
Applied Intelligence
https://doi.org/10.1007/s10489-022-03742-7

Controlling non-stationarity and periodicities in time series
generation using conditional invertible neural networks

Benedikt Heidrich1 ·Marian Turowski1 · Kaleb Phipps1 · Kai Schmieder1,2 ·Wolfgang Süß1 ·
Ralf Mikut1 · Veit Hagenmeyer1

Accepted: 7 May 2022
© The Author(s) 2022

Abstract
Generated synthetic time series aim to be both realistic by mirroring the characteristics of real-world time series and useful
by including characteristics that are useful for subsequent applications, such as forecasting and missing value imputation.
To generate such realistic and useful time series, we require generation methods capable of controlling the non-stationarity
and periodicities of the generated time series. However, existing approaches do not consider such explicit control. Therefore,
in the present paper, we present a novel approach to control non-stationarity and periodicities with calendar and statistical
information when generating time series. We first define the requirements for methods to generate time series with non-
stationarity and periodicities, which we show are not fulfilled by existing generation methods. Second, we formally describe
the novel approach for controlling non-stationarity and periodicities in generated time series. Thirdly, we introduce an
exemplary implementation of this approach using a conditional Invertible Neural Network (cINN). We evaluate this cINN
empirically in experiments with real-world data sets and compare it to state-of-the-art time series generation methods. Our
experiments show that the evaluated cINN can generate time series with controlled periodicities and non-stationarity, and it
also generally outperforms the selected benchmarks.

Keywords Time series generation · Generation methods · Synthetic time series · Non-stationarity · Periodicities ·
Conditional invertible neural networks

1 Introduction

Using real-world time series is associated with issues such
as lack of sufficient data, privacy concerns, or anomalies in
various applications. Therefore, real-world time series are
often replaced or complemented with synthetic time series
to address these issues. For this reason, the generation of
synthetic time series aims to provide realistic and useful
time series. Generated time series are realistic if they
have characteristics similar to real-world time series, such
as seasonality and trend [13]. For example, an electricity
consumption time series typically has reoccurring daily,
weekly, and yearly patterns [10]. However, a realistic
generated time series is not necessarily useful for all tasks.
For example, to analyse the future growth of a startup
company, it may be necessary to generate time series with

� Benedikt Heidrich
benedikt.heidrich@kit.edu

Extended author information available on the last page of the article.

seasonal fluctuations and a trend when given only a small
sample of stationary input data.1 Therefore, to generate
a useful time series, one must be able to influence or
even design time series’ characteristics during generation
independently of the available input data.

Generating realistic and useful time series thus requires
generation methods to control the generation of time series
further. Firstly, generation methods have to control the
non-stationarity of the generated time series to incorporate
effects that change the value of the time series at different
times. Examples of non-stationary time series are daily
stock prices, the monthly beer production, or the annual
number of strikes [13]. Secondly, these methods must be
able to control the periodicities in the generated time series
to represent regularly occurring patterns such as the patterns
mentioned above in electricity consumption time series.

Despite generally promising results (e.g. [5, 19, 22,
23]), existing time series generation methods do not
explicitly control the non-stationarity and periodicities of

1We further elaborate realistic and useful time series in Appendix A.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03742-7&domain=pdf
http://orcid.org/0000-0002-1923-0848
http://orcid.org/0000-0002-3776-2215
http://orcid.org/0000-0002-9197-1739
http://orcid.org/0000-0002-1171-1428
http://orcid.org/0000-0003-2785-7736
http://orcid.org/0000-0001-9100-5496
http://orcid.org/0000-0002-3572-9083
mailto: benedikt.heidrich@kit.edu

B. Heidrich et al.

the generated time series. Instead, these approaches learn
a mapping from the latent space, which lacks temporal
information, to the realisation space. As a result, all newly
sampled data follow the same distribution, resulting in
stationary time series. Furthermore, the periodicities in the
generated time series are limited to those learned from the
training sample.

In the present paper, we thus present a novel approach
to control non-stationarity and periodicities with calendar
and statistical information when generating time series.
For this, we make the following contributions: Firstly, we
define the requirements for generation methods to gener-
ate time series with non-stationarity and periodicities, which
we show is not fulfilled by existing generation methods.
Secondly, we formally describe the novel approach for con-
trolling non-stationarity and periodicities in generated time
series. Thirdly, we introduce an exemplary implementa-
tion of this approach using a conditional Invertible Neural
Network (cINN) that preprocesses calendar and statisti-
cal information as conditional input with a conditioning
network.

To evaluate the proposed cINN, we empirically examine
its capabilities to generate time series with controlled non-
stationarity and periodicities in experiments with real-world
data sets. We also compare the general quality of the time
series generated with the cINN to that of state-of-the-art
time series generation methods and perform an ablation
study to analyse the effects of the conditional information.

2 Related work

The present paper introduces a novel approach for gener-
ating realistic and useful time series by controlling non-
stationarity and periodicities. In this section, we thus
describe how recent approaches to generate realistic and
useful time series consider the temporal structure.

The first group of approaches considers the temporal
structure independent from a specific domain: Xu et al.
[22], for example, propose COT-GAN. It considers causal-
ity in the generation process by utilising the causal optimal
transport theory. With this, the output of a point of time
depends only on inputs up to that point of time. Yoon et
al. [23] also focus on the temporal dynamics of gener-
ated time series: By using a supervised loss, the proposed
TimeGAN can better capture temporal dynamics. In addi-
tion to temporal structures, MuseGAN by Dong et al. [6]
considers the interplay of different instruments. For this
purpose, they integrate multiple generators that focus on dif-
ferent music characteristics. To generate time series with
irregular steps, Ramponi et al. [20] present the T-CGAN
that uses timestamps to learn the relationship between data
and time.

The second group of approaches additionally uses
domain-specific information to consider temporal struc-
tures. Esteban et al. [8] introduce the Recurrent Conditional
GAN (RCGAN) for generating realistic synthetic medi-
cal data. Thanks to conditioning utilising specific labels,
RCGAN can create time series that can also be used for
training models without imposing privacy concerns. For
performing high-quality speech synthesis, Prenger et al.
[19] combine the melspectograms presented in WaveNet
[17] with an Invertible Neural Network. Furthermore, to
generate electrical consumption time series for scheduling
and energy management, Lan et al. [16] condition their
Wasserstein GAN on temporal and consumer information.

Altogether, existing works consider the temporal struc-
ture and domain-specific information when generating time
series. However, to the best of our knowledge, no work
exists that successfully generates realistic and useful time
series by controlling non-stationarity and periodicities.

3 Problem formulation

To generate realistic and useful time series, generation
methods must be able to control non-stationarity and peri-
odicities during generation. This section firstly formalises
the related requirements before highlighting why current
generation methods cannot fulfil them.

3.1 Requirements of non-stationarity
and periodicities in time series

This section briefly formalises the requirements of non-
stationarity and periodicities in time series with calendar
information based on phenomena observed in real-world
time series.

Requirement 1: non-stationarity Realistic time series can
include phenomena such as trends or seasonality. Such
characteristics can be represented as components of a
time series. In time series analysis, a time series Xt is
typically decomposed into a seasonal component St , a trend
component Tt , and a random (or remainder) component Rt ,
i.e. Xt = St + Tt + Rt

2 [13].
Since these components can cause a time series to

be non-stationary, we detail non-stationary time series.
We regard non-stationary time series as realisations of a
non-stationary stochastic process {Xt }. However, we must
consider stationary stochastic processes due to the lack of
a formal definition of non-stationary stochastic processes.

2A multiplicative decomposition Xt = St × Tt × Rt is also
typical [13]. Regardless of considering the additive or multiplicative
decomposition, we do not imply the independence of their components
in the following.

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

For time series, it is sufficient to focus on the properties
of weakly-stationary stochastic processes. According to
Hyndman and Athanasopoulos [13], a weakly stationary
stochastic process {Xt } has the following properties:
1. μ = E[Xt] = E[Xt+τ], ∀t ∈ [1, L], ∀τ ∈ N,
2. σ 2 = var[Xt] = E[(Xt − μ)(Xt − μ)′], ∀t ∈ [1, L],
3. �(k) = cov(Xt , Xt−k) = E[(Xt − μ)(Xt−k −

μ)′], ∀t ∈ [1, L], ∀k ∈ N.

A time series is non-stationary if at least one of these
properties is violated. That is, either the mean μ(t), the
variance σ 2(t), or the autocovariance �(k, t) vary over time
and thus are time-dependent.

Requirement 2: periodicities Realistic time series can also
contain the phenomenon of periodicities. In a trend-
free time series without a random component Xt =
x1, x2, . . . xL, t ∈ [1, L], a periodicity with period η can be
defined by xt+η = xt , ∀t ∈ [1, L].

