
Parsing and Printing Java 7-15
by Extending an Existing Metamodel

Martin Armbruster
Supervisor: Manar Mazkatli

July 28, 2022

Many technologies and frameworks are built upon the open source Eclipse Modelling
Framework (EMF) to provide model-based software development or even model-based
consistency preservation of software artifacts. In this context, not only EMF-based mod-
eling of the source code but also parsing of the source code and printing the model again
into source code files are required.
The Java Model Parser and Printer (JaMoPP) provides an EMF-based environment

for modeling, parsing and printing Java source code [16]. However, it supports just the
syntax of Java 5 and 6. Moreover, JaMoPP is based on some technologies that have
technical problems and have not been further maintained.
In this work, we extend the metamodel of JaMoPP to support Java versions 7-15. Our

extensions expand the metamodel with new features, for instance, the diamond operator,
lambda expressions, or modules. Moreover, we implemented our new parser and printer.
The parser implementation is based on the Eclipse Java Development Tools (JDT) that
is well maintained, which reduces the maintenance effort to extend our JaMoPP for new
versions of Java.

1 Introduction and Foundation

The Java Model Parser and Printer (JaMoPP) provides an Eclipse Modeling Framework (EMF)-based
environment for modeling Java source code [16]. Therefore, JaMoPP contains an Ecore-based Java
meta-model conforming to The Java Language Specification - Third Edition (JLS 3) [16] specifying
the syntax of Java 5 and 6 [15, 20]. JaMoPP also defines the Java syntax in the CS specification
language of EMFText [16]. Out of the CS specification, EMFText generates code for two artefacts
[17]. At first, a parser based on ANTLR is generated to create models from source code files, and,
secondly, a pretty printer writes source code files from models [17, 16].

In order to establish the connections between different Java models introduced by, e. g., imports,
JaMoPP includes a mechanism to resolve such references [16]. In detail, the references contain proxy
objects that are resolved to the actual objects based on the proxy object URI when a reference is
accessed [19]. EMFText already generates a set of resolvers with a default implementation [17] which
are integrated into EMF’s proxy resolution mechanism [18]. Thus, JaMoPP extends the resolvers
with respect to Java-specific properties [18].

The architecture of JaMoPP in the context of EMF is depicted in Figure 1. In EMF, a model
is contained within a Resource (1) which is contained in a ResourceSet (6) [18]. Reversely,

1



a ResourceSet manages Resources whereby it relies on ResourceFactories (8) to create
Resources. As mentioned earlier, EMFText generates a JavaParser (3) and a JavaPrinter

(4) hidden behind a specific JavaResource (2) which is created by a JavaResourceFactory (9).
The generated code is supplemented by a ClassFileModelLoader (5) which generates models from
class files using the Byte Code Engineering Library (Apache Commons BCEL). As a result, modelling
tools (7) can put Java source or class files into EMF which get loaded by a JavaResource. The
Java-specific resolvers (10) establish the references between model elements. As the targets of refer-
ences are spread across several different Resources, the resolvers can also load models on demand.
Because the resolvers do not know the physical location of Java files, they use a unique location-
independent URI for the model elements. JaMoPP provides the Classpath (12) for connecting the
Resources by generating the unique URIs hiding the physical location and storing a mapping from
the unique URI to the physical location in the URIMap (11) from which ResourceFactories can
retrieve the physical location.

Figure 1: Architecture of JaMoPP [18].

For validating and evaluating JaMoPP, the following testing process depicted in Figure 2 was executed
[18]. A Java source file (shown in the upper left corner) is parsed into a JaMoPP model. Its
references are resolved and de-resolved to test the reference resolution and to print the model. Both
the original and reprinted source files are parsed with the Eclipse Java Development Tools (JDT)
Core into abstract syntax trees (ASTs) [18, 31]. Then, the ASTs are compared with the JDT AST
Matcher to check if they are equal [18]. In this case, the test is successful.

In the remainder, the previously described JaMoPP version will be mentioned as the original JaMoPP
version. Due to the limitation of JaMoPP to Java 6 [16] and the availability of Java 17 [26], the
adaptation and extension of the original JaMoPP version is covered here. This includes the extension
of the meta-model in section 2 and three implemented variants in section 3, section 4, and section 5
for the reference resolution. A comparison of all three variants in section 6 complements their
description. After potential future work presented in section 7, this documentation is concluded in
section 8.

2



Figure 2: Test process for JaMoPP [18].

2 The JaMoPP Meta-Model Extension

To support the features of newer Java versions, the JaMoPP meta-model was extended. In the
following, the features and their model representation are presented.

Diamond in Class Instance Creation Expressions A simple example is new ArrayList<>()

for the diamond which was added in the JLS 7 [12]. It is represented by the class
java.instantiations.NewConstructorCallWithInferredTypeArguments which is a subclass
of java.instantiations.NewConstructorCall.

try-with-resources Statement To represent, for instance, try (someField; FileReader in

= new FileReader("SomeFile.txt")) added in the JLS 7 [12] in the state of the JLS 16 [10],
the java.statements.TryBlock was extended with references to java.variables.Resource

where java.variables.LocalVariable and java.references.ElementReference inherit from
java.variables.Resource.

Multi-catch Multi-catch, i. e., e. g., catch (IOException |

IllegalArgumentException e), introduced in the JLS 7 [12] is realized by setting
an instance of the java.parameters.CatchParameter class as the parameter of a
java.statements.CatchBlock. java.parameters.CatchParameter is a specialization of
java.parameters.OrdinaryParameter and contains a list of additional type references.

Binary Integer Literals Binary integer literals such as 0b1111 from the JLS 7 [12] are mod-
eled by the java.literals.BinaryIntegerLiteral and java.literals.BinaryLongLiteral

classes.

Lambda Expressions With the JLS 8, lambda expressions were introduced [13]. Their
modeling is presented in Figure 3. A java.expressions.LambdaExpression is a spe-
cial java.expressions.Expression consisting of java.expressions.LambdaParameters

and a java.expressions.LambdaBody. The parameters can be explicitly or implic-
itly typed. For instance, the lambda expression (Object o) -> {} is explicitly typed

3



Expression

LambdaExpression

LambdaParameters

ExplicitlyTyped
LambdaParameters

ImplicitlyTypedLambdaParameters

SingleImplicitLambdaParameter

LambdaBody

Block

Figure 3: Modeling of lambda expressions.

whereas (i, j) -> i + j and i -> i are implicitly typed. Both forms are rep-
resented by the java.expressions.ExplicitlyTypedLambdaParameters and java.ex-

pressions.ImplicitlyTypedLambdaParameters with the special java.expressions.Single-
ImplicitLambdaParameter for the case that an implicitly typed lambda parameter is given without
parentheses. The body of a lambda expression is an expression or a block so that both classes inherit
from java.expressions.LambdaBody.

