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Abstract

Climate model simulations typically exhibit a bias, which can be corrected

using statistical approaches. In this study, a geostatistical approach for bias

correction of daily precipitation at ungauged locations is presented. The

method utilizes a double quantile mapping with dry day correction for future

periods. The transfer function of the bias correction for the ungauged locations

is established using distribution functions estimated by ordinary kriging with

anisotropic variograms. The methodology was applied to the daily precipita-

tion simulations of the entire CORDEX-Africa ensemble for a study region

located in the West African Sudanian Savanna. This ensemble consists of 23

regional climate models (RCM) that were run for three different future scenar-

ios (RCP 2.6, RCP 4.5, and RCP 8.5). The evaluation of the approach for a his-

torical 50-year period (1950–2005) showed that the method can reduce the

inherent strong precipitation bias of RCM simulations, thereby reproducing

the main climatological features of the observed data. Moreover, the bias cor-

rection technique preserves the climate change signal of the uncorrected RCM

simulations. However, the ensemble spread is increased due to an over-

estimation of the rainfall probability of uncorrected RCM simulations. The

application of the bias correction method to the future period (2006–2100) rev-
ealed that annual precipitation increases for most models in the near (2020–
2049) and far future (2070–2099) with a mean increase of up to 165 mm � a−1

(18%). An analysis of the monthly and daily time series showed a slightly del-

ayed onset and intensification of the rainy season.
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1 | INTRODUCTION

Knowledge of a region's climatology is indispensable for
the management of its water bodies, agriculture, ecosys-
tems, or technical systems. Reliable and long time series
of meteorological variables in a sufficient spatiotemporal
resolution are a prerequisite to analyse the climatology
and event characteristics of the region or system at hand.
Furthermore, such data is required to run impact models
which simulate, for example, the discharge in a catch-
ment or the potential crop yield. For such applications,
daily or higher resolutions are typically required
(e.g., Bruni et al., 2015). Long time series are required so
that management decisions also take extreme events or
accumulated events like dry spells into account. Since the
climate is projected to change worldwide, decisions
makers are also confronted with adapting the manage-
ment strategies to the uncertain future climate.

Physically based climate model simulations constitute
a source for future climate data. General circulation
models (GCMs) simulate the mass and energy fluxes in
the atmosphere in a spatial resolution of currently up to
0.25� (Buizza et al., 2017). However, decision making in
water resources management and many other disciplines
often requires a higher spatiotemporal resolution than
what the GCMs can provide. Moreover, meteorological
variables such as precipitation can be highly variable in
space and time and are often not well reproduced. To
overcome these shortcomings, regional climate models
(RCMs) are applied, which use the GCM simulations as
driving boundary conditions. They are set up for a con-
fined region of interest by nesting these models into the
numerical grid of the GCM with a higher spatiotemporal
resolution (Rummukainen, 2009).

Nowadays, ensembles of GCM-RCM model combina-
tions are used to provide a set of scenarios which can
then be utilized to run impact models for different design
studies, for instance in hydrology or agriculture. The
advantage of ensemble simulations is that the impact
studies do not rely on a single simulated time series and
that the uncertainty can be quantified and considered in
the planning. For Africa, an ensemble of daily RCM sce-
narios in a spatial resolution of 0.44� has been provided
by the CORDEX-Africa project (Coordinated Regional
Climate Downscaling Experiment; Nikulin et al., 2012)
for a historical control period (1950–2005) and future
period (2006–2100). For West Africa, a set of high resolu-
tion, ensemble-based regional climate change scenarios
for a historical and two future periods was provided as
part of the WASCAL (West African Science Service Cen-
tre on Climate Change and Adapted Land Use) program
(Dieng et al., 2018; Heinzeller et al., 2018) using high-
resolution RCMs (Klein et al., 2015; Dieng et al., 2017).

Many investigations showed that key atmospheric drivers
of the West African Monsoon (WAM) such as jet streams
(the Tropical and African Easterly Jet) and the south-
west monsoon fluxes can be reproduced by state-of-the
art climate models for this challenging region (Paeth
et al., 2011; Sylla et al., 2013; Klein et al., 2015).
Gbobaniyi et al. (2014) also showed that specific WAM
features such as the occurrence of the WAM jump, the
intensification and northward shift of the Saharan Heat
Low can be simulated by an ensemble of CORDEX RCM
simulations. Moreover, Sylla et al. (2015) and Nikiema
et al. (2017) showed that the CORDEX RCMs can
improve the precipitation simulations for different clima-
tological zones in West Africa in comparison to GCMs.

Nevertheless, an intercomparison of 10 CORDEX-
Africa RCMs by Nikulin et al. (2012) showed that all
models exhibit a significant systematic differences
between observations and simulations (bias) in the rainy
season for West Africa when compared with observa-
tions. Remarkably, ERA-Interim showed a dry bias for
West Africa in this season, but the ERA-Interim driven
RCMs can lead to positive and negative biases. Moreover,
some of the models simulated the onset of the rainy sea-
son too early, while others have problems regarding the
northward extension of the monsoon rain belt. Mascaro
et al. (2015) reported similar findings for the annual pre-
cipitation amount in the Niger River basin using
18 GCM-RCM combinations of the CORDEX-Africa
ensemble. Klutse et al. (2016) illustrated substantial dif-
ferences between CORDEX-Africa RCMs and observa-
tions for daily rainfall characteristics such as intensity,
frequency, and extreme indices.