Since the random component Rt causes the time series
to have constant unpredictable fluctuations, this definition is
too strict. Therefore, we utilise the reoccurring autocovari-
ance structure �(η) between time series points separated by
the period η (see [13]) to define a periodicity, i.e.

�(η) ≈ �(2 · η) ≈ ... ≈ �(P · η), P ∈ N. (1)

Furthermore, we expect a noticeably different autocovari-
ance between time series observations separated by κ ,
whereby κ is not a multiple of the period η, i.e.

|�(η) − �(κ)| � 0 : κ �= P · η, P ∈ N. (2)

In the case of trend-free time series, observations separated
by the period η are additionally similar to each other, i.e.

xt ≈ xt+η ≈ xt+2·η ≈ ... ≈ xt+P ·η, P ∈ N. (3)

Therefore, a time series includes periodicities if a reoccur-
ring autocovariance structure �(η) is present.

3.2 Shortcomings of generationmethods

This section explains why current generation methods can-
not fulfil the requirements of non-stationarity and periodic-
ities. We first explain the principles of generation methods
before describing how to apply them to time series gen-
eration. We then point out shortcomings of these methods
concerning non-stationarity and periodicities in generated
time series.

Principles of generationmethods Generation methods such
as GANs [11], VAEs [15], and INNs [14] focus on describ-
ing a probability distribution PX of a random variable X :
� → X, with � being a general probability space and X

the realisation space. The underlying assumption is that the

observed data x ∈ X are realisations of the random variable
X ∼ PX. Since PX is often an intractable distribution, gen-
eration methods indirectly model the joint distribution PX,Z

of X and a latent random variable Z : � → Z in the latent
space Z. Given the joint and latent distributions, PX can be
expressed as

PX =
∫

PX|ZPZ dZ, (4)

where PX|Z is the likelihood and PZ the prior. If PX|Z and
PZ are tractable, this expression allows an exact calculation
of PX without knowledge of the intractable distribution PX.

To be able to make use of (4), generation methods learn
mappings for the generative process. Given an intractable
distribution PX in the realisation space, VAEs and INNs
learn an encoding f (X; θ1) from the sample distribution
PX to the distribution PZ|X, where PZ|X is the probability
distribution in the latent space given X and θ1 are the
trainable parameters. Thereby, regularisation is applied to
ensure that PZ|X is a good approximation of PZ and that
PZ is a tractable distribution in the latent space. Given PZ ,
generation methods then learn a second mapping g(Z; θ2)

from PZ to PX|Z , where θ2 are the trainable parameters.3

Based on the learned probability distribution PX|Z and the
known tractable distribution PZ , generation methods finally
apply (4) to determine an approximation of the sample
distribution PX.

Generating time series Unfortunately, time series are not
realisations of a probability distribution PX but of a time-
dependent stochastic process {Xt }. Therefore, the aforemen-
tioned underlying assumption of generation methods does
not hold. To still apply the principles of generation methods,
one must account for the time-dependency of time series.
One possibility to consider this time-dependency is to split
a realised time series sample x ∈ X into, for example,
N sequential segments x = (x1, x2, . . . , xN) of arbitrary
length, because a stochastic process is defined as a series of
random variables.4 Analogously, one can aggregate multi-
ple generated time series segments x̂i , i ∈ [1, N] to include
time-dependency in a generated time series longer than one
segment. To generate these time series segments x̂i , i ∈
[1, N], one draws multiple samples zi , i ∈ [1, N] from PZ

and uses the mapping g(zi; θ2) = x̂i .

Shortcoming 1: non-stationarity in generated time series In
the generative process, the used samples zi , i ∈ [1, N] from
the latent space are realisations of the random variable Z

3Note that, unlike VAEs and INNs, GANs learn the mapping g directly
via the generator. However, this does not affect the problem definition.
4While we refer to a time series segment i with xi , we use a subscript
to denote an entry j of the segment i, i.e. xi

j .

B. Heidrich et al.

with the known distribution PZ . Similarly, the generated
time series segments x̂i , i ∈ [1, N] are realisations of the
random variable transformation g(Z; θ2). According to the
so-called law of the unconscious statistician (LOTUS) [21],
this transformed random variable g(Z; θ2) has the expected
value

E[g(Z; θ2)] =
∫

g(z; θ2)PZ dz. (5)

Assuming that the mapping g(Z; θ2) only depends on the
random variable Z and the fixed learned parameters θ2, all
generated time series segments also have the same expected
value, i.e.

E[x̂i] = E[g(zi; θ)], ∀ i ∈ [1, N]. (6)

The same argument applies to the variance. Since the
variance of a random variable X is defined as σ 2

X =
E[X2] − (E[X])2, one can again use LOTUS [21] to show
that the variance is also the same for all generated time
series segments (for details see Appendix B).

The equal variance across all generated time series
segments has implications for the autocovariance. Since
all generated time series segments are realisations of
the same random variable transformation g(Z; θ2), the
autocovariance that is defined for two random variables
simplifies to the variance, i.e.

cov(g(Z; θ2), g(Z; θ2)) = σ 2
g(Z;θ2), (7)

which, as previously shown, is the same for all generated
time series segments.

Altogether, existing generation methods cannot vary the
statistical properties of generated time series segments.
Therefore, these methods cannot control non-stationarity
in generated time series5 and do not fulfil the previously
defined Requirement 1.

Shortcoming 2: periodicities in generated time series As
previously shown, the autocovariance structure is the same
for all generated time series segments in a generative
process. As a result, existing generation methods cannot
create reoccurring and different autocovariance structures.
Therefore, these methods cannot control periodicities in
generated time series and thus do not fulfil the previously
defined Requirement 2.

5Existing methods, such as a recurrent neural network with teacher
forcing, can generate non-stationary time series segments of arbitrary
length if trained on non-stationary data sets. However, such methods
can only reproduce the non-stationarity available in the training data,
and this non-stationarity cannot be controlled. Additionally, all of the
time series segments generated by such a method contain only the
non-stationarities identical to those in the training data. Therefore, it is
impossible to control the non-stationarity across multiple time series
segments to generate time series with desired non-stationarities.

4 Controlling non-stationarity
and periodicities in generated time series

This section presents a novel approach for controlling
non-stationarity and periodicities in generated time series.
Firstly, we formally describe our approach to time series
generation that fulfils Requirements 1 and 2. To show
the practical viability of our approach, we then introduce
a conditional Invertible Neural Network (cINN) as an
exemplary implementation.

4.1 Formal solution

This section formally describes the novel approach for
generating time series with controlled non-stationarity and
periodicities whilst overcoming the previously presented
Shortcomings 1 and 2 of existing generation methods. We
firstly explain an assumption to guarantee the existence
of time series segments with non-stationarity and period-
icities. Afterwards, we detail how our approach uses and
combines calendar and statistical information to control
non-stationarity and periodicities in generated time series.

Existence guarantee To guarantee the existence of time
series segments with controlled non-stationarity and peri-
odicities, we assume the encoding f (X; θ1) to be a bijec-
tive mapping, where g(Z; θ2) is the inverse function of
f (X; θ1), i.e. f −1(·; θ) := g(·; θ) and θ = θ1 = θ2.
This mapping guarantees that the image of the concatena-
tion Im((f ◦ f −1)(X)) = X includes the entire realisation
space X. Therefore, for all possible samples from the latent
space, a corresponding time series segment in the realisation
space exists, i.e.

∀z ∼ PZ ∃x̂ : f −1(z; θ) = x̂. (8)

Besides guaranteeing the existence of a corresponding
time series segment for all possible samples, this bijective
mapping allows us to include additional inputs in the
mapping. With these inputs, we can vary the properties of
each generated time series segment:

Calendar information The first additional input is calendar
information such as the hour, day of week, month, or year.
This information is implicitly present in a time series as
a realisation of a stochastic process {Xt } but is currently
not considered by generation methods. To include this
information, we use the calendar information d as an
additional input to our mapping, i.e.

f : X → Z, xi �→ f (xi;d, θ) = zi . (9)

Considering calendar information enables us to generate
time series segments with varying calendar information,
even though these segments are generated from samples

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

zi that are realisations of the same random variable Z.
However, solely including calendar information does not
allow us to vary the statistical properties of each generated
time series segment.

