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Abstract Deepmaterial networks (DMNs) are a recentmultiscale technologywhich enable running concurrent
multiscale simulations on industrial scale with the help of powerful surrogate models for the micromechanical
problem. Classically, the parameters of the DMNs are identified based on linear elastic precomputations. Once
the parameters are identified, DMNs may process inelastic material models and were shown to reproduce
micromechanical full-field simulations with the original microstructure to high accuracy. The work at hand
was motivated by creep loading of thermoplastic components with fiber reinforcement. In this context, mul-
tiple scales appear, both in space (due to the reinforcements) and in time (short- and long-term effects). We
demonstrate by computational examples that the classical training strategy based on linear elastic precompu-
tations is not guaranteed to produce DMNs whose long-term creep response accurately matches high-fidelity
computations. As a remedy, we propose an inelastically informed early stopping strategy for the offline training
of the DMNs. Moreover, we introduce a novel strategy based on a surrogate material model, which shares the
principal nonlinear effects with the true model but is significantly less expensive to evaluate. For the problem at
hand, this strategy enables saving significant time during the parameter identification process. We demonstrate
that the novel strategy provides DMNs which reliably generalize to creep loading.

Keywords Multiscale methods · Computational homogenization · Deep material networks · Creep loading ·
Short fiber-reinforced thermoplastics

1 Introduction

1.1 State of the art

We are interested in characterizing short fiber-reinforced thermoplastics under creep loading. This class of
materials combines attractive features like high stiffness and strength along with the ability to mass produce
components via injection molding. Specifically, we aim to characterize the composite polybutylene tereph-
thalate (PBT) reinforced with 30% (by weight) E-glass fibers. The classical way to characterize the material
would require the manufacturing of test plates via injection molding, the milling of samples and the physi-
cal testing. For the case of long-term creep loading, this would take several months. Instead, we opt for an
efficient multiscale virtual testing procedure by decomposing the problem into two scales. Due to the spa-
tially varying microstructure, the microscale problem needs to be solved repeatedly but with changing input
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parameters. Traditionally, mean-field approaches or variational estimates [1–4] were used to approximate the
effective properties of composites. However, such methods rely upon simplifying assumptions on the consid-
ered microstructures and material models, and may come with a significant error. Alternatively, computational
homogenization approaches may be used, which compute the effective response of a material by solving the
balance of linear momentum on a spatially resolved representation of the material’s microstructure. In the last
decades, different rather efficient computational strategies were developed for this purpose [5]. Particularly
successful are strategies based on the fast Fourier transform (FFT) [6,7], which operate on a regular grid
and exploit the quality of modern FFT implementations. We refer to the recent review articles [8–10] for a
discussion of the latest developments.

Computational homogenization methods may be used for computing the response of a material under a
specific loading quite efficiently. However, when a large number of such analyses is required, for instance when
the effective model is used as a material model on component scale [11–13], this approach faces limitations.
Based on the realization that, in a multiscale context, the problems to be solved actually form variations of
each other, strategies were sought which are able to reuse simulation data to derive a simplified effective
model whose evaluation is significantly less costly. The transformation field analysis (TFA) of Dvorak and
coworkers [14–16] clusters the internal variables into regions of spatial homogeneity. In this way, mean-field-
type models are created which are informed by the actual location of the individual phases of the material.
Unfortunately, restricting to piecewise homogeneous internal variables limits the predictive capabilities of such
models. As a remedy, Michel and Suquet [17–19] generalized the method to permit superpositions of spatially
heterogeneous fields of internal variables. To identify these fields, techniques from model order reduction
were used [20–22]. Unfortunately, due to the nonlinear dependence of the stress on the internal variables,
the difficulty was shifted to finding expressive closed-form expressions of the effective material [23–25]. The
method was extended to reduce mechanics at interfaces [26,27], at finite strains [28,29] and in space-time [30],
as well. Further data-driven approaches were exploited, for instance based on clustering [31–33] or proper
orthogonal decomposition [34,35].

Alternatively, artificial neural networks (ANNs) may be used for approximating the effective elastic energy
of nonlinear elastic media [36–38] or the stress–strain relationship of inelastic materials [39–41]. Moreover,
ANNs and reduced-order models may be combined on the fly [42,43]. ANN-based approaches typically suffer
when evaluated far away from the training set. Moreover, as a result of the neural network approximation, the
underlying physical principles may be violated.

Liu et al. [44,45] proposed deep material networks (DMN) as surrogate models for micromechanical
computations. Instead of trying to learn the mechanical response of a material, DMNs learn themicrostructure
of the material, i.e., they seek a reduced model of the geometrical interactions inherent to the microstructure.

Classically, DMNs are trained on linear elastic data, i.e., on tuples of input stiffness tensors, one for each
phase, and corresponding apparent stiffness tensors, obtained from direct numerical simulations. Subsequently,
nonlinear and inelastic material models may be used in the DMN framework and were demonstrated to replace
full-field computationswith highfidelity. Itwas shown [46,47] thatDMNs inherit thermodynamical consistency
from their phases, respect the classical micromechanical bounds and satisfy the Hill–Mandel condition.

Deep material networks come in different flavors. For a material with K phases, Liu et al. [44,45] use
a K -ary tree of laminates with fixed direction of lamination and intermittent rotations. Gajek et al. [46,48]
showed that using K -ary trees of laminates with variable direction of lamination, but no intermittent rotations,
led to similar accuracy with fewer parameters to be trained. Recently, Nguyen and Noels [47,49] have studied
more general building blocks inspired by polyhedral finite element methods.

DMNs were shown to work for modeling interface damage [50], strain localization [51], thermomechan-
ically coupled materials [52] and porous materials [49]. Moreover, fully coupled FE-DMN methods were
realized [47,48,52,53].

1.2 Contributions

Classically, deep material networks are trained on linear elastic data alone. However, when considering long-
term creep loading of SFRT composites on an industrial scale, the framework needs to be re-evaluated with
care. Indeed, for such a scenario, multiple scales are involved both in space (due to the reinforcements) and in
time (due to the long-term loading). We demonstrate by computational experiments that the identified DMNs
may or may not lead to good creep predictions. We show that this is caused by overfitting the linear elastic
data relative to the creep response. In particular, an early stopping strategy, a classic in machine learning [54,
§ 7.8], may be used to resolve this issue.
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Section 2 outlines the basic construction principles of DMNs, together with the classical elasticity-based
training and the novel inelastically informed training strategy. Section 3 reports on the considered setup (E-
glass fiber-reinforced PBT) and examines the various training procedures and their inelastic generalizations
with care. Particularly powerful turns out to be a hybrid strategy, where the early stopping is itself based on an
inelastic surrogate material model which shares the basic phenomena with the “real” material model but may
be evaluated with less expense.

2 Deep material networks

2.1 Basic concepts

A deepmaterial network (DMN) [44,46,47] with N phases in three spatial dimensions consists of the following
data.

1. A set N of nodes with indices 1, . . . , n.
2. A set G of (formal) integration points with indices 1, . . . ,m.
3. A partition of the set of integration points G into N subsets Gi (i = 1, . . . , N ) which are disjoint and cover

the set G. The set Gi contains all integration points which are occupied by the i th material.
4. A set of positive weights w1, . . . , wm , which sum to unity.
5. A symmetrized gradient operator D ∈ R6m×3n .

