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Abstract

We will propose di�erent quantum superposition attacks on lightweight cryptographic

primitives using variants of Simon’s algorithm. Three of our attacks are against the NIST

Lightweight Cryptography Standardization Process �nalist Elephant. The other primitives

are LightMAC and ESTATE. We will also show that truncating periodic 2-to-1 functions

will not constrain Simon’s algorithm. This result can then be used to speed-up existing

attacks.

The resource cost of all presented attacks will then be estimated considering a fault-

tolerant surface code based quantum computer. We will demonstrate the di�erences

between an adversary who is able to query the Elephant primitive in superposition and

one who can only perform classical queries. Even when both have access to the same local

quantum computer, the one who has superposition access will recover the secret key in

about 10
11

logical-qubit-cycles and 21.2 seconds, while the other one needs about 10
20

logical-qubit-cycles and 209.9 years.
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Zusammenfassung

Wir werden verschiedene Angri�e in Quantensuperposition auf sogenannte Lightweight-

Kryptographie Primitive unter Verwendung von Simon’s-Algorithmus vorstellen. Drei

unserer Angri�e richten sich gegen den Finalisten des NIST Lightweight Cryptography

Standardization Process, Elephant. Die anderen Primitive sind LightMAC und ESTATE.

Wir werden auch zeigen, dass das Kürzen der Ausgabe von periodischer 2-zu-1-Funktionen

Simon’s Algorithmus nicht einschränkt. Dieses Ergebnis kann genutzt werden, um beste-

hende Angri�e zu beschleunigen.

Die Ressourcenkosten aller vorgestellten Angri�e werden dann unter Berücksichtigung

eines fehlertoleranten, auf surface-code basierenden Quantencomputers geschätzt. Wir

werden die Unterschiede zwischen einem Angreifer, der in der Lage ist, das Elephant-

Primitiv in Superposition anzufragen, und einem, der nur klassische Anfragen stellen kann,

demonstrieren. Selbst wenn beide Zugang zum selben lokalen Quantencomputer haben,

wird derjenige, der Zugang zu Superpositionen hat, den geheimen Schlüssel in etwa 10
11

logischen Qubit-Zyklen und 21.2 Sekunden wiederherstellen, während der andere etwa

10
20

logische Qubit-Zyklen und 209.9 Jahre benötigt.
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1 Introduction

With the help of combining physics, mathematics, and computer science, quantum com-

puting was able to evolve in the last decades from an idealistic concept to one of the

most compelling �elds of quantum theory. The �eld of quantum computing is rapidly

growing since Paul Benio� [Ben80] proposed the �rst idea of the quantum mechanical

model for the Turing machine in 1980. Since then, there has been a huge increase in the

progress of building a large scale quantum computer. Especially in recent years where

companies have entered the race to build the �rst large scale quantum computer [Gib19].

Once large scale quantum computers are built, they will be able to break many of the

currently used cryptographic schemes and provides therefore new challenges for the world

of cryptography.

The current cryptographic schemes and those that will be standardized must be evaluated

for their quantum security. With the rise of Internet of Things and the growing usage of

small devices so called Lightweight cryptography is becoming more and more important.

This thesis will focus on this �eld of cryptography and evaluate the quantum security of

di�erent Lightweight cryptographic candidates.

1.1 Motivation

In 1994, Peter Shor discovered [Sho94] that e�cient quantum algorithms for algebraic

problems, like integer factoring and discrete logarithm, exist. This discovery has changed

cryptography signi�cantly. Many of the public key cryptographic primitives’ security

used today rely on the hardness of these problems. Nevertheless, those problems will

expire as soon as powerful enough quantum computers are accessible.

These results have shown that there is the need for new standards, especially in the

public key cryptography as well as re-evaluations of current standards in the presence

of potential quantum attacks. The National Institute of Standards and Technology has

organized competitions and challenges to provide new standards for public key encryptions,

key exchanges and digital signatures that are quantum secure [ST20b].

Besides the exhaustive search provided by Grover’s Algorithm [Gro96], the symmetric

cryptography was long time considered to be secure against quantum attacks. Therefore

whitening keys or increasing the key size in the used schemes was believed to be enough to

provide the needed security. But with the introduction of new attack models and therefore

creating more powerful adversaries by giving them the ability to issue quantum queries to

an oracle, new cryptoanalyses and attacks were made possible [Dam+11; Kap+16; BJ20;

Haa20].

With Simon’s period �nding Algorithm [Sim97] in 1997 and being able to query super-

position states to an encryption oracle, the �rst exponential speed-up for recovering the

1



1 Introduction

boolean hidden shift of a periodic function was found in symmetric cryptography. This

led to a variety of new attacks and many cryptoanalyses have shown that precautionary

measures against quantum attackers, like whitening keys, are not providing additional

security in the quantum CPA setting [LM17].

Another important aspect of quantum security is that known attacks, like Shors’s

algorithm, can be applied to today’s information. An adversary can therefore gather

information and apply the attack in a future where powerful enough quantum computers

are available. The quantum security of a cryptographic scheme is especially important if

it is required to provide long-term security.

It is therefore as important as knowing that an attack is possible to compute its cost

and needed e�ort. This gives the opportunity to estimate the threat and likelihood of the

attack and what resources would be necessary to carry it out. The cost of many attacks

on symmetric cryptography are only known vaguely, it is thus important to analyze the

resource cost of these attacks. This also includes to provide and optimize quantum designs

and circuits that implement said attacks.

1.2 Contribution

In this thesis we will analyze the e�ects of truncating 2-to-1 functions and their impact on

Simon’s algorithm in section 3.4. We will show, that this impact is lower than assumed.

We conclude that truncating periodic functions will not a�ect the applicability of Simon’s

algorithm to retrieve the hidden period. This result can be applied to existing superposition

attacks to provide exponential speed-up. This is the case for the superposition attack on

LightMAC presented by Jonas Haas in [Haa20].

In section 5.2 we will propose three new quantum key recovery attacks on the NIST

Lightweight Cryptography Standardization Process �nalist Elephant . As well as present

the attacks on LightMAC and ESTATE by Jonas Haas in [Haa20]. All attacks are realized

using variants of Simon’s algorithm.

In chapter 6 we will estimate the resource cost required to implement these superposition

attacks on a fault-tolerant surface code based quantum computer. We consider per-gate

error rates from 10
−3

up to 10
−5

.

1.3 Related Work

Ivan Dåmgard et al. [Dam+11] de�ned superposition attacks in 2011 and classi�ed di�erent

models, which de�ne how and whether an attacker is able to access a primitive (or an

oracle) parametrized with an unknown key. These models are often referred to as Q0, Q1

and Q2 models (e.g. by Xavier Bonnetain in [Bon19, Section 1.3.2]). In their work Dåmgard

et al. discuss the security of di�erent classical cryptographical primitives, where the

adversary is able to request classical queries in superposition. They analyze the security

of zero-knowledge proofs, secret-sharing schemes and multi-party computation.

Kuwakado and Morii presented in [KM10] a quantum three-round-Feistel cipher dis-

tinguisher. No classical polynomial algorithm is known up to this date to di�erentiate

2



1.3 Related Work

between a three-round-Feistel cipher and a random function. They managed that by

cleverly exploiting the Feistel structure to construct a periodic function and using Simon’s

algorithm afterwards.

In 2017 Santoli and Scha�ner extend the idea of Kuwakado and Morii in [SS17, Section 3]

by presenting a proof for a more general approach of the internal function of the Feistel

cipher. While Kuwakado and Morii assumed a permutation as its internal function, Santoli

and Scha�ner are capable of managing arbitrary functions.

Having access to an oracle also allows to introduce new security de�nitions similar

to those in the classical world. Boneh and Zahndry gave formal de�nitions in [BZ13] of

indistinguishable under a quantum chosen message attack and other security models. They

also concluded that the IND-qCPA is strictly stronger than IND-CPA under the assumption

that pseudorandom functions exist. Encryption schemes which are still considered secure

in the Q2 model are called quantum secure.

With the new quantum attack models and being able to perform quantum encryption

queries Kuwakado and Morii presented an attack on the Even-Mansour construction in

[KM12], a construction which is still up to the date of writing this considered secure in the

classical world. They demonstrated that by using Simon’s Algorithm and having quantum

access to an encryption oracle, the Even-Mansour construction collapses.

In 2016 Kaplan et al. [Kap+16] researched applications for Simon’s Algorithm and

focused on attacks using quantum period �nding on symmetric primitives. They show

that known classical attacks based on �nding collisions can be speed-up using Simon’s

Algorithm. They manage to completely break di�erent and commonly used block cipher

MACs, like CBC-MAC, PMAC, GMAC, GCM, and OCB. In their work they describe

forgery attacks on these modes and di�erent CAESAR [ST16] candidates as well. In the

superposition attack model Kaplan et al. describe a way to apply Simon’s Algorithm on a

LRW construction, named after Liskov, Rivest and Wagner, to turn the block cipher into

an tweakable block cipher. This allows them to construct a distinguisher between a LRW

construction and an ideal tweakable block cipher. At the end of their paper, they apply

Simon’s Algorithm to slide attacks, managing to achieve an exponential speed-up of the

classical cryptanalysis technique.

The use of whitening keys to increase the key length was long time considered a good

method to provide additional security against quantum attackers. This was proven false in

the quantum CPA setting by Leander and May in their work [LM17]. They combined the

quantum algorithms Grover and Simon to show that the needed quantum steps to break

the FX-construction is about O(< + =) · 2</2, where< and = are the used key sizes for

whitening and internal block cipher. This is about the same amount needed to break the

construction without the whitening keys. This showed that using whitening keys does

not increase the security against quantum attackers in this setting signi�cantly.

In his master thesis [Haa20] Jonas Haas described superposition attacks against three

Lightweight Cryptography candidates Elephant AEAD, LightMAC and ESTATE AEAD.

Haas presented a key recovery attack on Elephant AEAD which is at the time of writing a

�nalist of the NIST lightweight cryptography standardization process [ST20a]. Elephant is

based on an Even-Mansour construction which is classically considered secure but broken

in the quantum world. He then uses a distinction attack to distinguish the LightMAC

PRF from a random function which is given as an oracle. This attack applies Simon’s

3
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Algorithm and is similar to the one used by Kuwakado et al. on the three-round-Feistel

construction presented in [KM10]. The third superposition attack is against the ESTATE

AEAD encryption scheme, that is based on the MAC-then-encrypt approach. He targets

an underlying tweakable block cipher which is used by ESTATE. The adversary in his

attack is not nonce respecting, and therefore able to forge tags and cipher texts. Nonces in

superposition are a non trivial topic and discussed by Haas in [Haa20, Section 4]. In this

case the nonce is assumed to be constant and the oracle uses the same nonce to answer

the queries instead of using random nonces.

In [Bon+19] Bonnetain et al. describe an other attack on the Even-Mansour structure.

Remarkable and di�erent to the previous known attacks is that it is done in the Q1

attack model. In their attack, Simon’s Algorithm is only applied o�ine, where ?>;~ (=)
superposition queries to an oracle are done and stored on =2 qubits. They are afterwards

reused during the iterations of Grover’s Algorithm. With the combined use of Grover’s

and Simon’s Algorithm, they were able to break the construction in O(2=/3) quantum time,

using O(2=/3) classical queries and O(=2) qubits. This was the �rst time an attack in the

Q1 model yielded a quadratic speedup.

As important as �nding possible quantum attacks it is to estimate their cost resource cost.

This also helps to analyze and evaluate the long-term prospects of quantum designs. The

resource cost estimation can be done considering only the algorithm itself or additionally

taking quantum error correction into account. It is therefore important to examine how

a quantum computer architecture is constructed and where resources are required. The

following works have addressed these issues as well as presenting resource cost estimations

to given attacks.

Jones et al. have considered what e�orts are required to build a large scale quantum

computer in [Jon+12]. They introduced a layered quantum computer architecture and

di�erentiate it into �ve separate layers, where a lower level layer provides services to a

higher level one. Beginning from the lowest layer, the �ve layers di�erentiate into the

Physical, Virtual, Quantum error correction, Logical and Application layer. The Physical

layer describes how to store information between processing steps and how to control

and measure it. The Virtual layer makes the Physical layer more robust against systematic

errors. In the Quantum error correction layer reversible circuits are embedded into error

correcting codes by using surface codes. This yields fault tolerant logical qubits and gates.