Statistical information To vary the statistical properties of
each generated time series segment, we consider statistical
information such as mean and variance as a second
additional input. Therefore, we add statistical information s
to our mapping, i.e.

f : X → Z, xi �→ f (xi;d, s, θ) = zi . (10)

Combining calendar and statistical information Based on
calendar and statistical information as inputs, we are able
to generate time series segments with varying statistical
properties dependent on the calendar information. For
example, as a result, the mean of the transformed random
variable f −1(Z;d, s, θ) is dependent on calendar and
statistical information, i.e.

E[f −1(Z;d, s, θ)] =
∫

f −1(z;d, s, θ)PZ dz. (11)

Similarly, the variance and the autocovariance also depend
on the calendar and statistical information. Since the cal-
endar and statistical information are included as additional
inputs to the mapping, we can effectively control the statis-
tical properties of the generated time series segments for the
calendar information. This interplay between calendar and
statistical information enables us to include and control non-
stationarities and periodicities in the generated time series.
Therefore, combining calendar and statistical information as
additional inputs allows us to fulfil Requirements 1 and 2
mentioned above.

4.2 Exemplary implementation

This section presents the exemplary cINN-based implemen-
tation of our novel approach for generating time series with
controlled non-stationarity and periodicities. After a brief
overview of its architecture, we describe its training and
generative process.

Architecture To realise the previously defined bijective
mapping that considers calendar and statistical information,
we use a conditional Invertible Neural Network (cINN).
To implement the exemplary cINN, we use FrEIA6 and
PyTorch [18]. As shown in Fig. 1, the used cINN comprises
15 subsequent invertible coupling layers, one conditioning
network q, and their trainable parameters θ .7

6https://github.com/VLL-HD/FrEIA
7https://github.com/KIT-IAI/ControllableTimeSeriesGeneration

As coupling layers, we use the conditional affine cou-
pling layer proposed by Ardizzone et al. [2], which extends
RealNVP by Dinh et al. [4]. Each coupling layer contains
two subnetworks. The architecture of the subnetworks is
shown in Table 1. As inputs, each coupling layer takes the
output of the previous coupling layer and the conditional
information c. This conditional information is the calendar
information d and the statistical information s mentioned
above, both encoded by a separate conditioning network q.

The architecture of the conditioning network q is also
described in Table 2. The input of q are calendar and
statistical information. The calendar information d are
information for all the time stamps for which a value should
be generated. This information includes the hour of the day
encoded as a sine function sin(π · hour/23) and cosine
function cos(π · hour/23), the month of the year as sine
function sin(π · month/11) and cosine function cos(π ·
month/11), and the weekend as a Boolean. The statistical
information s for the training is the mean of the time-series
sample, i.e. μ̂i = E[x̂i]. In the generation, the mean is the
desired mean of the generated sample.

Training To train the used cINN, we extend the training
proposed by Ardizzone et al. [2] with a statistical loss.
The training is generally based on a maximum likelihood
optimisation using the change of variable formula

PX(x; c, θ) = PZ(f (x; c, θ))

∣∣∣∣det ∂f

∂x

∣∣∣∣ (12)

with the Jacobianmatrix ∂f/∂x [2]. To implement this optimi-
sation, we select the standard normal distribution as the latent
distribution, choose Gaussian priors, and apply Bayes’ the-
orem. The result is the maximum likelihood loss, i.e.

Lml = E
i

[
‖ f (xi; ci , θ)‖22

2
− log | J i |

]
+ λ ‖ θ‖22, (13)

where J i is the Jacobian corresponding to the i-th sample [2].
In addition to Lml and as an extension of Ardizzone et al. [2],
we also minimise the difference between the desired mean
and the mean of the generated time series segment, i.e.

Ls =
√√√√(sμ − 1

n

∑
j

x̂j)2, (14)

where x̂j is an entry of the generated time series segment
and sμ is the desired mean in the statistical information.
Therefore, the overall loss used to train the cINN is

L = Lml + λLs , (15)

where λ is a hyperparameter weighting the influence of the
statistical loss.

We train the cINN for 200 epochs with this defined loss
using the ADAM optimiser.

https://github.com/VLL-HD/FrEIA
https://github.com/KIT-IAI/ControllableTimeSeriesGeneration

B. Heidrich et al.

Fig. 1 Our cINN realises a
bijective mapping from the
realisation space X to the latent
space Z. It comprises 15
subsequent coupling layers and
one conditioning network q. The
conditioning network processes
the calendar information d and
statistical information s to
provide the conditional input c
for each coupling layer

Generative process The cINN learns a mapping from the
realisation space to the latent space in the described training.
Since this mapping is bijective, we can use the inverse
direction as a generative process: To generate a time series
segment x̂i , we firstly draw a sample zi from the random
variable Z, choose the desired calendar and statistical
information di and si , and apply the conditioning network
to encode ci = q(di , si). With these inputs, we use the
trained cINN in the inverse direction and obtain a time series
segment x̂i = f −1(zi; ci , θ).

To create a time series longer than one segment, we
utilise the calendar information previously included in the
mapping to aggregate the generated time series segments
x̂i . More specifically, we take advantage of the fact that the
calendar information di of adjacent time series segments
overlap: For adjacent segments, similar and related calendar
information form the input of the conditional network. This
input ensures that the sample distribution is conditioned
on similar and related calendar information. This way,
generated time series segments x̂i with adjacent calendar
information di are related, and we can calculate the median
over all entries of a certain time t with

x̂t = Median({x̂i
j | di

j → t})∀t ∈ [1, L], (16)

where the condition dij → t ensures that only entries of the

time series segments x̂i with the same time t are aggregated.

5 Experiments

This section empirically evaluates the cINN mentioned
above as an exemplary implementation of our proposed
approach for generating time series with controlled non-
stationarity and periodicities. After introducing the used
data sets, we demonstrate how the cINN generates time

Table 1 Implementation details of the cINN regarding the used
subnetwork

Subnetwork

1 Dense neurons: 16; activation: tanh

2 Dense neurons: Segment length; activation: linear

series with controlled non-stationarity and periodicities.
Finally, we compare the cINN to state-of-the-art time series
generation benchmarks to assess the general quality of the
generated time series. At this point, we also perform an
ablation study to determine the influence of conditional
information and the statistical loss.

5.1 Data sets

In order to comprehensively evaluate our proposed approach
and the exemplary implementation, we aim to select data
sets from different domains. Since data sets commonly used
to evaluate time series generation methods are not publicly
available or do not contain calendar information (e.g. [8, 22,
23]), we select three publicly available time series data sets.
The selected data sets8 all contain univariate time series with
calendar information but differ in their temporal resolution,
variance, and periodicities:

Energy The first data set has an hourly temporal resolution,
a low variance, and contains daily, weekly, and yearly
periodicities. It consists of the electricity consumption of
one client from the UCI Electricity Load Dataset [7].

Information The second data set has a daily temporal
resolution, a medium variance, and contains no period-
icities. It comprises the number of daily views of the
Wikipedia page “Hitchhiker’s Guide to the Galaxy (video
game)” from the Web Traffic Time Series Forecasting
Dataset.9

Mobility The third data set also has an hourly temporal
resolution, a high variance, and contains daily and yearly
periodicities. It contains the hourly records of rented
bikes from the UCI Bikesharing Dataset [7, 9].

5.2 Generated time series with controlled
non-stationarity and periodicities

To demonstrate how the cINN creates time series with
controlled non-stationarity and periodicities as described

8Appendix C provides further information on these data sets and their
preprocessing.
9https://www.kaggle.com/c/web-traffic-time-series-forecasting/data

https://www.kaggle.com/c/web-traffic-time-series-forecasting/data

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Table 2 Implementation details of the cINN regarding the used
conditioning network q

Conditioning network q

1 Dense neurons: 2; activation: tanh

2 Dense neurons: 1; activation: linear

in Requirements 1 and 2, we first generate a time series
with controlled non-stationarity and second a time series
with controlled periodicities for each data set. We first
define the calendar and statistical information used in the
generation for each time series. Afterwards, we evaluate
the generated time series by visually inspecting them and
calculating statistics corresponding to the requirements of
non-stationarity and periodicities, respectively.

Controllednon-stationarity To demonstrate controlled non-
stationarity, we define calendar and statistical information
for the cINN as follows. To determine the calendar
information, we choose the years from 2011 to 2013 for the
three data sets. As statistical information for the energy and
information data sets, we specify a mean with a linear trend
starting from 75 and ending at 125 and a yearly sinusoidal
periodicity with an amplitude of 15. For the mobility data
set, we specify a mean with a linear trend starting from 100
and ending at 250 and a yearly sinusoidal periodicity with
an amplitude of 25.

The time series generated based on the selected calendar
and statistical information are shown in Fig. 2 for the
three data sets. For all data sets, the generated time series
accurately reflect the specified mean, including the trend
and the sinusoidal shape, while retaining the previously
described original characteristics of the respective data set
concerning variance and periodicities.