Method Reference Expressions Method reference expressions as Object::toString

were added in the JLS 8 [13] and have a corresponding abstract
java.expressions.MethodReferenceExpression class in the meta-model which is integrated
into the expression class hierarchy. An excerpt of the hierarchy for the method reference expressions
is shown in Figure 4. java.expressions.MethodReferenceExpressions are differentiated
in java.expressions.ClassTypeConstructorReferenceExpressions to cover, for instance,
String::new, java.expressions.ArrayConstructorReferenceExpressions to cover, e. g.,
int[]::new, and java.expressions.PrimaryExpressionReferenceExpression. The latter
class contains a mandatory reference to a java.expressions.MethodReferenceExpression-

Child and an optional reference to a method.

Receiver Parameters For receiver parameters added in the JLS 8 [13], the
java.parameters.ReceiverParameter as a special java.parameters.Parameter was added.

Default Interface Methods Beginning with the JLS 8, interface methods can be declared
default and can have an implementation [13]. Therefore, while it is still distinguished be-
tween java.members.ClassMethods and java.members.InterfaceMethods, their superclass
java.members.Method instead of the java.members.ClassMethod contains a reference to a
java.statements.Statement representing the body of the method. Additionally, the modifier
java.modifiers.Default has been added to model the default modifier.

4



UnaryModificationExpressionChild

MethodReferenceExpression MethodReferenceExpressionChild

ClassTypeConstructor
ReferenceExpression

ArrayConstructor
ReferenceExpression

PrimaryExpression
ReferenceExpression

PrimaryExpression

Figure 4: Modeling of method reference expressions.

Further Positions of Annotations In the JLS 8, further positions for annotations were added
[13]. As a result, the corresponding positions in the meta-model were extended to support the
annotations.

Modules In the JLS 9, module declarations were added [14]. Their model representation
is depicted in Figure 5. A java.modules.Module is a new java.containers.JavaRoot

and contains java.modules.ModuleDirectives. A java.modules.ModuleDirective

is a java.modules.RequiresModuleDirective, java.modules.UsesModuleDirective,
java.modules.ProvidesModuleDirective, java.modules.OpensModuleDirective, or
java.modules.ExportsModuleDirective. Every concrete subclass has references to the types,
packages, or modules it describes.

var as Local Variable Type The JLS 10 introduced var as a possible type in local variable
declarations [4] while the JLS 11 extended the use of var for explicitly typed lambda parameters [5].
In every case, the actual type is inferred from the context. Thus, the java.types.InferableType
as a subclass of java.types.TypeReference models the use of var. It also includes a list of
java.types.TypeReferences which can store the actual types.

Switch Expressions The java.statements.Switch extends the java.expressions.Unary-

ModificationExpressionChild to realize switch expressions introduced with the
JLS 14 [8]. In addition, to model switch rules, for instance, case 2, 3 -> 2;,
the subclass java.statements.SwitchRule for the java.statements.SwitchCase

was added. It differentiates between a java.statements.DefaultSwitchRule and
java.statements.NormalSwitchRule. The java.statements.NormalSwitchRule and
java.statements.NormalSwitchCase contain an additional list of expressions for further case
constants. At last, the java.statements.YieldStatement complements the switch expression
modeling.

Text Blocks A text block from the JLS 15 [9] is represented by the
java.references.TextBlockReference class as the subclass of java.references.Reference

5



JavaRoot

Module

ModuleDirective

RequiresModuleDirective

UsesModuleDirective

ProvidesModuleDirective

AccessProvidingModuleDirective

OpensModuleDirective

ExportsModuleDirective

ModuleReference

Figure 5: Modeling of modules.

6



Parse Code into ASTs Convert ASTs to Models Complete Models

Figure 6: Overview over the first variant’s parsing process.

containing the value of the text block.

Additional Changes Beside the aforementioned additions, further elements were added to or
changed in the meta-model. Every java.containers.JavaRoot stores its origin which can be
a source file, class file, a file from an archive, or a binding. Moreover, java.types.TypeReference
inherits from java.arrays.ArrayTypeable so that every occurrence of a type can directly store
its array dimensions and the information if it is an array type. As a consequence, array types
can also be modeled as type arguments which was not supported before, and most inheritances of
java.arrays.ArrayTypeable were removed. At last, a java.references.Reference includes
an optional list of java.types.TypeReferences to store its concrete type with potential concrete
type arguments. This allows the explicit representation of types in contexts in which the types are
usually inferred.

Final Remarks Records, patterns, and the pattern matching for instanceof which are the new
features in the JLS 16 [10], and sealed classes introduced in the JLS 17 [11] have currently no model
representation.

At first, the CS specification of the original JaMoPP version was extended to include the new features
of Java. However, this caused several problems of which only some parts could be solved and which
limit the future development. Therefore, the first variant was implemented.

3 First Variant: Using the Eclipse JDT Core’s Bindings

In the historical established first variant, the dependency to EMFText was removed by replacing the
CS specification and generated parser and printer implementations with manual implementations.

The manual printer implementation consists of a single class which is responsible for outputting the
textual representation of every model element independently of the parser. The generated Java source
code has valid syntax and preserves the semantics, but neither the layout nor the documentation.

The manual parser implementation uses the Eclipse JDT Core to transform source code files into
an AST which is converted to the actual model. Figure 6 gives an overview over the first variant’s
parsing process.

The following assumption is central for this variant:

A1 The complete source code and every dependency is available.

7



The source code including its dependencies is parsed with the Eclipse JDT Core to obtain the ASTs.
All generated ASTs are converted to JaMoPP model instances. During the conversion, references
within a model instance to separated model elements are directly set without creating proxy objects.
The ASTParser of the Eclipse JDT Core resolves references between source code files and ASTs to
bindings [1]. A binding represents a package, module, type, annotation, member value pair in an
annotation, variable, or method [22]. Therefore, a binding can be used to identify the corresponding
model element and to directly set a reference. Furthermore, bindings contain all information of the
corresponding Java element [22]. A type binding, for instance, includes bindings to the declared
fields, methods, and inner types [24]. This means that bindings can be converted to models if there
is no corresponding source file. As a consequence of using the bindings to resolve references, the
reference resolution mechanism of the original JaMoPP version including the generation of proxy
objects was removed.

