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H I G H L I G H T S  

• Metrological framework to compare SOH estimation methods for second-life cells. 
• Electrochemical impedance data measured during cell aging at 4 institutions. 
• Models based on raw EIS and NFRA data, and equivalent circuit and DRT fits. 
• All methods predict SOH of aged cells to within 1.5% SOH units RMS error. 
• SOH prediction uncertainty is principally governed by cell-to-cell variation.  
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A B S T R A C T   

Various impedance-based and nonlinear frequency response-based methods for determining the state-of-health 
(SOH) of commercial lithium-ion cells are evaluated. Frequency response-based measurements provide a spec-
tral representation of dynamics of underlying physicochemical processes in the cell, giving evidence about its 
internal physical state. The investigated methods can be carried out more rapidly than controlled full discharge 
and thus constitute prospectively more efficient measurement procedures to determine the SOH of aged lithium- 
ion cells. We systematically investigate direct use of electrochemical impedance spectroscopy (EIS) data, 
equivalent circuit fits to EIS, distribution of relaxation times analysis on EIS, and nonlinear frequency response 
analysis. SOH prediction models are developed by correlating key parameters of each method with conventional 
capacity measurement (i.e., current integration). The practical feasibility, reliability and uncertainty of each of 
the established SOH models are considered: all models show average RMS error in the range 0.75%–1.5% SOH 
units, attributable principally to cell-to-cell variation. Methods based on processed data (equivalent circuit, 
distribution of relaxation times) are more experimentally and numerically demanding but show lower average 
uncertainties and may offer more flexibility for future application.   
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1. Introduction 

Lithium-ion cells age due to repeated charge/discharge cycles and 
during storage. Once capacity fade exceeds the defined operational 
limit, typically 70–80% of the original capacity, the aged lithium-ion 
cells need to be replaced. Approximately 200,000 tonnes of lithium- 
ion cells enter the EU market annually [1]. Demand for lithium-ion 
cells increased by about 50% from 2018 to 2020 and it is projected 
that this number will increase to 14 times larger by the end of 2030 [2], 
due to the expanding electric vehicle market [3,4]. About 40% of aged 
lithium-ion cells are collected from the market and recycled [1]. This 
indicates that lithium-ion cell waste will increase rapidly and may 
exacerbate further problems in the future. Repurposing of aged 
lithium-ion cells could maximise cell utilisation prior to recycling or 
disposal. Aged lithium-ion cells can still be useful for lower power- or 
energy-density applications, such as domestic energy storage. Such cells 
are called second-use cells or second-life cells [5–7]. By repurposing 
aged cells, the cost of second-use applications can be significantly 
decreased. Also, the demand for raw materials to manufacture new cells 
will be reduced. 

For the economically viable application of second-use cells, an ac-
curate and cost-effective characterisation technique to estimate the 
state-of-health (SOH) is essential. SOH describes the actual charge ca-
pacity that can be stored in a cell, as a ratio to the nominal capacity 
value. Since module performance is limited by the individual cell with 
the lowest SOH, accurate SOH determination allows grouping of cells 
with closely matched SOH values, increasing module lifetime. Similar 
considerations apply to the grouping of modules in packs. The most 
common method to determine SOH is by integrating the transient cur-
rent during one complete charge/discharge cycle at a nominal operating 
current. The major drawback of this method is the long measurement 
duration, so that alternative, more approximate, techniques are required 
for rapid and/or online SOH estimation. 

Various SOH estimation models or algorithms have been proposed to 
address this shortcoming [8]. Models resolving the dynamic response of 
a cell seem to be highly suitable for such tasks, as they allow extraction 
of characteristic time constants and features from the dynamic experi-
mental response, which can be correlated to physical processes and 
states, such as SOH. The variety of dynamic diagnostic models for bat-
teries is wide, ranging from mechanistic, i.e., physics-based approaches 
via (semi-)empirical models based on equivalent circuits (EC), to 
data-driven models, and even hybrid models composed e.g., of 
data-driven and mechanistic models [9]. 

Mechanistic simulations employ physics-based cell models such as 
the pseudo-two-dimensional (P2D, “Newman”) model [10] or single 
particle (SP) model [11] to estimate the SOH of a cell as a function of its 
physical parameterisation. Physics-based models may be tailored to 
consider the physicochemical prediction of cell performance, as well as 
degradation processes such as solid-electrolyte interphase (SEI) growth 
[12]. In this way, besides SOH estimation, the root causes of capacity 
fade can also be quantified and the impact on ageing of operating con-
ditions, such as temperature, cycling depth or current, can be better 
understood. However, the practical utilisation of mechanistic models 
depends on resource-intense parameterisation [13,14], and due to 
model complexity, the operation and fitting of the models may not be 
rapid [15,16]. 

Compared to mechanistic simulation, exclusively data-driven 
(empirical) models are more easily implemented and show significant 
promise both for SOH estimation of cells after first life, as well as for 
online applications (during use) [8,17]. A data-driven model involves 
the training of an empirical model that maps a defined set of ageing 
parameters to SOH. Various training algorithms for SOH estimation 
have been extensively researched, e.g., neural networks [18–24], sup-
port vector machines (SVM) [25–27], relevance vector machines (RVM) 
[28–31], gaussian process regression [32,33], and extreme learning 
machines [34,35]. Correspondingly, different sets of ageing parameters 

have been identified and used as the inputs for the training algorithms. 
For example, Zhou et al. [28] defined mean voltage falloff within a 
specific voltage window as an indicator to predict SOH via simple 
regression and optimized RVM approaches. For online SOH estimation, 
Zhou et al. [36] employed an optimized gray model based on the time 
interval of equal discharging voltage difference, while Li et al. [37] 
implemented a recurrent neural network (RNN) with long short-term 
memory (LSTM) that uses a raw partial charging curve. Examples of 
other ageing parameters that have been proposed include the voltage at 
the beginning of discharge [38], constant current (CC) and CV charging 
time [23,32,39], charging/discharging energy and efficiency [23,34], 
rate of change of CV charging current [32], nominal voltage [23,32,34], 
peak heights/ratio from incremental capacity analysis (ICA) [40], in-
cremental voltage difference [22], characteristic features from the 
voltage relaxation curve [41], etc. 