To further examine the generated time series according
to the previously defined requirement of non-stationarity,

we determine corresponding statistics. On four three-month
cut-outs, we compare the mean, the variance, and the autoco-
variance with a fixed lag of half a year for two generated
time series of each data set: one with a constant mean as
statistical information and one with a controlled mean as
statistical information to control the non-stationarity.

For both generated time series of each data set, Table 3
presents the mean, the variance, and the autocovariance of
the four cut-outs. For all data sets, the calculated statistics of
the generated time series with constant mean are similar for
the considered cut-outs. In contrast, the calculated statistics
of the generated time series with controlled non-stationarity
are different for the considered cut-outs of each data set and
thus are all time dependent. This shows that the generated
time series is non-stationary according to Requirement 1.

Controlled periodicities To demonstrate controlled period-
icities, we also define calendar and statistical information
for the cINN. To determine the calendar information, we
again choose the years from 2011 to 2013. As statistical
information for the three data sets, we specify a constant
mean of 150 and a yearly sinusoidal periodicity with an
amplitude of 50.

For the three data sets, Fig. 3 shows the resulting
generated time series and the used mean. For all data sets,
the generated time series follows the periodicity defined by
the mean and retains the variance and periodicities of the
respective data set.

To further analyse the generated time series according
to the previously defined requirement of periodicities, we
examine the autocovariance structure of the generated time
series. More specifically, for the generated time series of
each data set, we calculate the autocovariance of the first
three months and the rest of the time series.

Figure 4 shows the yearly and the daily autocovariance
of the generated time series of each data set. Note that
no daily autocovariance structure exists for the information

Fig. 2 To demonstrate
controlled non-stationarity, a
time series is generated using
defined calendar and statistical
information. For the energy, the
information, and the mobility
data sets, the generated time
series is shown in blue and the
used controlled mean in orange

B. Heidrich et al.

Table 3 Statistics according to Requirement 1, i.e. mean, variance, and autocovariance, for the generated time series with constant mean as
statistical information and with a controlled mean as statistical information to control the non-stationarity

Energy Information Mobility

Cut-out μ σ 2 cov μ σ 2 cov μ σ 2 cov

Constant Mean 03/11 - 07/11 71 1048 1005 76 37 –1 182 183 16107

12/11 - 02/12 71 1032 990 76 37 –4 183 182 16174

03/12 - 07/12 71 1044 994 76 36 5 182 182 16039

12/12 - 02/13 71 1022 979 76 40 1 182 182 16026

Controlled Mean 03/11 - 07/11 65 858 761 65 48 –7 191 143 12919

12/11 - 02/12 64 791 1107 65 24 2 134 235 14754

03/12 - 07/12 91 1667 1582 89 99 8 222 174 18062

12/12 - 02/13 90 1594 1626 89 88 28 166 262 19846

data set because this data set has a daily resolution and thus
no daily periodicities. The autocovariance has a daily and
yearly reoccurring structure for all generated time series.
According to Requirement 2, the generated time series
thus contains periodicities. These periodicities are more
regular for the energy and mobility data sets than for the
information data set.

5.3 Quality of generated time series

To assess the general quality of the generated time series,
we compare the cINN to state-of-the-art benchmarks on
the three selected data sets and perform an ablation study
regarding the influence of the conditional information
and the statistical loss. We first introduce the three used
evaluation metrics and the six benchmarks before presenting
the benchmarking and the ablation study results. For this
evaluation, we run each generation method three times. The

cINN uses the calendar information and a calculated rolling
mean of the respective data set for the generation.

5.3.1 Metrics

To assess the quality of the generated time series segments,
we use three metrics. Firstly, we apply the train-synthetic-
test-real evaluation [8] to obtain a predictive score. The
predictive score measures the usefulness of the generated
time series. Secondly, we make use of a discriminator to
obtain a discriminative score. With the discriminative score,
we examine the distinguishability of the generated and the
original time series [23]. Thirdly, we measure the training
time of the generation methods to assess their computational
cost. In the following, we detail all metrics.

Predictive score For the train-on-synthetic-test-on-real
evaluation [8], we train a predictive model on the generated

Fig. 3 To demonstrate
controlled periodicities, a time
series is generated using defined
calendar and statistical
information. For the energy, the
information, and the mobility
data sets, the generated time
series is shown in blue and the
used controlled mean in orange

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Fig. 4 The yearly and daily
autocovariance structure
according to Requirement 2 of
the generated time series with
controlled periodicities based on
the three data sets. The
autocovariance is calculated
between the first three months
and all other three months
segments of the time series.
Note that the information data
has a daily resolution and thus
we only calculate the yearly
autocovariance

time series and test the model on the original time series to
obtain a predictive score. As the predictive score, we use
the mean absolute error (MAE), the mean absolute scaled
error (MASE), and the root mean squared error (RMSE).

The architecture of the predictive model is a three-
layered fully connected neural network with ten hidden
neurons. The model is designed to work with time series
segments of 24 hours. Thereby, the first 23 hours are used to
forecast the last value. We use a ReLU activation function
for the hidden layers and a linear activation function for the
output layer.

To implement the predictive model, we use pyWATTS10

[12] with Keras [3]. We train the implemented predictive
model for 100 epochs and apply early stopping during the
training process. To obtain more robust results, we train the
predictive model five times on the generated time series of
each data set.

Discriminative score For the evaluation by the discrimina-
tor [23], we merge the generated and the original time
series. We label the generated time series with 0 and the
original time series with 1. Afterwards, the merged data
set is split into a training (70%) and test set (30%). The

10https://github.com/KIT-IAI/pyWATTS

discriminative model is then trained on the training set and
the discriminative score is calculated on the test set. We use
| Accuracy − 0.5 | as discriminative score, where Accuracy
refers to the performance of the discriminative model on the
test set.

The architecture of the discriminative model is a three-
layered fully connected neural network. The network uses
tanh as an activation function for the hidden layers and
softmax for the output layer.

To implement the discriminative model, we also use
pyWATTS [12] with Keras [3]. We train the implemented
discriminative model on the CPU for ten epochs using the
ADAM optimiser and the binary cross-entropy loss. We
run the training five times on each generated time series to
obtain more robust results.

Computational cost To evaluate the computational cost,
we measure the training time of the evaluated generation
methods in seconds. For this, we measure the time required
for training of all generation methods three times and
calculate the respective average to obtain robust results. For
comparable results, we perform the training on the same
hardware. As hardware, we use an off-the-shelf Lenovo
Thinkpad T490 laptop with an Intel i7-8565U processor and
16 GB of RAM.

https://github.com/KIT-IAI/pyWATTS

B. Heidrich et al.

5.3.2 Benchmarks

As benchmarks, we select six generation methods. As
state-of-the-art benchmark generation methods, we consider
COT-GAN [22], RGAN and RCGAN [8], and TimeGAN
[23]. As baseline generation methods, we additionally
consider a simple GAN and a simple VAE.

COT-GAN For the implementation of COT-GAN [22], we
use the publicly available source code.11 We only adapt the
data loading functionality to apply COT-GAN to our data.

RGAN and RCGAN For the implementation of RGAN and
RCGAN [8], we use the publicly available source code.12

For our experiments, we only adapt the setting file
test.txt and the data utils.py to load our data
and ensure the training of RGAN and RCGAN on our
data is robust. For RCGAN, we use the same calendar and
statistical information as the implemented cINN.

TimeGAN To implement TimeGAN [23], we use the
publicly available source code.13 Compared to the source
code, we adapt the data loader of TimeGAN to apply it to
our data sets.

GAN To implement the GAN, we use Keras [3] and Ten-
sorflow [1]. Table 4 provides details on the generator and
the discriminator of the implemented GAN. The dimension
of the random noise input of the implemented generator is
32. We train the GAN for 200 epochs and use the binary
cross-entropy as the loss function for the discriminator.

VAE For the implementation of the VAE, we use Keras [3]
and Tensorflow [1]. Table 5 details the encoder and the
decoder of the implemented VAE. The latent dimension
of the VAE is 2. When training the model, we use
the Kullback-Leibler distance and the RMSE as the loss
functions. We train the VAE for 2000 epochs and apply an
early stopping with a patience of 10 epochs.

5.3.3 Benchmarking results

With the cINN and the six selected benchmark methods,
we generate time series segments for the three selected data
sets. We compare the related predictive score, discriminative
score, and training time in the following.