In the Logical layer the fault tolerant gates and qubits are optimized and turned into a

logical substrate for universal computing. In the Application layer quantum algorithm are

executed with the exertions of the previous layers to supply any arbitrary gates.

In 2020, Xavier Bonnetain and Samuel Jaques presented quantum circuits that implement

o�ine Simon’s Algorithm in [BJ20]. This regards a quantum adversary who is limited to

only classical queries and perform o�ine quantum computations. They presented attacks

and their cost estimates against the block cipher PRINCE, the MAC Chaskey and the NIST

lightweight candidate AEAD scheme Elephant as well. They came to the conclusion, that

the needed qubits for the given attacks are in the order of 2
14

qubits. Which is comparable

to the amount needed trying to break RSA-2048 where about 2
12.6

qubits are necessary.

The used query limits for comparison are provided by Gidney and Ekerå in [GE21]. The

attacks on PRINCE and Chaskey are the current most e�cient ones, up to the date of
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writing this. They also state, that since Elephant has a key smaller than its base state, their

presented attack is more expensive than an exhaustive search.

In the work of Amy et al. [Amy+17] they study the pre-image cost of the exhaustive

quantum key search attack using Grover’s Algorithm on SHA-2 and SHA-3 families of

hash functions. They measure their cost analysis in surface code cycles. The resulting cost

is calculated by the number of logical qubits times depth of the circuit and given in units

of surface code cycles. They come to the result that the pre-image attack on SHA2-256

requires about 2
12.6

logical qubits and is around 2
153.8

surface code cycles deep, which

results in an overall cost of 2
166.4

logical qubit cycles. For the SHA3-256 attack about 2
20

logical qubits are needed and is approximately 2
146.5

surface codes cycles deep. This results

in a total cost in the order of 2
166.5

logical qubit cycles. Both attacks issue queries to a

quantum black-box model and about 2
128

queries are needed for each of the attack. They

conclude that the studied attacks are by far more expensive than a simple query analysis

would suggest. Both attacks are about 275 billion times more expensive than taking a

query analysis in account.
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2 Preliminaries

In this chapter basic and frequently used notations for both the classical and quantum

world will be de�ned. Afterwards important elements for quantum computing will be

presented. These includes the basics of quantum mechanics, quantum circuits, and Grover’s

algorithm [Gro96]. Afterwards, the de�nition of a layered quantum computer architecture

developed by Jones et al. in [Jon+12] will be given. The quantum attack models which are

being used to describe the power of an adversary are given at the end of this chapter.

2.1 Basic notations

The description and notations are based on [KL15] by Katz and Lindell as well as [Bon19]

by Bonnetain and the lecture notes [The16] by the KIT cryptography and security group.

The set of bitstrings of length = will be denoted by {0, 1}= . The ⊕ operator is the bitwise

exclusive-or (XOR) of single bits or entire bitstrings, where in the latter case the XOR

operation is applied bitwise. Let G ∈ {0, 1}= and ~ ∈ {0, 1}< , then G ‖ ~ ∈ {0, 1}=+< denotes

the concatenation of G and ~. If� is a randomized algorithm,�(G) denotes running� with

input G and �(G ; A ) denotes running � with input G and randomness A . The set {1, . . . , =}
will be denoted by [=]. Choosing an element G uniformly at random from the set ' will

be noted by G
$←− '. A denotes an adversary and D a distinguisher. Pr[- ] de�nes the

probability of the event - to happen.

A function 5 is negligible if for all constants 2 ∈ N there exists an integer : such that for

every :0 > : it holds that |5 (:0) | ≤ 1

:2
0

. A function 5 is called periodic if there exists a B

such that for all inputs G , 5 (G) = 5 (G ⊕ B) holds. ?>;~ denotes a polynomial, which means

that if 5 (=) = ?>;~ (=) there exists a polynomial ? such that 5 (=) = O(? (=)).

2.2 Quantum computing

All vector spaces are assumed to be of �nite dimension, otherwise it will be noted. The

basic de�nition and notations of quantum computation are based on the work of Boneh

and Zhandry in [BZ13], Nielsen and Chuang in [NC01], and the lecture Notes by Wolf in

[Wol19].

2.2.1 Quantum Mechanics

Superposition A quantum system is considered a complex Hilbert spaceH together with

an inner product 〈·|·〉. Consider a system that can be in # di�erent, mutually exclusive

7



2 Preliminaries

classical states, represented by the vectors |0〉 , . . . |# − 1〉. The quantum state of the system

is then described by the complex vector

|q〉 =
∑
G

UG |G〉 ,

of unit norm 〈q |q〉 = 1. The complex coe�cients UG are called the amplitude of |G〉 in |q〉
and |q〉 is called the quantum superposition of |G〉. Thus, the system in quantum state |q〉
is in all classical states at the same time and each is in state |0〉 with amplitude U0, in state

|1〉 with amplitude U1 and so forth. Assuming thatH is a #−dimensional Hilbert space,

the quantum state |q〉 is then a vector in this space written as

|q〉 =
©«
U0
...

U#−1

ª®®¬ ,
and called a ket. The conjugate transpose bra is the row vector

〈q | =
(
U∗
0
, . . . , U∗#−1

)
.

The inner product between two states 〈q,k 〉 is equivalent to the dot product between the

bra and the ket vector 〈q |k 〉.
The joint quantum state of two Hilbert spaces H1 and H2 is de�ned by their tensor

productH1 ⊗ H2. Therefore the product state of the vectors |q1〉 ∈ H1 and |q2〉 ∈ H2 is

given by |q1q2〉 ∈ H1 ⊗ H2.

There are two types of transformation that can be applied to a quantum state. One is the

reversible evolution, which is represented by unitary operators of the form* : H → H ,

and the other one is measurement, which allows obtaining information about the system.

Measurement in the computational basis Let the quantum state be in superposition |q〉 =∑
G UG |G〉. Measuring this state will return the outcome G with probability |UG |2, which

is the squared norm of the amplitude. Observing a quantum state leads to a probability

distribution for the classical states represented by the squared norms of the corresponding

amplitudes. Thus, ∑
G

|UG |2 = 1.

Measuring the state |q〉 collapses the superposition of |q〉 to the classical basis state |G〉. It

is not possible to reconstruct the measured quantum state |q〉 from the observed outcome

|G〉. Measurements are therefore non-reversible.

Projective measurement A projective measurement is de�ned by projectors %1, . . . , %< ,

that sum to identity. They are pairwise orthogonal, hence %8 · % 9 = 0 if 8 ≠ 9 . Let + be a

Hilbert space and the quantum state |q〉 ∈ + . The projector % 9 projects on some subspace

+9 of + . The state q can then be decomposed as

|q〉 =
<∑
9=1

��q 9 〉 , where

��q 9 〉 = % 9 |q〉 ∈ +9 .
8



2.2 Quantum computing

Since the projectors %1, . . . , %< are pairwise orthogonal, both the subspaces +9 as well as

the quantum states

��q 9 〉 are orthogonal. Applying the measurement to the quantum state

|q〉 yields the outcome 9 with probability ‖
��q 9 〉 ‖2 = 〈q | % 9 |q〉. Given that the outcome 9

occurred, the measured state will immediately transition (collapse) into the new state

% 9 |q〉
‖% 9 |q〉 ‖

.

Any orthonormal basis � = |k0〉 . . . , |k#−1〉 can now be considered as the projective

measurement de�ned by the projectors % 9 =
��k 9 〉 〈

k 9
��
. That process is called measuring in

basis �. If the quantum state |q〉 equals to one of the basis vectors

��k 9 〉, the measurement

outcome will then yield 9 with probability 1.

Observables A projective measurement with projectors %1, . . . , %< and associated distinct

outcome _1, . . . , _< ∈ R can be written as the matrix " =
∑<
8=1 _8%8 .

" is called an observable and is a Hermitian, " = "∗, operator on the state space of the

system being observed. The observable has therefore a spectral decomposition and can be

written as above with %8 being the projectors into the eigenspace of M with eigenvalues _8 .

This has the advantage, that it is easy to calculate average values of the outcome. By

measuring the state |q〉, the probability of the outcome _8 is ‖%8 |q〉 = 〈q | %8 |q〉. The

average value, or estimated values, of the measurement is hence

E(") =
<∑
8=1

_8 〈q | %8 |q〉

= 〈q |
(
<∑
8=1

_8%8

)
|q〉

= 〈q |" |q〉 .

Unitary evolution Instead of measuring the quantum state |q〉 and therefore destroying

its superposition, it is possible to apply some linear operation and converting it into

another quantum state

|k 〉 =
#−1∑
G=0

VG |G〉 .

To apply a linear operation that converts the state |q〉 to |k 〉, is equivalent to multiplying

|q〉 with a complex valued # × # unitary matrix*

©«
V0
...

V#−1

ª®®¬ = *
©«
U0
...

U#−1,

ª®®¬
or |k 〉 = * |q〉. An unitary operator over a # -dimensional Hilbert space H is a # × #
matrix * such that ** † = �# , where * † is the complex conjugate transpose of * . It

preserves the norm of the vectors, hence

∑
G |VG |2 = 1. Since an unitary transformation

always has an inverse, it follows that any (non-measuring) operation on quantum states

has to be reversible. The e�ect of* can always be reversed by applying* −1 to the result.

9



2 Preliminaries

An important theorem in quantum mechanics considering whether a state can be copied

is the quantum no-cloning theorem.

Theorem 1 (Wootters in [WZ82]). There does not exist an unitary evolution* , given an
arbitrary unknown state |q〉 |0〉, that maps

* ( |q〉 |0〉) = |q〉 |q〉 .

2.2.2 Qubits and quantum registers

The qubit In classical computation bits are used as unit of information, they can either

take one of the states 0 or 1. In quantum computation the unit of information is the qubit

(quantum bit) which can be described as an element of the two-dimensional complex

Hilbert spaceH = C × C. It is a superposition of the two computational basis states |0〉
and |1〉.

|i1〉 = U0 |0〉 + U1 |1〉 ,
where U0 and U1 are de�ned as in subsection 2.2.1.

Multiple qubits Suppose having two bits in the classical world. The number of possible

states would be four 00, 01, 10 and 11. Similarly, the 2-qubit system can be considered to

have the 4 computational states |00〉 , |01〉 , |10〉 and |11〉. A pair of qubits exists therefore

in a superposition of these basis states described by the quantum state vector

|i2〉 = U00 |00〉 + U01 |01〉 + U10 |10〉 + U11 |11〉 .

Like in the previous section it holds that the sate |G〉 occurs after measuring |i2〉 with

probability |UG |2 and

∑
G∈{0,1}2 |UG |2 = 1. In general, a quantum register of = qubits has 2

=

many di�erent base states |0〉 , . . . , |2= − 1〉 and can be in a superposition

2
=−1∑
G=0

UG |G〉 . (2.1)

Measuring this state yields the =−bit state |G〉 with probability |UG |2. Measuring only a

subset of the qubits would correspond to a projective measurement. Assuming only the

�rst qubit is measured, the two projectors %0 and %1 are then de�ned as

%0 = |0〉 〈0| ⊗ �2=−1 and %1 = |1〉 〈1| ⊗ �2=−1 .

Therefore, measuring < bits of the =-qubit state would correspond to the projective

measurement having 2
<

projectors %8 = |8〉 〈8 | ⊗ �2=−< , for 8 ∈ {0, 1}< .

Entanglement and the Bell state An important 2-qubit register is the so called Bell state

or EPR-pair
1

that is in the state

1

√
2

( |00〉 + |11〉) .

1
In honor of Einstein, Podolsky, and Rosen
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2.2 Quantum computing

The special property that the Bell state has is that upon measuring the �rst qubit and

observing a |0〉, the whole state collapses to |00〉 and when observing a |1〉 the state

collapses to |11〉. Hence, measuring the second qubit gives always the same result as the

�rst measurement qubit. In other words, measuring the �rst qubit immediately �xes the

outcome of the second unmeasured qubit to a classical value, the measurement outcome is

therefore correlated.

LetH� andH� be two Hilbert spaces, |0〉 , . . . , |# − 1〉 be the orthonormal basis ofH0
and |0〉 , . . . , |" − 1〉 the orthonormal basis ofH� . The tensor product spaceH = H� ⊗H�

is a #"−dimensional space spanned by the set of states {|8〉 ⊗ | 9〉 |8 ∈ {0, . . . , # − 1}, 9 ∈
{0, . . . , " − 1}}. A state |q〉 in H is called bipartite. |q〉 is referred to as entangled if it

cannot be written as a tensor product |q�〉 ⊗ |q�〉, where |q�〉 is a state inH� and |q�〉 in

H� .