The weights may be collected in the diagonal matrix W ∈ R6m×6m with

W i i = w�i/6� (floor division). (2.1)

To express the compatibility conditions, we introduce the averaging matrix A ∈ R6×6m , an m-fold copy of
the 6 × 6-identity matrix. Then, the symmetrized gradient operator D and the weights wi should satisfy the
condition

AWD = 0, (2.2)

which states that the weighted average of the compatible strains vanishes.
Suppose a nonlinear stress–strain relationship f i : R6 → R6 at small strains is given for each material

i = 1, . . . , N . Then, for prescribed strain ε, which we consider as an element of R6, we seek a displacement
field �u ∈ R3n , s.t. the balance of linear momentum

DTW f (AT ε + D�u) = 0 (2.3)

holds, where the function f applies the nonlinearity f i at the i th integration point and the vector AT ε contains
m identical copies of the average strain ε. The effective stress is subsequently computed via

σ = AW f
(
AT ε + D�u

)
. (2.4)

Deep material networks serve as a high-level abstraction for a finite element discretization of an N -phase
microstructure. Indeed, for such a microstructure Y , decomposed into N subdomains Yi , any finite element
discretization gives rise to a node set N , a set of integration points G with associated quadrature weights
wi . The gradient operator D arises by evaluating the FE B-matrix at the integration points, and a nodal
decomposition Gi emerges by associating any integration point y j ∈ Y to the material domain which it lies
in, y j ∈ Gi ⇐⇒ y j ∈ Yi . Then, the classical weak form of the finite element problem is equivalent to the
equilibrium equation (2.3) for any type of nonlinearity f i .

Deep material networks give rise to an effective material behavior which automatically satisfies the Hill–
Mandel condition, inherits thermodynamical consistency from its phases, preserves elementary micromechan-
ical bounds and gives rise to a uniquely solvable nonlinear system of equations (2.3) (provided the kernel of
D is factored out and the nonlinearities f i are strictly monotone) [46,47].

Deep material networks serve as an abstraction of finite element discretizations of micromechanical prob-
lems. They inherit the positive characteristics, but dispense with the constraints of a physical realization of
the finite element discretization. In particular, the node setsN and G have no intrinsic physical meaning. Still,
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DMNs may be regarded as statistically similar representative volume elements [55,56], which reflect—on an
abstract level—the topology of the microstructure which they should serve as a surrogate model for.

To start with, DMNs typically fix the node setN and the integration points G (with the decomposition Gi )
a priori. Then, a model for the gradient and the weights

D ≡ D(�p), W ≡ W(�p) (2.5)

in terms of a suitable (hyper)parameter vector �p is postulated. In the literature, different possibilities to choose
the parametrized matrices D(�p) and W(�p) were proposed. Liu and coworkers [44,45,50,51] considered a
hierarchy of rotated laminates. Gajek et al. [46] introduced a hierarchical construction with laminates of
variable direction of lamination, see Sect. 2.2. This construction has fewer parameters than rotated laminates,
but was shown to provide similar accuracy. Nguyen and Noels [49] introduced polytopal DMNs which permit
more general rank-one jumps than pure laminates to deal with porous microstructures. All these approaches
have in common that the matrix D is sparse, reflecting a further characteristic of finite element discretizations.

In any case, once the construction plan (2.5) is fixed, DMNs are operated in two stages. In the first stage,
the parameters �p are fitted to a suitable objective

J (�p) ≡
nobs∑
s=1

Js(�p) + ψ(�p) −→ min
�p

(2.6)

with contributions Js that measure data fidelity to nobs observations and, possibly, a regularization term ψ .
This so-called offline training is typically based on linear elastic precomputations obtained from full-field
simulations on a high-fidelity representation of the microstructure [44,45], giving rise to the contributions
Js . Once the parameters �p are identified, the deep material network may be used as a high-fidelity full-
field surrogate model for inverse parameter identification or for concurrent multiscale simulations [48,52,53].
For this purpose, equation (2.3) is solved for nonlinearities that arise from a time discretization of inelastic
constitutive laws.

As an alternative to a parameter identification based on linear elastic data alone, the nonlinear effective
behaviormay be taken into consideration [49]. However, such a proceduremay be delicate, asmodern gradient-
based learning techniques are based on automatic differentiation, which may prove rather computationally
expensive for sophisticated material models. The work at hand proposed an alternative strategy based on early
stopping [54, § 7.8], see Sect. 2.3.

2.2 Direct deep material networks

As a construction strategy for the symmetrized gradient operator D(�p) and the weight matrix W(�p), we use a
hierarchy of N -phase laminates where a scale separation is assumed at each level of the hierarchy. For K − 1
such scale separations, we obtain a perfect, ordered N -ary tree of depth K comprising

1 + N + N 2 + · · · + NK−1 = NK − 1

N − 1
(2.7)

individual N -phase laminates.We call such an N -ary tree a direct DMN [46,48,52]. Figure 1 shows an example
of a direct DMN with K = 3 layers and N = 2 phases.

To build the DMN, we first consider a single N -phase laminate with lamination direction n ∈ R3 and a
vector c ∈ RN of volume fractions, which are positive and sum to one. The elastic behavior of such a laminate
may be expressed in terms of N − 1 displacement jump vectors �a = [

a1, . . . , aN−1
]T ∈ R3(N−1), see Ospald

et al. [57]. Classically, a N -phase laminate has N displacement jump vectors whoseweighted average vanishes.
In our representation, this constraint has been explicitly resolved by expressing the last displacement jump
vector in terms of the previous N − 1 vectors.
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Fig. 1 Example of a two-phase direct DMN with depth K = 3

For fixed kinematics, the N strain fluctuations, one for each phase, emerge by applying the symmetrized
gradient operator L(c, n) ∈ R6N×3(N−1) , given by the formula

L(c, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∑1
i=1 ci − 1

)
B(n)

(∑2
i=1 ci − 1

)
B(n) . . .

(∑N−1
i=1 ci − 1

)
B(n)

∑1
i=1 ci B(n)

(∑2
i=1 ci − 1

)
B(n) . . .

(∑N−1
i=1 ci − 1

)
B(n)

∑1
i=1 ci B(n)

∑2
i=1 ci B(n) . . .

(∑N−1
i=1 ci − 1

)
B(n)

...
...

. . .
...∑1

i=1 ci B(n)
∑2

i=1 ci B(n) . . .
(∑N−1

i=1 ci − 1
)
B(n)∑1

i=1 ci B(n)
∑2

i=1 ci B(n) . . .
∑N−1

i=1 ci B(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.8)

to the vector of displacement jumpvectors.Here, for any vector a, the symmetrized tensor product n⊗s amaybe
expressed by the matrix–vector product B(n)a inMandel’s notation. Explicitly, the strain–displacement–jump
matrix B : R3 → R6×3 reads

B(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1 0 0
0 n2 0
0 0 n3

1√
2
n2

1√
2
n1 0

1√
2
n3 0 1√

2
n1

0 1√
2
n3

1√
2
n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.9)

With these expressions for a single laminate at hand, let us consider an N -ary tree of such N -phase laminates.
To each laminate, a unit direction of lamination nkj is associated. We collect these normals in a large vector

�n =
[
n11, n

2
1, . . . , n

2
N , . . . , nK

1 , . . . , nK
NK−1

]T ∈ R3 NK −1
N−1 (2.10)

with an ordering which traverses the tree from the root to the leafs through each level from left to right (like a
breadth-first search of the corresponding tree). Moreover, to each laminate, N volume fractions are associated.
We parametrize those in terms of a collection �w = [

w1, . . . , wNK

] ∈ RNK
of positive weights (formally)

residing on level K + 1. The volume fractions are then computed by a weighted average [46, eq. (3.8)–(3.9)].
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The set of m = NK integration points G corresponds to the individual phases of the laminates on level K ,
and is partitioned into N subsets Gi (i = 1, . . . , N ) in a alternating manner

Gi =
{
m ∈ G |m = i + lN , l = 0, 1, . . . , NK−1

}
, (2.11)

see Fig. 1 for an illustration for the special case of N = 2. Thus, each laminate on the lowest level receives
one of the N phases as input.