11https://github.com/tianlinxu312/cot-gan
12https://github.com/ratschlab/RGAN
13https://github.com/jsyoon0823/TimeGAN

Table 4 Implementation details of the GAN used as benchmark. Note
that the stride is 1 for each convolutional layer

Generator Discriminator

1 Dense neurons: 64 Conv1d filters: 32; kernel size: 3

2 Dense neurons: 64 Conv1d filters: 16; kernel size: 3

3 Dense neurons: 64 Conv1d filters: 8; kernel size: 3

4 Dense neurons: 1

Predictive score For all three data sets, the average,
minimum, and maximum predictive scores of the cINN
and the six benchmark methods are shown in Table 6. We
also report a predictive model trained on the original time
series as original data in the table, which corresponds to a
train-on-real-test-on-real evaluation.

The cINN outperforms all benchmark methods except
COT-GAN on the three selected data sets. While the cINN
performs better than COT-GAN on the mobility data set,
it is on par with COT-GAN on the energy and information
data sets. The cINN is also on par with the GAN for
the information data set. Moreover, the cINN is almost on
par with the predictive model trained on the original time
series. Considering the MASE, we also observe that the
performance of the generation methods depends on the data
set. More specifically, most generation methods obtain the
best relative predictive score –measured by the MASE– on
the mobility data set. However, most generation methods
achieve the worst predictive score on the mobility data set
compared to the original data.

Discriminative score The average, minimum, and maxi-
mum discriminative scores of the cINN and the six bench-
mark methods on the three data sets are shown in Table 7.
We also observe that the cINN outperforms all bench-
mark methods except COT-GAN for the discriminative
score. However, while the cINN performs better than COT-
GAN on the information and mobility data sets, it per-
forms slightly worse on the energy data set. Moreover, we
observe that the discriminative score of each generation
method is more similar across the different data sets than
the predictive score.

Computational cost The computational cost of the cINN
and the six benchmark methods in terms of the average
training time is presented in Table 8. Overall, we observe
that the simple generation methods, namely the GAN and
the VAE, have the lowest training times. However, we
observe that the cINN has the lowest training times when
only considering state-of-the-art generation methods. Note

https://github.com/tianlinxu312/cot-gan
https://github.com/ratschlab/RGAN
https://github.com/jsyoon0823/TimeGAN

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Table 5 Implementation details
of the VAE used as benchmark.
Note that the stride is 1 for
each convolutional layer

Encoder Decoder

1 Conv1D filters: 12; Kernel size: 2 Dense neurons: 24

2 Conv1D filters: 64; Kernel size: 2 Dense neurons: 96

3 Conv1D filters: 64; Kernel size: 3 Reshape shape: horizon × 4

4 Dense neurons: 128 Conv1DTranspose: filters: 32; kernel size: 3

5 Dense for μ neurons: 2 Conv1DTranspose: filters: 16; kernel size: 4

6 Dense for σ 2 neurons: 2 Conv1DTranspose: filters: 8; kernel size: 5

7 Conv1D filters: 1; kernel size: 2

that the training times of the generation methods on the
information data set are shorter due to the smaller length of
the related time series segments.

5.3.4 Ablation study

To determine the influence of the conditional information
comprising calendar and statistical information as well as

the statistical loss defined in (14), we perform an ablation
study for the predictive and the discriminative scores. Based
on the three data sets, we compare the cINN using calendar
and statistical information and the statistical loss (cINN) to
a cINN using only the calendar and statistical information
(cINN Stats + Cal). Additionally, we compare cINNs using
only statistical information (cINN Stats), calendar informa-
tion (cINN Cal), and no information (INN).

Table 6 The average,
minimum, and maximum
predictive scores of the cINN
and the six benchmark methods
on the energy, information, and
mobility data sets. For
comparison, a predictive model
trained on the original time
series is additionally reported
as original data. Lower the
better

Method Energy Information Mobility

MAE cINN 12 (11 - 13) 14 (13 - 15) 47 (42 - 58)

COT-GAN 11 (11 - 12) 14 (13 - 16) 70 (65 - 74)

RGAN 17 (15 - 20) 100 (16 - 251) 176 (129 - 257)

RCGAN 18 (12 - 30) 85 (75 - 91) 162 (101 - 268)

TimeGAN 16 (12 - 50) 16 (14 - 18) 82 (74 - 91)

GAN 26 (18 - 32) 14 (13 - 16) 174 (118 - 240)

VAE 32 (23 - 47) 30 (16 - 58) 196 (115 - 338)

Original Data 12 (11 - 12) 14 (13 - 14) 40 (34 - 48)

MASE cINN 0.94 (0.87 - 1.03) 0.83 (0.78 - 0.91) 0.43 (0.38 - 0.53)

COT-GAN 0.88 (0.85 - 0.92) 0.84 (0.78 - 0.97) 0.64 (0.60 - 0.68)

RGAN 1.33 (1.14 - 1.55) 6.01 (0.93 - 15.05) 1.63 (1.19 - 2.37)

RCGAN 1.42 (0.93 - 2.32) 5.08 (4.53 - 5.48) 1.79 (1.05 - 3.09)

TimeGAN 1.24 (0.95 - 3.89) 0.95 (0.83 - 1.10) 0.76 (0.68 - 0.84)

GAN 2.01 (1.36 - 2.46) 0.85 (0.78 - 0.94) 1.59 (1.08 - 2.20)

VAE 2.49 (1.76 - 3.61) 1.81 (0.96 - 3.47) 1.79 (1.05 - 3.09)

Original data 0.90 (0.85 - 0.96) 0.81 (0.78 - 0.85) 0.37 (0.31 - 0.44)

RMSE cINN 17 (16 - 18) 18 (17 - 20) 68 (61 - 81)

COT-GAN 16 (16 - 17) 18 (17 - 22) 108 (103 - 113)

RGAN 23 (21 - 27) 104 (19 - 254) 221 (163 - 306)

RCGAN 24 (16 - 37) 88 (79 - 95) 217 (138 - 348)

TimeGAN 22 (17 - 64) 21 (18 - 24) 132 (120 - 148)

GAN 34 (23 - 42) 19 (17 - 21) 226 (161 - 303)

VAE 42 (30 - 59) 35 (20 - 62) 261 (172 - 429)

Original Data 16 (15 - 17) 17 (17 - 18) 58 (52 - 69)

B. Heidrich et al.

Table 7 The average,
minimum, and maximum
discriminative scores of the
cINN and the six benchmark
methods on the energy,
information, and mobility data
sets. Lower the better

Method Energy Information Mobility

cINN 0.05 (0.03 - 0.09) 0.02 (0.00 - 0.06) 0.03 (0.01 - 0.05)

COT-GAN 0.03 (0.00 - 0.08) 0.03 (0.00 - 0.08) 0.10 (0.07 - 0.12)

RGAN 0.30 (0.16 - 0.42) 0.33 (0.06 - 0.49) 0.32 (0.30 - 0.35)

RCGAN 0.21 (0.11 - 0.31) 0.38 (0.11 - 0.48) 0.24 (0.16 - 0.33)

TimeGAN 0.13 (0.04 - 0.21) 0.06 (0.00 - 0.15) 0.08 (0.04 - 0.13)

GAN 0.46 (0.44 - 0.46) 0.23 (0.04 - 0.38) 0.39 (0.28 - 0.46)

VAE 0.33 (0.24 - 0.38) 0.09 (0.00 - 0.17) 0.31 (0.30 - 0.33)

Predictive score The predictive scores of the different
cINNs for the three data sets are shown in Table 9. We
observe that the considered cINNs generally perform simi-
larly on the three data sets. While the INN barely achieves
the best performance on the energy data set and the cINN
using only calendar information achieves the best results on
the mobility data set, all cINNs are on par on the information
data set.

Discriminative score The discriminative scores of the dif-
ferent cINNs for the three data sets are presented in
Table 10. Our observation is that the considered cINNs
perform similarly on the energy and information data set.
However, the cINNs using statistical information perform
better on the mobility data set than the cINNs that do not
consider this information.

6 Discussion

This section discusses the previously reported results of the
experiments, limitations, and benefits of the cINN as the
exemplary implementation of the proposed approach.

In the experiments, we observe that, based on defined
conditional information, the cINN can generate time series
with controlled non-stationarity and periodicities while

Table 8 The average training time in seconds of the cINN and the six
benchmark methods for the three selected data sets

Method Energy Information Mobility

cINN 1130 45 1129

COT-GAN 3586 1991 3841

RGAN 6801 293 3325

RCGAN 1422 307 1379

TimeGAN 18086 5783 23334

GAN 524 358 499

VAE 48 4 39

retaining the characteristics of the original data set. Fur-
thermore, the cINN outperforms or is on par with the
selected benchmark generation methods regarding the pre-
dictive and discriminative scores. Also, the cINN requires
the lowest training time of the considered state-of-the-art
generation methods, probably due to the cINN’s lower
number of parameters or non-recurrent architecture. Addi-
tionally, in the ablation study, we observe that considering
calendar and statistical information as conditional informa-
tion only partly influences the predictive and discriminative
score. From these observations, we conclude that the cINN,
as an exemplary implementation of the proposed approach,
can control the non-stationarity and the periodicities of
generated high-quality time series with arbitrary length.