1 class A {

2 void m() {

3 }

4 }

5 class B {

6 A b;

7 A c;

8 A d = new A() {

9 @Override

10 void m() {

11 s();

12 }

13
14 private void s() {

15 }

16 };

17 }

Listing 1: A source code example for bindings in the first variant.

Considering the source code example in Listing 1, the AST nodes for the fields of class B return type
bindings representing class A. During the conversion of B’s AST, these type bindings are used to
obtain the model of A. To ensure that there is only one model for A, a mapping between the binding
and the model of A is stored in the class JDTResolverUtility. If the model for A is requested for
the first time, it will be created and stored in the mapping. If the model for A is requested afterwards,
the created model is returned from the mapping.

The actual mapping between a binding and a model element consists of a mapping function for
bindings to String names and a mapping from a String name to the model element. Most of the
time, the composition of the name depends on the type of the binding and is independent of the
concrete binding object. For the fields b and c in the source code example, two different type binding
objects are returned. Nevertheless, both type bindings represent class A. Thus, binding objects
cannot be directly mapped to model elements, and a specific name has to be used.

After the conversion, a completion step is performed. For references into the JDK or dependencies,
only the referenced model elements are created without connecting them. As a consequence, this
last step completes these elements. Classes that are only represented as bindings are converted to
model instances to establish the connections between existing elements. As the converted bindings
can reference further parts within the JDK or dependencies, the completion step is executed until

8



Parse Code into ASTs Convert ASTs to Models with Proxy Object Creation

Figure 7: Overview over the parsing process of the second variant.

there are no more bindings to convert or elements to connect.

With the end of the completion step, the parsing ends and all model instances are complete and
valid.

The first variant has a second implicit assumption:

A2 Every package and module has a model representation.

According to the JLS 3 and 7-17, every compilation unit is contained within a package [15, 12, 13,
14, 4, 5, 6, 7, 8, 9, 10, 11]. Analogously, according to the JLS 9-17, every package is included in a
module [14, 4, 5, 6, 7, 8, 9, 10, 11]. This circumstance is reflected in the bindings: a type binding
has a method for obtaining its package binding [24], and a package binding has a method for getting
the module binding [23]. All of these bindings are converted to models at the latest during the
completion step so that every package and module has a model representation. As a consequence,
in the JaMoPP meta-model, ConcreteClassifiers contain and require a reference to a package,
and a package references its containing module.

The first variant has one limitation (L1): If there are changes within the source code, the source
code and its dependencies have to be completely parsed again because there is no mechanism to
parse single files or to exchange model instances.

4 Second Variant: Re-introducing Proxy Objects

To overcome the limitation L1 of the first variant, the second variant was implemented. It re-
introduces and adapts the proxy object creation and resolution mechanism of the original JaMoPP
version including the ClassFileModelLoader. Figure 7 shows the parsing process of the second
variant. Compared to the first variant, the assumption A1 has not to be fulfilled.

One or more Java files are parsed with the Eclipse JDT Core to obtain their ASTs. The bindings
are ignored so that the ASTs are only converted to model instances. For the references to other
model elements, proxy objects are created similar to the original JaMoPP version. This leads to the
generation of a unique URI that identifies the proxy object and its context which is used to find the
actual model element at a later point in time. After the conversion of the ASTs, the parsing ends.

Considering the source code example in Listing 1, the modeled fields of class B contain no direct
reference to the model of A after the parsing. Instead, they contain only proxy objects.

If the actual model element of a reference is needed, the reference resolution of the original JaMoPP
version is executed. Starting with the current container element of the proxy object, the resolution
mechanism walks the model hierarchy upwards looking into the model elements the mechanism

9



encounters [25]. If a suitable model element is found, the proxy object is replaced with the found
model element [19]. If the resolution mechanism reaches the top of the model hierarchy, it continues
in models referenced by, e. g., imports [25]. If no model element is found, the proxy object is
returned as the result of the resolution [19].

The resolution mechanism is extended to find elements in the newly added classes and features
of the meta-model. For example, LambdaParameters are considered. Herein, a potential limita-
tion (L2) of the second variant arises. The MethodDecider responsible for finding a method to a
method call relies on a comparison of the method and method call which includes the parameter
and argument types [25]. As the arguments are expressions [10, 25], their type is calculated in the
ExpressionExtension, ReferenceExtension, and TypeParameterExtension if type parameters
are involved [25]. The introduction of lambda expressions, method reference expressions, and var re-
quired the extension of the type calculation because their type calculation depends on the surrounding
context [10]. For example, in the variable declaration Function<Integer, Integer> func = i

-> i;, the types of i and of the lambda expression are inferred from the type Function<Integer,
Integer> of the local variable. Another example related to the MethodDecider is someMethod(i
-> i). To find the type of i in the context of the extended type calculation in JaMoPP, the type
of the lambda expression has to be known. To find the lambda expression’s type, the parameter
type of someMethod is considered which requires the resolution of the method call. During the
resolution, the argument type, i. e., the type of the lambda expression, would be compared to types
of potential methods [25] as mentioned before. However, the argument type calculation, i. e., the
type calculation for the lambda expression, would require the resolution of the method call forming
an endless loop. Therefore, the type calculation has been extended to avoid such loops by, e. g.,
temporarily assigning an unkown type to lambda expressions in method calls and to avoid other con-
flicts. Nonetheless, it is unclear if all cases are covered and if the current architecture for calculating
types and type parameters is sufficient for future enhancements (L2).

With the separation of the parsing and reference resolution, the assumption A1 has not to be fullfilled
if references to non-available files are not resolved. However, as the bindings are ignored, model in-
stances of packages and modules are only generated if there are corresponding package-info.java

and module-info.java files. As a consequence, assumption A2 does not hold. Therefore, the meta-
model was adapted so that the reference of ConcreteClassifiers to packages and the reference
of packages to modules are optional. Furthermore, the java.references.PackageReference rep-
resents packages in expressions, e. g., java and java.lang in r = java.lang.Object.class;.

The Classpath from the original JaMoPP version, actually the JavaClasspath [25], was not re-
moved. In the first variant, it provides access to all models to establish references. With the
re-introduction of the reference resolution and proxy object creation in the second variant, the
JavaClasspath was employed to store the mapping between logical URIs and the physical location
of files again. Initially, in the original JaMoPP version, the JavaClasspath distinguished between
different ResourceSets and a global scope for the mapping [25]. While there is no such differenti-
ation in the first variant, it was re-implemented in the second variant.

To increase the maintainability of the manual printer implementation of the first variant, the printer
was split into multiple classes.