Besides ageing parameters drawn from the DC voltage response, 
electrochemical impedance spectroscopy (EIS) has also been shown to 
be a viable data source for SOH estimation. EIS uses a small-amplitude 
oscillatory load to determine the complex impedance of the object 
under test, as a function of the load frequency [42]. EIS is especially 
useful for analysing the internal state of the cell – in particular, the 
interfacial properties that evolve as the cell ages. Efforts to date on SOH 
prediction using EIS have been reviewed comprehensively by Mc Carthy 
et al. [16], including online estimation challenges. One simple approach 
is the direct correlation of a spectral feature with cell degradation. For 
example, Zhang et al. [33] showed that, for a particular data instance, 
the impedances at 17.8 Hz and 2.16 Hz had the strongest correlation to 
the degradation, and so could be used for SOH estimation. Wang et al. 
[43] demonstrated that the phase shift at 79.4 Hz correlated positively 
to the internal temperature of the cell. A more involved 
impedance-based approach is SOH estimation using parameterisation 
from equivalent circuit (EC) models. Here, changes in circuit fit pa-
rameters are correlated to SOH. For example, both ohmic and charge 
transfer resistances have been shown to be reliable SOH predictors, as 
they increase consistently and significantly during cell ageing [19, 
44–49]. Other researchers have demonstrated promising SOH estima-
tion accuracy by considering additional EC parameters, namely SEI layer 
resistance, capacitance dispersion, inductance, and double layer 
capacitance [20,21,50]. Eddahech et al. [18] pointed out that by 
considering operating conditions such as temperature, cycling profile 
and depth-of-discharge (DOD) variation in conjunction with 
ageing-relevant parameters such as equivalent series resistance, the 
established SOH estimation model is more general to different applica-
tions and operating conditions. Examples of this wider approach include 
the work of Wang et al. [51], who established an SOH estimation model 
based on charge transfer resistance fitted from an EC model, including 
temperature and state-of-charge (SOC) variation, and Li et al. [52], who 
extracted ohmic resistance from an EC model via particle swarm opti-
mization and implemented it as an indicator for online SOH prediction 
in a cloud-based battery management system (BMS). 

Besides EIS, nonlinear characterisation methods, e.g., nonlinear 
frequency response analysis (NFRA), have been shown to have potential 
for ageing state estimation. Here, the higher harmonic responses to a 
large sinusoidal input signal, typically current, are analysed [53]. 
Harting et al. [54] revealed that higher harmonic signals are sensitive to 
ageing; not only do nonlinear responses increase with decreasing SOH 
[36] but the higher harmonics also change in a different way with the 
underlying ageing process, e.g., Li plating vs. SEI growth. Quantita-
tively, correlation between NFRA and SOH has been achieved using 
various features of the response amplitude [54] either directly [55] or 
with machine learning [13]. In Ref. [25], a support vector machine 
model for SOH prediction based on the summation of the second and 
third harmonics gave prediction accuracies below 5%. 

Since these various previous studies used different experimental 
conditions, cell formats and data analysis methods, comparison between 
them is currently challenging. An underpinning metrological framework 
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for impedance-based methods is currently lacking; such a framework 
should include traceability, quantified measurement uncertainties and 
defined measurement procedures to guarantee comparability of the re-
sults. In this work, we compare various selected impedance-based 
methods for the purpose of offline SOH estimation on cells following 
first life use: direct use of EIS data, EC fits to EIS, distribution of relax-
ation times (DRT) analysis on EIS, and NFRA. For each of the investi-
gated methods, we follow a common, systematic framework, 
progressing through data collection, data processing, parameter selec-
tion, model training, and model validation. Here, all methods are tested 
under equivalent experimental conditions, using a consistent source for 
the tested cells, with measurements undertaken at multiple institutions 
in parallel to demonstrate robustness of the methods with respect to 
hardware variation. Each of the methods is thoroughly evaluated in 
terms of its practical feasibility, estimation accuracy, and uncertainty. 
We also provide perspective on the extension of our methodology to cells 
aged under different cycling conditions, as well as cells with different 
formats and chemistries. The adaptation of the presented methodology 
to comparison of online SOH estimation approaches would also be 
feasible. 

2. Battery testing protocols 

Life-cycle tests (LCTs) were conducted by four different measure-
ment institutions on cylindrical 18650 cells (9 cells total, obtained from 
a commercial supplier) with a nominal capacity of 3 Ah. The selected 
cell chemistry has a lithium nickel manganese cobalt oxide (LiNi0.8-

Co0.1Mn0.1O2) positive electrode and a silicon-graphite composite 
negative electrode (Si content estimated as 2.8 ± 0.5 wt% from post 
mortem SEM-EDX analysis, to be reported separately). The cells were 
cycled between 3.0 V and 4.2 V (DOD 100%) at 45 ◦C and 4 A (≈1.33C), 
with a CC-CV protocol in the charging direction (current cut-off at 300 
mA) and CC in the discharging direction. Different cell cyclers were used 
at different institutions (Modulab-MACCOR, BaSyTec XCTS, BioLogic 
MPG-205). At 50- or 100-cycle intervals, the capacity of each cell was 
measured under consistent, repeatable conditions considered practical 
for a future standard measurement method, at 23 ◦C and 1.25 A (≈0.4C). 
SOH is computed by taking the ratio of the discharge capacity of the 
aged cell to the initially measured capacity of the fresh cell. Following 
each capacity measurement, the internal state of the cells was charac-
terised via EIS and, at one institution, NFRA. Dynamic measurements 
were carried out under the same conditions as capacity measurement, at 
specified SOC values using various electrochemical workstations at 
different institutions (MACCOR, Zahner Zennium, BioLogic SP-200, 
BioLogic MPG-205). SOC was adjusted by discharging the cells at 1.25 
A from the end-of-charge voltage, with the required extent of discharge 
being adapted according to the most recently measured capacity. After 
SOC adjustment, the cells were allowed to rest for at least 30 min before 
dynamic measurements were conducted. 

Measurement parameters for the EIS and nonlinear frequency 
response (NFR) measurements are shown in Table 1 and Table 2, 
respectively. For the NFR measurement, the AC excitation amplitude is 
chosen at 5 A to ensure an excitation of harmonic signals with good 
signal-to-noise ratio while avoiding significant cell heating that could 
induce additional ageing [56]. The investigated SOC range is restricted 
to SOC 20–80% to avoid overcharging due to the higher AC amplitude. 

The frequency range has a lower bound of 10− 1 Hz to avoid drift in the 
cell state over longer measurement durations [57]. 

3. Data set and analysis methods 

3.1. Life-cycle test data set and qualitative observations 

All data from the life-cycle tests were collated as a set of discrete 
‘experiments’, where each experiment represents an impedance or NFR 
spectrum gathered under a particular condition. The following cell in-
formation was available for each experiment:  

• Metadata (measurement institution and hardware, cell ID, etc.)  
• Cell condition  

o Number of elapsed cycles  
o SOC  
o SOH  

• Raw experimental data  
o Number and values of the frequencies at which impedance/NFR 

was recorded (different between different measurement in-
stitutions due to hardware choice)  

o Impedance / NFR data 

Fig. 1 plots the SOH evolution for all cells against the number of 
elapsed cycles. A consistent trend is observed for the data from all four 
institutions, indicating reproducibility of cell behaviour and SOH mea-
surement. Stronger cell-to-cell variation is noted principally at SOH 

Table 1 
EIS measurement parameters and conditions.  

EIS measurement parameters 

Temperature/◦C 23 
Excitation AC amplitude/A 0.5 (C/6) 
SOC/% 20, 35, 50, 65, 80, 100 
Frequency range/Hz 10− 2 – 104 

Frequency discretisation (log scale) 10 points/decade  

Table 2 
NFR measurement parameters and conditions.  