Bias correction is often applied to climate model sim-
ulations to reduce systematic differences to the real cli-
matology. To this end, a meteorological variable
simulated by an RCM is transformed to a bias corrected
value via a transfer function. There is a strong debate
about the applicability of bias correction in general
(Maraun, 2016) because the variables of the uncorrected
RCM are physically consistent. After the bias correction,
this may no longer be the case and higher aggregated var-
iables can exhibit a stronger bias than before the correc-
tion (Ehret et al., 2012). In practice, however, bias
correction is still widely applied since a biased meteoro-
logical input variable is regarded as very detrimental to
the performance of subsequent impact models. The avail-
able bias correction techniques differ in how transfer
function are built (Maraun, 2016). A frequently used uni-
variate technique that reproduces the observed distribu-
tion functions is quantile mapping (e.g., Chen et al.,
2013) which is closely related to histogram equalization
and local intensity scaling (e.g., Berg et al., 2012).
Another problem is that many bias correction approaches
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provide information for observed sites (gauges) or rely on
gridded observations. However, bias correction that pro-
vide point information for ungauged sites are still very
limited but are needed for local impact studies. In some
case studies, only a single output variable of the RCM is
of interest, for example, the daily temperature or precipi-
tation. If several variables need to be bias corrected, the
correction is mostly performed individually for each vari-
able. In recent years, more complex bias correction
methods have been developed such as copula-based bias
correction scheme (Laux et al., 2011; Mao et al., 2015) to
generate an ensemble of values from the conditional dis-
tribution. In addition, multivariate bias correction have
been proposed (Piani and Haerter, 2012; Cannon, 2016;
Vrac, 2018) for a joint correction of meteorological
variables.

The use of bias correction methods for data-scarce
regions such as West Africa are still limited, although these
datasets are in high demand by impact modellers and prac-
titioners in agriculture and other disciplines. For West
Africa, most of these techniques were mainly applied to
correct global seasonal forecasts (Batté and Deéqué, 2011;
Feudale and Tompkins, 2011; Oettli et al., 2011; Siegmund
et al., 2015; Rauch et al., 2019) or global climate scenarios
(Sultan et al., 2014). Mbaye et al. (2016) is one of the earli-
est studies who bias corrected regional climate scenarios
driven by CMIP3 models for West Africa. Recently, Laux
et al. (2021) used univariate bias correction methods
for precipitation and temperature from selected CORDEX-
Africa RCMs.

The objectives of this study are the development of a
bias correction method for providing point information at
ungauged locations and its application using a set of
regional climate scenarios for a data-scarce region. The
double quantile mapping (B�ardossy and Pegram, 2011) is
used and extended by geostatistical approaches to estimate
the distribution of daily precipitation at ungauged loca-
tions. The approach is similar to Mamalakis et al. (2017),
but in addition to their study, anisotropic variograms are
applied and point scale statistics are regionalized and not
spatially averaged. In contrast to many other bias correc-
tion methods, this enables the provision of bias-corrected
precipitation time series for ungauged locations,
depending on the regionalized point scale statistics of the
surrounding rainfall network (Gessner et al., 2015).

The methodology is tested for the central Sudanian
Savanna of West Africa. This region is chosen due to the
high importance of the WASCAL program as core
research area (Yira et al., 2016; Danso et al., 2018;
Bliefernicht et al., 2018; Salack et al., 2019; Berger et al.,
2019) to provide bias-corrected climate scenarios for local
impact studies. Another reason is the availability of long-
term daily precipitation observations from rainfall gauges

for this region (Bliefernicht et al., 2019). The analysis of
the projected climate change signal is carried out for sev-
eral precipitation characteristics (annual and monthly
precipitation amount and the onset of the rainy season)
for three projections (RCP2.6, RCP4.5, RCP8.5) and two
time periods (2020–2049 and 2070–2099) using the full
CORDEX-Africa ensemble based on 23 GCM-RCM
model combinations. This study is therefore one of the
first that uses the full CORDEX-Africa ensemble
(48 RCM scenarios) for bias correction.

2 | STUDY REGION AND
DATA SETS

The study region is shown in Figure 1. It covers regions
of different countries in West Africa, primarily
Burkina Faso in the North, as well as Ghana, Benin, and
Togo in the Southern domain. The spatial grid stems
from the CORDEX-Africa RCM ensemble with a spatial
resolution of 0.44�. The centres of the grid cells are cho-
sen in this study as ungauged sites to cover the entire
region in a homogeneous way. However, the current
methodology can be also applied for any irregular net-
work. The station network is relatively dense for West
Africa but it is still a magnitude lower compared with
rainfall networks in Europe or North America. The rain-
fall sites were chosen from a novel precipitation database
that has been collected and merged within the BMBF
research program WASCAL from the global, regional and
national databases (Bliefernicht et al., 2021). One hun-
dred and seventy two stations are located in the proxim-
ity of the study region. Daily precipitation time series
have been extracted for the period 1950–2005 for these
sites. Subsets of this precipitation dataset were also used
by various studies, for example, by Dieng et al. (2017) for
RCM evaluation and Ascott et al. (2020) for groundwater
reconstruction.

FIGURE 1 Mean annual sum of precipitation of the West

African observation data (1950–2005). The circles correspond to the

rainfall network which was used for the bias correction.
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Figure 1 also shows that the observed mean annual
sum of precipitation decreases from South (up to
1418 mm �a−1) to North (as low as 439 mm �a−1). Sta-
tions on the same degree of latitude have relatively simi-
lar annual sums which indicates that the statistics are
anisotropic. The rainy season is also very distinct in the
study region and is dominated by the West African Mon-
soon. From February, the southern locations already
receive precipitation (Figure 2). Over the course of the
rainy season, the monthly amounts increase until
August. At this time, the maxima occur at the southern
border of Burkina Faso. From September on, the precipi-
tation amounts decrease quickly.

The CORDEX-Africa ensemble consists of 23 different
GCM-RCM combinations (Table 1). The majority of the
models from the CORDEX-Africa ensemble overestimate
the annual sums of precipitation in the presented study
region for the historical period (1950–2005). Annual sums
of more than 2500 mm have been simulated by individ-
ual ensemble members which is a positive bias of more
than 100%. Such an overestimation poses tremendous
problems for subsequent impact models like crop models
because it may be assumed that much more water is
available than in reality. Some regions, especially North-
ern Ghana, have only a few measurement stations which
means that the climatological statistics are unknown for
many locations. This data scarcity of the measurement
stations and the anisotropy of the statistics motivated
a geostatistical approach to estimate the bias transfer
function for ungauged locations.