2.2.3 Quantum circuits and gates

In the classical world computers are built from electrical circuits containing logic and

wires. A quantum computer is composed of quantum circuits, which contain wires and

elementary gates that carry and manipulate the quantum information.

An example of di�erent quantum circuits can be found in Figure 2.1. The quantum

wires will be represented by a single line, classical wires by a double line and a single

qubit unitary gate is denoted by a rectangle with the gates name in it. This can be seen in

Figure 2.1a and Figure 2.1b. If the input or output registers of the quantum circuit need to

be speci�ed, it will be noted at the corresponding positions of the quantum circuit, this is

denoted in Figure 2.1c. If the quantum register is of size =, it is noted on the input register,

see Figure 2.1d.

(a) Quantum measurement gate

*

(b) Single qubit unitary gate

|G〉 |G〉
|~〉 |G ⊕ ~〉

(c) CNOT gate

|0=〉
*

|0=〉

(d) Quantum circuit operating on 2 =−qubit registers

Figure 2.1: Examples of quantum circuits.

Single qubit gates An unitary linear operator that manipulates a small amount of qubits

is called a quantum gate. The Pauli gates � , -,. and / are all Single qubit gates. They are

represented by the 2 × 2 unitary matrices fG , f~, fI

� =

(
1 0

0 1

)
, - = fG =

(
0 1

1 0

)
, . = f~ =

(
0 −8
8 0

)
and / = fI =

(
1 0

0 −1

)
.
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2 Preliminaries

The X-gate is often also referred to as the NOT- or bit-�ip-gate since it swaps |0〉 and |1〉
of the qubit. The phase�ip-gate Z leaves |0〉 unchanged and �ips the sign of |1〉. The Pauli

matrices also satisfy -/ = 8. and the square of a Pauli matrix is the identity matrix � .

The Pauli matrices are Hermitian, examples for 2-dimensional observables with eigenvalues

±1, and mutually anticommute meaning [�.�] = �� − �� ≠ 0 for Pauli matrices A and B.

The Pauli group on a Single-qubit is de�ned as the multiplicative subgroup generated by

P = {8� , -,. , / } [NC01] and can be extended to the Pauli group on = qubits P= .

One important observation is that any 2 × 2 matrix " can be expressed using a linear

combination of the Pauli-matrices

" = U0� + U1- + U2-/ + U3/ . (2.2)

One of the most important single qubit gate is the Hadamard transformation � . Repre-

sented by the unitary matrix

� =
1

√
2

(
1 1

1 −1

)
.

Applying � to a basic state |0〉 turns it into a superposition, which when measured,

collapses with equal probability to |0〉 or |1〉. The same applies for |1〉. The � |0〉 state is

also de�ned as the |+〉 state and |−〉 for � |1〉.

� |0〉 = |+〉 = 1

√
2

( |0〉 + |1〉) and � |1〉 = |−〉 = 1

√
2

( |0〉 − |1〉) .

Applying the Hadamard gate a to |+〉 or |−〉 transforms it back to |0〉 and |1〉. This shows

that � 2 = � . Applying the =−folded Hadamard gate �⊗= to a register of = qubits in the

zero state, converts the register into

�⊗= |0=〉 = 1

√
2
=

∑
G∈{0,1}=

|G〉 , (2.3)

that is a superposition of all 2
= =−bit strings. Applying the =−folded Hadamard gate to an

arbitrary state |~〉, with ~ ∈ {0, 1}= results in

�⊗= |~〉 = 1

√
2
=

∑
G∈{0,1}=

(−1)G ·~ |G〉 , (2.4)

where G · ~ denotes the inner product of the =−bit strings G and ~.

Another set of single qubit gates are the phase shift gates. They map the basic states |0〉
to |0〉 and rotate the |1〉 state to 48\ |1〉 by an angle of \ . The Pauli Z-gate can be considered

as a rotation by \ = c . Important member of this set are the T and phase gate S.

) =

(
1 0

0 48c/4

)
and ( =

(
1 0

0 8

)
.

The /−, )− and (−gates satisfy ) 2 = (, (2 = / and (4 = � .
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2.2 Quantum computing

Multiple qubit gates The controlled-NOT gate, or CNOT gate, is a 2-qubit gate that

negates the second bit of input if the �rst qubit is 1, otherwise it leaves the second bit

unchanged. The �rst qubit can therefore be seen as the control bit and the second as the

target qubit. The quantum CNOT circuit can be found in Figure 2.1c

�#$) =

©«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬ .
The action of this gate can be summarized as |G〉 |~〉 → |G〉 |G ⊕ ~〉. The CNOT gate can

be seen as the reversible generalized-XOR gate.

The Cli�ord group is the set of unitary operators * such that *%* † ∈ P= , where %=
denotes the Pauli group. * is called the normalizer of P= . The Cli�ord gates are then

de�ned as the elements of the Cli�ord group. The set of the Hadamard gate H, phase gate

S and CNOT gate generate the Cli�ord group [Got98b].

An important theorem that will later be used for Stabilizers and quantum error correcting

codes is the Gottesman-Knill theorem.

Theorem 2 (Theorem 1 in [Got98a]). A quantum circuit performing only the following
elements

1. Cli�ord gates,

2. Preparation of qubits in computational bases,

3. Measurements in the computational bases

can be perfectly simulated in polynomial time on a probabilistic classical computer.

The To�oli gate has three input and three output qubits. Similar to the CNOT gate,

two of the inputs are control bits and the third qubit is the target. It is �ipped if both

of the control qubits are 1 and otherwise left unchanged. This can be summarized as

|G,~, I〉 → |G,~, I ⊕ (G ∧ ~)〉. It is also called the CCNOT gate. The To�oli quantum circuit

and its unitary matrix representation can be found in Figure 2.2.

|0〉 |0〉
|1〉 |1〉
|2〉 |2 ⊕ (0 ∧ 1)〉

To�oli =

©«

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

ª®®®®®®®®®®®¬
.

Figure 2.2: The quantum To�oli gate and unitary matrix representation
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Universal quantum gate set A �nite set of gates that can approximate any unitary op-

eration arbitrarily well is said to be universal for quantum computation or a universal

quantum gate set. Although there are many di�erent combinations of gates that meet this

criteria, this work will consider only the following variations and refer to the others in

[NC01; Wol19].

The set of all Single qubit gates together with the CNOT gate is universal. However,

this is not particularly e�cient and the number of gates is tried to be kept as small as

possible. The Cli�ord gates are not universal since some gates, like the T-gate, can not

be approximated. Gottesman states in [Got98a] that the Cli�ord gates together with the

quantum To�oli gate or the T-gate form a universal set of gates. The Solovay-Kitaev

theorem implies [NC01, Appendix 3] that the set consisting of CNOT-, Hadamard-, phase

gate S and the T-gate is su�cient to implement an arbitrary quantum algorithm. This set

of gates is often referred to as the Cli�ord+T gates.

Quantum parallelism One important quantum-mechanical e�ect is the quantum paral-

lelism. Let 5 : {0, 1}= → {0, 1}< be an arbitrary classical function. The quantum circuit

that maps the quantum state |G〉 |0<〉 to |G〉 |5 (G)〉 for every G ∈ {0, 1}= is denoted by

* 5 . The �rst register is called the data-register and the second the target-register. By

using Equation 2.4 on the �rst =−qubit register, a superposition of all possible inputs G is

obtained. Applying* 5 to the state result in

* 5
©« 1

√
2
=

∑
G∈{0,1}=

|G〉 |0<〉ª®¬ =
1

√
2
=

∑
G∈{0,1}=

|G〉 |5 (G)〉 . (2.5)

Thus, the data register is in a superposition of all 5 (G). This does not seem to be particularly

useful at �rst, since only a random value G and 5 (G) will be observed when the state is

measured. But being able to manipulate the state in speci�c ways and gain information

while the state is still in superposition is very valuable.

2.2.4 Quantum algorithms

Two e�cient quantum algorithm, Grover’s and Simon’s algorithm, had a big impact on

symmetric cryptography. Simon’s algorithm will be discussed in all its variants in chapter 3.

In 1996 Lov Grover presented an e�cient quantum search algorithm for databases in

[Gro96] that could also be used as an exhaustive search. It solves the following problem:

Grover’s problem: Given a test function 5 : - → {0, 1}= , such that the superposition∑
G∈-

G is computable in O(1) time. Given oracle access to 5 and the promise that an

unique G ∈ - exists such that 5 (G) = 1, �nd G .

In classical computation this problem cannot be solved in fewer than O(|- |) evaluations,

Grover’s algorithm solves it in O(
√
|- |) evaluations. Therefore Grover’s algorithm allows

a quadratic speedup on classical exhaustive search.
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2.3 Architecture of a quantum computer

Layered Architecture for quantum computing One di�erence between quantum and clas-

sical computation is that quantum computers are only able to implement reversible circuits

(logic). While this restriction does not exist in classical computing it is crucial in quantum

computing. Thus classical circuits can not be easily translated into quantum circuits.

Therefore additional information in the form of extra qubits is oftentimes needed. These

extra qubits are called ancilla (qubits). Especially for quantum error correction and creating

fault tolerant gates ancillas are very important.

Jones et al. address this issue in [Jon+12] while also considering what e�orts are required

to build a large scale quantum computer. They introduced a layered quantum computer

architecture and di�erentiate it into �ve separate layers, where a lower level layer provides

services to a higher level one.

Layer 1: Physical The Physical layer describes how to store information between

processing steps and how to control and measure it. These units used in this layer

are called physical qubits.

Layer 2: Virtual The Virtual layer makes the Physical layer more robust against system-

atic errors by enforcing symmetries in the system to cancel out correlation errors.

The physical qubits from the previous layer are formed into a two-state system, the

virtual qubit, resembling an ideal qubit.

Layer 3: Quantum Error Correction For quantum computing it is important to have

fault-tolerant quantum error correction (QEC) that can handle errors . While the

Virtual layer let correlation errors cancel themselves out, the QEC layer however

isolates and eliminates arbitrary errors as long as the error rate is below a certain

threshold [AB08]. The errors that are prevented in this layer are caused by quantum

decoherence and quantum noise. In the classical world redundancy is used to address

this issue, but since copying an arbitrary quantum state is proven to not be possible by

the no-cloning theorem [WZ82] and [NC01, Section 1.3.5], the quantum information

must be preserved alternatively. There are many ways to address this issue and Jones

et al. have chosen to analyze the case of stabilizer code, in particular the surface code

for its high threshold [Fow+12] and two-dimensional nearest-neighbour geometry.

An important aspect in the QEC layer is the threshold error rate of error-correcting

code. It is de�ned as the breaking point of the error rate at which the error correction

starts to grant a net gain in protecting information. A quantum system which

operates below the threshold is called a functioning quantum system and a practical

quantum system if it operates well below the threshold.

Another aspect of quantum error correction is how errors are tracked by Pauli

frames [Kni05; DA07] in classical hardware. A Pauli frame mechanism is a classical

technique to track the result of applying a set of Pauli gates to single qubits. QEC

codes project the encoded state into a perturbed code word with faulty single qubit

Pauli gates applied. The syndrome reveals what these Pauli errors are and error

correction is achieved by applying the particular same Pauli gates to the appropriate

qubits.
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The surface code constructed by virtual qubits and gates in this layer yields fault-

tolerant logical qubits and gates for the Logical layer.

Layer 4: Logical The fault tolerant gates and qubits coming from the QEC layer are

taken and made into a logical substrate for universal computing. Therefore additional

processing of error corrected gates and qubits is required to produce arbitrary gates

that are necessary for the Application layer. The full Cli�ord group, a series of

transformations that e�ect permutations of the Pauli gates, is not provided in the

surface code without some sort of ancilla. One of the missing gates of the Cli�ord

group is the )−gate [FSG09; NC01].

The set of fault-tolerant gates which are generated without the use of any ancilla by

the QEC Layer are called fundamental gates. The Logical layer is able to construct

arbitrary gates by taking circuits of fundamental gates and injecting ancillas in error

correcting code. The surface codes architecture is for example able to create the

missing phase gate ( of the Cli�ord group [FSG09; BK05a; RHG07]. This is done by

injecting and purifying speci�c ancilla states and then consuming these ancillas to

produce the gate without measurement.