Despite these promising results, we note that the per-
formed experiments may have limitations. One limitation
could be that the selected data sets only have an hourly
or daily resolution and only contain moderate variations.
Another limitation might be that we do not evaluate how
the described method for aggregating generated time series
segments affects the performance of our approach. Further-
more, we only use univariate time series in our evaluation,
even though our approach can be extended to multivariate
time series.

Concerning the proposed approach, one limitation could
also be the required bijective mapping realised by the
cINN in the exemplary implementation. While using the
bijective mapping guarantees the existence of all generated
time series segments, we assume that it is not a necessary
requirement for the proposed approach. Therefore, the
proposed approach should also be effective with other
generative mappings without the guaranteed existence of the
generated time series. These mappings could approximate
the inverse function, as in VAEs, or be trained by a
discriminator, as in GANs. Extending our method to
these generative mappings could lead to a more general
framework to control non-stationarity and periodicities
when generating time series. Another limitation could be
that the proposed approach requires calendar information.

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Table 9 Ablation study
comparing different cINNs
with respect to the average,
minimum, and maximum
predictive score. Lower the
better

Method Energy Information Mobility

MAE cINN 12 (11 - 13) 14 (13 - 15) 47 (42 - 58)

cINN Stats + Cal 12 (11 - 15) 14 (13 - 15) 46 (41 - 50)

cINN Stats 13 (12 - 13) 14 (13 - 15) 50 (44 - 54)

cINN Cal 12 (12 - 13) 14 (13 - 17) 42 (39 - 48)

INN 11 (10 - 13) 14 (13 - 19) 46 (41 - 50)

MASE cINN 0.94 (0.87 - 1.03) 0.83 (0.78 - 0.91) 0.43 (0.38 - 0.53)

cINN Stats + Cal 0.94 (0.88 - 1.18) 0.83 (0.79 - 0.89) 0.46 (0.39 - 0.54)

cINN Stats 0.98 (0.92 - 1.03) 0.84 (0.80 - 0.89) 0.46 (0.40 - 0.49)

cINN Cal 0.95 (0.90 - 1.01) 0.84 (0.79 - 1.00) 0.39 (0.36 - 0.44)

INN 0.87 (0.79 - 0.99) 0.84 (0.77 - 1.11) 0.42 (0.37 - 0.46)

RMSE cINN 17 (16 - 18) 18 (17 - 20) 68 (61 - 81)

cINN Stats + Cal 17 (16 - 20) 18 (17 - 19) 75 (65 - 87)

cINN Stats 17 (16 - 18) 18 (17 - 20) 75 (66 - 80)

cINN Cal 17 (16 - 17) 18 (17 - 22) 62 (58 - 70)

INN 16 (15 - 17) 18 (17 - 24) 67 (61 - 71)

Although this calendar information is present in a wide
range of real-world time series, some time series, such
as audio time series, do not contain such information. In
addition to calendar information, the proposed approach
also considers statistical information to generate time series
with desired properties. In real-world applications, these
desired properties may only be partially known and thus
may need to be approximated.

However, given calendar and statistical information,
the proposed approach enables controlling non-stationarity
and periodicities in generated time series in many real-
world applications, especially where real-world time series
are non-existent, only partly available, not usable due
to privacy concerns, or expensive to measure. In these
cases, the proposed approach allows the generation of
specific and diverse scenarios with non-stationarity and
periodicities in time series. These scenarios could then
be used to investigate unusual phenomena and various

applications such as forecasting and imputation. Hence, our
approach noticeably extends the capabilities of existing time
series generation methods and offers new opportunities for
purposeful time series generation and analysis.

7 Conclusion

The present paper presents a novel approach to control non-
stationarity and periodicities with calendar and statistical
information when generating time series. For this purpose,
we first define the requirements for generation methods to
generate time series with non-stationarity and periodicities,
which we show is not fulfilled by existing generation meth-
ods. Secondly, we formally describe the novel approach for
controlling non-stationarity and periodicities in generated
time series. Thirdly, we introduce an exemplary imple-
mentation of this approach using a conditional Invertible

Table 10 Ablation study
comparing different cINNs
with respect to the average,
minimum, and maximum
discriminative score. Lower the
better

Method Energy Information Mobility

cINN 0.05 (0.03 - 0.09) 0.01 (0.00 - 0.04) 0.04 (0.00 - 0.05)

cINN Stats + Cal 0.03 (0.02 - 0.06) 0.02 (0.00 - 0.06) 0.03 (0.01 - 0.05)

cINN Stats 0.05 (0.02 - 0.07) 0.03 (0.00 - 0.06) 0.04 (0.01 - 0.06)

cINN Cal 0.05 (0.02 - 0.07) 0.04 (0.00 - 0.08) 0.10 (0.07 - 0.12)

INN 0.04 (0.01 - 0.06) 0.02 (0.00 - 0.05) 0.14 (0.11 - 0.15)

B. Heidrich et al.

Neural Network (cINN) that preprocesses calendar and sta-
tistical information as conditional input with a conditioning
network.

To evaluate the proposed cINN, we examine its capabili-
ties to generate time series with controlled non-stationarity
and periodicities in experiments with real-world data sets.
We also compare the general quality of its generated
time series to state-of-the-art benchmark generation meth-
ods and perform an ablation study to analyse the effects
of the conditional information. The presented experiments
show that the cINN can generate time series with con-
trolled non-stationarity and periodicities while retaining the
characteristics of the original data set. Furthermore, the
cINN outperforms or is on par with the selected bench-
mark generation methods regarding the predictive and
discriminative scores. The cINN also requires the lowest
training time of the considered state-of-the-art generation
methods.

Future work could relax the assumption of a bijec-
tive mapping by applying the proposed approach to other
generative models to control non-stationarity and period-
icities during time series generation. This way, relaxing
this assumption could enable a more general framework
to control non-stationarity and periodicities during time
series generation. Moreover, future work could extend the
proposed approach to multivariate time series and time
series without calendar information. Similarly, future work
could focus on identifying additional controllable proper-
ties of time series and incorporating them into the proposed
approach.

Appendix A: Examples of realistic and useful
time series

We introduce two possible use cases to clarify realistic and
useful time series.

Mobility Use Case: Assuming that we have a dataset
similar to the Mobility data set in our paper, a bike-
sharing startup has just opened up a branch in a new
city and has a few months of available data. If the
managers want to develop a business plan for the
next years, it will not be easy with their data. In this
exemplary case, the data only comprises one season and
the initial period where demand may differ from when
the company is fully established. In order to accurately
model the demand for the coming years, synthetic data
that includes realistic seasonal trends and growth is
required. Therefore, the managers would need to control
the stationarity and trends in the synthetic data to perform
any reasonable analysis.

Energy Use Case: Often, energy systems behave nor-
mally, i.e. we have a steady demand with clear daily,
weakly, and yearly patterns. However, normal behaviour
is not the scenario that leads to grid instabilities and
other related problems. Instead, these problems are
often caused by unexpected peaks in demand or out-
ages in renewable energy generation. Therefore, many
algorithms are being developed to predict these peaks
and outages to provide early warning systems to grid
operators. Unfortunately, these scenarios do not occur
regularly, and, therefore, there is a lack of real-world
data that can be used for training purposes. Generating
synthetic data manipulated to represent such seldom situ-
ations (for example, anomalies and concept drift) is vital
to assist other researchers in developing algorithms and
forecasting methods to cope with such situations.

Both use cases have in common that they require realistic
time series, i.e. time series that have characteristics similar
to real-world data. Furthermore, both use cases benefit from
useful time series that can be controlled according to the use
case-specific problem that needs to be solved (e.g. business
plan development or dealing with seldom events in energy
forecasting).

Appendix B: Shortcomings of generation
methods

This section further points out the shortcomings of genera-
tion methods concerning non-stationarity and periodicities
in generated time series. In addition to Section 3.2 of the
main paper, where we already show that all generated time
series segments have the same expected value and autoco-
variance structure, this section focuses on the variance of
the generated time series segments.

Variance As stated in the main paper, the variance of a
random variable X is defined by

σ 2
X = E[(X − μ)2] = E[X2] − (E[X])2. (17)

Given this definition of the variance, we can again apply the
so-called law of the unconscious statistician (LOTUS) [21]
to obtain an expression for the variance of the transformed
random variable g(Z, θ2), i.e.