The kinematics of each of the laminates is governed by N1 (local) displacement jumps

�akj = [ak1+( j−1)(N−1), . . . , a
k
j (N−1)]T ∈ R3(N−1). (2.12)

Here, the upper index k = 1, . . . , K labels the depth and the lower index j = 1, . . . , Nk−1 corresponds the
horizontal position in the N -ary tree.We collect these individual displacement jumps in a (global) displacement
vector

�u =
[
a11, . . . , a

1
N−1, a

2
1, . . . , a

2
N (N−1), . . . , a

K
1 , . . . , aKNK−1(N−1)

]T ∈ R3(NK−1) (2.13)

with the same ordering as for the lamination directions. These serves as the displacement-type degrees of
freedom of the deep material network. Thus, the direct DMN comprises n = NK − 1 nodes, one for each
displacement jump.

The (global) symmetrized gradient operator D ∈ R6NK×3(NK−1) may be assembled from the local sym-
metrized gradient operators (2.8) in a similar fashion as finite elements [58]. More precisely, we obtain a
representation

D =
K∑

k=1

Nk−1∑
j=1

Jkj L(ckj , n
k
j )E

k
j (2.14)

in terms of suitable extraction Ek
j and prolongation matrices Jkj ∈ R6NK×6N . These matrices contain only

zeros and ones and establish the connection between local quantities and global quantities. Moreover, the
matrices Ek

j and Jkj depend only on the topology of the tree and are independent of the DMN parameters �p.
The extraction matrix Ek

j ∈ R3(N−1)×3(NK−1) picks out the (local) displacement jumps �akj from the global

vector �u, i.e., �akj = Ek
j �u holds, and may be expressed in terms of the Kronecker product [59]

Ek
j = eTj−1+Nk−1 ⊗ diag(1, . . . , 1︸ ︷︷ ︸

N−1 times

) with 1 ≡ diag(1, 1, 1) ∈ R3×3 (2.15)

and the Cartesian basis vector e j−1+Nk−1 ∈ R
NK −1
N−1 . Similarly, the injection matrix Jkj admits the Kronecker

product representation

Jkj = eTj ⊗ diag(1, . . . , 1︸ ︷︷ ︸
N times

) ⊗ �1k ⊗ I with I ≡ diag(1, 1, 1, 1, 1, 1) ∈ R6×6, (2.16)

the Cartesian basis vector e j ∈ RNk−1
and the column vector of ones �1 k = [1, . . . , 1] ∈ RNK−k

.
To illustrate the procedure, we record these matrices for the two-phase DMN of depth K = 3 shown in

Fig. 1. The extraction matrices read

E1
1 = [

1 0 0 0 0 0 0
]
, E2

1 = [
0 1 0 0 0 0 0

]
, . . . , E3

4 = [
0 0 0 0 0 0 1

]
, (2.17)

whereas the prolongation operators take the form

J11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0
I 0
I 0
I 0
0 I
0 I
0 I
0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0
I 0
0 I
0 I
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
I 0
I 0
0 I
0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J31 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0
0 I
0 0
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . J34 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
I 0
0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)
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We obtain the symmetrized gradient operator

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c11,2B(n11) −c21,2B(n21) 0 −c31,2B(n31) 0 0 0
−c11,2B(n11) −c21,2B(n21) 0 +c31,1B(n31) 0 0 0
−c11,2B(n11) +c21,1B(n21) 0 0 −c32,2B(n32) 0 0
−c11,2B(n11) +c21,1B(n21) 0 0 +c32,1B(n32) 0 0
+c11,1B(n11) 0 −c22,2B(n22) 0 0 −c33,2B(n33) 0
+c11,1B(n11) 0 −c22,2B(n22) 0 0 +c33,1B(n33) 0
+c11,1B(n11) 0 +c22,1B(n22) 0 0 0 −c34,2B(n34)
+c11,1B(n11) 0 +c22,1B(n22) 0 0 0 +c34,1B(n34)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R48×21. (2.19)

Returning to the general case, we observe that the symmetrized gradient operator D is uniquely parameterized
by the individual volume fractions ckj as well as the directions of lamination nkj of the collection of laminates.
Thus, the vectors �n and �w of lamination directions and weights could serve to parametrize such a direct DMN.

In the implementation [44,46], it is convenient to ensure non-negativity of the weights �w ∈ RNK
by

expressing them in terms of unconstrained weights �v ∈ RNK
via applying the Macauley bracket (or ReLU

activation function in machine learning)

〈·〉+ : R → R≥0, x �→ max(0, x), (2.20)

in a component-wise manner

�w = 〈�v〉+. (2.21)

Thus, the parameter vector which uniquely defines both the gradient operator D(�p) and the weight matrix
W(�p) of a direct DMN is given by �p = (�n, �v).

2.3 An inelastically informed training strategy

Classically, DMNs are trained on objective functions of the form (2.6)

J (�p) ≡
nobs∑
s=1

Js(�p) + ψ(�p) −→ min
�p

, (2.22)

where the functions Js(�p) measure the proximity of the current DMNs predictions to precomputed effective
elastic properties. The term ψ(�p) serves as a regularizing term and is explicitly defined in Sect. 3.2.

Although DMNs, which are identified based on elastic data, show accurate predictions for large classes on
nonlinear and inelastic constitutive laws for the microstructural phases, the developed theory [46] hints that
such a close agreement may be lost if the constitutive laws show a high degree of nonlinearity. Therefore, it
appears a good idea to add nonlinear constitutive laws to the training, encoded by an additional term H(�p).
Then, instead of the original problem (2.22), an augmented problem

J (�p) + H(�p) −→ min
�p

(2.23)

may be used to identify the parameters. Unfortunately, such an approach is restricted to rather simple inelastic
material models [49], as the computational effort in evaluating complex constitutive laws, including computing
the derivatives necessary for the gradient descent for a multitude of different loading conditions and time steps,
quickly becomes prohibitive.