NFR measurement parameters 

Temperature/◦C 23 
Excitation AC amplitude/A 5 (1.67C) 
SOC/% 20, 35, 50, 65, 80 
Frequency range/Hz 10− 1 – 103 

Frequency discretisation (log scale) Above 66 Hz: 10 points/decade 
Below 66 Hz: 5 points/decade  

Fig. 1. Dependence of measured SOH on number of cycles (data for 9 cells total 
at 4 institutions). Cells are distinguished by color according to the institution at 
which experiments were performed. Distinct symbols (‘○’, ‘+’, ‘△’) are used to 
identify individual cells measured at each institute. The expected useful range is 
70%–95% SOH, corresponding to <2000 cycles. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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<75%, in which divergence in the rate of accelerated ageing arises 
across all cells. The corresponding variation in the EIS spectra is plotted 
in Figure S.1 (Supplementary Material). The variation in the EIS spectra 
at different SOCs during cell ageing (representative data for cell (○) from 
Institution 2) is shown in Fig. 2 (a), (b) and (d). A notable impedance 
increase occurs during cell ageing, especially for the lower-frequency arc 
(ca. 0.02 Hz–10 Hz), which is attributable to a charge transfer process 
for Li insertion in the active material at one or both electrodes of the cell. 
The impedance increase within this frequency range is more prominent 
when measuring at higher SOC. From the EIS data in Fig. 2, there is a 
promising indication that the impedance spectrum is sensitive to the 
SOH fade of the cell, and therefore it is suitable to investigate quanti-
tative models to correlate the impedance data to SOH fade. 

Unlike EIS, which probes the linear response of the cell, NFRA uti-
lises the higher harmonic signals that are generated when the cell re-
sponds nonlinearly to a larger perturbation [53,56]. Fig. 2 (c) and (e) 
show some typical examples of NFR spectra of the corresponding EIS 
during cell ageing. Notable higher harmonic responses occur only in the 
frequency range 0.1 Hz–2 Hz. For all SOC, the voltage amplitudes of the 
second (Y2) and third (Y3) harmonics increase monotonically with 
decreasing SOH. As for the EIS results, higher SOCs give a higher 
magnitude response. Nonlinear responses are only expected for 
nonlinear processes, such as charge transfer reactions; slow transport 
processes can cause additional nonlinearities [58]. The presence of 
significant nonlinear responses in the frequency range 0.1 Hz–2 Hz 
strengthens the inference that the EIS response in this frequency range is 
attributable to the charge transfer process for Li insertion in one or both 
electrode active materials. An increase in the nonlinear response in turn 
can be correlated to worsening charge transfer kinetics of the Li-ion cell, 
as has been illustrated by mechanistic modelling studies [57]. As the 
amplitudes of both Y2 and Y3 show a stronger increase during ageing at 
higher SOC, the high SOC and low frequency range appears to be most 
suitable for correlating NFR signals to the SOH fade. This encourages the 
development of an SOH model that utilises the NFR data directly. 

Systematic analysis of frequency-response data is not straightfor-
ward. A particular limitation preventing direct utilisation of EIS or NFR 
data for machine learning is that each spectrum comprises a set of 
discrete data points that are highly correlated to each other (i.e., they 
form a continuous spectrum). If the number of individual inputs is large 
but the inputs are highly correlated, reliable model training may require 
excessive quantities of input data; therefore, it is not appropriate to use 
raw impedance data directly and in their totality for practical machine 
learning. To resolve this challenge, different data reduction methods 
were applied to the impedance and NFR data. 

As identified in the literature review in the Introduction, the simplest 
approach is to limit the analysed data to specific frequencies. An alter-
native is to use EC or DRT analysis [59,60] to represent the raw 
impedance data as a smaller set of uncorrelated coefficients that are 
suitable as inputs to an empirical model, with minimal information loss. 
In the remainder of this section, we specify the mathematical methods 
used to derive the relevant EC (Section 3.2) and DRT (Section 3.3) pa-
rameters (“processed data”) for correlation to SOH. The general meth-
odology for formulating SOH models from raw or processed data is then 
introduced in Section 3.4. 

3.2. Equivalent circuit (EC) fitting 

Following inspection of the impedance spectra, all data were fit to 
the 2ZARC equivalent circuit shown in Fig. 3 (a), which was developed 
taking inspiration from the comparable equivalent circuits presented by 
Buteau and Dahn [61] and established empirically as sufficiently accu-
rate for the measured EIS data. The equivalent circuit chosen is not 
intended to be a direct, physicochemical representation of underlying 
processes in the cell, although to maintain a clear, convenient nomen-
clature, the circuit elements are notated according to conventional as-
signments (“ct”, “dl”, “diff”). The purpose of the equivalent circuit fit is 

data reduction by means of the nonlinear transformation represented by 
the circuit. An exemplar quality of fit is shown in Fig. 3 (b). 

The equivalent circuit in Fig. 3 (a) has an analytically expressed 
impedance in terms of 12 coefficients (see Equation (1)) as a function of 
angular frequency ω, as follows [61]: 

Z = Rs +
1

1
iωLs

+ 1
Rp+iωLp

+
∑2

k=1

Rct,k

1 +
(
iωRct,kCdl,k

)αdl,k +
(iω)αdiff

Qdiff
(1) 

The constant phase element (CPE) components in Fig. 3 (a) are 
parameterised in two ways, following Buteau and Dahn [61]; for com-
ponents tending ideally towards a capacitance (CPEct), a characteristic 
capacitance Cdl,k and phase angle αdl,k are used, while for the component 
tending ideally towards a Warburg impedance (CPEdiff), a capacity Qdiff 
and phase angle αdiff are used. A 1ZARC equivalent circuit can also be 
achieved by setting Rct,2 = 0 and removing αdl,2 and Cdl,2 from the fitting 
process; the 1ZARC circuit is more appropriate if only one arc can be 
discerned in the EIS data. The detailed fitting algorithm is described in 
Supplementary Material S.2. 

3.3. Distribution of relaxation times (DRT) fitting 

The DRT method represents an impedance spectrum as the response 
of a number of RC elements in series [62,63]. DRT analysis assumes that 
the process contributing to each RC element is best described as the sum 
of a (nominally) infinite number of contributing serial RC elements with 
relaxation times distributed around a time constant τ. This distribution 
reflects the complex interaction of transport processes and charge 
transfer reactions in the heterogeneous porous electrodes [59]. For an 
electrochemical system – such as a lithium-ion cell – that exhibits 
impedance behaviour that cannot be entirely described by RC circuit 
elements, impedance data must be pre-processed prior the DRT analysis; 
contributions to the impedance that do not possess RC circuit properties 
are removed from the spectrum [64]. The pre-processing approach is 
described fully in Supplementary Material S.3. 

From the pre-processed spectra, DRT responses were deconvoluted 
using the program DRTtools developed by Wan et al. [65]. For a 
meaningful analysis of impedance spectra by means of DRT, two aspects 
are crucial: (a) the selection of real and/or imaginary impedance data to 
be used for the calculation (in this study a combined data set of real and 
imaginary parts was used); (b) the choice of an appropriate value of the 
regularisation parameter λ, for the DRT calculation. It was found that in 
order to maintain a consistent identity of DRT features across the full 
SOH range, it was necessary to modify λ as a function of SOH. Full details 
of the data and regularisation parameter selection are given in Supple-
mentary Material S.3. 