3 | METHODS

In this study, double quantile mapping (B�ardossy and
Pegram, 2011) has been chosen to bias correct the daily

precipitation time series of the CORDEX-Africa ensemble
for historical and future time periods. Gudmundsson et al.
(2012) found that empirical quantile mapping resulted in
the best bias corrected simulations, but this approach
requires complete observation time series for every loca-
tion in the simulation period, which are often not avail-
able. This is also the case for the study region, and
therefore the unknown point scale distribution functions
for each grid cell in the study region were estimated by
interpolating the parameters of the observed distribution
functions to all grid cell centres in the region of interest
using ordinary kriging. Separate statistics were used for
each month of the rainy season. The dry season from
November to February was grouped into a single season to
obtain enough values for a robust estimation of the local
statistics. The estimated distribution was utilized to gener-
ate so called “simulated observations.” A double quantile
mapping with dry day correction was then carried out for
each RCM cell with the estimated CDFs. The full process
of the bias correction method is illustrated in Figure 3.

3.1 | Dry day correction

For precipitation a correction of the frequency of wet values is
necessary in most cases because RCM simulations typically
exhibit more time steps with precipitation than is observed.
One cause for an excessive precipitation probability is the driz-
zle effect. RCMs often simulate too many low intensity (high
frequency) precipitation events when compared with observa-
tions (e.g., Sun et al., 2006). The probability that a grid cell is
wet is also scale-dependent as larger cells are more likely to
exhibit precipitation (Argüeso et al., 2013). In practice, it is
often the case that there is a mismatch between the spatial res-
olution of the RCM and the observations. If we assume that
xobs is observed precipitation measured by a gauge, this
information corresponds to a single point in space and
therefore a difference between observed precipitation
probability pw,obs and simulated precipitation probability
pw,sim is to be expected. Furthermore, rain gauges may
miss very light precipitation amounts that are below the
detection limit. Nevertheless, gauge data is commonly
used as reference for bias correction—either because
there is no other data available or because the impact
models are usually calibrated with gauge observations.

An overestimated precipitation probability can be
corrected by setting all values below a chosen threshold ϑ
(e.g., 1:0 mm �d−1) to zero. This threshold should be cal-
culated individually for each cell so that the frequency of
values above the threshold is equal to the observed pre-
cipitation probability. After calculating pw,obs only the
nsim �pw,obs largest values of the RCM simulations will be
considered as actual precipitation. nsim is the number of
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FIGURE 2 Hovmöller diagram of mean monthly precipitation

of the observation data used in this study (1950–2005).
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days of the RCM time series. The threshold ϑ is thus the
value that satisfies:

nsim �pw,obs=# xsimjxsim≥ϑf g ð1Þ

with xsim the simulated precipitation value of the RCM.
After the threshold has been found, all values below it
are set to zero and the remaining values are shifted
toward zero to allow for the fitting of a parametric distri-
bution function. This approach has been used among
others in Volosciuk et al. (2017) and Lafon et al. (2012). A
correction for the rare converse case, that the wet day
probability is higher in the observations than in the simu-
lations, was developed by Themeßl et al. (2010) who

infilled very low intensities until the observed wet day
probability was matched.

3.2 | Quantile mapping and double
quantile mapping

Quantile mapping inverts the CDF of the observed var-
iable Fobs with the CDF value of the RCM simulations
Fsim xsimð Þ to generate a corrected value xBC. Thus, the
general characteristics of the RCM time series, such as
when the highest values occur, remain the same but
each value is mapped to its corresponding observed
quantile.

TABLE 1 CORDEX-Africa ensemble members which were used in this study

Institute/research initiative Driving model RCM

CCCma (Canadian Centre for Climate
Modelling and Analysis)

CCCma-CanESM2 CanRCM4 v4

CLMcom (Climate Limited-area
Modelling Community)

CNRM-CERFACS-CNRM-CM5 CCLM4-8-17 v1

CLMcom ICHEC-EC-EARTH CCLM4-8-17 v1

CLMcom MOHC-HadGEM2-ES CCLM4-8-17 v1

CLMcom MPI-ESM CCLM4-8-17 v1

DMI (Danish Meteorological
Institute)

ICHEC-EC-EARTH HIRHAM5 v2

DMI NCC-NorESM1-M HIRHAM5 v1

KNMI (Koninklijk Nederlands
Meteorologisch Instituut)

ICHEC-EC-EARTH RACMO22T v1

KNMI MOHC-HadGEM2-ES RACMO22T v1

MPI-CSC (Max Planck Institute for
Meteorology—Climate Service
Center)

ICHEC-EC-EARTH REMO2009 v1

MPI-CSC MPI-ESM REMO2009 v1

SMHI (Swedish Meteorological and
Hydrological Institute)

CCCma-CanESM2 RCA4 v1

SMHI CNRM-CERFACS-CNRM-CM5 RCA4 v1

SMHI CSIRO-Mk3.6.0 RCA4 v1

SMHI ICHEC-EC-EARTH RCA4 v1

SMHI NOAA-GFDL-GFDL-ESM2M RCA4 v1

SMHI MOHC-HadGEM2-ES RCA4 v1

SMHI IPSL-CM5A-MR RCA4 v1

SMHI MIROC-MIROC5 RCA4 v1

SMHI MPI-ESM RCA4 v1

SMHI NCC-NorESM1-M RCA4 v1

UQAM (Université du Québec à
Montréal)

CCCma-CanESM2 CRCM5 v1

UQAM MPI-ESM CRCM5 v1

LORENZ ET AL. 5



xBC=F−1
obs Fsim xsimð Þf g ð2Þ

Fobs and Fsim can either be empirical or parametric func-
tion with parameter set Θ1,…,Θnf g. One problem of
choosing an empirical CDF is that the observed maxi-
mum cannot be exceeded. Also, the time series of obser-
vations should be as long as the RCM time series which
can be circumvented by interpolating between the two
values with a given rank or by sampling from the obser-
vation set until it is as large as the simulation set (Piani
and Haerter, 2012). Parametric CDFs are capable of gen-
erating values larger than the observed maximum and
the discrete nature of the measurements (e.g., a resolu-
tion of 0.1 mm of the measurement device) is less appar-
ent in the bias corrected time series. Finding a function
Fsim that fits the skewed precipitation intensities simu-
lated by RCMs can be challenging, as discussed in
Gudmundsson et al. (2012).