Another important function of the Logical layer is the distilling into high �delity

ancilla states. The distilled states are then used to construct arbitrary gates with

speci�c quantum circuits [FSG09; BK05a; RHG07].

Layer 5: Application In the Application layer quantum algorithm are executed. The

exertions of the previous layers to supply any arbitrary gate allow the Application

layer to not be worried about the implementation details of the quantum computer.

It is therefore an optimal programming environment. The Application layer is

composed of application gates and qubits, which are logical qubits explicitly used by

a quantum algorithm. The Application layer gates are nearly equivalent to logical

gates, they di�erentiate between what resources are visible to the algorithm and

what is hidden in the mechanism of the Logical layer.

Since it is important to analyze and evaluate the long-term prospects of a quantum

design, accurate resource estimation for a quantum application are of great interest.

When an analysis of a quantum algorithm quotes an amount of qubits without

referring to fault tolerant error correction, then this oftentimes means the amount

of application qubits needed [Bea02; Zal06].

Even though a quantum algorithm could demand any arbitrary gate, not all have

the same resource cost. When ancilla preparation is taken into account, ) gates are

responsible for more than 90% of the circuit complexity in a fault-tolerant algorithm

[Isa+08]. Since the number of To�oli
2

gates is only dependent on the used algorithm

and is not machine-dependent, the resource estimation for an application are counted

in terms of To�oli gates.

2
The ) - and To�oli-gates are two distinct gates
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2.4 Quantum attack models

Figure 2.3: The layered architecture of a quantum computer, from Jones et al. in [Jon+12].

Layered control stack which forms the framework of a quantum computer

architecture. Vertical arrows indicate services provided to a higher layer.

2.4 Quantum attack models

The following classi�cation into di�erent quantum attack models is done following the

work of Bonnetain in [Bon19] and Gagliardoni in [Gag17]. The classical world is described

by the Q0 model, while the Q1 model de�nes an adversary having access to a local quantum

computer but only classical access to the oracle. The Q2 model describes a model in which

the adversary has access to a quantum oracle as well as a local quantum computer.

Classical Computations (Q0): There is no quantum computation at all. The attacker

performs only classical computations.

Classical queries (Q1): Attackers have access to a local quantum device to perform

o�ine computations. However, the queries that the attacker is able to perform are

classical. This model is considering a post-quantum world where quantum computers

are accessible. The goal is to examine constructions that rely on hardness assumption

which withhold in the classical world but do not hold against quantum computers.

It is believed to be a more realistic model to classical ones since today’s information

can be collected and retained until a quantum computer is accessible to break them.

Quantum queries (Q2): In this model the schemes are classical and the attackers are

quantum like in Q1. In addition the adversaries are always given quantum access to

classical oracles. So an adversary can query the oracle in arbitrary superposition of

the inputs and receives the superposition of outputs. The oracle can be described

17



2 Preliminaries

as O: : {0, 1}= → {0, 1}= and the adversary can make quantum queries |G〉 |~〉 ↦→
|G〉 |~ ⊕ O: (G)〉, where |G〉 and |~〉 are the quantum states to their correspondent

arbitrary =-bit strings G and ~. This is considered to be a much stronger model than

the Q1 one. Constructions which are secure in the Q2 model will be called quantum

secure.
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3 Simon’s algorithms

Simon’s algorithm was �rst introduced by Daniel Simon in 1997 in [Sim97]. It is the �rst

example of a quantum algorithm to show an exponential speed-up versus the best known

classical algorithm. For a long time, there was no speci�c application for Simon’s algorithm.

This changed, as Kuwakado and Morii presented in [KM10] a polynomial distinguisher on

the 3-round Feistel construction, that is classically provably secure. This opened the way

for other attacks and new variations of Simon’s algorithm. In this chapter these variations,

that will be used for the superposition attacks presented in chapter 5, will be introduced in

the following. Beginning from the basic version of Simon’s algorithm to the Grover-meets-

Simon algorithm by Leander and May in [LM17]. Afterwards the �rst variant of Simon’s

algorithm applicable in the Q1 model called the o�ine Simon’s algorithm by Bonnetain in

[Bon+19] will be presented. After that, the impact and applicability of Simon’s algorithm

on truncated functions is analyzed, this is a result of this thesis.

3.1 Simon’s algorithm

Daniel Simon presented in [Sim97] in 1997 his algorithm as a way to address the hidden

subgroup problem. It grants a way to �nd hidden periods in 2-to-1 functions. It solves the

following problem:

Simon’s problem: Given a Boolean function 5 : {0, 1}= → {0, 1}= and the promise that

a B ∈ {0, 1}= exists such that for any G, G′ ∈ {0, 1}= , with G ≠ G′ : [5 (G) = 5 (G′)] ⇔
[G ⊕ G′ ∈ {0=, B}], �nd B .

In the classical world this problem is as hard as collision search which can be done in

Θ(2=/2) time. In a quantum setting this problem can be solved in linear time and therefore

yields an exponential speedup in comparison to the classical world.

|0=〉 �

* 5

�

|0=〉

|q1〉 |q2〉 |q3〉 |q4〉 |q5〉

Figure 3.1: Full circuit of Simon’s algorithm

The quantum algorithm for Simon’s algorithm operates on a 2= quantum registers. Two

di�erent cases must be considered, the Boolean function 5 is either periodic in B ∈ {0, 1}=
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3 Simon’s algorithms

or not. For the sake of convenience, if the function is not periodic, it is assumed to be 1-to-1

and if it is periodic 2-to-1. Non-periodic collision will not be considered. In the case that 5

is periodic, Simon’s algorithm �nds enough linear independent vectors to reconstruct B .

The procedure is illustrated in Figure 3.1 and repeats the following steps.

In the beginning both registers are in the zero state

|q1〉 = |0=〉 ⊗ |0=〉 . (3.1)

Afterwards the Hadamard transformation �⊗= is applied to the �rst register transforming

it into the quantum superposition

|q2〉 = (�⊗= ⊗ �⊗=) |q1〉 =
1

√
2
=

∑
G∈{0,1}=

|G〉 |0=〉 . (3.2)

Next, one apply the unitary operator* 5 corresponding to the function 5 resulting in the

state

|q3〉 = * 5 |q2〉 =
1

√
2
=

∑
G∈{0,1}=

|G〉 |5 (G)〉 . (3.3)

Measuring the second register yields the result I = 5 (G). If 5 is not periodic then each of

the 5 (G) are distinct and hence the state in the �rst register will be a random |G〉 with equal

probability over G ∈ {0, 1}= . If on the other hand 5 is periodic in B then 5 (G) = 5 (G ⊕B) = I.

Hence, the �rst register is now in a random quantum state but unlike the previous case in

1√
2

( |G〉 + |G ⊕ B〉), G ∈ {0, 1}= . The state of the �rst register can therefore be described as

follows

|q4〉 =
{

1√
2

( |G〉 + |G ⊕ B〉), if B ≠ 0
=,

|G〉 , if B = 0
= .

(3.4)

Applying the Hadamard transformation �⊗= to a state |1〉 di�erent from |0=〉 gives

�⊗= |1〉 = 1

√
2
=

∑
2∈{0,1}=

(−1)1·2 |2〉 ,

where 1 ·2 de�nes the inner product modulo 2. If 5 is a 1-to-1 function the �rst register is in

the state |G〉. After performing the Hadamard transformation on this state and measuring

it afterwards one obtains a random outcome |~〉 with equal probability. Considering now

that 5 is periodic, applying the second Hadamard transformation to the �rst register gives

the state

|q5〉 = �⊗= |q4〉 =
∑

~∈{0,1}=
UI,~ |~〉 . (3.5)

The amplitude UI,~ is ± 1√
2
=

if 5 is not periodic and otherwise

UI,~ =
1

√
2
=+1
(−1)G ·~ + (−1) (G⊕B)·~

=
1

√
2
=+1
(−1)G ·~ (1 + (−1)B ·~).

(3.6)
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3.2 Grover-meets-Simon algorithm

The amplitude of |~〉 is non-zero i� B · ~ = 0 (mod 2) and hence y is orthogonal to B .

Furthermore, each of the amplitudes are of equal magnitude and thus measuring in the

computational basis one will obtain uniformly at random a ~ such that B · ~ = 0. Non

orthogonal ~ will never be observed. This can be easily veri�ed, since the probability to

observe a speci�c ~ is equal to the square of its amplitude.

P[~ is observed] = ‖UI,~ ‖2

=

 1

√
2
=+1
(−1)G ·~ (1 + (−1)B ·~)

2
=

 1

√
2
=+1
(1 + (−1)B ·~)

2
=

{
1

2
=−1 , if B · ~ = 0 (mod 2)
0, if B · ~ = 1 (mod 2)

.

(3.7)

Repeating these steps O(=) times until = − 1 distinct linear independent ~1, . . . , ~=−1
with ~ · B = 0 are obtained. They span the =− 1 dimensional space perpendicular to B . Thus,

using Gaussian elimination the period B can be uniquely determined. To check for the

correct value of B , one compares 5 (0) ?

= 5 (B) and if the equality holds, the correct value of

B was found.

Bonnetain provided tight bounds for all variants of Simon’s algorithm in [Bon20].

These results and heuristics will be used throughout this thesis and referred to in the

corresponding sections. The proofs and analyses can all be found in [Bon20].

Heuristic 1. (Heuristic 2 in [Bon20]) Simon’s algorithm succeeds in = + 3 queries on average
and with = + U + 1 queries, it succeeds with probability 1 − 2−U .

3.2 Grover-meets-Simon algorithm

Besides the main application of Simon’s algorithm to determine the period of a periodic

function, there are additional practices. As described above, Simon’s algorithm subroutine

returns a random vector ~ if the function 5 is not periodic. Therefore the linear system of

equations will likely have full rank and no solution besides the trivial one. However, if the

function is periodic, the linear system of equations has rank = − 1. This concept can then

be used in quantum distinguishers to check whether a function is periodic or not.

Another application is to implement the basic version of Simon’s algorithm reversible

by not measuring both registers. Hence, they will both stay in superposition. The value

of the �rst register |~〉 is still a superposition of values orthogonal to B . Having a circuit

to compute linear algebra, one is able to create a reversible implementation of Simon’s

algorithm. Applying it several times in parallel and using the quantum linear algebra

circuit, one is able to determine the correct value of B . The quantum circuit for the linear

algebra is presented by Bonnetain and Jaques in [BJ20, Section 5].
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3 Simon’s algorithms

The above stated applications combined lead to a new version of Simon’s algorithm,

named Grover-meets-Simon which was presented by Leander and May presented in [LM17]

for quantumly attacking the FX-construction. It addresses the following problem

Finding periodic functions: Given a Boolean function 5 : {0, 1}: × {0, 1}= → {0, 1}=
with the promise that there exists a unique ^0 ∈ {0, 1}: such that 5 (^0, ·) is periodic,

�nd ^0 and the period B of 5 (^0, ·).

By using a Grover search over {0, 1}: , one can identify the correct guess by testing if

5 (^0, ·) is periodic by using the reversible version of Simon’s algorithm. Grover is used

as an outer loop. It works by a process called amplitude ampli�cation. Each iteration the

amplitude of success is increased by a constant, the probabilities are the square of their

amplitudes. Thus, one has to repeat the process approximately O(2:/2) times. Simon’s

algorithm functions as an inner loop and needs about O(=) queries and O(=3) running

time for performing the linear algebra.

For the amplifying part of the Grover-meets-Simon algorithm on a quantum algorithm

A operating on @ qubits, a function B : {0, 1}@ → {0, 1} that classi�es the outcome

of A as good or bad is needed, see [Bra+02, Theorem 2]. De�ne the unitary operator

& = −A(0A−1(B , where the operator (B does a phase shift of the good state

|G〉 ↦→
{
− |G〉 , if B(G) = 1

|G〉 , if B(G) = 0

, (3.8)

and (0 changes the sign of the amplitude only for the state |0〉. After the computation of

&^A |0〉, where ^ ≈ 2
:/2

, the measurement yields good with probability of 1 − 2−: .

Let ; denote the amount of computations run in parallel. Leander and May point out

that choosing ; > 3=, according to Kaplan et al. in [Kap+16], is su�ciently large enough.

Let ℎ : {0, 1}: × ({0, 1}=); be de�ned as the function evaluating 5 (·, ·) in parallel on ;

arguments in the second component. Thus,

(D, G1, . . . , G; ) ↦→ 5 (D, G1) ‖ . . . ‖ 5 (D, G; ).