10



5 Third Variant: Combination of the First and Second Variant

The third variant extends the principle of the second variant by incorporating a binding-based reso-
lution which is similar to the first variant.

The third variant’s parsing process is shown in Figure 8. It starts with the parsing of the source code
by the Eclipse JDT Core. Afterwards, the resulting ASTs are converted to models. Hereby, proxy
objects are created for the references as in the second variant. However, compared to the second
variant, the bindings are stored in the context of a proxy object so that they are used directly after
the conversion to obtain the model elements and to resolve references. If all bindings have been
investigated, the parsing ends. If there are unresolved references and their resolution is requested at
a later point in time, the resolution mechanism of the second variant is used.

Parse Code into ASTs Convert ASTs to Models with Proxy Object Creation

Resolve Proxy Objects with valid Bindings

Figure 8: Parsing process of the third variant.

Parts of the architecture and organization of the binding-based resolution is shown in Figure 9.
While every binding type has its own specialized class for the resolution, the resolution process is
hierarchically organized. To resolve methods or fields, for example, their declaring type is resolved
beforehand. If a type is also contained within another type, the other type is resolved at first. This
procedure is repeated until a top level type is reached. If the top level type is part of the parsed
source code, its model is available and can be directly returned by finding the model through its
unique fully qualified name. In the case of top level types in dependencies or the JDK, there is
only the binding. Thus, similar to the first variant, the binding is converted to a model so that all
contained types, methods, and fields have a model representation. After a top level type has been
resolved, it is used to obtain the method, field, or nested type.

The process to find inner and anonymous classes is different compared to the search for other elements
because they have no name or no unique name which can be used to identify them. Although the
bindings provide a method to obtain a unique key for a binding [22], it cannot be used to find the
corresponding model element. However, type bindings also have a method to get the binary name

ITypeBindingResolver

IMethodBindingResolver IVariableBindingResolver

IAnnotationBindingResolver

IMemberValuePairBindingResolver

IPackageBindingResolver

IModuleBindingResolver

declaring type declaring type

declaring typeannotation type

annotation type member

Figure 9: Organization of the binding-based resolution.

11



of a type as it is defined in the JLS 3 [24]. According to the definition,

”The binary name [...] consists of the binary name of its immediately enclosing type,
followed by $, followed by a non-empty sequence of digits, followed by the simple name
of the local class” [15]

in the case of a local class. Practically, the digits form a number which gets incremented for every
inner or anonymous class within a type. It is distinguished between numbers for innner and anonymous
classes and numbers for different hierarchical levels. For example, both anonymous classes in the
source code example in Listing 2 have the same number 0 while the first inner class C gets the
number 0 and the second inner class C gets the number 1. Using the number, it is possible to find
an inner or anonymous class by counting the classes within the declaring type. If the counted and
provided number are equal, the inner or anonymous class is found.

1 class Z {}

2 class A {

3 class B {

4 public void m() {

5 Z z = new Z() {

6 public void n() {

7 Z y = new Z() {};

8 }

9 };

10 { class C {} }

11 { class C {} }

12 }

13 }

14 }

Listing 2: A source code example for the resolution of inner and anonymous classes.

In the case of local variables or parameters, their bindings are not used for the resolution because
the implementation effort exceeds the benefit as the resolution mechanism of the second variant is
already implemented and sufficient for the resolution.

The Eclipse JDT Core infers types for local variable declarations or lambda parameters with var as
type in form of type bindings [2, 3]. As a consequence, the third variant converts such type bindings
to type references and sets them as the actual types of InferableTypes.

If the third variant is used without the binding-based resolution, the second variant is effectively used.
Therefore, the third variant allows the control of the binding-based resolution with specific parser
options. The option RESOLVE BINDINGS enables the binding-based resolution at all. Next, the
option RESOLVE BINDINGS OF INFERABLE TYPES controls whether type bindings of inferred
types are converted. With the option RESOLVE ALL BINDINGS, the binding-based resolution is
repeatedly performed until there are no bindings left similar to the completion step of the first
variant. Because the models contain proxy objects even after a full binding-based resolution, the
option RESOLVE EVERYTHING resolves all remaining proxy objects with the second variant so
that the models after the parsing only include proxy objects which cannot be resolved. While the
second variant loads files on demand to resolve references, the third variant can convert bindings
instead of loading the corresponding files. As a result, the option PREFER BINDING CONVERSION
allows to control if bindings shall be converted or files shall be loaded. In addition, the option
CREATE LAYOUT INFORMATION prevents the generation of layout information if it is disabled,

12



and the option REGISTER LOCAL enables or disables the global or local, i. e., for a specific
ResourceSet, storage of the mappings in the JavaClasspath.

Regarding the output of the Java models in the XML Metadata Interchange (XMI [30]) format, all
three variants support the format. Additionally, the new JavaResource2 provides the possibility to
save Java models as javaxmi files directly in the XMI format. If only specific models of all generated
models are stored in the XMI format and they are programmatically loaded again or opened in the
XMI editor, errors arise because EMF cannot find the non-stored models referenced by the stored
models. In case of the second and third variant, proxy objects are stored in the XMI format, but also
cause errors when they are accessed. Thus, a temporary solution is to resolve all references and to
store all models.

Similar to the second variant, the assumption A1 has not be fullfilled if references to non-existing
model elements are not resolved, and the assumption A2 does not hold. The limitations L2 re-
mains.

6 Comparison of the Three Variants

JaMoPP offers three variants for the reference resolution and multiple parser options in the third
variant. As a consequence, the selection of a suitable variant depends on the use case and its goals.
Therefore, the variants are compared in the following to guide the selection.

Due to the architectural design of JaMoPP, all variants differentiate between the source code of a
project which is parsed with the Eclipse JDT Core and the dependencies of a project and the JDK
which are usually not available in their source code form and represented as bindings.

To improve the insight into the implementation of all variants, their execution time was measured.
On a computer with an Intel Core i7-4790K CPU and 32 GB working memory, JaMoPP parsed
the TeaStore1 in version 1.4.0. The TeaStore provides a Web-based store for Tea and related
products [27]. It is designed as a test and benchmarking framework for the evaluation of, e. g.,
performance modeling approaches, run-time auto-scalers, or energy efficiency and power prediction
methods and is implemented in Java. Before the execution of JaMoPP, the TeaStore was built so
that all dependencies were available and all proxy objects could be resolved. For the execution, the
first variant2 and the third variant with varying parser option settings3 were selected and abbreviated
with the following letters:

FV: First Variant.