For climate change studies, the traditional quantile
mapping cannot be used directly. Fitting a distribution
function Fsim to the future period and inverting the
observed distribution Fobs with the CDF values in the
future, would result in a bias corrected time series with
a distribution function that is identical to the one of the
observations. The only difference would be how the
large and small values tend to cluster in space and time
in the different time periods. The double quantile map-
ping method utilizes the historical CDF to calculate the

CDF values of the future period. A parametric distri-
bution function Fsim,hist is fitted to the historical RCM
time series and the CDF values of the future period are
calculated with this CDF. This way, a change of the
intensity distribution leads to a bias corrected time series
whose distribution is no longer identical to the
observed one.

FIGURE 3 Flowchart of the

geostatistical bias correction

method
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FIGURE 4 Transformation of nonzero future precipitation

amounts xsim,fut simulated by a regional climate model (RCM) using

double quantile mapping to a bias-corrected value xBC. The value of

the RCM's historical cumulative distribution function (CDF) is used

to invert the observed CDF
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xBC=F−1
obs Fsim,hist xsim,futð Þð Þ ð3Þ

The double quantile mapping is illustrated in Figure 4
with artificial data. Since the CDFs of the historical and
future RCM differ, the precipitation amount xsim,fut which
is the 90%-Quantile in the future period attains a larger
CDF value Fsim,hist xsim,futð Þ=0:95.

3.3 | Estimating distribution parameters
with kriging

Utilizing the closest measurement station for the centre of
each grid cell to estimate the distribution parameters
would lead to high uncertainties for sites that have no
nearby stations. This is especially problematic in regions
with a highly variable local climatology as in mountainous
regions or in this case West Africa where the climatology is
anisotropic and depends strongly on the degree of latitude
(Figures 1 and 2). Although there are several spatial inter-
polation methods available for environmental variables
(Li and Heap, 2013) and specifically for precipitation
(Ly et al., 2013), most of these methods perform a spatial
smoothing of the variable of interest leading to an underes-
timation of the observed variability at ungauged sites, espe-
cially for variables with a strongly skewed distribution like
daily precipitation. This is the main reason why instead of
a direct interpolation of daily precipitation, an interpola-
tion of the parameters of distribution functions and a
simultaneous simulation of the daily precipitation amount
is performed. For instance, Mamalakis et al. (2017) interpo-
lated the parameters of a Generalized Pareto distribution
to ungauged locations to perform a bias correction.

The Kriging method is shortly explained for a single
CDF parameter denoted by Θ. If several parameters are
required to estimate the distribution function at
unmeasured locations, the following procedure has to be
done for each parameter individually. Kriging estimates
the unknown CDF parameter Θ� as a linear combination
of n observed parameters Θi which each have a Kriging
weight λK ,i which must fulfil the condition

Pn
i=1

λK,i=1.

Θ�=
Xn
i=1

λK ,iΘi ð4Þ

The Kriging weights λK are obtained by solving the
Kriging equation system that minimizes the estimation
uncertainty of the unknown value. The estimation uncer-
tainty is calculated with parametric variogram modelsbγ hð Þ that estimate the semi-variance of values at a given

spatial separation distance h. Anisotropic variograms can
be calculated as a linear combination of the directional
variograms bγx and bγy, so if the variogram value increases
more strongly in one direction, the expected overall semi-
variance bγ between the unknown point and the observa-
tion location will be higher if the two points are mainly
separated along this axis.

bγ hð Þ=bγx hxð Þ+bγy hy
� � ð5Þ

For instance, in West Africa precipitation pairs on the
same degree of latitude have a lower semi-variance than
pairs on the same degree of longitude becausebγx hð Þ<bγy hð Þ. As Kriging minimizes the estimation uncer-
tainty, a higher Kriging weight is given to neighbouring
gauges that are on the same degree of latitude.

3.4 | Generating simulated observations

With the interpolated precipitation probability pw and distri-
bution parameters Θ1,…,Θn, a surrogate for the unknown
distribution Fobs of each grid cell centre is provided.
Afterward, stochastic simulations can be performed to
obtain a time series of “simulated observations.” A set of
uniform random numbers usim �U 0,1ð Þ is drawn and
inverted via the parametric CDF to obtain realizations x.
In this study, daily precipitation time series were simu-
lated for the period 1950–2005 for each grid cell centre.

x=F−1 usimð Þ ð6Þ

In case of precipitation it is necessary to also simulate
zero precipitation amounts with a dry probability of
pd=1−pw which is not possible with a single parametric
distribution. The overall distribution is constructed as a
mixed discrete-continuous (or truncated) distribution.

usim xð Þ= pd+pwF xð Þ if x>0

≤pd else

�
ð7Þ

The zero amounts obtain a censored CDF value usim≤pd.
This means that usim is unknown and can take on any
value between 0 and pd. To invert this truncated distribu-
tion, the random numbers are compared with the dry
probability pd. If a random number usim is below pd, the
simulated value will become xsim=0. In the other case,
the CDF value of the nonzero precipitation amounts is
calculated as uw=

usim−pd
1−pd

and the CDF F is inverted with
this rescaled value (Equation (8)).

