and in the future. Nevertheless, our
data set is only a small step in the process of enabling the wide-
spread development of affordable and effective microgrids in the
Global South. To fully enable this development, a much broader
data basis with electricity data from numerous diverse microgrids
and covering a greater period of time is required. Therefore, we
strongly encourage fellow researchers in the field to focus on data

collection from microgrids, especially those in the Global South,
and publish any data collected. We believe that access to electricity
can only be increased in an affordable and sustainable manner if
there is a concentrated joint effort in the research community to
grow the open-source basis for data, software and information.
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A OVERVIEW OF LOAD MODELLING TOOLS

In this section, we provide a more detailed analysis of the identified load modelling tools. We firstly observe that the majority of the identified
methods are based on mathematical models aiming to recreate the load profile with simple equations. Another approach is to model load
profiles with simple regression methods [24]. Both the mathematical models and regression approaches do not require large amounts of data.
On the other hand, machine learning approaches do require more data, such as presented by Schlemminger et al. [41], where these methods
are used to generate synthetic regional or national load profiles, and Dominguez et al. [20], where multiple data sources are collated to
develop synthetic residential lighting load profiles. These two approaches however either use European data for training [41] or rely on the
assumption that lighting load is an accurate proxy for electricity load [20].

All identified tools for load profile modelling focusing on the Global South work with an hourly temporal resolution, which, as pointed
out in the introduction, is rather low for the planning and dimensioning of renewable microgrids.

With regards to the load type, Table 4 shows that the majority of the considered load profile modelling tools focus on residential houses
[10, 20, 24, 34], or aggregated regional or national load [1, 41]. In comparison, Mandelli et al. [37] designed a synthetic load profile for a
college in a rural village in Cameroon, and Prinsloo [38] focuses on synthetic models for aggregated village load. Such aggregated village
loads are possibly the best representation for a microgrid; however, the model presented by Prinsloo [38] is not open-source, and although it
is based on observations and analysis from existing data [11, 32, 46, 47], this existing data is either not publicly available or is data obtained
from simulated systems.

In summary, we see that whilst some load profile modelling tools with a focus on the Global South do exist, they all have a low temporal
resolution. Furthermore, they do not usually focus on microgrids, and almost always consider only residential load.

Table 4: An overview of load profile modelling tools focusing on the Global South.

Pa-
per

Target
Region

Model Type Temporal
Resolution

Load Type Generation
Profile

Open
Source

Notes

[38] Africa Mathemati-
cal

Hourly Aggregated
village load

7 7 Based on observations in [11, 32, 46, 47].

[24] South
Africa

Regression Hourly Residential
houses

7 3 Model implemented in the Distribution
Pre-Electrification Tool [18].

[10] Minigrid,
rural

Mathemati-
cal

Hourly Residential 7 3 Designed for integration with HOMER.
Includes seasonal variations.

[34] Sub-
Saharan
Africa

Mathemati-
cal

Hourly Residential 7 3 Various income levels possible. Dis-
tributed as an Excel worksheet.

[37] Rural off-
grid

Mathemati-
cal

Hourly College 7 31 Bottom-up stochastic based approach.
Verified at a college in Cameroon.

[1] Western
Africa

Mathemati-
cal

Hourly Aggregated
national load

7 7 Electricity demand model. Neither
model nor verification data publicly
available.

[41] Multiple Machine
Learning

Hourly Regional or
National

7 32 Focus on European countries.

[20] East
Africa

Machine
Learning

Hourly Residential
lighting load

7 3 Assumes that lightning accounts for al-
most all electricity needs.