σ 2
g(Z;θ2) = E[g(Z; θ2)

2] − (E[g(Z; θ2)])2

=
∫

g(z; θ2)
2PZ dz − (E[g(Z; θ2)])2,

(18)

where θ2 are the fixed trainable parameters. Since the
transformed random variable g(Z, θ2) only depends on the
random variable Z and the fixed trainable parameters θ2, all

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Table 11 Characteristics of the time series contained in the three selected data sets energy, information, and mobility with regard to their temporal
resolution, length, variance, and physical constraint

Data set Temporal resolution Length Variance Physical constraint

Energy Hourly 17545 251.26 kW Non-negative numbers

Information Daily 550 920.94 # daily views Non-negative numbers

Mobility Hourly 16638 33132.16 # rented bikes Non-negative numbers

generated time series segments x̂i , i ∈ [1, N] thus have the
same variance, i.e.

σ 2
x̂i = var[x̂i] = var[g(zi; θ2)]

= E[(g(zi; θ2) − μ)2], ∀ i ∈ [1, N], (19)

where zi , i ∈ [1, N] are realisations of the random variable
Z used in the generative process.

Appendix C: Data sets and preprocessing

This section first lists and characterises the three selected
data sets from the application fields energy, information,
and mobility. Secondly, we detail each data set’s selection
and preprocessing of time series. Lastly, we give informa-
tion on the rights to use the data and data privacy.

C.1 Data sets

We select the following three publicly available data sets for
our experiments:

• EnergyUCI Electricity Load Dataset [7]: https://archive.
ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

• Information Google’s Web Traffic Time Series
Forecasting Dataset: https://www.kaggle.com/c/
web-traffic-time-series-forecasting/data

• Mobility UCI Bikesharing Dataset [7, 9]: https://
archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

For all three data sets, Table 11 provides an overview of
the contained time series regarding their temporal resolu-
tion, length, variance, periodicity, and physical constraint.

C.2 Selection and preprocessing of time series

We use time series without missing values and with a
daily or hourly temporal resolution for our experiments.
Therefore, we select a time series from each data set and
prepare the selected time series as follows:

• EnergyWe resample the data set to a sample rate of one
hour and select the time series MT 158 from the data
set.

• Information From the data set, we select the time series
Hitchhiker’s Guide to the Galaxy (video game).

• Mobility We create the time index by merging
the columns dteday and hr. Afterwards, we linearly
interpolate the missing values before selecting the time
series cnt from the data set.

Furthermore, we scale all selected time series using a
Standard-Scaler to make the training more stable. Based
on the selected and scaled time series, we create samples
containing values of one day for the energy and the mobility
data set and one week for the information data set as inputs
for the cINN and the benchmarks. The resulting samples
thus contain 24 values for the energy and the mobility data
sets and seven values for the information data set. For all
data sets, we took the first year for training.

C.3 Data use rights and data privacy

The associated license allows the reuse of the selected
energy and mobility data sets, and the associated donation
policy implies consent. Regarding the information data set,
the competition guidelines of Kaggle14 as data host limit the
use of the data set to the competition itself. Nevertheless,
the data set is commonly used in scientific publications.
However, concerning the information data set, we cannot
give further information on the consent because Google as
a data provider, does not provide any information on this
aspect.

Regarding privacy, none of the selected data sets contains
personally identifiable information because the energy data
set is pseudonymised, and the information and mobility data
sets are aggregated.

Acknowledgements Benedikt Heidrich and Marian Turowski were
funded by the Helmholtz Association’s Initiative and Networking
Fund through Helmholtz AI. Kai Schmieder was funded by the
Helmholtz Association’s Initiative and Networking Fund through
Helmholtz Metadata Collaboration. Kaleb Phipps was funded by the
German Research Foundation (DFG) Research Training Group 2153
”Energy Status Data: Informatics Methods for its Collection, Analysis
and Exploitation”. Veit Hagenmeyer was funded by the Helmholtz
Association under the Program ”Energy System Design”. We thank
Nicole Ludwig for her valuable input during the preparation of the
manuscript.

14https://www.kaggle.com/c/web-traffic-time-series-forecasting/rules

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://www.kaggle.com/c/web-traffic-time-series-forecasting/rules

B. Heidrich et al.

Author Contributions Benedikt Heidrich: Conceptualisation,
Methodology, Software, Investigation, Writing - Original Draft,
Visualisation Marian Turowski: Conceptualisation, Methodology,
Investigation, Writing - Original Draft Kaleb Phipps: Conceptual-
isation, Methodology, Investigation, Writing - Original Draft Kai
Schmieder: Conceptualisation, Methodology, Investigation, Writ-
ing - Original Draft Wolfgang Süß: Writing - Review & Editing,
Supervision Ralf Mikut: Writing - Review & Editing, Supervision
Veit Hagenmeyer: Funding acquisition, Writing - Review & Editing,
Supervision

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

Data Availability The datasets analysed during the current study
are available in the UCI repository, https://archive.ics.uci.edu/
ml/datasets/ElectricityLoadDiagrams20112014. The datasets gener-
ated during the current study can be replicated with the code
made available in our GitHub repository, https://github.com/KITIAI/
ControllableTimeSeriesGeneration.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Abadi M, Agarwal A, Barham P et al (2015) TensorFlow: large-
scale machine learning on heterogeneous systems. https://www.
tensorflow.org/

2. Ardizzone L, Lüth C, Kruse J et al (2019) Guided image gen-
eration with conditional invertible neural networks. arXiv:1907.
02392

3. Chollet F et al (2015) Keras. https://keras.io
4. Dinh L, Sohl-Dickstein J, Bengio S (2017) Density estimation

using Real NVP. In: 5th International conference on learning
representations, ICLR 2017 - conference track proceedings.
arXiv:1605.08803

5. Donahue C, McAuley J, Puckette M (2019) Adversarial audio
synthesis. In: 7th International conference on learning representa-
tions, ICLR 2019. arXiv:1802.04208

6. Dong HW, Hsiao WY, Yang LC et al (2018) MuseGAN: multi-
track sequential generative adversarial networks for symbolic
music generation and accompaniment. In: The thirty-second
AAAI conference on artificial intelligence (AAAI-18), pp 34–41.
https://ojs.aaai.org/index.php/AAAI/article/view/11312

7. Dua D, Graff C (2019) UCI machine learning repository. http://
archive.ics.uci.edu/ml

8. Esteban C, Hyland SL, Rätsch G (2017) Real-valued (medi-
cal) time series generation with recurrent conditional GANs.
arXiv:1706.0.2633

9. Fanaee TH, Gama J (2014) Event labeling combining ensemble
detectors and background knowledge. Progress Artif Intell 2:113–
127. https://doi.org/10.1007/s13748-013-0040-3

10. Ge L, Liao W, Wang S et al (2020) Modeling daily load
profiles of distribution network for scenario generation using
flow-based generative network. IEEE Access 8:77,587–77,597.
https://doi.org/10.1109/ACCESS.2020.2989350

11. Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Gener-
ative adversarial nets. In: Ghahramani Z, Welling M, Cortes
C et al (eds) Advances in neural information processing sys-
tems, pp 4089–4099. https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

12. Heidrich B, Bartschat A, Turowski M et al (2021) pywatts: Python
workflow automation tool for time series. arXiv:2106.10157

13. Hyndman R, Athanasopoulos G (2018) Forecasting: princi-
ples and practice, 2nd edn. OTexts: Melbourne, Australia.
OTexts.com/fpp2. accessed on 24.05.2021

14. Kingma DP, Dhariwal P (2018) Glow: generative flow with
invertible 1x1 convolutions. In: Bengio S, Wallach H, Larochelle
H et al (eds) Advances in neural information processing systems,
pp 10,215–10,224. https://proceedings.neurips.cc/paper/2018/file/
d139db6a236200b21cc7f752979132d0-Paper.pdf

15. Kingma DP, Welling M (2014) Auto-encoding variational Bayes.
arXiv:1312.6114

16. Lan J, Guo Q, Sun H (2018) Demand side data generating based
on conditional generative adversarial networks. Energy Procedia
152:1188–1193. https://doi.org/10.1016/j.egypro.2018.09.157

17. van den Oord A, Dieleman S, Zen H et al (2016) WaveNet: a
generative model for raw audio. arXiv:1609.03499

18. Paszke A, Gross S, Massa F et al (2019) Pytorch: an imperative
style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A et al (eds) Advances in neural infor-
mation processing systems, pp 8024–8035. https://proceedings.
neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-
Paper.pdf