LORENZ ET AL. 7



xsim=
F−1 usim−pd

1−pd

� �
if u>pd

0 if u≤pd

8<
: ð8Þ

4 | RESULTS

In this section a description of the results are given. At
first, the outcomes of the calibration of the bias correc-
tion method are shown (Section 4.1). Afterward, the
results of the bias correction are shown for the historical
period (Section 4.2) and for the future periods
(Section 4.3).

4.1 | Calibration of the bias correction
method

The bias correction model depicted in Figure 3 requires a
surrogate of the CDFs Fobs for the ungauged locations and
CDFs Fsim,hist fitted to the dry day corrected RCM precipi-
tation time series in the historical period 1950–2005. The
historical period stems from the CORDEX-Africa ensem-
ble and was chosen for the observed data. The estimation
of the CDF Fobs of daily precipitation is based on kriging
the parameters of the observed CDF and the precipitation
probability pw to the ungauged locations. The CDF
Fsim,hist was estimated for each cell directly with a kernel
density estimation (KDE, Rosenblatt, 1956). The required

steps to calibrate the model are the selection of a
parametric distribution function (Section 4.1.1), the
calculation of variograms of the distribution parameters
(Section 4.1.2) and the fitting of a distribution function
to the RCM simulations and dry day correction
(Section 4.1.3).

4.1.1 | Parametric distribution function of
observed precipitation

According to the Bayesian information criterion (BIC;
Schwarz, 1978) values of nine fitted distribution func-
tions, there is no parametric distribution function that
clearly outperforms all other functions as the differences
are rather small. As an example, the BIC values for the
month of August are shown in Figure 5. While the BIC
values of some other distributions were slightly lower
and therefore better, the exponential distribution was
chosen to model Fobs for the observed daily precipitation
intensities. The exponential distribution is defined by a
single parameter λexp which is the reciprocal value of the
mean wet day amount xw.

F xð Þ=1−e−λexpx ð9Þ

Even though the exponential distribution did not result
in the minimum BIC values, it was chosen for the follow-
ing reasons:

1. Piani et al. (2010) argue that a robust transfer function
with few parameters is favourable for climate change
studies.

2. As the rainy season is very pronounced in West
Africa, a subdivision of the year into nine seasons was
made (one season for the dry season November to
February and separate parameters for the other
months). Calculating experimental anisotropic
variograms requires splitting the sample into subsets
which reduces the sample size for the calculation of
the directional variograms. As the estimation of
variograms and the fitting of the distribution parame-
ters require a sound basis of observation data, a distri-
bution function with a single parameter can be fitted
more easily.

3. Quantile–quantile-plots (QQ-Plots) of the simulated
daily intensities against the observed ones showed a
good fit for most locations.

4. Fitting a parametric CDF with more than one param-
eter can result in a high variability of the parameters
between neighbouring locations which leads to
variograms with nearly constant semi-variances.
These cause nearly equal kriging weights and
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therefore overly smooth interpolated maps and at
times noninvertible kriging matrices.

4.1.2 | Variograms of distribution
parameters

It has been discussed that the estimation of the variogram
and kriging with non-normally distributed random vari-
ables can be problematic (e.g., Cressie and Hawkins, 1980)
and to this end a transformation of non-normal variables
like precipitation is often performed (e.g., Erdin
et al., 2012). An investigation of the distribution parameters
pw and xw showed that they are approximately normally
distributed for all seasons and no further transformation
was performed. Figure 6 exemplifies this investigation for
the month of August. The theoretical Gaussian CDFs
were obtained by simulating from a Gaussian distribution
with the standard deviation and mean of the observed
CDF parameters within the study region.

Experimental anisotropic variograms of xw and pw were
calculated for 10 separation distances ranging from 0 to
300 km and four directions (0

�
,45

�
,90

�
,135

�
) to find the

direction of maximum anisotropy (Kr�uminiene, 2006). It
was found that lower semi-variances of xw are to be
expected when going from east to west (Figure 7a) as
when going from north to south (Figure 7b) for both
parameters. This anisotropy relates to the rainfall band
that moves across West Africa from south to north during
the rainy season.

4.1.3 | Fitting a distribution function to the
RCM simulations

RCM precipitation intensities are typically highly skewed
and the probability of precipitation is generally

FIGURE 6 Empirical and Gaussian distribution of daily

precipitation probability pw (a) and mean wet day amount xw (b) in

August (1950–2005).
FIGURE 7 Experimental and fitted variograms var(h) of the

mean wet day amount in east–west (a) and north–south direction

(b) in August (1950–2005). The numbers at the experimental

variogram markers are the numbers of gauge pairs corresponding

to the respective distances.
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overestimated when compared with observation data.
Figure 8 shows the empirical distribution of one model
(KNMI-RACMO22-HadGEM2) in June for one cell. The
historical and future (RCP 8.5) precipitation probability
pw amounts to approximately 90%, whereas the interpo-
lated pw is only about 28%. While the future pw is a bit
lower than in the historical period, the values above
40 mm �d−1 are higher.

In a first step, the RCM precipitation was dry day
corrected. The dry day correction was calibrated by calcu-
lating the threshold ϑ for each season, grid cell and
CORDEX-Africa model. The assumption was that the
threshold ϑ remains constant for the future period. The
remaining values were shifted toward 0 and a distribu-
tion was fitted to the positive amounts. Finding a para-
metric distribution Fsim,hist that fits such highly skewed
data is very problematic. Thus, a KDE-CDF was utilized.
This type of CDF was chosen due to the very high
extreme values that can occur in a large ensemble of
RCM simulations. The data set is large enough to allow
for a robust fit of the KDE-CDF on a monthly basis with
the dry season November–February pooled into one
season.