SV: Second Variant which is the third variant where all resolution options are turned off.

OL: One level of the resolution is executed in the third variant, i. e., only the options RE-
SOLVE BINDINGS and RESOLVE BINDINGS OF INFERABLE TYPES are turned on.

WR: The third variant without the RESOLVE EVERYTHING option turned on is executed.

FR: Full resolution in which the third variant has all resolution options turned on.

1https://github.com/DescartesResearch/TeaStore
2Corresponding to commit 94bed8fd94b52d354473df0d667d1ffb70ae265b in the JaMoPP repository.
3Corresponding to commit 7c980cd1bf1bd381dc1a85577011df72c123f2bc in the JaMoPP repository.

13

https://github.com/DescartesResearch/TeaStore


For the execution of the third variant, the parser options CREATE LAYOUT INFORMATION and
REGISTER LOCAL were always turned on. In order to improve the comparability between the
executions, the goal of the parsing includes a full resolution of all references. In case of SV, OL, and
WR, the process is split into the parsing phase and a resolution phase in which all remaining proxy
objects are resolved. However, in the resolution phase of SV and OL, the time limit of one hour
was exceeded. Thus, in SV and OL, only the proxy objects in the source code models were resolved.
In addition, all measurements were executed 20 times except for FR which was repeated 100 times.
Beside the parsing, the complete test process of the original JaMoPP version was executed to ensure
that the parsed models are correctly parsed and printed.

Table 1 displays the measured average execution times. The first variant completes in 13.6s on
average. In comparison to the combined execution times of the other variants, it is the fastest
variant. The combined execution times for the second and third variant are higher because the
parsing and resolution are separated by employing proxy objects which add an overhead and because
the dependency and JDK models in SV and OL contain more proxy objects compared to WR and FR
which convert more bindings to models. Considering the second variant, it has the smallest parsing
time with 3.4s because it only converts the ASTs to models. The more resolution is performed after
the parsing, the longer the parsing process takes to finish.

FV SV OL WR FR

Parsing Resolution Parsing Resolution Parsing Resolution

13.6s 3.4s 72.1s 6.6s 129.3s 105.1s 3.4s 128s

Table 1: Average execution times for JaMoPP with different variants and parser options.

As previously mentioned, all three variants can provide complete models. While the first variant
and third variant with all resolution options turned on provide the complete models directly after
the parsing, the second and third variant decouple the resolution from the parsing and allow the
resolution on demand. As a consequence, it needs to be considered which models are accessed
and when the access takes place. If the models of the dependencies or the JDK are not frequently
accessed or not at all, proxy objects with a partwise resolution can be appropriate. Additionally, the
usage of proxy objects saves memory. For FV and FR, all models were also stored in the XMI format
to compare the size of all models to the size of the source code models. In FV, 4718 models need
89.7MB space from which 282 files contain the source code models of the TeaStore including its test
files and taking 10.6MB of space (12% compared to all models). In comparison, FR produces 3921
model files with overall 102MB and 201 source code models with 14.1MB (14% compared to all
models). The derivation between FV and FR comes from the exclusion of the test files and changes
in the meta-model.

As outlined in section 3 with limitation L1, changes in the source code require a complete parsing
of the code in the first variant while only the changed files can be parsed in the second and third
variant.

Considering the internal implementation of JaMoPP, it is expected that all three variants require
approximately the same maintenance effort. In the first variant, the parsing and resolution are tightly
coupled and respect several edge cases. Therefore, extensions can be complex to be implemented.
In contrast, the second and third variant base their resolution on the architecture of the original
JaMoPP version with limitation L2 and including type calculations. Here, enhancements can require
adjustments in the architecture or type calculation.

14



7 Potential Future Work

This section covers topics for possible future enhancements and improvements of JaMoPP.

7.1 Support for Further Java Versions

Currently, Java files conforming to the JLS 3 and 6-15 can be represented as models of the JaMoPP
meta-model. Based on the JLS 16 and 17, their new features can be implemented. It requires
extensions at different locations in the source code. At first, the meta-model needs to be enhanced
to contain corresponding model representations for the features. Afterwards, the parser and printer
are extended to generate and output the model elements. At last, it needs to be considered which
changes take place in the reference resolution. Depending on the features, the resolution has to
check additional model elements as the potential target of a reference. For example, records or local
variables as the pattern in instanceof expressions are such possible targets. Furthermore, new
features can introduce new locations for proxy objects or new types of references which can require
further or extended resolvers.

7.2 Updating the First Variant’s Parser and Unifying the Parser Implementations

As hinted in the comparison of the three variants in section 6 and due to the separated development
of the first and second / third variant, there is one parser for the first variant and one parser for the
second / third variant. Both parsers diverged from each other during the development so that the
parser of the first parser is not up-to-date with the latest changes in the meta-model and architecture
introduced by the second / third variant. Therefore, future work can include the update of the first
variant.

In order to update the first variant’s parser, there are two possibilities. At first, the implemented parser
can be adapted and updated to cover the changes. On the other hand, both parsers can be combined
to reduce the maintenance effort by having only one parser. For the combination, two interfaces are
required: a model element provider and a reference provider interface. The model element provider
injects the correct model objects into the parser. In the first variant, the model element provider
handles the model objects as described in section 3. As a result, model objects are created and cached
on their first retrieval and returned in subsequent requests. The implementation for the second /
third variant always creates new model objects. The reference provider interface is responsible for
handling the references. While it looks up the target and sets references directly in the first variant,
the second / third variant’s implementation creates proxy objects. The JDTResolverUtility with
the completion step remains for the first variant.

7.3 Improve Handling of $ in Type Names

According to the JLS 3 and 7-17 [15, 12, 13, 14, 4, 5, 6, 7, 8, 9, 10, 11], type names are allowed to
contain $ characters. At the same time, the binary name of inner and anonymous types include a $
to separate the binary name of their declaring type from the inner or anonymous type’s name. By
using the ClassFileModelLoader in the second and third variant, JaMoPP differentiates between
. and $ as separators for packages and types in fully qualified names in certain places to support

15



both meanings of $. As a consequence, it can be checked if the ClassFileModelLoader allows to
identify all individual type names of a binary name including $ characters in type names and omitting
them as name separators. If this determination is possible, the code for handling $ in type names
can be simplified and reduces the maintenance effort.