For almost all spectra, the DRT analysis yielded the same number of 
time constants at each SOC. Five time constants τ1 − τ5 (enumerated by 
increasing magnitude of the time constant) were derived from each 
impedance spectrum recorded at SOC 100%, along with the corre-
sponding resistance (R) and capacitance (C). Thus, 15 DRT-based 
impedance parameters in total were identified from each spectrum; as 
each time constant τ equals the product of the corresponding R and C 
values, only 10 of these parameters are independent. 

3.4. Methodology for SOH estimation model training 

In this section we describe a consistent methodology for creating 
SOH estimation models using EIS or NFRA measurement data. All nu-
merical methods were implemented in MATLAB (MathWorks, version. 
R2019b or later). 

3.4.1. Data reduction 
To aid model training, data reduction is undertaken using various 

approaches; following data reduction, highly correlated ageing param-
eters are selected. We consider only data from experiments where the 
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Fig. 2. Example of EIS and NFR spectra during cell ageing recorded at different SOCs for cell (○) at Institution 2 in Fig. 1. LCTs were conducted at 4 A (CC-CV, cut-off 
current below 300 mA) and 45 ◦C. EIS was measured in galvanostatic mode (0.5 A) between 10− 2 – 104 Hz at 23 ◦C. NFRA was measured in galvanostatic mode (5 A) 
between 10− 1 – 103 Hz at 23 ◦C. 
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measured SOH is between 70% and 95%. This restriction ensures that 
the SOH models are applicable in the practical range of interest for 
second-life applications. To predict the highly nonlinear or anomalous 
ageing behaviour observed (Fig. 1) for fresh cells (SOH >95%) and 
highly aged cells (SOH <70%) would require a much more complicated 
and, overall, less accurate model, without providing additional insight 
in the SOH range of primary interest to our application. 

3.4.2. Ageing parameter selection 
Following data reduction according to SOH, suitable ageing param-

eters that correlate with the SOH fade are identified from each of the 
impedance-based methods. The ageing parameters take the following 
forms: for the direct impedance-based SOH model, raw EIS spectral data, 
namely real (Z′) and imaginary (Z′′) impedances at the characterised 
SOCs and frequencies (Table 1); for the EC-based SOH model, the EC 
model parameters as shown in Table S.1 (Supplementary Material); for 
the DRT-based SOH model, time constants and their respective re-
sistances and capacitances; and lastly, for the NFRA-based SOH model, 
raw NFR spectral data, namely second (Y2) and third (Y3) harmonics at 
the characterised SOCs and frequencies (Table 2). 

For each method, consideration is given to whether a model could be 
prepared using a single choice of SOC, so that only one spectrum would 
need to be recorded in practice. Priority is given to models using 
impedance data at SOC 100% for practical reasons, since this cell con-
dition can be more easily achieved than other SOCs (it is attainable by 
charging to a defined voltage). We recognise that the high sensitivity of 
impedance to SOC at this SOC extreme might be an argument to 
discourage this selection; this issue should be evaluated more fully by 
future work, but for the purpose of the present study we emphasise 
projected practicality of the methods. 

The strength of the correlation between the ageing parameters and 
the SOH fade is assessed via Spearman rank correlation (Supplementary 
Material S.4), a generalized correlation method that has been used for 
battery SOH correlation analysis previously [25]. Complementary re-
sults from Pearson correlation analysis are given in Supplementary 
Material S.5. 

3.4.3. Model definition and training 
Once ageing parameters have been selected with the support of the 

correlation coefficient information, an empirical model is developed 
using the training data set. Models are trained using stepwise linear 
regression to coefficients of a quadratic function of SOH on ageing pa-
rameters xi, combined with binary crosswise terms as the product of 
pairs of ageing parameters xi and xj (Equation (2)). Details of the 
regression algorithm are given in Supplementary Material S.6. This 
particular regression approach was chosen to provide a simple and 
repeatable model applicable to all impedance-based methods. 

SOH = a0 +
∑m

i=1
aixi +

∑m

i=1

∑m

j=1,j∕=i

bijxixj +
∑m

i=1
cix2

i (2)  

3.4.4. Model validation and uncertainty quantification 
Once a model is trained, there exists an uncertainty for the predicted 

SOH from given test data. When evaluating this uncertainty, three 
contributions must be considered. First, there exists uncertainty within 
the training data used for the model (so-called “aleatoric uncertainty” 
[66]) – that is, both measurement uncertainty and cell-to-cell variation 
in the EIS spectrum corresponding to a particular SOH value will 
propagate during model training into model error. Second, there exists 
uncertainty due to the quality of the chosen SOH model, in terms of how 
well Equation (2) describes the underlying relations between the ageing 
parameters and the SOH (so-called “epistemic uncertainty” [66]). Lastly, 
the experimental uncertainties of the new test measurement will prop-
agate through the model. 

Despite contemporary efforts in the field, to the authors’ knowledge 
there exists no general methodology in the field of uncertainty quanti-
fication for machine learning techniques that allows the independent 
evaluation of these contributions, either with respect to original training 
data or new test data. In this work, we take a preliminary model vali-
dation approach by means of a partial but quantitative assessment of 
uncertainty, using two standard methods: cross-validation, and uncer-
tainty propagation. 

Cross-validation is conventionally used to assess model fit quality 
empirically when only one training data set is available – the data are 
repeatedly divided into a portion of training data used to establish fit 
coefficients, and independent test data which are used to quantify the 
accuracy of that fit [67]. We apply a four-fold cross-validation procedure 
to each of the models, by partitioning at random the data set of exper-
iments (in the form of ageing parameters computed for each experiment) 
into four subsets (approximately 25% of input in each). Four regression 
models were then trained for each method; each model successively uses 
one of the four subsets as test data for validation, while the model is 
trained on the combination of the three remaining subsets. Root mean 
square error (RMSE) is computed for the model SOH predictions on the 
test data, by comparison to the corresponding measured SOH values. 
The mean of the RMSE for all four trained models gives an estimate of 
the combined aleatoric and epistemic uncertainties for SOH estimation. 
This quantity is used below as a quality criterion for model comparison. 

Uncertainty propagation can be used to estimate the likely propor-
tion of the empirically observed RMSE attributable to experimental 
uncertainty. Specifically, identified experimental input uncertainties are 
propagated through the trained model to a resulting (partial) SOH 
prediction uncertainty. This propagated uncertainty does not include 
the contributions from cell-to-cell variation in the original data set, or 

Fig. 3. (a) 2ZARC equivalent circuit used for fits to the measured EIS data (1ZARC circuit is obtained by setting Rct,2 = 0). CPE: constant phase element. (b) Example 
EC fit (red line) compared to experimental data (cell at SOC 100%, after 250 cycles corresponding to SOH ≈ 90%). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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model quality, and so it is not a unique value for SOH uncertainty that is 
directly useable with model predictions; rather, the goal of this analysis 
is to assess whether experimental contributions are a negligible or 
substantial proportion of the overall empirical RMSE. 