4.2 | Evaluation of the bias correction
method

In this section the performance of the bias correction
model is evaluated by comparing simulations from the
estimated CDF Fobs with observed data. Afterward, the
bias-corrected RCM precipitation is compared with obser-
vations to evaluate the suitability of the KDE-CDF
Fsim,hist,hist to fit the historical time series of RCM precipi-
tation. At first, a kriged map of the rainfall probability pw

(Figure 9a) and the mean wet day amount xw (Figure 9b)
is shown. With the fitted variograms bγ hð Þ, the Kriging
Equation System was built for each ungauged location.
Measurement stations were considered as supporting
points for the interpolation of pw if at least 500 valid daily
values had been measured in the given month. For xw it
was required that at least 100 wet values had been mea-
sured at each location.

To evaluate the performance of the estimated CDF, a
statistical test against a CDF fitted to observation was car-
ried out. For each location with valid CDF parameters,
the measured values of the corresponding month serve as
a reference set xref . With the observed CDF parameters, a
set of values xsim,obs of the same length as xref was simu-
lated with the truncated exponential distribution. Like-
wise, a set xsim,krig was simulated from the estimated CDF
parameters that were interpolated from the neighbouring
stations. Both simulated sets were then tested with a
Kolmogorov–Smirnov test (KS test) at a significance level
of α=5% against the reference set. Figure 10 presents the
ratio of accepted tests for each season.

It can be seen, that the months of the rainy season do
not always follow the exponential distribution and that
the dry season is better represented by the exponential
distribution. As Kriging tends to produce smoothed
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estimates, less tests were accepted for the sets simulated
from the kriged parameters. The kriged parameters' ratio
of accepted KS tests lies in the range of 69.6 to 100%.
Since the exponential distribution fitted to observed pre-
cipitation was not always capable of passing the KS test
either, the ratios of accepted KS tests of kriged parame-
ters was divided by the ratio of accepted KS tests with
observed parameters to separate the Kriging performance
from the suitability of the exponential distribution. In
cases where the exponential distribution with observed
parameters passed the KS test, between 79.1 and 100% of
the estimated distributions also passed the test.

QQ-plots of the simulated and observed daily precipi-
tation indicate that the data sets simulated from the expo-
nential distribution is generally similar to the observed
distribution of the nearest station. Figure 11a shows the
simulated observations for Ouagadougou, Burkina Faso.
The QQ-plots of some cells indicate an underestimation
of the extreme values. Figure 11b is an example of one of
the worst fits for a cell in the north of Ghana. This region
exhibits high extreme values which the exponential dis-
tribution cannot reproduce accurately.

The CDF Fsim,hist was fitted to the daily positive pre-
cipitation amounts xRCM,hist of the historical period 1950–
2005 with a KDE-CDF. When the fit of a CDF is perfect,
the CDF values are uniformly distributed. A regular qua-
ntile mapping was performed for the historical period
and the mean monthly sums of the uncorrected and bias
corrected models of the historical period were calculated
and compared with the closest observed monthly sums
(Figure 12). The spread of the uncorrected simulations is
very large which further illustrates the need for a bias
correction. As the spread of the monthly precipitation
sums after the bias correction is very small, it can be con-
cluded that the KDE-CDF fits the RCM precipitation
quite well.

4.3 | Projected climatology of the bias
corrected RCMs

A total of 48 time series simulated by different GCM-
RCM model combinations were bias corrected. Five
models were run for the RCP 2.6 scenario, 22 for RCP
4.5, and 21 for RCP 8.5. For an analysis of the projected
climatology, the future period was split into the near
future (2020–2049) and the far future (2070–2099). The
historical period was chosen as 1970–1999 so that all
periods are 30 years long.

The mean annual sum of precipitation is projected to
change for all RCP scenarios but the magnitude and sign
of change depend on the given RCP scenario and the geo-
graphical location. Figure 13a is a violin plot of the differ-
ence of the annual precipitation in the near future (2020–
2049). The differences were averaged over all grid cells
and the spread of the violins relates to the different
models in the ensemble. To illustrate the spread of the
change signal, the interquartile range (IQR) was calcu-
lated. This measure is the difference between the 25%
and the 75% quantile of a dataset.

The median change amounts to −9:4 mm �a−1 for
the RCP 2.6 scenario. For the scenarios RCP 4.5 and RCP
8.5, the median change is positive and stronger
(36:6 mm �a−1 for RCP 4.5 and 78:6 mm �a−1 for RCP
8.5). For the far future (2070–2099), similar differences
were calculated (Figure 13b). In the RCP 2.6 scenario, a
median decrease of −11:9 mm �a−1 is expected. For the
other scenarios, the difference is again positive
(50:7 mm �a−1 for RCP 4.5 and 165:1 mm �a−1 for RCP
8.5). In contrast to the near future, the spread is larger
and some models project very large differences of more
than 400 mm �a−1.

The bias correction resulted in larger spreads of the
average annual sums which is related to a change of the

FIGURE 10 Ratio of

accepted Kolmogorov–Smirnov

tests (KS tests) of simulated

precipitation.
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distribution of positive amounts and of the dry days. As
was shown in Figure 8, the distribution of the simula-
tions typically have too many nonzero amounts which
were removed with the dry day correction method. The
remaining positive were shifted toward 0 and trans-
forming them via Fobs resulted in the larger spread of the
annual sums. The differences between the bias corrected
historical and future climatology are caused by a change
in the distribution. Since the dry day correction thresh-
olds ϑ can be very large, a change of its nonexceedance
probability in the future period introduces a change of