7.4 Adopting Parts of Xtext

Xtext provides an environment to define grammars for domain-specific languages [28]. It creates an
Ecore-based meta-model, a parser to generate models, and a serializer to print the models back into
the textual syntax [21]. As the models are integrated into EMF, Xtext also includes a mechanism
to create proxy objects for references [29]. A proxy object URI encodes the proxy object’s context
and is used to find the referenced element by a linking service. Xtext allows language-dependent
implementations of the linking service and extensions of the default simple linking service implemen-
tation.

By comparing the mechanisms of Xtext and JaMoPP, similarities between both environments re-
garding the proxy object URI and reference resolution are found. Therefore, it can be checked which
parts of Xtext can be reused or adopted in order to reduce the complexity and maintenance effort of
JaMoPP.

Currently, the context of proxy objects in JaMoPP are separatedly stored in in-memory objects which
are not persisted. If the proxy object URI generation of Xtext can be applied on JaMoPP’s proxy
objects, the additional context object is not needed. Moreover, the context is persisted and can be
restored from the proxy object URI. At the same time, the removal of the context object requires
adaptations to the reference resolution and a new mapping between the proxy objects and their
corresponding bindings for the binding-based resolution.

Combining the reference resolution of JaMoPP with Xtext’s linking service, JaMoPP’s reference
resolution can become a specialization of Xtext’s linking service. It can form an architecture which
easily allows future extensions and overcomes L2. However, a switch to the linking service requires
major changes in JaMoPP’s reference resolution and thus implementation effort.

7.5 Recovery Mechanisms

As mentioned before, proxy objects which cannot be resolved cause issues if they are accessed. Thus,
a recovery mechanism can mitigate connected errors by creating model elements for unresolvable
proxy objects. It assumes that the reference resolution has been executed before. The actual goal
and complexity of a recovery mechanism depends on the concrete use case. A simple recovery
mechanism as example can provide only model elements to prevent having proxy objects without
generating complete corresponding models. If more accurate models are required, an advanced
recovery mechanism needs to be implemented. In the following, a simple and an advanced recovery
mechanism are proposed. It is their first proposal so that they can be incomplete and can potentially
not cover all cases due to the complexity of the Java syntax.

Both mechanisms consider all types of proxy objects and container of proxy objects. This includes
import statements, annotations, methods for annotation values, references to modules, references to
packages, references to types (represented by TypeReferences), and references in expressions which
are further divided into constructor calls, method calls and identifier references. In the latter context,

16



an identifier can reference a package, type, field, local variable, method parameter or method (in a
method reference expression). As the printer uses the name of proxy objects of the resolved elements
to output the name, the recovery mechanisms ensure that the generated elements have a suitable
name.

7.5.1 A Simple Recovery Mechanism

The simple recovery mechanism aims at generating model elements for proxy objects to avoid having
proxy objects while the elements are loosely connected to have valid models. Thus, before the actual
element is recovered, in an initialization step, one JavaResource is created which will contain all
root model elements generated in the following. Beside packages and modules as root elements, only
one CompilationUnit is required which will hold all types. In addition, a container class with an
arbitrary name for all new fields, constructors, and methods is created.

Import Statements There are four types of import statements [9]:

1. single-type-import, e. g., import java.lang.Object;,

2. type-import-on-demand, e. g., import java.lang.*;,

3. single-static-import, e. g., import static org.junit.Assert.assertTrue;, and

4. static-import-on-demand, e. g., import static org.junit.Assert.*;.

Sinlge-type-imports and static-imports-on-demand refer to exactly one type [9] so that a class with
the corresponding name can be created. Nonetheless, it has to be considered that the original
imported type can be the inner type of another type as shown in the example Listing 3. Although the
JLS suggests a naming convention in which type names start with uppercase letters and packages
with lowercase letters [9] which would allow to differentiate types from packages, the alternative
implementation of class B depicted in Listing 4 is also valid code and compiles. Therefore, the simple
recovery mechanism always assumes packages for all parts of the qualified name before the type name
and does not consider potential outer classes. This strategy (S1) will be applied throughout both
recovery mechanisms.

1 package x.y;

2
3 public class A {

4 public static class B {

5 public static void m() {}

6 }

7 }

8
9 package k.l;

10
11 import static x.y.A.B.*;

12
13 public class C {

14 }

Listing 3: Source code example for the import of an inner class.

17



1 package x.y.A;

2
3 public class B {

4 }

5
6 package k.l;

7
8 import static x.y.A.B.*;

9
10 public class C {

11 }

Listing 4: Alternative example for an import statement in which a top-level class is imported.

Type-imports-on-demand can denote a type or package [9]. Based on the aforementioned strategy
S1, a package is always assumed, and no element is created.

In case of a static-import-on-demand, the last part of the qualified name represents the imported
member of a type whose name is the second-last part of the import. The simple recovery mechanism
creates a class for the type and a static method for the imported member. Both elements receive the
corresponding name. Additionally, the return type of the method is set to void, and its statement
to an empty block. The previously handling of a method’s creation will be applied on all methods in
the simple recovery mechanism and will be referred to as the strategy S2.

Annotations The annotation interface of an annotation can come from either an import statement,
the same package as the class which employs the annotation, or a type referenced by multiple name
parts. In all three cases, the annotation interface with the name of the annotation is created. For
methods of annotation values, strategy S2 is applied.

References to Packages or Modules For referenced packages or modules, a corresponding root
model element is created and added to the JavaResource. The name of the package or module is
split into its individual parts which are set as the namespaces of the generated model element.

References to Types For every directly referenced type, e. g., a parameter type or the type of a
local variable, a new class with the name of the type is created applying S1.

References in Expressions For constructor and method calls, strategy S2 is executed except that
a constructor has no return type and S1 is applied on constructor calls if they contain multiple name
parts.

For identifier references, it is difficult to determine the type of the actual referenced element. There-
fore, for every identifier reference, a field with the name of the identifier is generated and added to
the container class. The type of the field is set to int.

18



7.5.2 An Advanced Recovery Mechanism

The proposed advanced recovery mechanism tries to re-create the original source code as close as
possible so that the printed models could be compiled. However, in certain cases, only a best guess
is possible because the context does not provide appropriate information to properly reconstruct the
original source code as outlined in the explanation for strategy S1.

In general, if a type with a known full qualified name has no model representation, it is created so
that the resulting full qualified name of the model element equals the type’s name requiring a new
CompilationUnit for every type. New types will also be created. Usually, the actual types are
unknown and receive an arbitrary valid type name, and a class is created for types if not explicitly
stated otherwise. If a method or field is generated, it needs to be attached to a suitable type
while existing methods and fields in the target type are checked as alternative elements before the
generation because, e. g., method overloading is allowed, but methods with the same name cannot
have different return types.