1 Code is open-source, however, requires Matlab to run.
2 The resulting load profiles for European countries are distributed, however, the model itself is not.
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B GRID TOPOLOGY
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Figure 5: Grid topology of the industrial campus in DR Congo supplied by a micro-hydropower plant and a diesel generator
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Figure 7: Grid topology of the PV system of the orphanage in Haiti
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C ACQUIRED MEASUREMENT DATA

Table 5: Overview of acquired measurements

Location +?ℎ +!−! � % & ( % .� . 5 )�� )�� �0A<>=82B

DRC
Main distribution 3 3 1/2/3/N 1/2/3/tot. 1/2/3/tot. 1/2/3/tot. 3 3 3(V+I) 3(V+I)
Corn mills1 3 3 1/2/3/N 1/2/3 1/2/3 1/2/3
Coffee processing1 3 3 1/2/3/N 1/2/3 1/2/3 1/2/3
Sub-distribution 1 3 3 1/2/3 1/2/3 avg.
Sub-distribution 2 3 3 1/2/3 1/2/3 avg.
Sub-distribution 3 3 3 1/2/3 1/2/3 avg.
Fish farm 3 3 1/2/3 1/2/3 avg.
Metal workshop 3 3 1/2/3 1/2/3 avg.
Wood workshop 3 3 1/2/3 1/2/3 avg.
Unused connection1 3 3 1/2/3 1/2/3 avg.

Rwanda
Generation2 3 1/2/3 1/2/3 1/2/3 3

Demand2 3 1/2/3 1/2/3 1/2/3 3

Haiti
Demand 3 1 1 1/2/3 3

1 Unfortunately, these consumers were not used during the recording (no power consumption).
2 Since the electronic load controllers in Rwanda are out of service, generation and demand data approximately look the same.
Sub-distribution 1: Beverage production (juice/water), PET bottle production, chicken incubator, storage rooms, residential housing
Sub-distribution 2: Residential housing
Sub-distribution 3: Outdoor power plug (mostly used for welding)
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D ACTIVE POWER
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Figure 8: Active power measurements from the three microgrids for the entire data collection period. The visualised data was
collected between November 2021 and February 2022 and clearly shows the differences between the microgrids, specifically the
periods without recorded data.
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E FREQUENCY AND VOLTAGE VARIATIONS
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Figure 9: Voltage and frequency variations in the Rwanda microgrid (Thu, 25 Nov 2021). Since the total power consumption %C>C
is limited by the generated power of about 3 kW, the powers %1 and %2 of the two sub-grids are also plotted to show indications
of changes in power demand.
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Figure 10: Voltage and frequency variations in the Haiti microgrid (Tue, 14 Dec 2021)
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F TEMPORAL RESOLUTION OF POWER
MEASUREMENTS
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Figure 11: Comparison of the temporal resolution of the power demand in the Rwanda microgrid onThursday, 25 Nov 2021
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Figure 12: Comparison of the temporal resolution of the power demand in the Haiti microgrid on Tuesday, 14 Dec 2021
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G DAILY LOAD OVERLAYS
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Figure 13: Overlay of daily power curves of the DR Congo microgrid with hourly resolution (grey) and mean values (red) as a
representative load profile
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Table 6: Derived load profiles of the three microgrids in kW.

Hour DRC Haiti Rwanda
All Without generator With generator

0 2.994 2.950 3.247 0.101 3.080
1 2.940 2.890 3.221 0.217 3.035
2 2.931 2.879 3.225 0.138 3.012
3 2.926 2.866 3.267 0.133 2.997
4 3.191 2.984 4.366 0.126 2.987
5 3.443 3.343 4.009 0.141 2.995
6 4.003 3.819 5.045 0.127 3.053
7 3.795 3.642 4.660 0.119 3.135
8 4.280 3.859 6.666 0.114 3.116
9 4.339 3.865 7.026 0.115 3.111
10 5.198 3.744 13.436 0.107 3.105
11 4.975 3.898 11.080 0.124 3.109
12 3.723 3.644 4.168 0.248 3.104
13 3.607 3.404 4.754 0.299 3.130
14 3.454 3.274 4.477 0.272 3.145
15 3.530 3.318 4.733 0.203 3.158
16 3.305 3.065 4.666 0.122 3.151
17 3.440 3.210 4.741 0.065 3.153
18 3.888 3.681 5.064 0.050 3.173
19 3.767 3.701 4.143 0.044 3.126
20 3.210 3.172 3.424 0.041 3.089
21 3.123 3.079 3.370 0.043 3.149
22 3.020 2.958 3.372 0.062 3.198
23 2.987 2.924 3.345 0.051 3.130
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