For this reason, we propose to use an alternative strategy which is similar in spirit to the commonly used
early stopping [54, § 7.8] technique in machine learning. More precisely, in our strategy, the iterates �pk of
a conventional solver for the original problem (2.22) are stored in a set P . Then, the additional term H(�p),
which encodes the performance of our model on the nonlinear inelastic constitutive laws is evaluated using
the stored iterates �pk during training. Finally, the best parameter vector

�pbest = argmin �p∈PH(�p) (2.24)

is selected. It is common to store only each 50th or 100th iterate �pk of the learning method, so that the runtime
of such an early stopping strategy will be reduced by one or two orders of magnitude compared to a coupled
strategy (2.23) if the effort of evaluating the inelasticity-aware objective H is significantly larger than for the
original objective (2.22).
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Fig. 2 Prepared Becker [60] samples from composite plates with different directions

Table 1 Identified material parameters for PBT-GF30

Matrix Elastic E = 2399.3 MPa ν = 0.4
Plastic h = 346.9 MPa ω = 384.9 y0 = 20.9 MPa y∞ = 51.9 MPa
Creep A1 = 0.014 MPa−1 n = 32.4 A2 = 1.5 × 10−13 MPa−1 C = 1870.1

k = 0.016 ε̇0 = 1.0s−1

Fibers Elastic E = 72,000 MPa ν = 0.22

3 Computational investigations

3.1 Setup

We consider a polybutylene terephthalate (PBT), reinforced by 30%E-glass fibers (PBT-GF30). To characterize
the matrix material, experiments were performed on a dog-bone shaped Becker sample [60], shown in Fig. 2,
at the three load levels 23.5 MPa, 32.8 MPa and 37.5 MPa. The load was ramped up to the respective stress
levels in 8.5 s and held constant for different time intervals depending on the load level. The results are shown
in Fig. 3a. For all three load levels, we observe the typical three different creep phases [61]: primary, secondary
and tertiary creep. The creep–strain rate starts with a high value at the beginning of the primary creep stage and
reaches an approximately constant value during the secondary creep stage. The tertiary state is characterized
by an increase in the creep strain rate, leading to fracture of the specimen, eventually [62]. The first phase ends
at roughly the same time for all three considered load levels. The onset of the third phase and the inclination
of the strain at this onset, however, differ significantly for the three load levels.

For the matrix, we use a coupled plasticity–creep model, where the elastoplastic part accounts for short-
term effects, whereas a viscoplastic augmentation accounts for long-term creep effects. We refer to Appendix
A for details. To identify the free parameters, we used a two-step procedure. In a first step, the evolution of
the creep strain was deactivated, and the elastic constants as well as the plasticity parameters were determined
from uniaxial, monotone, tensile experiments up to 5% strain, performed for four different samples. For the
parameter identification using OptiSlang [63], we set up a single-element unit–hexahedron model in Abaqus
[64], and fixed the Poisson’s ration to ν = 0.4 and the viscosity to η = 0.001MPas, emulating strain rate
independence.

Once the elasticity and plasticity coefficients were determined, the remaining creep parameters were iden-
tified from long-term creep tests carried out at different load levels, see Fig. 3a, based on OptiSlang [63],
wrapping an Abaqus [64] simulation. The model predictions with the identified parameters are compared to
the experimental results in Fig. 3a. The model captures the three creep phases rather well and represents the
three experimental results to a sufficient accuracy. The final list of identified parameters is given in Table 1.
For the E-glass fibers, we use standard parameters [65].

It is well known that the mechanical properties of fiber-reinforced composites strongly depend on the
microstructure characteristics like fiber orientation and fiber length distribution [66,67]. To quantify the
microstructure characteristics, we rely upon microcomputed tomography [68–70].
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(a) (b)

Fig. 3 A comparison of experimental results and model predictions for the PBT matrix and generated periodic fiber-filled
microstructure

More precisely, we determined the length-weighted average fiber length of 269μm, a fiber diameter of
10μm and the second-order fiber orientation tensor

A =
⎡
⎣
0.213 0.006 0.001

0.770 −0.004
sym 0.017

⎤
⎦ (3.1)

by the method discussed in Hessman et al. [71] for a specimen milled out from a 120mm×80mm×2mm
injection-molded plate, see Fig. 2. We used these data to reconstruct a digital microstructure with the SAM
algorithm [72], see Fig. 3b. We generated a cubic unit cell with an edge length of 625μm containing 2056
cylindrical fibers with a length of 269μm and a diameter of 10μmwith a minimum distance of 3μm between
the fibers. The second-order fiber orientation tensor (3.1) was prescribed, combined with the exact closure
approximation [73,74].

The microstructure was discretized by 5123 voxels. For the subsequent FFT computations, we used the
composite–voxel technique [75–77] with a resampling factor of two. Thus, after resampling, the unit cell
consists of 2563 voxels. The computation time when performing a linear elastic FFT simulation using a
phase contrast of 10,000 and a unit cell discretized by 5123 voxels was 19.9 h. In comparison, the resampled
microstructure with 2563 voxels and composite voxels required just 2.38 h. The resampling error between the
stiffness tensors is just 1.12% in the Frobenius norm in Mandel notation. As, in the case of a lower phase
contrast, an even smaller error is expected, the composite–voxel method serves as a reasonable way to speed
up the computations.

Last but not least, let us discuss the used software and hardware. The micromechanical computations were
performed with the software FeelMath [78] on a HPC cluster with nodes that have 16 CPUs each and 4 GB
of memory per CPU. FeelMath [78] implements FFT-based computational homogenization methods. More
precisely, we used the staggered grid discretization [79,80] and linear as well as nonlinear conjugate gradient
methods [81–83] for linear and nonlinear constitutive behavior, respectively.

The DMN was trained on a single CPU with 60GB of memory. The DMN online phase code was run on a
single computing node.

Both the material model and the DMN were implemented as user-defined material subroutines (UMATs)
in Abaqus [64], which may also be used in FeelMath [78]. We use the LAPACK [84] libraries for the linear
algebra operations.
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3.2 Performance of classical sampling

We consider a microstructure with N = 2 phases, i.e., the PBT matrix and the E-glass fibers. We use the direct
DMN described in Sect. 2.2, and initialize the parameters (�n, �v) as proposed in Gajek et al. [46].

For the training, we generated training and validation data based on full-field FFT-based computational
homogenization. These data consist of triples

(
C
s
1,C

s
2, C̄

s
FFT

)
, where Cs

1 and C
s
2 serve as the linear elasticity

tensors of the twomaterials, and C̄s
FFT refers to the effective elasticity tensor. The tuples

(
C
s
1,C

s
2

)
were sampled

by the method proposed by Liu and Wu [45] utilizing orthotropic elasticity tensors. The effective properties
C̄
s
FFT were computed with FeelMath [78]. We generated 1 000 samples as mentioned, split into 800 training

and 200 validation points.
For fixed DMN parameters (�n, �v), we denote by C̄s

DMN(�n, �v) the effective stiffness computed by the DMN
with phase stiffnessesCs

1 andC
s
2. We refer to Gajek et al. [46] for details how to evaluate the effective stiffness

C̄
s
DMN(�n, �v) efficiently.
For the offline training with linear elastic data, we minimize the objective function (2.6), i.e.,

J (�n, �v) −→ min
�n,�v

with J (�n, �v) =
nb∑
s=1

Js(�n, �v) + ψ(�n, �v), (3.2)

with the batch size nb = 40, the contributions

Js(�n, �v) = 1

nb

∥∥C̄s
FFT − C̄

s
DMN(�n, �v)

∥∥
1∥∥C̄s

FFT

∥∥
1

(3.3)

and

ψ(�n, �v) = λ
(
aT1 〈�v〉+ − c1

)
+ λ

(
aT2 〈�v〉+ − c2

)
, (3.4)

where c1 = 0.822 and c2 = 0.178 denote the volume fractions of the respective phases, and a1 is a vector that
has ones at all odd indices and is zero; otherwise, a2 is a vector that has ones at all even indices and is zero
otherwise, and λ refers to a penalty factor which we set to 100. The term ψ enforces the respective volume
fractions of both phases [85]. This approach differs from previous works [44–46], where the total volume
fraction of the DMN is enforced to unity. Instead, we enforce the respective volume fractions of each of the
phases. We found empirically that such a strategy increases the reliability of the offline training.