Let the unitary operator*ℎ be the embedding of ℎ on : + 2=; qubits and map

|D, G1, . . . , G; , 0, . . . , 0)〉 ↦→ |D, G1, . . . , G; , ℎ(D, G1, . . . , G; )〉 .

The quantum algorithm A on input |0〉 is then de�ned as follows

1. Start with the initial : + 2=;-qubit state |0〉.

2. Apply Hadamard transformation �⊗:+=; on the �rst : + =; qubits. Resulting in the

following state

1

√
2
:+=;

∑
D∈{0,1}:

G1,...,G;∈{0,1}=

|D〉 |G1〉 . . . |G;〉 |0〉 .
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3.3 The o�ine Simon’s algorithm

3. Apply *ℎ to obtain

1

√
2
:+=;

∑
D∈{0,1}:

G1,...,G;∈{0,1}=

|D〉 |G1〉 . . . |G;〉 |ℎ(D, G1, . . . , G; )〉 .

4. Applying Hadamard transformation again to |G1〉 , . . . , |G;〉 results in

|i〉 = 1

√
2
=;

1

√
2
:+=;

∑
D∈{0,1}:

G1,...,G;∈{0,1}=
~1,...,~;∈{0,1}=

|D〉 (−1)~1·G1 |~1〉 . . . (−1)~; ·G; |~;〉 |ℎ(D, G1, . . . , G; )〉 .

Assuming that the last =; qubits of the state |i〉 would be measured. These qubits would

collapse to

|ℎ(D, G1, . . . , G; )〉 = |5 (D, G1) ‖ . . . ‖ 5 (D, G; )〉 ,

for some �xed values ~, G1, . . . , G; . Assume there is a ^0, like in the previous section, for

that 5 (^0, ·) is periodic in B . Furthermore assume ~ = ^0, then every arbitrary =-qubit

state |I8〉 = (−1)~8 ·G8 |~8〉 would collapse into the superposition that is consistent with the

measured 5 (^0, G8). Then G8 and G8 ⊕ B are the only preimages of 5 (^0, G8). Each |I8〉 would

collapse into the superposition

(−1)~8 ·G8 |~8〉 = (−1)~8 ·G8 (1 + (−1)~8 ·B) |~8〉 . (3.9)

Like in the basic version of Simon, the amplitude is non-zero i� ~8 · B = 0 (mod 2).
Measuring yields some ~8 orthogonal to B . The algorithm is successful if the ; vectors

( = {~1, . . . , ~; } span the : − 1-dimensional space orthogonal to B .

Heuristic 2. (Heuristic 4 in [Bon20]) Grover-meet-Simon succeeds with probability 1−2−U in
= + U/2 + 2d:

=
e queries per iteration. With a perfect external test, it succeeds with probability

1 − 2−U in = + U/2 queries plus one query to the external test per iteration.

Remark 6 in [Bon20] (Grover-meets-Simon for periodic permutation) There is a perfect

test for periodic permutations which costs only 2 queries. It amounts in testing whether

or not the function ful�ls 5 (0) = 5 (B′), with B′ being a guess for the correct period B . This

will only be the case if the function is indeed periodic.

3.3 The o�line Simon’s algorithm

Until now, all applications of Simon’s algorithm are in the Q2 model. Hence, the secret

function has to be quantum accessible. The only known variant of Simon’s algorithm

not requiring quantum access is the o�ine Simon’s algorithm presented by Bonnetain

in [Bon+19]. This problem can be seen as a modi�cation of the Grover-meets-Simon

algorithm utilizes a speci�c structure of the periodic function. The o�ine Simon algorithm

addresses the following problem
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3 Simon’s algorithms

Constructing and �nding periodic functions: Given a boolean function6 : {0, 1}= →
{0, 1}; , the family of functions 5 : {0, 1}: × {0, 1}= → {0, 1}; . Assume there is a

unique ^0 ∈ {0, 1}: such that 5 (^0, ·) is periodic in B . Let % be a quantum circuit such

that

% |^〉
∑

G∈{0,1}=
|G〉 |6(G)〉 = |^〉

∑
G∈{0,1}=

|G〉 |5 (^, G)〉 .

Given oracle access to 6 and % , �nd ^0 and the period B of 5 (^0, ·).

Contrary to the Grover-meets-Simon algorithm, an additional assumption is needed, that

the family of functions 5 (·, ·) can be computed e�ciently given the �xed function 6. To

solve the given problem, one has to take a slightly di�erent approach. Instead of querying

an oracle, the algorithm is given a database of 6, a set of superpositions

∑
G
|G〉 |6(G)〉, as

input. It then computes the periodic function from this set and is thus able to reconstruct the

period B . Let

���k<6 〉
=

⊗<

9=1

∑
G
|G〉 |6(G)〉 denote the quantum state that contains< copies

of the superpositions of the input and output of 6. Similar to the Grover-meets-Simon

algorithm, the state

���k<6 〉
is used to check if the function 5 is periodic, then everything is

uncomputed again to get a state close to

���k<6 〉
again. This state can then be reused for the

next iteration. This is described in the following algorithm 1 as well as in [Bon+19] and

[Bon20, Algorithm 8].

Algorithm 1: The o�ine Simon’s algorithm

Input: =, Oracle $6 and a quantum Circuit % that ful�lls the requirements of the

previous stated problem.

Output: ^0
1 Query the oracle $6 < times and construct

���k<6 〉
2 amplify over ^ with the following test:
3 Compute< copies of

∑
G
|G〉 |5 (^, G)〉 from

���k<6 〉
and % .

4 Apply a Hadamard gate on the �rst register of each copy.

5 Compute in superposition the rank A of the values in each �rst register.

6 1 ← A ≠ =

7 Uncompute everything but the value of 1, to recover

���k<6 〉
8 return 1

The approach of using only classical queries is used by manually constructing the quantum

superposition over 6 from all of the 2
=

possible classical inputs. Since this can only be done

in O(2=) time, queries have to be reused to have a time-e�cient algorithm. The algorithm

to generate

���k<6 〉
from the classical queries is de�ned in the following Algorithm 2 as well

as in [Bon+19] and [Bon20, Algorithm 9]
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3.4 Simon’s algorithm for truncated functions

Algorithm 2: Constructing

���k<6 〉
from classical queries

Input:<, Classical oracle $6

Output:
���k<6 〉

1 |q〉 ←
⊗< ∑

G |G〉 |0〉
2 for 0 ≤ 8 < 2

= do
3 Query 6(8)
4 Apply to each register in |q〉 the operator

|G〉 |~〉 ↦→
{
|G〉 |~ ⊕ �: (8)〉 , if G = 8

|G〉 |~〉 , otherwise.

5 return |q〉

Heuristic 3. (Heuristic 5 in [Bon20]) The o�ine Simon’s algorithm succeeds with probability
1 − 2−U in = + : + U + 4 queries per iteration

3.4 Simon’s algorithm for truncated functions

The goal of this section is analyzing how Simon’s algorithm deals with truncated 2-to-1

functions and thus additional collisions. It will be shown that these collisions are not

as constraining as previously anticipated and that Simon’s algorithm is still applicable.

Therefore, attacks relying on Grover’s algorithm to �nd the correct truncated value can be

exponentially speed-up using the result of this section. An example for this can be seen in

section 5.3. This result of this thesis enables a number of new attacks on structures which

truncate their output.

This extends the results by Kaplan et al. [Kap+16] considering collisions in Simon’s algo-

rithm. In the concurrent work by Bonnetain in [Bon20], they address this issue as well.

They draw similar conclusions and apply them to reversible implementations of Simon’s

algorithm.

A function P : {0, 1}= → {0, 1}= is called periodic if there is an 0 ≠ B ∈ {0, 1}= such

that for all G ∈ {0, 1}= it holds that P(G) = P(G ⊕ B). If P is a pseudorandom function, like

de�ned in section 2.1, it is a one-to-one function and hence bijective. Therefore P can not be

periodic since this would imply that it is not injective. Let B ∈ {0, 1}= be �xed but arbitrary

and P a pseudorandom function. The function ℎ : {0, 1}= → {0, 1}=, G ↦→ P(G) ⊕ P(G ⊕ B)
is periodic in precisely B . This can be easily veri�ed since it holds that for all G ∈ {0, 1}=

ℎ(G) = P(G) ⊕ P(G ⊕ B) = P(G ⊕ B ⊕ B) ⊕ P(G ⊕ B) = ℎ(G ⊕ B).

There can not be another element 2′ ∉ {0, 2} that ℎ is periodic in since that would imply

that P is periodic in 2′ and therefore not a pseudorandom function.
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3 Simon’s algorithms

From now on P de�nes a pseudorandom function. With the just shown observation, the

function 6

6 : {0, 1}= → {0, 1}=

G ↦→ <̃ ⊕ P(G ⊕ <̃) ⊕ P(G),

is periodic in B = <̃.

Simon’s algorithm subroutine is used to �nd a vector orthogonal to the period B . It is

illustrated in Figure 3.2. After applying*6 and measuring the second register the resulting

vector 6(G) will be called I.

|0=〉 �

*6

� ~

|0=〉 I

Figure 3.2: Simon’s algorithm subroutine

When measuring the second register, the �rst register is in the state
1√
2

( |G〉 + |G ⊕ B〉).
Applying the second Hadamard transformation to the �rst register transforms it into

1

2
=

∑
~∈{0,1}=

(−1)G ·~ (1 + (−1)B ·~) |~〉 . (3.10)

The amplitude U
6
~,I of ~ is non-zero i� B · ~ = 0 and hence ~ is orthogonal to B .

U
6
I,~ =

{
± 1

2
=−1 , B · ~ = 0 (mod 2),

0, B · ~ = 1 (mod 2).
(3.11)

Therefore the probability to observe ~ in the �rst register after measuring it is

P6 [~ is observed] =
∑

I∈{0,1}=
‖U6~,I ‖2

= 2
=−1

 (1 + (−1)B ·~)
2
=

2
=

{
1

2
=−1 , if B · ~ = 0 (mod 2),
0, if B · ~ ≠ 0 (mod 2).

(3.12)

Thus, ~8 that are not orthogonal to B are never observed. Running Simon’s algorithm

subroutine O(=) times until = − 1 linear independent ~8 are obtained allows determining B .
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2-to-1 functions that are periodic in B and truncate the output to C < = bits will be

considered next. The following functions $ and 5 will be de�ned as

$ : {0, 1}= → {0, 1}C

G ↦→ b<̃ ⊕ P(G ⊕ <̃)cC

5 : {0, 1}= → {0, 1}C

G ↦→ $ (G) ⊕ bP(G)cC = b<̃ ⊕ P(G ⊕ <̃)cC ⊕ bP(G)cC .

The function 5 which derives from 6 is periodic in <̃ as well. While each 6(G) has exactly

two pre-images, every 5 (G) has by far more than only the two pre-images. This holds,

since the domain of 5 is greater than its co-domain.

One can conclude that the amount of additional collision 5 (G) = 5 (G ⊕ Z ), with Z ∈
{0, 1}=\{0, B} is correlated to the truncated value C . Each truncated bit introduces two

additional collisions, the total number is therefore 2
=−C

. The set of additional collisions

besides {0, B} will be called jG and is de�ned as

jG := {Z ∈ {0, 1}=\{0, B}|5 (G) = 5 (G ⊕ Z )}.

Since 5 is periodic in B = <̃, for every collision Z ∈ jG there must be another Z ∗ = Z ⊕B ∈ jG .

This is important for the upcoming analysis of applying Simon’s algorithm to a truncated

function.

Another observation is that the set jG can be split into two subsets jG
0
, jGB ⊂ jG as follows

jG
0
:= {Z1, . . . , Z2=−C−1 ∈ jG |Z8 ⊕ Z 9 ≠ B,∀ 8 ≠ 9},

jGB := jG\jG
0
.