Four potential influencing factors from the experiments were iden-
tified, which contribute to aleatoric uncertainty: temperature (in-
homogeneities in the temperature distribution in the measurement 
chamber and in the cell), SOC (the desired SOC can only be adjusted 
with a certain degree of accuracy), measurement time (cells never fully 
equilibrate), and the calibration of the impedance meter [68]. In this 
work we introduce the consideration of propagated partial uncertainties 
for SOH prediction models by considering the influence of temperature 
and SOC only. Characterisation experiments needed to evaluate these 
input uncertainties are described comprehensively in Supplementary 
Material S.8. The corresponding evaluations for measurement time and 
impedance meter calibration exceeded the scope of this work, but these 
influencing factors would necessarily form part of a more comprehen-
sive uncertainty budget and would be recommended for future study. 
For the EIS-based models, the uncertainties due to SOC adjustment are 
disregarded, since all ageing parameters were selected from data at SOC 
100%, which occurs at a well-defined voltage level (end-of-charge 
cut-off at 4.2 V). For the NFRA-based models, NFR data at SOC 80% were 
considered; as such, besides cell temperature, the additional uncertainty 
due to SOC adjustment needs to be considered. 

For the simpler cases of the direct impedance- and NFRA-based 
models, which use raw data points as ageing parameters, the estima-
tion of uncertainty contributions was calculated on the basis of the 
‘Guide to the expression of uncertainty in measurement’ [69] (see 
Supplementary Material S.7). For the models using processed data 
(EC-based and DRT-based), the ageing parameters are no longer simply 
discrete impedance values; hence, a more complex Monte Carlo 
approach [70] is required. This method is described fully at the point of 
use in Section 4.5.2 below. 

4. Development and evaluation of SOH estimation models 

In this section, the proposed framework for developing an SOH 
estimation model (Section 3.4) is applied to each impedance-based 
method, using the data set described in Section 3.1. The resulting 

models based on the four impedance-based methods are evaluated, 
compared, and discussed in terms of their estimation accuracy, uncer-
tainty, and practical implementation. 

4.1. Direct impedance-based SOH model 

In the following, a model based on raw impedance data is developed 
and evaluated. To establish a reduced set of frequencies at which raw 
impedance data show good correlation to SOH, the impedance data at all 
measured SOCs and frequency points were analysed against the SOH 
fade via Spearman rank correlation. Fig. 4 (a) and (b) show the corre-
lation coefficients: light colours indicate that the absolute magnitude of 
the correlation coefficient is close to 1, which means that impedance 
values in this region are strongly correlated to the SOH fade. In general, 
Z′ shows strong correlation across a larger frequency and SOC range. 
This shows that Z′ is strongly correlated to the SOH fade at most fre-
quencies, but the correlation is strongest for Z′ at high SOC and low 
frequency. Similarly, Z′′ at high SOC and low frequency also shows 
strong and linear correlation to the SOH fade. From this correlation 
analysis, the following four spectral features were identified as the best 
correlated ageing parameters to the SOH fade for the direct impedance- 
based SOH model: 1) Z′ at SOC = 100% and 0.03 Hz, 2) Z′ at SOC =
100% and 0.01 Hz, 3) Z′′ at SOC = 100% and 0.2 Hz, 4) Z′′ at SOC =
100% and 0.5 Hz. All identified ageing parameters are at SOC 100%, due 
to the high sensitivity towards the degradation behaviour of the cell, as 
also qualitatively visible from Fig. 2. This is especially helpful in 
consideration of practical implementation of the impedance-based SOH 
estimation, due to the straightforward experimental accessibility of the 
SOC 100% state (see Section 3.4). Therefore, the analysis of the 
impedance spectra fits using EC and DRT methods is also confined to 
SOC 100% in the following sections. 

Instead of taking the absolute value of the selected impedance data 
points as the model predictors, the model takes as input the difference 
between the impedance at a certain aged state and the initial value at 
pristine state. This is to avoid the systematic error that could possibly 
arise from the measurement setup, as the LCTs were conducted with 
different devices at different institutions. 

The considered training and test data sets were the impedance 
spectra of the 9 cells from four different institutions (Fig. 1). Firstly, 

Fig. 4. Absolute value of Spearman correlation coefficients for the spectral parameters of (a) Z′, (b) Z′′, (c) Y2 and (d) Y3 to SOH as a function of frequency and SOC. 
Experimental data identical to those shown in Fig. 2. The black region of the heatmap plot indicates the unavailability NFR data outside the NFR measurement 
frequency range. 
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impedance points were selected from these data based on the four 
identified ageing parameters. Fig. 5 (a) plots the results of the four-fold 
cross validation and demonstrates that an average root mean square 
(RMS) error of <1% SOH units can be attained (full cross-validation 
results are shown in Figure S.10, Supplementary Material). This sug-
gests that a full impedance spectrum is not required; instead only a few 
selected impedance points, i.e., at low frequency and high SOC range, 
are needed to achieve an acceptable SOH prediction accuracy. 

4.2. Equivalent circuit-based SOH model 

An SOH model is developed using the coefficients derived from 
equivalent circuit fits to the EIS data (Section 3.2), according to the 
general methodology of Section 3.4 as follows. First, in addition to the 
overall data reduction according to SOH as described in Section 3.4, and 
the limitation to SOC 100% as established in Sections 3.4 and 4.1, the 
following data are excluded from the analysis:  

• All experiments for which a 1ZARC fit was returned, since these 
experiments exhibit a different set of ageing parameters which 
cannot be compared consistently to the 2ZARC spectra. In general, 
the discarded 1ZARC fits were for cells very early in the ageing 
process (SOH >95%).  

• All experiments for which the normalised residual for the equivalent 
circuit fit was >5 × 10− 3; this removes a small fraction (<5%) of 
experiments where the fit quality was poor (see Figure S.2, Supple-
mentary Material), such that the EC coefficients do not accurately 
represent the underlying impedance data. 

Correlation coefficients were assessed between SOH and each 

individual equivalent circuit coefficient (Fig. 6 (a)). 
Corrections for inductive effects (coefficients Ls, Lp, Rp) show weak 

correlation, which is expected as these coefficients reflect external 
measurement circuitry and should be independent of cell state. Co-
efficients associated with the higher-frequency ZARC (enumerated with 
subscript 1) also show relatively weak dependence. The strongest de-
pendences are for series resistance Rs and the lower-frequency ZARC 
parameters. Since series resistance cannot be expected to be comparable 
between different measurement configurations as an absolute value, due 
to different measurement configurations, models were trained through 
fitting to the 5 coefficients associated with the low-frequency features 
(Rct,2,Cdl,2,αdl,2,Qdiff ,αdiff), according to the method described in Section 
3.4. Diffusive tail coefficients were included due to relatively strong 
Pearson correlation coefficients (Figure S.5 (a), Supplementary 
Material). 

The performance of the model was evaluated by four-fold cross- 
validation; results are shown in Fig. 5(b) (full cross-validation results are 
shown in Figure S.11, Supplementary Material). The RMS error is 
consistently <1.5% SOH units, suggesting a consistently good predictive 
performance. While the error is slightly higher than from the direct 
impedance-based model, the EC fits have the increased flexibility of not 
requiring a reference for the impedance value of the fresh cell, once the 
SOH model is prepared. 