We use the �1-norm in Eq. (3.3) since an independent study with �p-norms and variable exponents p
revealed that the subsequently trained DMNs capture the inelastic creep response most closely for p = 1. For
reasons of conciseness, we chose not to report this study here.

The training, i.e., the minimization of the objective function (3.2), proceeds as for (more general) neural
networks, i.e., via a stochastic batch-gradient-descent-type algorithm based on automatic differentiation and
a grouping into batches. (We use batches of size 40.) We implemented the procedure in PyTorch [86] and
used the AMSGrad method [87] for training the network along with a learning rate modulation using cosine
annealing [88],

β(m) = βmin + 1

2
(βmax − βmin)

(
1 + cos

(
π
m

M

))
, (3.5)

where β and m refer to the learning rate and epoch, respectively. We use a maximum learning rate βmax =
0.0007 and a minimum learning rate βmin = 0. The parameter M is set to 4000. The training of the DMN
was performed up to 25,000 epochs. The typical progress during training is shown in Fig. 4a. For the first 100
epochs, the objective function decreases monotonically. Thereafter, the loss function shows some fluctuations.
These are triggered by the learning rate modulation which enables escaping local minima of the objective
function. Indeed, on a large scale, a further decrease of the objective function up to around epoch 20,000 is
observed. For the considered example, the smallest loss occurred at epoch 19,962. The training ran for 18.8 h.
After training, we used the DMN with the smallest realized loss for further use.

We investigated the effect of depth on the online evaluation of creep and found that the performance of
the DMN in the online phase increases up to a depth of seven. For higher depth, no further improvement in
accuracy for the evaluation of creep in the online phase was observed. We trained our seven-layer DMN on
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(a) (b)

Fig. 4 Offline training results and mean training and validation errors of DMN #1 from Table 2

Table 2 Elastic training results of seven-layer DMNs

DMN # Smallest loss etrmean (%) etrmax (%) evalmean (%) evalmax (%)

1 0.00591 0.97 12.78 1.08 5.10
2 0.00567 0.96 12.90 1.07 6.36
3 0.00612 1.01 13.03 1.11 6.17
4 0.00600 1.02 13.41 1.15 5.90
5 0.00592 0.98 13.66 1.07 4.19
6 0.00502 0.96 13.09 1.04 4.76

800 training samples. To assess the reproducibility of the results, we trained multiple seven-layer DMNs with
the same hyperparameters but with random starting values of the parameters (�n, �v).

To assess the generalization capabilities of the DMN, we introduce the sample-wise error

es =
∥∥C̄s

FFT − C̄
s
DMN

∥∥
1∥∥C̄s

FFT

∥∥
1 ,

(3.6)

involving the relative �1-difference of the actual stiffness tensor C̄s
FFT and the predicted stiffness tensor C̄s

DMN
in Mandel’s notation. Moreover, we define the maximum and the mean errors over all the samples

emax = max
s

es and emean = 1

Ns

Ns∑
s=1

es, (3.7)

where Ns is the number of samples in the training or the validation set, respectively.
After the training, we studied the generalization capabilities of the model with the help of linear elastic

validation data comprising 200 data points. The results of the training and the validation errors are detailed in
Table 2.

We observe that the reached loss value is comparable for all six considered DMNs. Also, the mean training
and validation error is rather close for all considered networks. We find that the mean training error is slightly
smaller than the mean validation error for all the networks. The maximum training error for all the networks is
around 13%. The maximum validation error ranges from slightly above 4% to almost 7%, i.e., we find a larger
variation (roughly by a factor of two). Still, the elastic training and validation errors are on a reasonable level,
in particular in view of the mean errors.

The mean training and validation errors for DMN #1 over the course of epochs is shown in Fig. 4b. We
observe that the mean training and validation errors follow a similar trend as the loss function. Moreover, the
training and validation error decrease simultaneously during training indicating no overfitting occurs in the
offline training phase with respect to the linear elastic training data.
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Table 3 Maximum relative errors for elastoplastic (3.9) and creep loading (3.11)

DMN # maxi j e
p
i j (%) ec0◦ (%) ec30◦ (%) ec90◦ (%) ec (%)

1 2.97 5.57 5.67 4.36 5.67
2 9.87 17.40 3.06 3.62 17.40
3 8.41 13.51 23.03 6.02 23.03
4 4.41 1.52 3.04 1.91 3.04
5 5.55 5.77 4.80 5.68 5.77
6 5.21 5.35 9.33 3.56 9.33

We use our six trainedDMNs to evaluate the online phase.We briefly comment on the elastoplastic response
of the DMNs. The online phase of the DMN, implemented as an UMAT, is evaluated on a single four-node unit
tetrahedron element in Abaqus [64]. We use the load increment control of Abaqus [64] for applying the load,
and compare the output to full-field simulations obtained by an FFT-based solver [83]. We applied hysteretic,
uniaxial strain loadings ε̄i j for a period of 4 s with a strain amplitude of 2.5% for 40 load steps in all six loading
directions. For each instance of time t , the relative error in each stress component

epi j,t =
∣∣∣σ̄DMN

i j,t − σ̄FFT
i j,t

∣∣∣
maxτ

∣∣∣σ̄FFT
i j,τ

∣∣∣
(3.8)

is considered, together with the maximum relative error

epi j = max
τ

epi j,τ (3.9)

over the entire simulation window.
In addition to the elastoplastic response,we also investigate the creep behavior. To account for the anisotropy

of the microstructure, we investigate the performance of the DMN in three loading directions with angles 0◦,
30◦, and 90◦. Here, the 0◦ direction indicates the flow direction and the 90◦ direction is perpendicular to the
flow direction during the manufacturing of the test plate. The experimental analysis of the creep loading was
performed using the samples cut out from the injection-molded plate in these specific angles as shown in
Fig. 2. The creep response of the DMN was evaluated on a single voxel microstructure using an FFT-based
solver [83]. The implemented DMN online phase UMAT can be flexibly integrated into the FFT-based solver
FeelMath [78]. We consider 32 time steps, equally spaced in the logarithmic timescale. The DMN response
was compared with the effective strain computed by full-field simulations performed with the same FFT-based
solver [83].

In the 0◦ direction, we applied a uniaxial tensile stress σ̄11 in the flow direction which is ramped up to
65.4 MPa in 8.5 s and subsequently held constant for 3.78 × 106 s. We evaluated the creep strain component
ε̄11 in the flow direction over the entire simulation window. In the 0◦ direction, we refer to the evaluated strain
by the name ε̄0◦ . We apply a lower uniaxial stress σ̄22 of 35.7 MPa until 3.78 × 106 s for the creep response
in the 90◦ direction. We evaluate the strain component ε̄22 during loading and assign the results to ε̄90◦ .