19. Prenger R, Valle R, Catanzaro B (2019) WaveGlow: a flow-based
generative network for speech synthesis. In: 2019 IEEE Inter-
national conference on acoustics, speech and signal processing
(ICASSP), pp 3617–3621. https://doi.org/10.1109/ICASSP.2019.
8683143

20. Ramponi G, Protopapas P, Brambilla M et al (2018) T-CGAN:
conditional generative adversarial network for data augmentation
in noisy time series with irregular sampling. arXiv:1811.08295

21. Ross SM (2010) Introduction to probability models, 10th edn.
Academic Press. https://doi.org/10.1016/C2009-0-30640-6

22. Xu T, Wenliang LK, Munn M et al (2020) COT-GAN: generating
sequential data via causal optimal transport. In: Larochelle H,
Ranzato M, Hadsell R et al (eds) Advances in neural information
processing systems, pp 8798–8809. https://papers.nips.cc/paper/
2020/file/641d77dd5271fca28764612a028d9c8e-Paper.pdf

23. Yoon J, Jarrett D, van der Schaar M (2019) Time-series generative
adversarial networks. In: Wallach H, Larochelle H, Beygelzimer
A et al (eds) Advances in neural information processing sys-
tems, pp 5508–5518. https://proceedings.neurips.cc/paper/2019/
file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/KITIAI/ControllableTimeSeriesGeneration
https://github.com/KITIAI/ControllableTimeSeriesGeneration
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1907.02392
http://arxiv.org/abs/1907.02392
https://keras.io
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1802.04208
https://ojs.aaai.org/index.php/AAAI/article/view/11312
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1706.0.2633
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.1109/ACCESS.2020.2989350
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/2106.10157
OTexts.com/fpp2
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752 979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752 979132d0-Paper.pdf
http://arxiv.org/abs/1312.6114
https://doi.org/10.1016/j.egypro.2018.09.157
http://arxiv.org/abs/1609.03499
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1109/ICASSP.2019.8683143
https://doi.org/10.1109/ICASSP.2019.8683143
http://arxiv.org/abs/1811.08295
https://doi.org/10.1016/C2009-0-30640-6
https://papers.nips.cc/paper/2020/file/641d77dd5271fca28764612a028d9c8e-Paper.pdf
https://papers.nips.cc/paper/2020/file/641d77dd5271fca28764612a028d9c8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

Controlling non-stationarity and periodicities in time series generation using conditional invertible...

Benedikt Heidrich completed
a Master of Science degree in
informatics in 2019 with the
Karlsruhe Institute of Tech-
nology, German. Currently, he
is working towards a PhD
in Informatics at the Karl-
sruhe Institute of Technology.
His research focuses on using
deep generative models in the
energy systems and coping
with concept drift in energy
time series forecasting.

Marian Turowski received the
M.Sc. degree in Industrial
Engineering and Management
from the Karlsruhe Institute of
Technology, Karlsruhe, Ger-
many in 2017. He is cur-
rently pursuing his Ph.D. at the
Institute for Automation and
Applied Informatics with the
Karlsruhe Institute of Tech-
nology. His research interests
comprise anomaly detection
and handling as well as fore-
casting in energy time series.

Kaleb Phipps completed a
double Master of Science
degree in industrial engineer-
ing and management in 2019
with the Karlsruhe Institute
of Technology, Germany and
Linköping University, Swe-
den. Currently, he is working
towards a PhD in computer
science at the Karlsruhe
Institute of Technology. His
research focuses on quantify-
ing the uncertainty in energy
systems with probabilis-
tic forecasts for renewable
generation and demand,

concentrating on non-parametric machine learning methods.

Kai Schmieder Before join-
ing the Fraunhofer Institute for
Industrial Engineering IAO as
a research assistant, he was
with the Institute for Automa-
tion and Applied Informat-
ics within the Karlsruhe Insti-
tute of Technology and sup-
ported the Helmholtz Meta-
data Collaboration in the field
of research data management
for energy research.

Wolfgang Süß received a
diploma in mathematics in
1988 from the University
of Karlsruhe and a Ph.D.
degree in computer science
in 1993 from the University
of Koblenz-Landau. At Karl-
sruhe Institute of Technology
(KIT) he is leader of the
research group IT-methods
and -components for energy
data management. He cur-
rently coordinates the Hub
Energy of the Helmholtz
Metadata Collaboration
(HMC).

Ralf Mikut received the
Diploma degree in automatic
control from the University
of Technology, Dresden, Ger-
many, in 1994, and the Ph.D.
and Habilitation degrees in
mechanical engineering from
the University of Karlsruhe,
Karlsruhe, Germany, in 1999
and 2007, respectively. Since
2011, he has been an Adjunct
Professor at the Faculty of
Mechanical Engineering and
the Head of the Research
Group “Automated Image and
Data Analysis,” Institute for

Automation and Applied Informatics, Karlsruhe Institute of Tech-
nology, Eggenstein-Leopoldshafen, Germany. His current research
interests include machine learning, image processing, life science
applications, and smart grids.

B. Heidrich et al.

Veit Hagenmeyer received
the Ph.D. degree from Univer-
site Paris XI, Paris, France, in
2002. He is currently a Pro-
fessor of energy informatics
with the Faculty of Computer
Science, and the Director of
the Institute for Automation
and Applied Informatics,
Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany.
His research interests include
modeling, optimization and
control of sector-integrated
energy systems, machine-
learning based forecasting of

uncertain demand and production in energy systems mainly driven by
renewables, and integrated.

Affiliations

Benedikt Heidrich1 · Marian Turowski1 · Kaleb Phipps1 · Kai Schmieder1,2 · Wolfgang Süß1 ·
Ralf Mikut1 · Veit Hagenmeyer1

Marian Turowski
marian.turowski@kit.edu

Kaleb Phipps
kaleb.phipps@kit.edu

Kai Schmieder
kai.schmieder@iao.fraunhofer.de

Wolfgang Süß
wolfgang.suess@kit.edu

Ralf Mikut
ralf.mikut@kit.edu

Veit Hagenmeyer
veit.hagenmeyer@kit.edu

1 Karlsruhe Institute of Technology, Institute for Automation
and Applied Informatics, Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Baden-Württemberg,
Germany

2 Research and Innovation Center for Cognitive Service Systems
(KODIS), Fraunhofer Institute for Industrial Engineering IAO,
Bildungscampus 9, 74076 Heilbronn, Baden-Württemberg,
Germany

http://orcid.org/0000-0002-1923-0848
http://orcid.org/0000-0002-3776-2215
http://orcid.org/0000-0002-9197-1739
http://orcid.org/0000-0002-1171-1428
http://orcid.org/0000-0003-2785-7736
http://orcid.org/0000-0001-9100-5496
http://orcid.org/0000-0002-3572-9083
mailto: marian.turowski@kit.edu
mailto: kaleb.phipps@kit.edu
mailto: kai.schmieder@iao.fraunhofer.de
mailto: wolfgang.suess@kit.edu
mailto: ralf.mikut@kit.edu
mailto: veit.hagenmeyer@kit.edu

	Controlling non-stationarity and periodicities in time series generation using conditional invertible...
	Abstract
	Introduction
	Related work
	Problem formulation
	Requirements of non-stationarity and periodicities in time series
	Requirement 1: non-stationarity
	Requirement 2: periodicities

	Shortcomings of generation methods
	Principles of generation methods
	Generating time series
	Shortcoming 1: non-stationarity in generated time series
	Shortcoming 2: periodicities in generated time series

	Controlling non-stationarity and periodicities in generated time series
	Formal solution
	Existence guarantee
	Calendar information
	Statistical information
	Combining calendar and statistical information

	Exemplary implementation
	Architecture
	Training
	Generative process

	Experiments
	Data sets
	Generated time series with controlled non-stationarity and periodicities
	Controlled non-stationarity
	Controlled periodicities

	Quality of generated time series
	Metrics
	Predictive score
	Discriminative score
	Computational cost

	Benchmarks
	COT-GAN
	RGAN and RCGAN
	TimeGAN
	GAN
	VAE

	Benchmarking results
	Predictive score
	Discriminative score
	Computational cost

	Ablation study
	Predictive score
	Discriminative score

	Discussion
	Conclusion
	Appendix A: Examples of realistic and useful time series
	Appendix B: Shortcomings of generation methods
	Appendix B: Shortcomings of generation methods
	Variance

	Appendix C: Data sets and preprocessing
	Appendix C: Data sets and preprocessing
	C.1 Data sets
	C.2 Selection and preprocessing of time series
	C.3 Data use rights and data privacy
	References
	Affiliations