4.3. Distribution of relaxation times (DRT)-based SOH model 

An SOH model is developed using the coefficients derived from DRT 
coefficient data (Section 3.3), according to the general methodology of 
Section 3.4 as follows. To identify DRT-based impedance parameters 
that are suitable as predictors for an SOH estimation model, Spearman 
correlation coefficients describing the relation with the SOH were 
calculated (Fig. 6 (b)). The Spearman rank correlation coefficients 
consistently show strong correlations between the SOH and the imped-
ance parameters derived from the low-frequency range of the spectrum, 
while the correlation of parameters from the high-frequency range is 
weaker. The parameters τ4, τ5, C4, and R5 have coefficients greater than 
0.7 and therefore appear to be suitable as SOH predictors. Fig. 5 (c) 
shows the results for the model M1 (see Table 3, full cross-validation 
results are shown in Figure S.12, Supplementary Material). The mean 
RMS error of the four iterations of the cross-validation is 1.05% SOH 
units. 

In addition to this model, which uses all four parameters as pre-
dictors, other models were tested, each omitting one of the parameters 
and a model using only the parameters R5 and τ5, as these have the 
highest correlation coefficients. The most accurate prediction is pro-
vided by the model M1 in which all four impedance parameters are used 
as predictors. 

The pronounced dependence of impedance spectra of lithium-ion 
batteries on SOC is reflected in the derived DRT plots (Fig. 7). Espe-
cially in the high time constant range, the distributions differ signifi-
cantly with respect to their absolute value and peak area; furthermore, 
they have different numbers of distinguishable signals. Therefore, in a 
supplementary approach, the similarities of impedance spectra 
measured at different SOCs were considered in more detail and a cor-
responding SOH estimation model using impedance data from multiple 
SOCs was trained. From Spearman correlation analysis, the parameters 
R1, R2, C1, and C2 were identified to have a strong correlation with the 
SOH. Similarly, different SOH estimation models were trained using 
different combinations of the four identified parameters. 

Compared to the first approach, the predictive strength of this 
approach is significantly lower. The mean RMS error is 3.37% SOH units 
(Table 4, full cross-validation results are shown in Figure S.13, Supple-
mentary Material). Nevertheless, the model has some practical advan-
tages. For SOH estimation, impedance data obtained at any SOC can be 
used, except data from fully charged cells. This means that the cells do 
not have to be charged to a defined SOC first. Furthermore, the 

Fig. 5. Mean RMS error (SOH % units) and test data predictions from four-fold 
cross-validation of the trained SOH models: (a) direct impedance-based model; 
(b) EC-based model; (c) DRT-based model; (d) NFRA-based model. The four 
colours (blue, green, yellow, purple) represent different random samples of 
25% of the full data set (different for each subfigure) which are respectively 
used as test data while the remaining 75% of the data set is used for training. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

H.S. Chan et al.                                                                                                                                                                                                                                 



Journal of Power Sources 542 (2022) 231814

9

frequency range considered in this model contributes further to the 
reduction of the measurement duration. The presented model therefore 
represents a tool that enables a very rapid rough estimation of the SOH. 
However, the range of application is partly limited: for SOH >80%, there 
is no apparent correlation between the capacitance C1 and the SOH (see 
Figure S.8, Supplementary Material). 

4.4. Nonlinear frequency response analysis (NFRA)-based SOH model 

Finally, an SOH estimation based on NFRA measurements (input 

data set as described in Section 3.1) is developed and evaluated ac-
cording to the methodology of Section 3.4. Similar to the direct 
impedance-based model (Section 4.1), sensitivities with respect to SOH 
of the raw data (in this case, higher harmonic voltage magnitudes Y2 and 
Y3) were evaluated for data across all characterised SOCs and fre-
quencies via Spearman rank correlation as described in Section 3.4 to 
obtain ageing parameters for the NFRA-based model. The correlation 
coefficients are shown in Fig. 4 (c) and (d) and confirm the qualitative 
observations (Section 3.1) that the NFR signals at low frequency and 
high SOC show the strongest correlation to the SOH fade, whereas also in 
the range around 80 Hz a good correlation can be seen; the latter may be 
especially interesting for fast measurement. The following most strongly 
correlated ageing parameters were identified: 1) Y2 at SOC 80% and 
8.13 Hz, 2) Y2 at SOC 80% and 0.25 Hz, 3) Y3 at SOC 80% and 5.89 Hz, 
4) Y3 at SOC 80% and 0.25 Hz. 

The four selected ageing parameters were then differenced from their 
fresh-cell values and used as predictors for model training/validation. 
The mean RMS error for SOH estimation with the NFRA-based model 
from four-fold cross-validation (Section 3.4) is approximately 1.1% SOH 
units (Fig. 5 (d), full cross-validation results are shown in Figure S.14, 
Supplementary Material), which is in the same range of prediction ac-
curacy as the three impedance-based approaches described above. Using 
this method would thus be feasible to estimate the SOH from a cell. 
Adjustment to 80% SOC would mean that the battery need not be fully 
charged for the measurement; however, it would imply that the SOC can 
be reliably measured, e.g., by correlation to voltage. Whether an 
application of the method at a high SOC value of 100% is possible 
without harming the cell would need to be evaluated. 

4.5. Propagated input uncertainty evaluation 

For each developed model, an evaluation was undertaken of partial 
uncertainties due to propagated input uncertainties from experimental 
sources, as discussed in Section 3.4.4. 

The sensitivity coefficients for impedance and NFR signals with 
respect to temperature fluctuation were assessed by conducting EIS 
measurements at three different controlled temperatures. The impact of 
temperature variation of ±2–3 K on EIS and NFR spectra is shown in 

Fig. 6. Spearman rank correlation coefficients (a) for correlation of each EC coefficient with SOH, across the data set subject to the defined exclusions (SOC 100%, n 
= 165). and (b) for correlation of each DRT coefficient with SOH, across the data set subject to the defined exclusions (SOC 100%, n = 169). 

Table 3 
Performance of SOH estimation models based on different combinations of low- 
frequency DRT parameters.  

Model parameter mean RMS error / SOH units 

τ4 τ5 C4 R5 

M1 ✓ ✓ ✓ ✓ 1.05% 
M2 ✓ ✓ ✓  1.06% 
M3 ✓ ✓  ✓ 1.18% 
M4 ✓  ✓ ✓ 1.30% 
M5  ✓ ✓ ✓ 1.21% 
M6  ✓  ✓ 1.15%  

Fig. 7. DRT plots of impedance spectra measured at different SOCs at Institu-
tion 1. The cell was cycled for 250 cycles and had an SOH approximately 90%. 
Each line contains an arbitrary offset in the vertical axis for visual clarity. 

Table 4 
Performance of SOH estimation models based on different combinations of high- 
frequency DRT parameters.  