Using Equation 3.10 and Equation 3.12 one can conclude that after measuring the second

register I, the �rst register collapses to

©«( |G〉 + |G ⊕ B〉) +
∑
Z ∈jG
|G ⊕ Z 〉ª®¬ .
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3 Simon’s algorithms

Hence, all possible pre-images of I. After applying the second Hadamard transformation,

the �rst register is in the state

1

2
=

∑
~∈{0,1}=

((−1)G ·~ + (−1) (G⊕B)·~ +
∑
Z ∈jG
(−1) (G⊕Z )·~) |~〉

=
1

2
=

∑
~∈{0,1}=

((−1)G ·~ + (−1) (G⊕B)·~ +
∑
Z ∈jG

0

(−1) (G⊕Z )·~ + (−1) (G⊕Z⊕B)·~) |~〉

=
1

2
=

∑
~∈{0,1}=

((−1)G ·~ + (−1) (G⊕B)·~ +
∑
Z ∈jG

0

(−1) (G⊕Z )·~ + (−1) (G⊕Z⊕B)·~) |~〉

=
1

2
=

∑
~∈{0,1}=

((−1)G ·~ + (−1) (G⊕B)·~ + ((−1)G ·~ + (−1) (G⊕B)·~)
∑
Z ∈jG

0

(−1)Z ·~) |~〉

=
1

2
=

∑
~∈{0,1}=

((−1)G ·~ + (−1) (G⊕B)·~) (1 +
∑
Z ∈jG

0

(−1)Z ·~) |~〉

=
1

2
=

∑
~∈{0,1}=

(−1)G ·~ (1 + (−1)B ·~) (1 +
∑
Z ∈jG

0

(−1)Z ·~) |~〉 .

(3.13)

As seen in Equation 3.13, the amplitude U
5
I,~ is still 0 if ~ is not orthogonal to B . Thus,

U
5
I,~ =


2

2
= (−1)G ·~ (1 +

∑
Z ∈jG

0

(−1)Z ·~), if B · ~ = 0 (mod 2),

0, if B · ~ = 1 (mod 2).
(3.14)

The probability to observe such an ~ is

P5 [~ is observed] =
∑

I∈{0,1}=
‖U 5~,I ‖2

=
1

2
=+1

(−1)G ·~ (1 + (−1)B ·~) (1 + ∑
Z ∈jG

0

(−1)Z ·~)


2

=
1

2
=+1

(1 + (−1)B ·~) (1 + ∑
Z ∈jG

0

(−1)Z ·~)


2

=


1

2
=−1 (1 +

∑
Z ∈jG

0

(−1)Z ·~)2, if B · ~ = 0 (mod 2),

0, if B · ~ = 1 (mod 2).

(3.15)

The last transformation of Equation 3.15 shows that the probability depends on whether

Z is orthogonal to ~. However, this also shows these collisions are not arbitrary. Instead

of looking at each Z individually, the basis of jG
0

has to be considered. This leads to the

following Lemma presented by Bonnetain in [Bon20] which was adapted from [Kap+16].
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3.4 Simon’s algorithm for truncated functions

Lemma 3. (Lemma 1 in [Bon20]) LetH be a subgroup of {0, 1}= . Let ~ ∈ {0, 1}= . Then∑
ℎ∈H
(−1)ℎ·~ =

{
|H |, if ~ ∈ H⊥,
0, otherwise.

Proof. Let ℎ1, . . . , ℎ2 be a basis of H . Therefore, each element ℎ ∈ H can be written as∑2
8=1 E8ℎ8 . Thus,∑

ℎ∈H
(−1)ℎ·~ =

1∑
E1=0

(−1)E1ℎ1·~ · · ·
1∑

E2=0

(−1)E2ℎ2 ·~ =
2∏
8=1

(1 + (−1)ℎ8 ·~).

This product is only nonzero i� each ℎ8 · ~ = 0, hence, ~ ∈ H⊥. In this case it is equal to

2
2 = |H |. �

Using this Lemma, the Equation 3.15 can then be written as

P5 [~ is observed] =


1

2
=−1 (1 +

∑
Z ∈jG

0

(−1)Z ·~)2, if B · ~ = 0 (mod 2),

0, if B · ~ = 1 (mod 2)

=

{
1

2
=−1 (1 + |jG0 |)2, if B · ~ = 0 (mod 2),
0, if B · ~ = 1 (mod 2).

(3.16)

The collisions are therefore equally distributed and occur with equal probability. How-

ever, the collisions are still interfering with Simon’s algorithm. After 2= calls of Simon’s

algorithm subroutine and having vectors~1, . . . , ~2= all orthogonal to B , there is the possibil-

ity that B can not be recovered. This is the case if the (=− 1)-dimensional space orthogonal

to B can not be spanned. In other words if there is a collision Z ∈ {0, 1}= that is orthogonal

to all obtained ~1, . . . , ~2= . The results by Kaplan et al. in [Kap+16, Section 2.2] can be

applied to analyze the probability of this to happen

P[dim(Span(~1, . . . , ~2=)) ≤ = − 2]
≤ P[∃ Z ∈ {0, 1}=\{0, B} : ~1 · Z = . . . = ~2= · Z = 0]
≤

∑
Z ∈{0,1}=\{0,B}

(P[~1 · Z = 0])2=

≤ max

Z∈{0,1}=\{0,B}
(2P[~1 · Z = 0]2)= .

(3.17)

The probability is hence

P~ [~ · Z = 0] ≤ 1 + ?0
2

,

where ?0 ≥ max

Z∈{0,1}=\{0,B}
PG [5 (G) = 5 (G ⊕ Z)].

In the speci�c case of the truncated function 5

?0 =
maxG |jG |

2
=

≈ 1

2
C
.
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3 Simon’s algorithms

Thus, choosing 2 ≥ 3

1−?0 ensures that the error will decrease exponentially with =. Running

Simon’s algorithm O(2=) times ensures retrieving the correct B for truncated functions.

Bonnetain used the results by Kaplan et al. to show the following heuristic.

Heuristic 4. (Heuristic 6 in [Bon20]) A reversible implementation of Simon’s algorithm with
@ queries only needs a periodic function with d3.5 + ;>62(@)e bits of output.

3.5 Quantum attacks using Simon’s algorithm

The goal of superposition attacks using Simon’s algorithm, or a variant of it, is to either

target a periodic function or to utilize properties of the non-periodic function to create

a periodic one and and thus ful�l Simon’s premise which allows the extraction of secret

information. First, the application of the basic version of Simon’s algorithm is considered.

Here, the Even-Mansour construction is approached.

3.5.1 The Even-Mansour-construction

One of the �rst encryption schemes shown to be broken in the Q2 model is the Even-

Mansour construction. Kuwakado and Morii presented in [KM12] an attack that only needs

O(=) quantum queries and operates O(=3) time, where the overhead. They also presented

a key recovery attack in the Q1 model. This attack is done using O(2=/3) classical queries

and qubits, and O(2=/3) o�ine quantum computations. This was optimized by Bonnetain

in [Bon+19] to only use polynomially many qubits, while still requiring classical O(2=/3)
queries. This attack will be presented in subsection 3.5.4

In the classical world the Even-Mansour construction is proven to be secure [EM97].

The best known classical attack uses up to O(2=/2) online queries and o�ine computations

[Dae91].

Even-Mansour: The Even-Mansour construction [EM97] is a minimal block cipher. It

uses two di�erent secret keys :0, :1 and a publicly known permutation % . The two

secret keys are used as whitening keys. After the �rst whitening with :0, the publicly

known permutation is applied and the permuted result is then XORed with the :1. It

is proven to be secure in the classical world, where % is chosen randomly amongst

all possible permutations.

This construction is proven to be unsecure in the quantum world where an adversary

has access to an quantum encryption oracle. Kuwakado and Morii showed in [KM12]

that an adversary can query the encryption oracle to receive �=2�" (G) = % (G⊕:0)⊕:1
and since the permutation % is publicly known, the adversary is able to build following

function

5 (G) = �=2�" (G) ⊕ % (G) = % (G ⊕ :0) ⊕ :1 ⊕ % (G),
which ful�lls 5 (G) = 5 (G ⊕ :0) and thus is periodic in :0. By using the basic version

of Simon’s algorithm, the adversary is able to extract the secret :0 in linear time and

hence getting :1 by querying a single classical query to an encryption oracle.
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3.5 Quantum attacks using Simon’s algorithm

< % 2

:0 :1

Figure 3.3: The Even-Mansour construction

3.5.2 The three-round-Feistel-construction

Another application of Simon’s algorithm was discovered by Kuwakadi and Mori as well.

This time the three-round-Feistel construction was broken in the Q2 model. They pre-

sented their work in [KM10]. Inspired by their attack, Santoli and Scha�ner presented a

new and optimized version of this attack in [SS16]. An adversary is able to build a quan-

tum distinguisher D that is able to e�ciently di�erentiate between a three-round-Feistel

network and a random permutation.

Let �8 with 8 = 1, . . . , 3 denote the internal round functions of the three-round-Feistel

scheme with input (!0, '0) and output (!3, '3) = � (!0, '0). An illustration of the three-

round-Feistel scheme is presented in Figure 3.4 below.

�1

�2

�3

!0 '0

'1

'2

!1

!2

!3 '3

Figure 3.4: The three-round-Feistel scheme.

The quantum distinguisher D presented by Santoli and Scha�ner is able to distinguish

between the three-round-Feistel scheme and a random permutation using the �rst = bits of

the 2= permutation. Looking at Figure 3.4, one can see that these �rst = bit can be de�ned

as !3 = '0 ⊕ �2(!0 ⊕ �1('0)), if the oracle$ implemented the Feistel scheme. Otherwise !3
will be a random =-bit string. The �rst =-bit of a 2=-bit string ( will henceforth be de�ned

as ;4 5 C (().
Let U0 ≠ U1 ∈ {0, 1}= be two arbitrary constants then the function 5 can de�ned as follows

5 : {0, 1} × {0, 1}= → {0, 1}=

(1, G) ↦→ ;4 5 C ($ (G, U1)) ⊕ U1 .
(3.18)
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3 Simon’s algorithms

If the oracle $ implemented the three-round-Feistel scheme, 5 can be written as 5 (1, G) =
�2(G ⊕ �1(U1)) and 5 satis�es

5 (1, G) = 5 (1 ⊕ 1, G ⊕ '1(U0) ⊕ '1(U1)) .

Furthermore,

5 (1′, G′) = 5 (1, G) ⇔ G′ ⊕ �1(U1 ′ = G ⊕ �1(U1)

⇔
{
G′ ⊕ G = 0, if 1′ = 1,

G′ ⊕ G = �1(U0) ⊕ �1(U1), if 1′ ≠ 1.

(3.19)

The function is periodic in B = 1 ‖ �1(U0) ⊕ �1(U1) and ful�lls Simon’s promise. After at

most 2= iterations of Simon’s algorithm the distinguisher D is able to recover the period B

if the oracle implemented the Feistel structure, otherwise the distinguisher can assume

that the oracle implemented a random permutation.

3.5.3 The FX-construction

The FX-construction, presented by Killian and Rogaway in [KR96], is similar to the Even-

Mansour construction. Two secret keys :0 and :1 are used as pre- and post-whitening

keys. Instead of using a random permutation, a secure block cipher � using a secret key

:2 is used instead. This construction is considered secure in the classical world if the block

cipher itself is considered secure.

The previously presented quantum attack on the Even-Mansour construction is not ap-

plicable here, since Simon’s Algorithm can only be used if �=2�- (G) ⊕ �:2 (G) is periodic.

This is only the case if the adversary is able to guess :2 correctly.

< � 2

:0 :1:2

Figure 3.5: The FX construction.

However, Leander and May have shown in [LM17] that they are able to break the

FX-construction in a quantum setting. Like previously stated, the function 5 (:, G) =
�=2�- (G) ⊕ �: (G) = �:2 (G ⊕ :0) ⊕ :1 ⊕ �: (G) is periodic in :1 i� : = :0. Using the Grover-

meets-Simon algorithm (see section 3.2) one is able to �nd the correct : . Having access to

an encryption oracle $ implementing �=2�- an adversary is able to recover :0, :1, :2 by

using< + 4=(= +
√
=) qubits and making O(< + =) · 2</2 queries to a quantum oracle (see

[LM17, Section 3, Theorem 2]), where = is the length of :0, :1 and< the length of :2. This

is comparable with to the attack without using whitening keys. Therefore they came to

the conclusion that using whitening keys does not help against quantum adversaries.
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3.5 Quantum attacks using Simon’s algorithm

3.5.4 Breaking Even-Mansour using the o�line Simon’s algorithm

The attack using the basic version of Simon’s algorithm in the Q2 model was presented

earlier. Not having access to a quantum oracle and thus the secret keys :0 and :1 in

superposition makes the attack more di�cult. The base idea behind this attack is dividing

the =−bit secret key :0 into two subkeys :
(1)
0

of D-bits and :
(2)
0

of = − D-bits. Simon’s

algorithm is then applied to recover :
(1)
0

while guessing :
(2)
0

using Grover’s algorithm.