For the 30◦ direction, we follow a similar strategy using mixed boundary conditions [89] for a uniaxial
tensile stress of 69 MPa, held constant up to 4.45× 105 s. During the entire simulation time, we evaluated the
creep strain component ε̄11, and refer to it as ε̄30◦ .

For the creep loading, we consider the relative strain errors

ecθ,t =
∣∣∣ε̄DMNθ,t − ε̄FFTθ,t

∣∣∣
maxτ

∣∣∣ε̄FFTθ,τ

∣∣∣
for θ = 0◦, 30◦, 90◦ (3.10)

and the maximum errors

ecθ = max
τ

ecθ,τ as well as ec = max
θ

ecθ . (3.11)

The trained DMNs whose elastic validation results are shown in Table 2 are used for the online evaluation of
plasticity and creep. Table 3 contains the results for the inelastic evaluation.
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Fig. 5 A closer look at DMN #6 from Table 3 in terms of the loss function and the plasticity (3.9) as well as creep errors (3.11)
(every 50 epochs), evaluated in post-processing

For the maximum error during the elastoplastic loading, we observe a variation of the results by a factor of
three. DMN #1 leads to a low relative error slightly below 3%. Three DMNs give rise to about 5% error, and
two DMNs are characterized by a relative error slightly below 10%. Taking a glance at the elastic validation
errors, see Table 2, we observe that the DMN with the best elastoplastic online error does not correspond to
the DMN with the best elastic validation error.

Even more striking are the variations in the creep response. Whereas DMNs #1, #4 and #5 provide a rather
small creep error, two DMNs give rise to relative creep errors on the order of 20%, which is certainly not
acceptable for engineering accuracy. Moreover, we notice that the maxima are realized in different directions.
Indeed, forDMN#2, the 0◦-direction isworst, but the 30◦-direction ismatched rather accurately. In contrast, for
DMN#3, both the 0◦ and the 30◦-direction are inaccurate. Thus, there appears to be no systematic cause for this
phenomenon, e.g., related to the fiber orientation. We observe that the DMN #1, #4 and #5 can represent both
the elastoplastic loading and creep accurately. In contrast, the DMNs #2 and #3 are incapable of representing
the creep loading with sufficient fidelity.

To sum up, the results of Table 3 reveal that good results achieved during the elasticity-based training
results do not necessarily lead to accurate predictions for the creep response. We will study this phenomenon
more thoroughly in the next section.

3.3 Accurate creep predictions with early stopping and a surrogate material model

In the previous section, we observed that being a minimizer of the elasticity-based loss function (3.2)–(3.3) is
not necessarily related to providing an accurate creep prediction for the DMN under consideration. To get a
deeper insight into this phenomenon, we took a closer look at DMN #6 from Table 3. More precisely, we stored
the DMN parameters (�nk, �vk) every 50 epochs during the training. As a post-processing step, we evaluated the
elastoplastic (3.9) and the creep errors (3.11) at these parameter states (�nk, �vk). The results, alongside the loss
function, are shown in Fig. 5. In Fig. 5a, we observe that the loss function decreases in a similar way as for
DMN #1, see Fig. 4a. The decrease is monotonic on large epoch scales, but shows variations up to half an order
of magnitude during training as a result of the learning rate modulation. Taking a look at the plasticity errors
(3.9) for the six considered loading directions, see Fig. 5b, we observe that the errors decrease consistently
up to epoch 300. Then, only the error of the 12-component decreases further, whereas the other five errors
more or less remain on the same level. At epoch 6000, the 12-error starts to increase significantly, whereas the
22-error—the largest up to this epoch—starts to decrease. For epochs exceeding 10,000, the maximum error
maxi, j e

p
i j starts to increase again.

Similar observations may be made for the creep error (3.11), shown in Fig. 5c. For the first 300 epochs,
the error decreases. For higher epochs, the errors in the considered directions show a non-monotonic behavior.
However, the creep error is much larger than the plasticity error, in a range up to 15%. Interestingly, there is
a range of epochs, approximately at 10,000, where the creep error is low, below 5%. This smallness is neither
reflected in the loss function nor the plasticity error.
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Table 4 Identified material parameters for the Norton-type model (3.13)

Matrix Elastic E = 2399.3 MPa ν = 0.4
Creep A = 0.014 MPa−1 n = 26.96 ε̇0 = 1.0 s−1

In the terminology of deep learning, the observed phenomenon may be interpreted as “overfitting,” i.e.,
producing parameters that correspond too closely to a specific set of data, but fail to represent additional data
or to predict future observations in a reliable way.

Classically, there are (at least) two ways to rectify this shortcoming. The first strategy consists of adding
further data points to the considered set. In our case, we could augment the classical elasticity-based offline
training by more cleverly chosen stiffness triples

(
C
s
1,C

s
2, C̄

s
FFT

)
or by including inelastic data into the loss

function [49]. Unfortunately, such a strategy does not protect us from overfitting relative to other cases which
were not considered before. In the case of inelastic training for reproducing creep loading, training on inelastic
data for the 0◦ direction does not guarantee us a good fit in the 30◦ and 90◦ directions. Therefore, an alternative
way to circumvent overfitting is to stop early [54, § 7.8], i.e., to stop at a stage where the fitting quality of
the considered data in the linear elastic regime (2.6) and an additional independent nonlinear validation data
set are both good. In the former case, the training and validation error can be monitored so that there is no
overfitting during the offline elastic training. In the latter case, the performance of the DMN in the inelastic
regime should be within engineering accuracy when compared with inelastic full-field simulations. Indeed, by
monitoring the additional data, we may detect when overfitting happens in the inelastic regime.

The analysis at the beginning of this section, in particular given in Fig. 5c, shows that early stopping based
on the additional term (3.11)

H(�n, �v) = ec(�n, �v) ≡ max
θ

ecθ (�n, �v) (3.12)

does indeed work for DMN #6. The DMN #6 trained on linear elastic data can accurately predict the online
inelastic response of highly nonlinear material models, providing a maximum relative creep error below 5%.

Thus, the strategy proposed in Sect. 2.3 works and, in theory, we can perform the evaluation of the creep
model during training for identification of the best parameter vector.

However, we are interested in a further improvement of the strategy. Due to the complexity of the considered
creep model, the post-processing for evaluating the creep error ec(�n, �v) ran for 24.4 h. In particular, the post-
processing took 30% longer than the previous elasticity-based training! Hence, performing the evaluation of
the creep model during the elasticity-based training will lead to a cumbersome and time-intensive training
procedure. Clearly, the long-term creep behavior demands certain characteristics of the DMNs to be accurate,
and isolating the proper elastic training data appears difficult. To reduce the computational effort of evaluating
the full creep model, we came up with the following idea. Instead of the full creep model, it might be sufficient
to consider another creep model, which is, on the one hand, less expensive to evaluate, but, on the other hand,
identifies the same weaknesses in generalization to long-term loading as the full-field model. For this purpose,
we consider Hooke’s law in combination with a Norton-type creep law [62]

σ = κ tr[ε]1 + 2μdev[ε − εc]
ε̇c = ε̇0(A

√
3/2 ‖dev σ‖)n dev[σ ]