Model parameter mean RMS error/SOH units 

R1 R2 C1 C2 

M1 ✓ ✓ ✓ ✓ 7.57% 
M2 ✓ ✓ ✓  3.38% 
M3 ✓ ✓  ✓ 3.54% 
M4 ✓  ✓ ✓ 3.93% 
M5  ✓ ✓ ✓ 3.88% 
M6 ✓  ✓  3.37%  
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Figure S.6 (a) and Figure S.6 (b) (Supplementary Material), respectively. 
It can be seen that temperature variation has a significant impact on 
both impedance and NFR spectra, especially in the low-frequency range. 
This is highly relevant to the proposed SOH estimation methodology as 
the ageing parameters identified for SOH prediction mainly originate in 
this area. Hence, it is crucial to quantify the impact of the temperature 
variation on the SOH prediction uncertainties. 

The temperature sensitivity coefficient was established as a function 
of frequency by approximating the impedance data Z(T,f) using linear 
regression across the 3 temperature values, as: 

Z(T, f )≈ZT=Tref (f ) +
∂Z(f )

∂T
(
T − Tref

)
(3) 

As temperature sensitivity data are only available at discrete fre-
quency values, the derivative ∂Z/∂T in Equation (3) is interpolated to 
other frequencies where required using a Hermite polynomial 
interpolation. 

The transient temperature fluctuation inside the temperature- 
controlled chamber is characterised according to the manufacturer’s 
specification for the hardware used in the temperature variation study 
(Weiss WK3-340/70). In this case, the temperature fluctuation range is 
±0.5 K (assumed uniform distribution across this range). It should be 
noted that this degree of temperature control applies to the chamber air 
and not necessarily to cell temperature itself; we consider it reasonable 
as an input uncertainty for the present study, but further experimental 
investigation to quantify cell temperature uncertainty would improve 
the quality of uncertainty determination. Also, this accuracy would not 
be so straightforwardly achievable in targeted analysis of cells within a 
battery pack. 

The SOC sensitivity of the NFR spectra was assessed by conducting 
NFR measurements at 3 different controlled SOCs (see data in Figure S.6 
(c), Supplementary Material). It is noticeable that temperature variation 
has a significantly larger impact on the NFR signals, and that this applies 
predominantly in the lower frequency range. Meanwhile, the variation 
in SOC barely alters the NFR signals. 

4.5.1. Uncertainties for the direct impedance-based model 
For the direct impedance-based model, the inputs to the SOH model 

are raw impedance data, whose uncertainties were quantified using 
Equation (S.8). 

Table S.2 (Supplementary Material) summarises the individual un-
certainties of the selected ageing parameters due to temperature varia-
tion, as computed using Equation (S.8). These individual uncertainties 
of the selected ageing parameters were then propagated through the 
SOH model to establish an uncertainty in the predicted SOH as shown in 
Fig. 8. The uncertainty attributable to temperature variation for the 
direct impedance-based model remains below 0.5%, which is signifi-
cantly smaller than the SOH prediction RMS error of around 1%. 

4.5.2. Uncertainties for the EC-based model 
For Monte Carlo uncertainty analysis of the partial SOH uncertainty 

due to temperature fluctuation in the EC-based model, a set of n tem-
perature values Ti is sampled at random from the defined probability 
distribution for temperature. For each original spectrum Zk(f), a set of n 
temperature-distorted spectra is generated, as: 

Zki =Zk +
∂Z
∂T

(
Ti − Tref

)
(4) 

EC coefficients are evaluated for each spectrum Zki(f) using the same 
fitting procedure as for the original spectra (see Supplementary Material 
S.2), and each set of resulting fit coefficients is passed into the SOH 
model to yield a predicted value SOHki. For each spectrum k, the un-
certainty in the predicted SOH across all values Ti can then be evaluated 
based on the empirical probability distribution of the SOHki. The sample 
standard deviation of the set of values SOHki for each spectrum k is 
evaluated and interpreted as the uncertainty urel(SOH)T due to 

temperature variability. The set of resulting uncertainties is plotted as a 
function of the measured SOH in Fig. 8. From this plot, the partial SOH 
uncertainty due to temperature fluctuation is generally less than 0.1% 
SOH units, suggesting that it is a relatively small contribution to the 
overall RMS error noted in the cross-validation experiment. 

4.5.3. Uncertainties for the DRT-based model 
The same data set of numerically distorted impedance spectra under 

random temperature fluctuations as derived for the EC-based model was 
applied to the DRT-based model. DRT fit coefficients were evaluated 
from the distorted spectra as described in Section 3.2; the SOH estima-
tions were made by applying the optimized DRT-based SOH model M6 
from Table 3. The resulting uncertainties of the SOH predictions are 
plotted in Fig. 8 as a function of the measured SOH. The plot shows that 
the highest uncertainties with respect to temperature fluctuation occur 
in the range of SOH >85% – they are up to 0.3% SOH units. For SOH 
<85% the uncertainty is smaller than 0.1% SOH units, as for the EC- 
based model. 

4.5.4. Uncertainties for the NFRA-based model 
The quantified sensitivities with respect to SOC and temperature 

variation were used to calculate the corresponding uncertainties in the 
NFR equivalent of Equation (S.8). The uncertainty contribution u(T) is 
defined as in the direct impedance-based approach above. The uncer-
tainty contribution u(SOC) denotes the current and voltage precision for 
the SOC adjustment, which is 0.1% according to the manufacturer’s 
specification for the hardware used in the SOC variation study (BaSyTec 
XCTS). 

Table S.3 (Supplementary Material) summarises the individual un-
certainties of the selected NFR ageing parameters. Fig. 8 shows the 
propagated SOH uncertainty due to temperature fluctuation. Here, we 
note that in the SOH-range above 85% SOH, temperature uncertainty for 
the NFRA-based SOH prediction is stronger for the NFRA-based 
approach – nonetheless it is still below 1% SOH units. Propagated un-
certainties due to uncertainties in SOC are significantly smaller than 
those for temperature and always below 0.1% SOH units, as shown in 
Figure S.7 (Supplementary Material). 

4.5.5. Summary of uncertainty evaluation 
Propagated uncertainty due to temperature fluctuation is generally 

Fig. 8. Propagated uncertainty in SOH estimation due to temperature fluctu-
ation as a function of SOH measurement based on the different SOH models. 
The inset shows the same data on an expanded vertical scale, for clarity. 
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below 0.5% SOH units and is below 0.1% SOH units across the bulk of 
the SOH range for the models using processed data. Significant propa-
gated uncertainties from temperature and SOC fluctuation are observed 
only for the NFRA-based model at higher SOH. These values are sub-
stantially less than the SOH prediction RMSE values reported for the 
models above, which suggests that the total uncertainty of the models is 
more attributable to intrinsic cell-to-cell variation (aleatoric) and model 
quality (epistemic), rather than uncertainty contributions from experi-
mental sources. We stress that this is an empirical observation specific to 
this data set; other cycling conditions or cell formats might yield a 
different relative balance of uncertainty contributions. 

4.6. Comparison of methods 

The comparison of the different methods is summarised in Table 5. 
All models show promising performance for SOH prediction from EIS or 
NFRA data (four-fold cross validation mean RMSE <1.5% SOH units). In 
absolute terms, for the specific data set used, the direct impedance-based 
SOH model offers the best SOH prediction accuracy (RMSE 0.78% SOH 
units). The performance is quite similar, however, to the other data 
analysis methods, suggesting that all methods successfully represent an 
underlying correlation of SOH to frequency response properties of the 
cells, and no one method should be recommended as superior for pre-
dictive performance reasons alone. 