Import Statements The advanced recovery mechanism handles import statements similar to the
simple recovery mechanism with some exceptions. The concrete created elements depend on their
further usage in the model. If, e. g., an imported type is used as an annotation, an annotation
interface is required. In contrast, if an imported type is part of the implements declaration of a
class, it is an interface. For static-imports-on-demand, a method is generated if a method call has
the name of the imported member. Otherwise, a field is created.

Annotations As in the simple recovery mechanism, an annotation can reference either an imported
type, an annotation interface within the same package as the type employing the annotation interface,
or a type with multiple name parts. In case of an imported type, the annotation can be resolved
when the import statement is resolved. If the type is not imported and the annotation has a simple
name, the annotation interface is located in the same package as the utilizing type so that the full
qualified name of the annotation interface is the package name of the utilizing type combined with the
annotation name and a corresponding type can be created. Otherwise, the annotation has multiple
name parts where two cases need to be differentiated. If at least the first name part references an
imported type, all following names refer to inner types which are created accordingly. Additionally, if
a name includes type arguments, a type parameter is generated for every type argument and attached
to the corresponding type. No bound is set for the type parameter while its name can be arbitrary,
but must be valid. If the first name part of an annotation does not reference an imported type, the
name is a full qualified name for which an annotation interface is created. If there is a name part
with type arguments, it denotes a type so that a corresponding model element is generated. All
name parts which follow result in inner types.

For every annotation value, a new method is created and added to the annotation interface. An
annotation value is connected with a name which is used for the method. If there is no connected
name, the default name value is set. Every generated method has no parameter and receives a
return type which is inferred from the annotation value. At last, it declares no default value and has
an empty statement.

References to Packages and Modules The advanced recovery mechanism handles references to
packages and modules as the simple recovery mechanism.

19



References to Types Similar to annotations, references to types are handled. Instead of generating
annotation interfaces, classes or interfaces are created. An interface is only selected for a type if the
type reference occurs in a location in which only interfaces are allowed, e. g., in an implements

declaration or as further types in cast expressions or type bounds of type parameters.

References in Expressions: Identifier Reference Conversion For every identifier reference, the
advanced recovery mechanism usually considers the type of the previous reference at first. However,
if the identifier reference is the first reference in a chain, two cases are differentiated as in annotations
or type references. Thus, if the identifier reference is resolved, its type can be obtained. Else, a new
class is created with the identifier as name located in the same package as the class containing the
identifier reference.

When the previous type of an identifier reference is obtained, a new field is generated. The name
equals the identifier of the identifier reference. If the previous reference is a direct type reference,
the new field is static while its type is a new class. Otherwise, the new field is not static. Its type
depends on the resolution of the previous reference. If the previous reference was recovered, the type
of the new field is set to the type of the previous reference. Else, a new class is created and set
as the type of the field. In specific contexts, and if an identifier reference is the last reference in a
chain, the type for the field can be inferred from the context. A simple example is the assignment
expression int f = d.e; where e needs to have the type int.

References in Expressions: Method Call to Method Conversion For a method call, a new
method is generated. It receives the name used in the method call, and every argument is converted
to a parameter. Thus, the number of parameters equals the number of arguments. While the
parameter names can be arbitrary or follow a specific pattern, e. g., param followed by an increasing
number, the parameter type equals the argument type if it can be inferred from the argument. If
this is not possible because the argument contains nested references with unresolvable proxy objects,
lambda expressions, or method reference expressions, the advanced recovery mechanism recursively
applies to the argument resulting in a new or known type for the argument and parameter. In
addition, if the method call declares type arguments, they are converted to type parameters as for
annotations. Surrounding try-catch blocks of a method call are considered for exceptions thrown
by the new method. For the return type of the new method, a new type is created if the context
does not dictate the type similar to identifier references. Also similar to identifier references, the new
method is static if the previous reference is a direct type reference and not static else. To conclude
the conversion, if the new method is part of an interface, its statement is an empty statement. If it
is part of a class, the statement is set to a block with a return statement returning null.

References in Expressions: Constructor Call to Constructor Conversion Analogous to method
calls, a constructor call is converted to a constructor. Nevertheless, a constructor call references a
type which is handled as the types in type references or annotations to get the concrete type element
to which the new constructor is added. Compared to method calls, a constructor does not require
a return type and can have type arguments for the referenced type and for the constructor. As a
result, type arguments for the constructor are converted to type parameters of the constructor.

Lambda Expression to Type Conversion The target type of a lambda expression is a functional
interface, i. e., an interface with exactly one non-static abstract method [9]. Therefore, a new
interface is created for a lambda expression. To this interface, a new method with an arbitrary, but

20



valid name and empty statement is added. Every parameter of the lambda expression is converted
to a parameter of the method. If the lambda parameters are explicitly typed without var as type,
the method parameter type equals the lambda parameter type. Otherwise, every parameter receives
a new type. In the body of the lambda expression, the advanced recovery mechanism is also applied
because the body is considered for the return type of the new method. If it is a block without a
return statement or with an empty return statement, the return type is void. In all other cases, the
return type is inferred from the lambda body, i. e., it is the type of the expression if the lambda body
is an expression, or the type of the return statements in a block if the lambda body is a block.

Method Reference Expression to Type Conversion There are two cases for method reference
expressions if their type needs to be determined: either the referenced method cannot be resolved or
they reference potentially multiple methods. In the latter case, one of the methods can be arbitrarily
selected. For the first case, a new method is created. Because a method reference expressions also
refers to a type, the new method will be added to this type. The name of the method equals the
name of the referenced method while the method receives zero parameters, a block with a return
statement returning null, and a new type as the return type.

With the aforementioned mechanism to obtain the method referenced by a method reference expres-
sion, the method can be converted to a method in a functional interface because the target type of
a method reference expression is a functional interface [9]. Therefore, a new interface with a new
method is generated. All attributes of the referenced method can be copied to the method of the
functional interface.

8 Conclusion

This documentation presented the current state of JaMoPP. Compared to the original JaMoPP
version, the meta-model was extended to support the features of Java 7-15. Furthermore, the
dependency to EMFText was removed by implementing a manual printer and parser which is based
on the Eclipse JDT Core. Three variants are available for the resolution of references between Java
models. While the first variant generates complete models by directly setting the references, the
second and third variant introduce proxy objects for references which can be resolved at a later point
in time. In addition, the third variant offers a binding-based resolution which performs the resolution
after the parsing and utilizes the bindings of the Eclipse JDT Core ASTs. In a comparison of all
three variants, the average execution time indicate that the first variant is the fastest one while the
proxy objects can support certain use cases with frequent accesses within the source code models and
saving space. At last, topics for the potential future development of JaMoPP has been described.
This includes the features of Java 16 and 17, the adoption of parts of Xtext to possibly reduce
the maintenance effort, and recovery mechanisms to create model elements for unresolvable proxy
objects.