‖dev[σ ]‖
(3.13)

with creep parameters A and n.
We chose the parameters as detailed in Table 4. The elastic parameters coincide with the full creep model,

as does the parameter A ≡ A1, see Table 1. The creep exponent n and the parameter A were identified with the
help of the long-term creep experiments carried out at different load levels and an OptiSlang [63] procedure
based on an Abaqus [64] simulation. We conducted full-field simulations on the considered microstructure,
see Fig. 3b, with the Norton model (3.13) for the matrix material. For the three considered directions, see
Fig. 6, we observe that both the elastic response and the first creep phase are captured rather accurately by the
simplified model. Moreover, the onset of the secondary creep phase is also represented quite well. However,
the effective strains are underestimated by the Norton-type model for the creep phase two and beyond.
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Fig. 6 Full-field results for the creep strain over time, comparing the Norton-type model (3.13) for the matrix and the full creep
model, see “Appendix A”

In analogy to the true creep error (3.11), we define an error measure for the creep response of the Norton
model

enθ,t =
∣∣∣ε̄DMN,Nortonθ,t − ε̄

FFT,Norton
θ,t

∣∣∣
maxτ

∣∣∣ε̄FFT,Nortonθ,τ

∣∣∣
for θ = 0◦, 30◦, 90◦ (3.14)

and the maximum errors

enθ = max
τ

enθ,τ as well as en = max
θ

enθ . (3.15)

To assess the predictive quality of the Norton error en , we trained two additional DMNs with a maximum
learning rate βmax = 0.0005. During the offline training of the DMN based on the linear elastic data, we
introduce an inelastic validation data set based on the Norton errors for 0◦, 30◦ and 90◦ directions. We
consider this validation data set in addition to the linear elastic validation data set which is monitored during
the training to prevent the overfitting in the elastic regime, see Fig. 4b.

The linear elasticity-based training proceeds as in Sect. 3.2, via a stochastic batch-gradient-descent-type
algorithm.We evaluate the loss function J (�p) 3.2 involving the parameters �p = (�n, �v), determine the gradients
∂ J/∂ �n and ∂ J/∂�v via automatic differentiation and finally update the fitting parameters. The parameter vector
�p is stored every 50 epochs to evaluate the inelastic validation data set, wherein the Norton error en(�p) (3.15)
is calculated. This serves as the basis for identifying the best parameter vector �pbest.

In a classical early stopping approach, the validation data set error is monitored and the training is stopped
when the error does not improve for a predefined number of states. A copy of the model parameters are stored
every time the error on the validation set improves. The parameters with the best validation error rather than
the most recent parameters are returned once the training algorithm is terminated [54, § 7.8].

In our case, the inelastic validation error does not show a monotonic decrease and has persistent fluc-
tuations, see Fig. 5b, c, which is a consequence of the learning rate modulation (3.5) used during training.
Thus, terminating the training once the inelastic validation error has not improved for a predefined number of
epochs (which results in an additional hyperparameter introduced into the procedure) is not appropriate. As
an alternative, we monitor the Norton error en(�p) on the fly every 50 epochs and store the parameters each
time the Norton error improves, for the complete training. More precisely, after the end of 10,000 epochs, we
return the parameter vector �pbest from the state (evaluated every 50 epochs) having the best inelastic validation
error, i.e., the least Norton error. This quasi-early stopping approach for the inelastically informed training
methodology is outlined in Algorithm 1.

The results of the evaluation of the inelastic validation data set over the course of training is shown in
Fig. 7a. We also performed the creep and plasticity evaluation using the fully coupled plasticity–creep law as
a post-processing step, see Fig. 7b, c respectively. The creep and plasticity errors are not used for identifying
the best DMN and the plots are presented in Fig. 7 to highlight the correlation between evolution of the Norton
error during training with the post-processed results.
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(a) (b) (c)

Fig. 7 Comparison of the three inelastic error measures over epochs for DMN #1 (top) and DMN #2 (bottom) from Table 5

Table 5 Results of online evaluation of DMN with the inelastically informed offline training method—the training time includes
evaluating the Norton model

DMN # Training time (h) ep (%) ec (%) en (%) Stored at epoch Evaluation ec time (h)

1 12.07 4.36 5.32 3.57 8500 8.7
2 12.37 3.19 3.43 3.33 6450 8.1

Algorithm 1 Quasi-early stopping training approach
�p ← (�n, �v) � Initialize parameter vector randomly
enbest ← 1000000 � Inelastic validation error initialized with a high value before optimization start
for epoch ← 1, 10000 do

Calculate loss function
C̄
s
DMN(�p) ← C̄

s
DMN(�n, �v)

J (�p) ≡ ∑nb
s=1 Js(�p) + ψ(�p) � Calculated for every batch nb (3.3)

Update parameter vector
�n ← �n − β ∂ J/∂ �n(�p) � β is the learning rate
�v ← �v − β ∂ J/∂�v(�p)
�p ← (�n, �v)
if epoch mod 50 = 0 then

Calculate error measure for Norton model (3.15) for on-the-fly inelastic validation
en(�p) ← maxθ enθ (�p)
if en(�p) < enbest then

enbest ← en(�p)
Update best parameter vector to be returned at end of training with the current parameters
�pbest ← (�n, �v)

end if
end if

end for
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Table 6 Maximum relative errors for creep loading using test data with the DMNs identified using the inelastically informed
offline training method

DMN # ec15◦ (%) ec45◦ (%) ec60◦ (%)

1 2.53 3.74 3.79
2 3.84 7.61 3.08

Again we observe differences in the error measures between the considered DMNs. Indeed, taking a look
at the plasticity error shown in Fig. 7c, we observe ep22 is largest for DMN #1 and ep11 is largest for DMN #2
at the end of the training. We also observe differences between the plasticity error, see Fig. 7c, and the creep
error, see Fig. 7b, for both DMNs. For instance, the large dip of ec90◦ for DMN #1 is not reflected by particularly
low values of the plasticity error in any component. Comparing the Norton and the creep error, see Fig. 7a, b,
respectively, leads to a better resemblance. Indeed, after epoch 1000 there is a good agreement between the
trends of the Norton errors and the creep errors for the individual loading directions. This correspondence is
also underlined by the identified epochs where the respective error is lowest during training. For DMN #1,
the best epoch is very similar for all three considered error measures. For DMN #2, the best plasticity error is
reached a few thousand epochs before the best creep–error epoch, which is, in turn, closely matched by the best
Norton error epoch. For both DMNs, the errors are reported in Table 5. We observe that the DMNs identified
by early stopping based on the Norton error en provide both a good creep and plasticity error, slightly above
3%. Actually, the minimum reached Norton error exceeds both other considered error measures.

The minimum creep error ec for DMN #1 over 10,000 epochs is 4.49% captured at epoch 7950. This is
rather close to the creep error ec of 5.32% captured using the Norton-typemodel as shown in Table 5. Similarly,
the minimum creep error ec for DMN #2 using the plasticity–creep coupled model is 2.33%. Moreover, just
the evaluation of the coupled plasticity–creep law lasts for more than 8 h as described in Table 5, whereas the
training time along with the evaluation of the Norton model requires only slightly more than 12 h. Thus, we
save considerable computation time with only a slight loss of performance when using the Norton model.