the bias corrected distribution that cannot be inferred
from the raw simulations. Therefore the large number of
uncertain low precipitation amounts can have a strong
influence on the simulations' statistics. The assumption is
that the threshold ϑ remains constant for the future
period. For the presented model, location and season, the
observed precipitation probability is pw=28:1% with
corresponding ϑ=4:38 mm �d−1. Applying this ϑ to the
future period changes pw to 29:2%. Thus, the precipita-
tion probability is slightly higher in the bias corrected
RCP 8.5 time series even though the wet day probability
(≥0 mm �d−1) in the uncorrected future period is lower
than in the uncorrected historical period (Figure 8). This
is caused by more values exceeding the threshold ϑ in the
future period. It can be seen that the future CDF in
Figure 8 intersects the historical CDF at around
1 mm �d−1. A change of the occurrence of these uncer-
tain low values cannot always be utilized to estimate a
trend. Therefore, ϑ was assumed to remain constant for
the future period as in Pierce et al. (2015). Estimating a
trend of the precipitation probability pw in the raw RCM
simulations to adjust this threshold for future conditions
is not always feasible as there might be no discernible
trend because an RCM might have no zeros at all
(e.g., the Hirham-EC-EARTH model). In such a case, pw
is 100% for the historical and future period and a change
in pw cannot be estimated. Calculating ϑ for the historical
period and assuming its validity for future conditions did
lead to the most stable results. Because of the strong bias
of most GCM-RCM combinations, very high thresholds
(ϑ>15 mm �d−1) were necessary for certain months and
locations. Similar findings were reported by Polade et al.
(2014) who separated the contribution of changes in the
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number of wet days (>1 mm �d−1) from the changes in
precipitation amounts on wet days to the annual sum of
the CMIP5 (Coupled Model Intercomparison Project
Phase 5) ensemble. Between 40

�
S and 40

�
N, changes in

the wet day frequency contributed more than 50% to the
change of annual precipitation.

The majority of the models project increasing mean
monthly sums for the RCP 8.5 scenario when compared
with the historical period 1970–1999 (Figure 14). As the

ensemble spread is very large, there exist models however
which project lower mean monthly sums for the near
and far future.

To assess how the climatology is projected to change
for agriculturally relevant rainfall indices like the onset
of the rainy season (ORS), a statistical approach proposed
by Laux et al. (2008) was used for the calculation of the
ORS dates. As an example for the historical period, a
map of the ORS dates is given for the corrected RCM
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FIGURE 13 Violin plot of change of future annual precipitation for the three uncorrected and corrected RCP scenarios in the near

future 2020–2049 (a) and the far future 2070–2099 (b) in comparison to the historical period 1970–1999. eΔ, median change; IQR,

interquartile range.
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with the best performance (Figure 15). The general ORS
pattern is well met for this region. In the southern parts,
the rainy season starts earlier in the year (approximately
in mid-April) as the monsoon rain belt moves from south
to north. In the northern parts, the rainy season starts
about 2 months later in mid-June. To investigate whether
the rainy season is likely to start earlier or later in the
future, the differences of the ORS dates between the his-
torical and future periods were calculated for all models.
Depending on the RCP scenario and future period, the
rainy season is projected to begin 0–5 days later in the

future (Figure 16) even though the annual sum of precip-
itation is projected to increase (Figure 13). While the
median differences for the onset dates of each RCP sce-
nario are rather small, larger changes can be observed for
individual models (between 10 days earlier and 41 days
later). Note that the different spreads of the violins is par-
tially related to the number of available models in the dif-
ferent RCP scenarios (5 for RCP 2.6, 22 for RCP 4.5, and
21 for RCP 8.5).
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FIGURE 14 Difference of mean monthly sums of precipitation

in the bias corrected RCP 8.5 scenario in the near future 2020–2049
(a) and the far future 2070–2099 (b) compared with historical

period (1970–1999).
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5 | DISCUSSION

From the methodological point of view, the proposed bias
correction method based on double quantile mapping
has several advantages over common bias correction
methods of climate projections, as it corrects the entire
distribution of daily precipitation including the frequency
of wet values and preserves the signal of climate models.
Due to the geostatistical approach and the stochastic sim-
ulation, a bias corrected time series can be provided
for an ungauged site based on regionalized point-scale
statistics of the surrounding rainfall network, while the
variability of the target variable is maintained. The esti-
mation of distribution parameters can also be used for
further models like stochastic weather generators
(e.g., Wilks, 2009) or other statistical approaches used in
climate sciences (e.g., B�ardossy and Pegram, 2016; Lorenz
et al., 2018). The approach can also be easily transferred
to other meteorological variables and climate regions if
corresponding observations and GCM/RCM simulations
are available. Moreover, instead of interpolation of point
scale statistics, the approach can simply be extended
using block kriging if bias corrected time series on regu-
lar grid for distributed impact models in hydrology or
agriculture are needed.

We also showed that the bias correction eliminates
the systematic differences between the RCM ensemble
and the observational references for the historical period
as shown in Figure 12 for the seasonal distribution of
monthly precipitation, for instance. An analysis of the
corrected climate change signal using the full CORDEX-
Africa ensemble revealed that the central Sudanian
Savanna of West Africa will most likely experience higher
rainfall amounts in future and a slight delay of the onset.
This is consistent to other investigations in this region
using a limited RCM ensemble (Sylla et al., 2015; Badou
et al., 2018; Heinzeller et al., 2018). Moreover, the sign of
the ensemble signal is preserved and is therefore consis-
tent to the uncorrected RCM simulations. However, more
detailed investigations are needed to explore how certain
daily precipitation characteristics (e.g., extremes, dry
spells) are corrected and projected to change in this
region and how the proposed method behaves in other
climatological zones and seasons as shown in other stud-
ies (Oguntunde and Abiodu, 2013; Sylla et al., 2015; Laux
et al., 2021).