For an integer D such that 0 ≤ D ≤ = de�ne the function

� : {0, 1}=−D × {0, 1}D → {0, 1}=,
8, G ↦→ % (G ‖ 8),

6 : {0, 1}D → {0, 1}=

G ↦→ tag
1
(G ‖ 0=−D).

(3.20)

The subkey :
(2)
0

can then be recovered by applying the o�ine Simon’s algorithm pre-

sented in section 3.3 together with � and 6. Since :
(1)
0

is the period of � (: (2)
0
, G) ⊕ 6(G) it

can be therefore recovered with the just found :
(2)
0

. The second secret key :1 can then be

computed with a classical query to the oracle knowing :0.
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4 Quantum error correction

When considering building a quantum computer, quantum error correction is an essential

part. Quantum states are fragile and sensitive to noise. Protecting quantum information

against the e�ect of noise is therefore very important. Contrary to the classical counterpart

the bit, there is more than just one type of error than can occur. Indeed, there are an

in�nite number of errors that can occur. Developing a quantum error correcting code

(QECC) and therefore a fault tolerant quantum computer seems therefore to be impossible.

However, this chapter will show that it is nonetheless possible to create such codes that

can not only detect but also correct any arbitrary quantum error there is.

A QECC is de�ned as a subspace of the Hilbert space designed such that any of a set of

possible errors can be corrected by an speci�c quantum operation [Got06]. An example for

this will be given in form of Shor’s 9-qubit code to show that QECC exist and are possible.

Afterwards the formalism of stabilizer are de�ned and used to introduce the family of

topological stabilizer codes called the surface codes. The fault-tolerant quantum computer

used for the cost estimations in chapter 6 is assumed to be be based on surface codes.

The results of this chapter are based on the work of Gottesman in [Got06], Nielsen and

Chuang in [NC01], Fowler et al in [Fow+12], Terhal in [Ter15], Devitt et al. in[DMN13],

and Todd in [Bru20].

4.1 Introduction

The simplest way to protect classical bits against errors is to use redundancy. A bit,

represented by 0 and 1, is encoded as multiple bits by copying or repeating it.

0 ↦→ 000 and 1 ↦→ 111.

A single error can then be detected and corrected by taking the majority of the three bits.

This type of decoding is called majority voting or repetition code. The probability that two

or more bits were �ipped and thus an error would not be detected or corrected is 3?2 − 2?3,
assuming a single bit-�ip occurs with probability ? . There are of course more e�cient

procedures, but the key idea is always to encode messages by adding enough redundancy.

[NC01]

For the question whether this technique was applicable for quantum error correction,

the answer is no. A quantum state can not be copied due to the no-cloning theorem, see

Theorem 1.

To protect quantum states and therefore develop quantum error-correcting codes, some

barriers have to be overcome �rst. In particular, there are four di�culties to deal with.
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4 Quantum error correction

1. No-cloning theorem forbids repetition.

2. Measurement of error destroys quantum information: In classical error correction the

output is observed to determine whether an error occurred and what decoding pro-

cedure to adapt. In quantum mechanics measuring a state destroys its superposition

and makes recovery impossible.

3. Must correct multiple types of errors: Unlike classical bits, qubits can also have phase

errors in addition to bit-�ip errors.

4. Errors are continuous: The rotation, or the phase factor, of an phase error can have

arbitrary angle \ . Therefore quantum errors are continuous and an in�nite amount

of di�erent errors exist.

Even though the classical repetition code approach can not be recreated for qubits, its

idea can still be applied in some way.

3-qubit error correction code Due to the no-cloning theorem the state |q〉 = U0 |0〉 +U1 |1〉
can not be copied to |q〉⊗3. Instead, the base states |0〉 and |1〉 can be encoded in a

convenient way to

|0〉 → |0!〉 = |000〉 ,
|1〉 → |1!〉 = |111〉 ,

(4.1)

where |0!〉 and |1!〉 de�ne the logical |0〉 and |1〉 state and not the physical one. The

quantum state|q〉 is then encoded as the 3-qubit codeword |q!〉 = U0 |0!〉 + U1 |1!〉. The

creation of this state can be seen in Figure 4.1.

|q〉
|0〉 |q!〉

|0〉

|k 〉 �

|0〉 � |k!〉

|0〉 �

Figure 4.1: Creating the states |q!〉 = U0 |000〉 + |111〉 and |k!〉 = U0 |+ + +〉 + U1 |− − −〉

This code is able to correct a single bit-�ip error that occurred on one or fewer qubits. A

bit �ip is equivalent to applying an - operator to a qubit, since - |0〉 = |1〉 and - |1〉 = |0〉.
Therefore, applying an - operator to the �ipped qubit corrects it.

To get the correct position of the �ipped qubit, two additional ancilla qubits are introduced.

Instead of measuring |q!〉 and thus destroying its superposition, it is possible to extract

information about the error without revealing information about |q!〉. The �rst ancilla

qubit checks the parity of the �rst two qubits of |q〉 and the second ancilla checks the

last two qubits. This is illustrated in Figure 4.2. The measurement on the error syndrome

leaves the state unchanged and the error syndrome only contains information about what

error has occurred and at what position. The classical error syndrome result then tells

what action has to be taken to recover the initial state.
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|q〉

E
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C
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t

|0〉 |q!〉

|0〉

|0〉

|0〉

Figure 4.2: Encoding and correcting single bit-�ip error using two ancilla qubits. [DMN13]

Error location Ancilla measurement Correction

no error 00 nothing

Qubit one 11 Apply fG on qubit one

Qubit two 10 Apply fG on qubit two

Qubit three 01 Apply fG on qubit three

Table 4.1: Ancilla measuring result for single bit-�ip error.

The error correction works if at most a single bit-�ip occurred on the three qubits. With

this 3-qubit code it is possible to correct a quantum bit-�ip error without measuring and

without copying a state.

Next, phase-�ip errors will be considered. A phase-�ip occurs when a phase factor of −1
is applied between the two base states. This can be expressed with the Pauli / operator.

|q〉 = U0 |0〉 + U1 |1〉 → / |q〉 = U0 |0〉 − U1 |1〉 . (4.2)

The Hadamard transformation converts between the |0〉 , |1〉 basis and the |+〉 , |−〉 basis

where the - operator acts like a phase-�ip and the / operator like a bit-�ip. Therefore,

the just presented 3-qubit code to correct a bit-�ip can be used in the |+〉 , |−〉 basis

to correct a phase-�ip. The quantum circuit used for encoding the codeword |k!〉 =

U0 |+ + +〉 + U1 |− − −〉 can be seen on the right of Figure 4.1. Detecting and correcting

phase-�ips errors using this code functions exactly like the bit-�ip code with the basis

change noted above.

Both the bit-�ip code and the phase-�ip code are able to correct a �nite set of errors

without copying or measuring the state. But they are only able to correct their own set of

errors and not the other’s and therefore do not represent a full quantum error correcting

code. However, combining both of these codes allows to correct phase- and bit-�ips errors

in one code.
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4 Quantum error correction

4.2 Shor’s 9-qubit code

In 1995 Peter Shor presented in [Sho95] a quantum error correcting code utilizing nine

physical qubits to encode a single logical qubit, capable of correcting any arbitrary error.

The Shor code is a combination of the 3-qubit bit-�ip code and the 3-qubit phase-�ip code.

The qubit is �rst encoded using the phase-�ip code and then using the bit-�ip code, this

process is shown in Figure 4.3. Hence, encoding the codeword |i!〉 = U0 |0!〉 + U1 |1!〉 is

|i〉 �

|0〉

|0〉

|0〉 �

|0〉 |i!〉

|0〉

|0〉 �

|0〉

|0〉

Figure 4.3: Quantum circuit used for encoding the Shor 9-qubit code.

de�ned by the code base states

|0〉 → |0!〉 =
1

√
8

( |000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉),

|1〉 → |1!〉 =
1

√
8

( |000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉).
(4.3)

Correcting a bit-�ip error is no problem since each of the 3 qubits encoded to ( |000〉 +
|111〉)/

√
2 blocks is a 3-qubit bit-�ip code. The error can then be corrected using the

quantum circuit shown in Figure 4.1. Phase-�ip errors will change the sign in one block

( |000〉 ± |111〉)/
√
2→ (|000〉 ∓ |111〉)/

√
2. Similar to the 3-qubit phase-�ip code the error

syndrome measurement begins by comparing the sign of the �rst and the second blocks.

If a phase �ip occurred the signs will be di�erent and by comparing the second and third

blocks the error can be detected and corrected.

Therefore, Shor’s code can detect and correct any bit-�ip (- ) and phase-�ip (/ ) errors.

Suppose a phase-�ip and bit-�ip error -/ occurred on the same qubit. Applying Shor’s

code to �rst detect and correct the bit-�ip and afterwards correct the phase-�ip will correct

the -/ errors as well. Since it holds that . = 8-/ the code corrects . errors and therefore

corrects any Pauli error acting on a single qubit. As seen in Equation 2.2 any single-qubit
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operator � , represented by a complex 2 × 2 matrix, can be written as a linear combination

of the Pauli operators -,., / (and � )

� = n0� + n1- + n2-/ + n3/, (4.4)

with complex numbers n0, n1, n2 and n3. The quantum state � |i!〉 produces a superposition

of four orthogonal states: |i!〉 with no error, - |i!〉 the state with an single - error,

/ |i!〉 the state with a single / error and -/ |i!〉 the state with both an - and / error.

Measuring the error syndrome collapses the superposition into one of these states and

then the corresponding correction can be applied that will return the state to |i!〉. This

results in the following theorems [Got06].

Theorem 4. A quantum error correcting code (QECC) that corrects errors �� and �� will
also correct U�� + V�� using the same recovery operations.
Every QECC that corrects the single-qubit errors -,., / (and � ) corrects every single-qubit
error. Correcting all C−qubit errors -,., / (and � ) on C−qubits corrects all C−qubit errors.

Therefore, quantum error correction is possible.

4.3 Stabilizer

The previous section showed that errors can occur as random appearances of - and /

operations. One way that they can be detected is by constantly performing - and .

measurements [Fow+12]. This can be done with a combined -/ measurement but since

- and / anticommute, as seen in section 2.2, sequential measurements would destroy the

original state. No state has a eigenstate of both - and / .

This projective measurement problem can be solved by measuring more than one qubit

and therefore making non-destructive error quantum error detection possible. Consider

having two qubits 0 and 1 instead. The two qubit operators -0-1 and /0/1 commute even

tough they represent - and / measurements [Fow+12, Section II].

[-0-1, /0/1] = (-0-1) (/0/1) − (/0/1) (-0-1)
= -0/0-1/1 − /0-0/1-1
= (−/0-0) (−/1-1) − /0-0/1-1
= 0

(4.5)

This is due to the fact that operators on di�erent qubits always commute. Measurements of

the operators are therefore compatible and a two-qubit state |k 〉can actually be in the same

eigenstate of both -0-1 and /0/1 . These two-qubit states |k 〉 are the so called Bell-states

or EPR-pairs, see section 2.2. The corresponding eigenstates of -0-1 and /0/1 as well as

the Bell-states are displayed in Table 4.2 below.
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/0/1 -0-1 |k 〉
+1 +1

1√
2

( |00〉 + |11〉)
+1 -1

1√
2

( |00〉 − |11〉)
-1 +1

1√
2

( |01〉 + |10〉)
-1 -1

1√
2

( |01〉 − |10〉)

Table 4.2: The Eigenstates of /0/1 , -0-1 , and Bell-states |k 〉

The operators /0/1 and -0-1 are called stabilizers. Using the formalism introduced by

Gottesman in [Got98a] a state |q〉 is de�ned to be stabilized by the operator " if it is a +1
eigenstate of " : " |q〉 = |q〉. The group of stabilizers ( of a code is Abelian and therefore

commute with one another, a subgroup of the Pauli group %# and de�ne the codespace

) (() = {|q〉 B .C ." |q〉 = |q〉 ∀" ∈ (}. For example, the 3-qubit code has the stabilizers

( = {�1�2�3, /1/2�3, �1/2/3, /1�2/3}. The parity check on the �rst and second qubit can be

seen as the projective error measurement using the stabilizer /1/2�3 = /1/2 and on the

second and third qubits as /2/3. These two elements are the generators of the stabilizer

code, here the 3-qubit bit-�ip code. The phase-�ip code has the generators -1-2 and -2-3.