To assess the generalization capabilities of the DMNs identified using the Norton error, we a posteriori
evaluate their performance on an inelastic test data set. The test data sets consist of the creep response evaluated
using the fully coupled plasticity–creep law at three different directions of 15◦, 45◦ and 60◦ with respect to
the flow direction. Uniaxial stresses of 60.4 MPa, 60.0 MPa and 42.7 MPa were used for the 15◦, 45◦ and 60◦
directions, respectively, for obtaining the creep strain response. The loading is performed in a similar manner
as for the 30◦ direction outlined in Sect. 3.2. We extend the true creep error evaluated for 0◦, 30◦ and 90◦ to
these directions and the maximum relative errors for both DMNs are recorded in Table 6. The relative errors
for all the test directions for DMN #1 are rather close with a maximum error of 3.79% in the 60◦ direction.
The relative errors for DMN#2 vary by a factor of roughly two with a maximum of 7.61% in the 45◦ direction.
It is interesting to note that a smaller inelastic Norton validation error does not necessarily lead to a smaller
test creep error, as evident from Tables 5 and 6. Although the errors in the test directions are not monitored
during the inelastic validation, both DMNs are able to represent the a posteriori creep loading in the test data
with sufficient fidelity.

Thus, we conclude that the novel early stopping-based training strategy serves as a low-cost methodology
for reliably identifying the parameters of deep material networks suitable for creep loading.

Last but not least, we report on the performance of theDMNs, identified via the novelmethod, for predicting
the creep response compared to high-fidelity simulations. For this purpose, we worked with DMN #2 from
Table 5, and considered two different stress levels for each of the three directions from the inelastic validation
data set and from the inelastic test data set. The results, shown in Fig. 8, reveal a close agreement between the
DMN predictions and the full-field computations for the stress levels (shown in red) in the directions that the
network was trained on. This comes as no surprise. By the way, it becomes apparent that for more than 104 s,
the 30◦ direction leads to inaccurate predictions. For the additional stress loading and the directions, which had
not been monitored, the DMN closely matches the full-field predictions for strain levels below 1.5%. Actually,
the agreement is quite remarkable. For higher effective strains, the agreement between DMN predictions and
full-field simulation is worse. It remains to be studied whether this is caused by a lack of suitable training or
results from insufficient material modeling. Indeed, for effective strains exceeding 1.5%, the local strains in
the matrix exceed 5%. In particular, a material model at small strains appears questionable.

The runtimes of DMN and full-field simulations are compared in Table 7. The full-field simulations operate
on a microstructure with 2563 voxels. Moreover, the composite–voxel technique [76] is used. In contrast, the
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Fig. 8 Comparison of FFT simulation results with DMN #2

Table 7 Runtime comparison between full-field results and deep material networks

Direction Stress level (MPa) FFT runtime (min) DMN runtime (min) Speedup factor

0◦ 65.4 295 0.5 590
95.0 348 0.5 696

15◦ 60.4 255 0.5 510
90.0 425 0.5 850

30◦ 69.0 331 0.5 662
77.0 310 0.5 620

45◦ 60.0 352 0.5 704
70.2 343 0.5 686

60◦ 42.7 237 0.5 474
63.4 290 0.5 580

90◦ 35.7 192 0.5 384
58.4 236 0.5 472

DMN is integrated on a single voxel. The full-field simulations take between 3.2 and 7.0 h, whereas the DMN
finishes after half a minute. Thus, we observe speedup factors between slightly less than 400 up to almost 850.
Thus, we confirm the startling speedup factors reported by other authors [45,48,49].
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4 Conclusion

Scientific progress consists of several phases. Initially, new territory gets explored and claimed. More often
than not, these new islands of knowledge are established independently, lacking a proper connection to more
established grounds.Moreover, the new territory needs to be charted and guarded.We consider the introduction
of deep material networks by Liu and coworkers [44,45] as such a groundbreaking moment, which opened the
eyes of the micromechanical community to the possibilities of the deep learning technology. Indeed, finding
accurate yet computationally tractable surrogate models of microstructures materials on component scale for
wide classes of industrially relevant materials has been an objective of micromechanics for a long time, and
different strategies emerged, as discussed in Introduction.

Several years have gone by, and the basic inner workings of DMNs were uncovered, and new variants of
DMNs were proposed. The purpose of the work at hand was to critically review the concept of elasticity-based
training of DMNs when a high degree of nonlinearity and rather larger timescales are involved. The available
theory [46] is based on a perturbation argument around linear viscoelastic constitutive laws. In particular, it
is conceivable that training based on linear elastic data alone might not be sufficient to prepare the DMN for
the harsh conditions of creep loading. In this work, we provided (more or less explicit) examples of DMNs
that fail to generalize from linear elasticity to creep. Due to a lack of a mathematical convergence theory for
DMNs, it is not clear whether this is a defect of the linear elasticity-based training per se or a clever choice
of sampled stiffnesses or appropriately designed loss functions may resolve this issue. Notwithstanding this
lack of understanding from our side, we worked out a remedy for this shortcoming based on the early stopping
strategy which is classical in deep learning. We demonstrated that such an approach leads to reproducible and
reliable training results for DMNs that may be used with confidence. The introduced technology serves as a
low-cost alternative to inelastic training [49] and is expected to enter the standard toolbox of the deep material
networker.

As already indicated, we consider the state of affairs surrounding the DMNs in the second, contemplat-
ing, phase following the initial exploration phase. The underpinnings of DMNs need to be understood more
thoroughly, and guidelines for its use, including preferred tools, need to be identified.
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A Details on the plasticity–creep model

We consider a material model at small strains with an additive decomposition of the strain tensor ε = ∇su

ε = εe + εp + εc (A.1)

into an elastic, plastic and a creep contribution.We consider the plastic strain and the creep strain as the internal
variables, together with an isotropic hardening variable α. It is assumed that plastic and creep deformations
are volume preserving. We consider an isotropic material model with stress tensor

σ = κ tr[ε]1 + 2μdev[ε − εp − εc], (A.2)

http://creativecommons.org/licenses/by/4.0/
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where κ andμ denote the compression and shear modulus, respectively. The evolution of the internal variables
is governed by the equations

ε̇p = 〈φ〉+
η

dev[σ ]
‖dev[σ ]‖ ,

α̇ = √
2/3/η 〈φ〉+,

ε̇c = ε̇0

[
1 + C e−‖εc‖/k] [(

A1
√
3/2‖dev[σ ]‖

)n + (A2
√
3/2‖dev[σ ]‖)

] dev[σ ]
‖dev[σ ]‖ ,

(A.3)

in terms of the yield function which combines a linear hardening with a Voce-type hardening,

φ = ‖dev[σ ]‖ − √
2/3

(
y0 + h α + (y∞ − y0)(1 − e−ωα)

)
. (A.4)

and the Macauley bracket

〈φ〉+ = max(0, φ). (A.5)

The material parameters encompass a yield stress y0, a limiting stress y∞, a plastic hardening modulus h, an
exponential hardening factor ω, a viscosity η, the creep constants C and k, creep prefactors A1 as well as A2,
a reference creep rate ε̇0, and the creep exponent n. Details for the derivation of the material model [90,91],
which may be cast in the framework of generalized standard material (GSM) [92], will be discussed elsewhere.
The material model is discretized with an implicit Euler method in time. The discretized evolution equations
are solved by a classical return mapping algorithm based on a creep–plastic predictor and a plastic corrector
step [93].
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