A clear advantage of methods using raw data (direct EIS- and NFRA- 
based) is the simplicity of data gathering, as only a few discrete mea-
surement frequencies are required, rather than a full spectrum. More-
over, no pre-processing is required, unlike the methods using processed 
data (EC- and DRT-based), in which the measured impedance spectrum 
must be pre-processed or translated into the relevant properties, i.e., EC 
or DRT coefficients. The compression of raw impedance data to a smaller 
number of more expressive coefficients potentially enables a more 
flexible SOH prediction approach, however, since a regression model 
can utilise simultaneous information from different parts of the 
measured frequency range. While this did not yield significant advan-
tages in terms of prediction quality in this study, it could be a decisive 

advantage for other combinations of cycling condition, cell format and/ 
or cell chemistry. The propagated uncertainty due to temperature fluc-
tuation is overall higher for methods using raw rather than processed 
data (Fig. 8). 

In all methods developed for data measured at a fixed SOC (SOC 
100% for EIS, SOC 80% for NFRA), selected ageing parameters arose in 
the low frequency part of the spectrum (f < 100 Hz): discrete low fre-
quencies were selected in the direct impedance-based and the NFRA- 
based models; coefficients for the lowest frequency ZARC element in 
the EC fit show the strongest correlation to SOH; and the peak with the 
slowest time constant in the DRT plot is most sensitive to SOH. From the 
presence of significant nonlinear responses in the NFR spectra in this 
frequency range, the observed ageing parameters are associated with the 
progressive slowing of the charge transfer (Li insertion or de-insertion) 
process in one of the electrodes of the cell, which is strongly corre-
lated to its SOH fade. From frequency response data alone, it is not 
possible to state definitively whether these parameters measure a pro-
cess responsible for SOH fade, or simply evidence a parallel degradation 
that is strongly correlated during continuous cycling to SOH fade arising 
due to other processes. Additional experimental investigation, including 
post-mortem analysis, is required to lend further insight. 

The supplementary DRT-based SOH model demonstrates that high- 
frequency features can show correlation to SOH independently of 
SOC. This model would have practical benefits due to its SOC inde-
pendence, in that cell charging is not required prior to SOH determi-
nation; furthermore, using ageing parameters at higher frequency 
significantly reduces the implied measurement time. In contemplating 
future development of this method, these advantages must be balanced 
against the lower SOH prediction accuracy (RMSE 3.37% SOH units) 
than models based on the strongest ageing parameters, and a much more 
limited SOH prediction range (principally below SOH 80%). 

5. Conclusion and perspective 

A consolidated data set was generated by recording EIS spectra 
alongside coulometric measurement of SOH during life cycle testing, 
using hardware at four different measurement institutions to assess 
reproducibility of observed behaviour. This data set was used to develop 
SOH models based on: direct utilisation of impedance data; coefficients 
from equivalent circuit fits; coefficients from DRT fits. Additionally, NFR 
spectra were recorded by one institution and used to develop an NFRA- 
based SOH model. 

All SOH models demonstrate the feasibility of predicting SOH of aged 
cells from rapid experiments (EIS, NFRA) alone (mean RMS error from 
cross-validation in the range 0.75%–1.5% SOH units), once correlations 
have been established through life cycle testing. For models utilising 
measurement at only one SOC (for EIS, SOC 100%, obtainable by voltage 
measurement alone), the implied measurement time is shorter than a 
conventional capacity measurement (i.e., full charge-discharge cycle). A 
supplementary DRT-based SOH model demonstrated the possibility of 
predicting SOH without prior SOC adjustment; the SOH prediction ac-
curacy of this model is, however, lower. Over the majority of the SOH 
range studied, overall SOH prediction uncertainty is principally gov-
erned by cell-to-cell variation; propagated partial uncertainties from an 
assessed experimental control factor (temperature fluctuation) are 
comparatively small. 

We emphasise that the predictive performance relies on a sufficient 
quantity of training data, gathered under a relevant ageing regime. The 
range of applicability of any SOH model prepared through the meth-
odology presented in this manuscript (inclusive of all data analysis 
methods studied) depends on the availability and quality of the training 
data. Our methodology indicates that up-front electrochemical data 
provision by primary producers of batteries could significantly reduce 
the experimental overhead for accurate characterisation of aged cells, 
with concomitant advantages to Li-ion cell asset valuation and the 
economics of cell second use. 

Table 5 
Summary of comparison of methods. Empirical uncertainty is assessed as mean 
RMSE from four-fold cross-validation.  

Method Direct 
EIS-based 

NFRA- 
based 

EC-based DRT-based 

Measurement SOC/ 
% 

100 80 100 100 

Empirical 
uncertainty/% 
SOH units 

0.78 1.11 1.21 1.05 

Standard partial 
uncertainty due to 
propagated T 
variation/% SOH 
units 

<0.5 <1 <0.3 <0.3 

Fresh cell data used Yes Yes No No 
Numerical pre- 

processing 
required 

No No Yes Yes 

Cell full charge 
required before 
measurement 

Yes Yes Yes Yes 

Cell partial (dis) 
charge required 
before 
measurement 

No Yes No No 

Full spectrum 
measurement 
required 

No No Yes Yes 

Model extension to 
new conditions 

Retrain 
with raw 
data 

Retrain 
with raw 
data 

Retrain, can 
use additional 
coefficients 

Retrain, can 
use additional 
coefficients  
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For future development of this work, it will be essential to establish 
the robustness and training data requirements for SOH models applied 
to more varied (realistic) cycling conditions. Our preliminary data (not 
yet reported) measured with the same type of cells used here indicate 
that the impedance–capacity relation will vary depending on ageing 
condition, including operating temperature as well as cycling regime (e. 
g., depth of discharge). Consequently, the uncertainty of SOH prediction 
increases in proportion to deviation of test conditions from those used in 
model training; with model re-training on new data, RMSE for SOH 
estimation can be kept within approximately 2%. Our investigation on 
this topic is ongoing. 

In any case, for practical applications, the training data set must be 
sufficiently broad to account for the first life conditions preceding SOH 
estimation. We cannot speculate if the models established here would be 
directly applicable to any given ageing condition, but we expect that 
they are applicable to a reasonable range of typical ageing conditions. 
Furthermore, we propose that the same methodology can be applied to 
yield and compare models from appropriate empirical input data and to 
assign meaningful uncertainties. 

Likewise, supplementary data would be required to consider other 
cell formats or chemistries, as well as the extent to which modules can be 
characterised as a whole, compared to cell-by-cell characterisation. The 
establishment of a consistent methodology for SOH estimation on a cell- 
by-cell basis is also a useful precursor to rigorous comparison of online 
SOH estimation methods as deployed at module-scale in BMS develop-
ment. We expect that such extended analyses would allow the more 
general applicability of our methodology to be validated, to support 
rapid, optimized SOH characterisation of aged cells by utilisation of 
electrochemical data. 
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