We also illustrated that the ensemble spread is
increased for the future period although the bias between
RCM simulations and observational reference is elimi-
nated. As explained in detail in Section 4.3, this is mainly
related to the change of the distribution function of the
nonzero precipitation amounts and the dry days and the
challenges to account the dry day correction. It is

therefore partly the result of the large statistical differ-
ences of several RCMs to the observations. Another prob-
lem is that tested distribution functions are not perfectly
matching to the observed statistics. Thus, we cannot
completely eliminate the biases for the ungauged sites
and further uncertainties are introduced due to this prob-
lem. Thus, the elimination of less reliable RCMs simula-
tions from the CORDEX-Africa ensemble and the further
development of the current approach by using better
fitted distribution functions would reduce the ensemble
spread.

Moreover, the proposed approach should be only
viewed as straightforward reference approach for a
point-based bias correction of daily precipitation.
There are more sophisticated approaches for a bias cor-
rection of regional climate projections (e.g., B�ardossy
and Pegram, 2012), but they have not yet been applied
on an ensemble basis or need to be advanced for point
estimates. An important issue is the integration of
large-scale atmospheric circulation patterns (CP; Huth
et al., 2018) in the bias correction approach as shown
in (B�ardossy and Pegram (2011). In this case, the
observed bias is determined for each CP and not for
each month as done in this study. This approach would
better capture the WAM dynamics on different spatio-
temporal scales. Guèye et al. (2012) and Moron et al.
(2018) showed that reliable atmospheric CPs can be
also determined for this challenging region. In addi-
tion, different parametric CDFs can be selected as was
done by Mamalakis et al. (2017) for the correction of
daily precipitation. Moreover, a set of fitted distribu-
tions can be used to study the inherent uncertainty of
the bias correction approach in comparison to the
GCM/RCM spread. As pointed out by Laux et al. (2021)
for the WAM region, the uncertainty of bias correction
can be in the range of the GCM/RCM spread. However,
the selection of other distribution functions or even an
ensemble of distribution function to study this issue is
not straightforward due to the reasons given in the
Section 4.1.1. A further important task is to provide
better estimates for the distribution function of daily
precipitation at the ungauged site as in Mosthaf and
B�ardossy (2017) since all fitted distribution functions
have limitations (as illustrated in Figures 10 and 11
exemplary for the exponential distribution). This
would reduce the uncertainty of this approach and
would provide more robust estimates of future climate.
Moreover, the choice of the interpolation methods for
estimating the distribution parameters can be investi-
gated in more detail since several other interpolation
methods are available for precipitation (Ly et al., 2013).
In addition, improved interpolation method for a direct
interpolation of the variable of interest can be tested
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that can better capture the observed variability at
ungauged sites. This task plays important role if the
proposed approach is used for meteorological variables
that are less skewed like daily temperature.

Another important aspect is the analysis how reliably
the different CORDEX GCM/RCM-combinations can
simulate the atmospheric processes for this region. This
study indicated several limitations such as a strong over-
estimation of the annual precipitation amount for certain
RCMs (Section 2) and a large ensemble spread for the
historical period (Figure 12). The reasons for the RCM
biases can be manifold. According to Teutschbein and
Seibert (2013) there are several error sources of RCM sim-
ulations: numerical effects, computationally limited spa-
tiotemporal resolution, uncertainties of the initial and
boundary conditions and using a single parameter to
represent a certain property of a grid cell like, for exam-
ple, the land use. Moreover, RCMs use parametrization
schemes to solve small-scale processes and this can have
a strong impact on precipitation simulations for the West
African Monsoon as shown in Klein et al. (2015).
Another reason for the bias is also the high observational
uncertainty for this region as shown in Sylla et al. (2015),
who used several standard global precipitation products
as reference for comparison with RCM simulations.
Moreover, the inherent bias of GCMs is another potential
source of RCM bias. However, the exact bias reasons for
the different RCMs are not investigated in this study.
Thus, a more in-depth analysis of the GCM/RCM is
needed to better relate the identified precipitation biases
to the different sources of RCM biases and to filter less
reliable RCM simulations for this region as, for example,
done for the Amazon region for CMIP5 models by Baker
et al. (2021). In addition, the CPs can be also used as tool
for analysing how well large-scale atmospheric processes
can be simulated by climate models in this region. These
different steps would allow a more process-based bias
correction as demanded, for example, by Maraun et al.
(2017) and could ultimately provide more reliable precip-
itation scenarios for this region.

6 | SUMMARY AND
CONCLUSIONS

A geostatistical bias correction technique that estimates the
distribution functions of daily precipitation of ungauged
locations was developed. The CDF parameters were inter-
polated from station locations using kriging and used to
generate so-called “simulated observations” to perform a
double quantile mapping of the precipitation time series of
the CORDEX-Africa ensemble for a study region in West
Africa. A comparison of the estimated distributions with

actual observations showed that the main climatological
characteristics are reproduced. The kriging procedure is
flexible since it estimates the CDF parameters of ungauged
locations as a function of distance to gauges.

An analysis of the projected climate change of the full
CORDEX-Africa ensemble after the bias correction rev-
ealed that the central Sudanian Savanna of West Africa
will most likely experience higher rainfall amounts in the
period 2006–2100. The annual precipitation amounts will
increase up to 79 mm �a−1 for the near future 2020–2049
and 165:1 mm �a−1 for the far future 2070–2099 under
RCP 8.5. The sign of change is consistent with the
uncorrected simulations but since the rainfall probability
is generally too high in the models and the majority of
the nonzero precipitation amounts is underestimated, the
spread and uncertainty of the projected change increases
after bias correction. However, the ORS date is not
projected to change much.

The bias corrected precipitation ensemble of this
study has been made available for future research appli-
cations and constitutes an important source of informa-
tion for studying the impact of climate change in
hydrology and agriculture in the Sudanian Savanna of
West Africa. The full data set (raw and corrected) can be
accessed via the WASCAL Scientific Research Data Cata-
logue using the key words “precipitation” and “COR-
DEX-Africa.” This data portal also provides a gridded
daily observed precipitation dataset (1970–2010) for the
study region of this work and further meteorological
datasets relevant for West Africa.
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