References

[1] Class ASTParser. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.org/
maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.

doc.isv-3.14.800.jar.

21

https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar


[2] Class Type. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.org/maven2/
org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-

3.14.800.jar.

[3] Class VariableDeclarationFragment. Accessed: 17.01.2021. June 2020. url: https://repo1.
maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.

eclipse.jdt.doc.isv-3.14.800.jar.

[4] James Gosling et al. The Java Language Specification, Java SE 10 Edition. Feb. 20, 2018.
url: https://docs.oracle.com/javase/specs/jls/se10/jls10.pdf.

[5] James Gosling et al. The Java Language Specification, Java SE 11 Edition. Aug. 21, 2018.
url: https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf.

[6] James Gosling et al. The Java Language Specification, Java SE 12 Edition. Feb. 8, 2019. url:
https://docs.oracle.com/javase/specs/jls/se12/jls12.pdf.

[7] James Gosling et al. The Java Language Specification, Java SE 13 Edition. Aug. 21, 2019.
url: https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf.

[8] James Gosling et al. The Java Language Specification, Java SE 14 Edition. Feb. 20, 2020.
url: https://docs.oracle.com/javase/specs/jls/se14/jls14.pdf.

[9] James Gosling et al. The Java Language Specification, Java SE 15 Edition. Aug. 10, 2020.
url: https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf.

[10] James Gosling et al. The Java Language Specification, Java SE 16 Edition. Feb. 12, 2021.
url: https://docs.oracle.com/javase/specs/jls/se16/jls16.pdf.

[11] James Gosling et al. The Java Language Specification, Java SE 17 Edition. Aug. 9, 2021. url:
https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf.

[12] James Gosling et al. The Java Language Specification, Java SE 7 Edition. Feb. 28, 2013. url:
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf.

[13] James Gosling et al. The Java Language Specification, Java SE 8 Edition. Feb. 13, 2015. url:
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

[14] James Gosling et al. The Java Language Specification, Java SE 9 Edition. Aug. 7, 2017. url:
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf.

[15] James Gosling et al. The Java Language Specification, Third Edition. Addison-Wesley, June
2005, p. 688. url: https://docs.oracle.com/javase/specs/jls/se6/jls3.pdf.

[16] Florian Heidenreich et al. “Closing the Gap between Modelling and Java”. In: Software Lan-
guage Engineering. Ed. by Mark van den Brand, Dragan Gašević, and Jeff Gray. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 374–383. isbn: 978-3-642-12107-4.

[17] Florian Heidenreich et al. “Derivation and Refinement of Textual Syntax for Models”. In:Model
Driven Architecture - Foundations and Applications. Ed. by Richard F. Paige, Alan Hartman,
and Arend Rensink. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 114–129. isbn:
978-3-642-02674-4.

[18] Florian Heidenreich et al. JaMoPP: The Java Model Parser and Printer. Tech. rep. 2009.

[19] IBM. Übersicht zu Eclipse Modeling Framework (EMF). June 16, 2005. url: https://www.
ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/

references/overview/EMF.html.

[20] Oracle Inc. Java Language and Virtual Machine Specifications. 2020. url: https://docs.
oracle.com/javase/specs/.

[21] Integration with EMF. Accessed: 19.12.2021. url: https://www.eclipse.org/Xtext/
documentation/308_emf_integration.html.

22

https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://docs.oracle.com/javase/specs/jls/se10/jls10.pdf
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
https://docs.oracle.com/javase/specs/jls/se12/jls12.pdf
https://docs.oracle.com/javase/specs/jls/se13/jls13.pdf
https://docs.oracle.com/javase/specs/jls/se14/jls14.pdf
https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf
https://docs.oracle.com/javase/specs/jls/se16/jls16.pdf
https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se6/jls3.pdf
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html


[22] Interface IBinding. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.org/
maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.

doc.isv-3.14.800.jar.

[23] Interface IPackageBinding. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.
org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.

jdt.doc.isv-3.14.800.jar.

[24] Interface ITypeBinding. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.org/
maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.

doc.isv-3.14.800.jar.

[25] JaMoPP. June 9, 2019. url: https://github.com/DevBoost/JaMoPP.

[26] JDK 17. Accessed: 20.01.2022. Sept. 14, 2021. url: https : / / openjdk . java . net /

projects/jdk/17/.

[27] Jóakim von Kistowski et al. “TeaStore: A Micro-Service Reference Application for Benchmark-
ing, Modeling and Resource Management Research”. In: Proceedings of the 26th IEEE Inter-
national Symposium on the Modelling, Analysis, and Simulation of Computer and Telecom-
munication Systems. MASCOTS ’18. Milwaukee, WI, USA, Sept. 2018.

[28] LANGUAGE ENGINEERING FOR EVERYONE! Accessed: 19.12.2021. url: https://www.
eclipse.org/Xtext/index.html.

[29] Language Implementation. Accessed: 19.12.2021. url: https://www.eclipse.org/Xtext/
documentation/303_runtime_concepts.html.

[30] Object Management Group, Inc. XML Metadata Interchange (XMI) Specification - Version
2.5.1. June 7, 2015. url: https://www.omg.org/spec/XMI/2.5.1/.

[31] Package org.eclipse.jdt.core.dom. Accessed: 17.01.2021. June 2020. url: https://repo1.
maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.

eclipse.jdt.doc.isv-3.14.800.jar.

23

https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://github.com/DevBoost/JaMoPP
https://openjdk.java.net/projects/jdk/17/
https://openjdk.java.net/projects/jdk/17/
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html
https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html
https://www.omg.org/spec/XMI/2.5.1/
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar

	Introduction and Foundation
	The JaMoPP Meta-Model Extension
	First Variant: Using the Eclipse JDT Core's Bindings
	Second Variant: Re-introducing Proxy Objects
	Third Variant: Combination of the First and Second Variant
	Comparison of the Three Variants
	Potential Future Work
	Support for Further Java Versions
	Updating the First Variant's Parser and Unifying the Parser Implementations
	Improve Handling of $ in Type Names
	Adopting Parts of Xtext
	Recovery Mechanisms
	A Simple Recovery Mechanism
	An Advanced Recovery Mechanism


	Conclusion
	References