Shor’s code is generated by the stabilizers

( = {/1/2, /2/3, /4/5,

/5/6, /7/8, /8/9,

-1-2-3-4-5-6,

-4-5-6-7-8-9}

Measuring the quantum states with a set of commuting stabilizers forces the state into

a simultaneous eigenstate of all stabilizers. Using them to measure errors will therefore

not alter the state |k 〉. The quantum state is instead projected into a di�erent stabilizer

eigenstate if an error occurred [Fow+12, Section III].

4.4 Fault-tolerant quantum computations

Fault-tolerant quantum computation can be de�ned as a set of principles that enable error

correction during quantum computation without more errors occurring than are corrected.

Or in other words to provide reliable quantum computations when the basic components

are not reliable. Brun gives in [Bru20] a good overview of the principles of fault tolerance.

1. Never decode the quantum information. All operations must be done on the encoded

quantum data.

2. Quantum circuits acting on encoded data should be robust against errors. The circuits

should not cause a correctable error to spread until it is an uncorrectable error.

3. The encoded information should be corrected periodically, to catch and remove

errors before they accumulate.
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4.5 Surface codes

4. Error correction circuits also should not spread errors.

5. It is impossible ever to remove all errors; but any residual errors should be correctable,

so they can be caught and removed in the next error-correction step.

The principle to not cause error propagation is very important especially for multi-

qubit gates. Looking at the CNOT operation between two qubits, even if the gate itself is

perfect it can propagate errors forward. Suppose, the qubits are in the state |0〉 |0〉 an error

occurs and �ips the bit of the �rst qubit changing it to |1〉. The CNOT will then propagate

this error forward and thus the second qubit is also erroneous [Got06]. This process is

illustrated in Figure 4.4 below.

|1〉 |1〉
|0〉 |1〉

Figure 4.4: Error propagation of the CNOT gate

The solution for this problem is to use transversal gates. Therefore, an operation in

which only the 8th qubit in each block interacts with the 8th qubit of the other blocks of

the code or ancilla states. A qubit error in any block, assuming the 1st block, can thus only

propagate to the same qubit,so the �rst qubit, of the other blocks of the code [Got06].

Fault tolerant quantum computing begins therefore with a quantum error correcting

code and a universal set of gates. These gates should be fault-tolerant. As mentioned in

section 2.2 the Cli�ord+T gate set is an example for an universal set of gates. Therefore,

a common approach on fault tolerant quantum computing is to use a QECC that allows

e�cient encoded Cli�ord gates and additionally use the magic state distillation process to

provide fault-tolerant T-gates.

An important aspect of fault-tolerant quantum computation is the threshold theorem.

It states that if the error rate per gate is below a certain error threshold, then it is possible

to perform arbitrary long quantum computations [Got06; Fow+12; Jon+12]. The threshold

is dependant on the code being used and topological codes like the surface codes have one

of the highest fault-tolerant thresholds in the order of ′(10−2 − 10−3 [Wan+09].

The requirements for fault-tolerance are therefore having low gate error rates, being

able to perform quantum operations in parallel, errors are not strongly correlated across

the qubits, and providing new initialized qubits during quantum computation [Got06;

Bru20].

4.5 Surface codes

The surface code is a stabilizer code de�ned over a two-dimensional qubit lattice of physical

qubits. The distance 3 of the surface code is de�ned as the size of the lattice. As mentioned

in the previous section, the surface code has one of the highest fault-tolerant thresholds

41



4 Quantum error correction

but needs in the order of 10
4

up to 10
5

physical qubits to encode a single logical qubit,

depending on the threshold and surface code.

There are two di�erent types of physical qubits on the lattice. Data qubits in which

quantum information is stored and adjacent to each data qubits are four measuring qubits,

illustrated in Figure 4.5(a). The measurement qubits are used to stabilize and manipulate

the quantum state of the data qubits. They consist of two di�erent types of measurement

qubits, the measure-- qubits, which are colored yellow in Figure 4.5(a), and the measure-

/ qubits colored green. Each of the data qubits is adjacent to two measure-- and two

measure/ qubits and each measure qubit is adjacent to four data qubits.

Figure 4.5: (a) Two dimensional lattice implementation of the surface code. Data qubits

are open circles and measurement qubits �lled circles. The measure qubits

for the / -syndrome are colored green and for the - -syndrome colored yellow.

(b) measure−/ and (c) measure−- qubit measurement circuit. Figure 1 in

[Fow+12] by Fowler et al.

The measure-- forces its neighbour data qubits 0, 1, 2, and 3 into an eigenstate of the

operator product -0-1-2-3 and thus measure a - stabilizer. It can be used to detect phase-

�ips. The measure-/ qubits measure a / stabilizer /0/1/2/3 and detect bit-�ips. The

/0/1/2/3 and -0-1-2-3 stabilizer commute, which can be shown similar to the example

in Equation 4.5.

The measure-- and measure-/ qubits stabilize the surface code and their quantum

circuit can be seen in Figure 4.5(b)-(c). After the measurement by all measurement qubits

in the lattice, the state of all data qubits |q〉 is simultaneously in /0/1/2/3 |q〉 = /0123 |q〉
with eigenvalues /0123 = ±1 and -0-1-2-3 |q〉 = -0123 |q〉 with eigenvalues -0123 = ±1.

The measure-- or -/ qubits detect an error indicated by unwanted changes in the outcome
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4.5 Surface codes

of the measurement. It is possible to locate the exact physical qubit on which the error

occurred since every data qubit is adjacent to two measure-- and -/ qubits. A phase- or

bit-�ip will be picked up by a change in the sign of the eigenvalue of the corresponding

measure-- or -/ qubits and the error can be corrected. A . = -/ error can be detected

by the sign changes of both the measure-- and -/ qubits adjacent to the data qubit.

Since the surface code is able to correct and detect unwanted - ,/ , and -/ errors

it can therefore detect and correct any arbitrary quantum error as seen in Theorem 4.

These errors are not corrected by any quantum process but handled by a classical control

computer. The software notes where the error occurred and simply changes the sign for

future measurement outcomes of the two adjacent measure-- or -/ qubits depending on

the error. This technique is called the Pauli-frame [Fow+12; Jon+12].

4.5.1 Magic state distillation

One important aspect of the surface code is providing high �delity logical implementations

of the phase gate ( and the T-gate. Both rely on special ancilla states

|�!〉 =
1

√
2

(
|0!〉 + 48c/4 |1!〉

)
and |.!〉 =

1

√
2

( |0!〉 + 8 |1!〉) . (4.6)

The ancilla state |.!〉 is used for implementing a logical S-gate and |�!〉 for implementing a

logical) -gate. The process for creating the |.!〉 and |�!〉 states are quite similar, therefore

only the magic state |�!〉 will be considered, since it is more important for the error cost

analyses in chapter 6.

The so called magic states are created by injecting speci�c qubits with an imperfect

state and then puri�ed them by using a process called distillation. This process is repeated

until the desired �delity of the magic states is achieved. Afterwards the )!-gate can be

implemented using the logical circuit illustrated in Figure 4.6. The ancilla state |�!〉 is used

to control the CNOT on the target state |k!〉. A projective measurement onto a / stabilizer

is done resulting in a probabilistic outcome. If the outcome is 1 the state collapses to the

correct state |q!〉 = U0 |0〉 + 48c/4 |1〉. If the measuring outcome is −1 the qubit is in the

state |?ℎ8!〉 = -) †! . The correction of the state is achieved by applying a (! gate to |q!〉.
This will result in (! |q!〉 = (-!/!))! |k!〉. The -!/! are byproduct operators that can be

handled by the control software, applying the Gottesman-Knill Theorem 2 that Cli�ord

group gates can be simulated using classical computer.

Figure 4.6: Logic circuit for the )!-gate. Figure 30 in [Fow+12] by Fowler et al.

The magic state distillation process is probabilistic. The imperfect state is puri�ed by

repeating a speci�c logic circuit. After each round of execution, the output state approaches
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4 Quantum error correction

the desired result rapidly. For the |�!〉 ancilla states, the 15-qubit Reed-Muller encoding

presented in [Fow+12; RHG06; BK05b], is used. The used logical circuit is shown in

Figure 4.7 and can be implemented by the surface code very e�ciently.

Figure 4.7: Distillation circuit for the |�!〉 ancilla state. Figure 33 in [Fow+12] by Fowler

et al.

In the shown circuit, a logical Bell pair is created and one of the logical qubits from the

pair is entangled with 14 other logical qubits. The 15 qubits are then rotated with the help

of approximated )
†
!

-gates, where each gate uses an approximation of the |�!〉 state as an

ancilla. In These ancillas are either obtained by a state injection in the �rst round or later

from the previous round of distillation. The distillation circuit then generates one output

state |k!〉 in the other logical qubit of the Bell-pair. Afterwards 15 projective measurements

into - -stabilizers are made to evaluate the four stabilizers for the Reed-Muller code

-'1 = -!4-!5 . . . -!11

-'2 = -!1-!2 . . . -!7-!15

-'3 = -!2 . . . -!5-10 . . . -!13

-'4 = -1-2-5-6-9-10-13-14.

(4.7)

If each of the stabilizers measurement outcomes is {+1, +1, +1, +1}, the state of the other

bell-pair qubit |k!〉 is a puri�ed |�!〉 state.

Given an input error rate ?8= , the output state |k!〉 will have a new error rate of 35?38=
upon successfully distilling an |�!〉 state. The rate at which the magic state distillation

process fails is 1 − 15?8= .
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This chapter presents various attacks on lightweight cryptographic schemes. These include

two candidates of the Lightweight Cryptography Standardization Process introduced by

the National Institute of Standards and Technology, namely the �nalist Elephant and the

second-round candidate ESTATE . The third introduced attack is on the lightweight scheme

LightMAC . All attacks use variations of Simon’s algorithm presented in chapter 3.

All three attacks against Elephant are key recovery attacks and the result of this thesis.

The attacks against Elephant cover both the second-round submission as well as the

�nal-round submission of the Lightweight Standardization Process. The presented attacks

are in both the Q2 as well as the Q1 model.

The attacks on ESTATE and LightMAC are from Jonas Haas’ master thesis [Haa20], who

presented a distinction attack on the pseudorandom permutation of LightMAC as well as a

tag-forgery attack on ESTATE . Both presented attacks are in the Q2 model. The results

of this thesis in section 3.4 can be applied to the attack on LightMAC , reducing its cost

exponentially.

5.1 Lightweight cryptography

Lightweight cryptography is a class of modern cryptography that includes cryptographic

algorithms designed for use in devices with low resources [PS11]. The use of small

computing devices like radio frequency identi�cation (RFID) tags, Internet of things (IoT)

devices, measuring devices, and wireless sensors is becoming more and more common in

the day-to-day activity. The move from personal computers to small devices brings with

it a whole new set of security and privacy issues. It is therefore di�cult to balance the

trade o� between security and performance of resource restricted devices [Bas+18]. In

2013, the National Institute of Standards and Technology (NIST ) launched the Lightweight

Cryptography Standardization Process to study and evaluate the performance of current

cryptography standards on constrained devices. The goal of this project is to standardize

one or more Authenticated Encryption with Associated Data (AEAD) and hashing schemes

that are suitable for use in constrained environments as in the examples given above

[Sön+21]. In response to its �rst call for algorithms NIST received 57 submissions of

which 56 were accepted and announced as �rst-round candidates. In August 2019, the

second-round candidates were announced. From the initial 56 submissions 32 made it to

the second round. About a year later, in August 2020, the submitters of the second-round

candidates were asked to provide an update of their algorithms in particular on new proofs

that support the security claims, new software and hardware implementations, and other
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5 Superposition attacks on lightweight cryptography

claims that are listed in [Sön+21]. In March 2021, NIST announced the �nalist of the

Lightweight Cryptography Standardization Process.

5.1.1 NIST lightweight standardization finalists

The �nalists of the Lightweight Cryptography Standardization Process are

• ASCON

• Elephant

• SPARKLE

• Romulus

• GIFT-COFB

• PHOTON-Beetle

• Grain-128AEAD

• TinyJAMBU

• ISAP

• Xoodyak

The cryptographic security of the candidates is the most important criteria for evalua-

tion. Submissions with signi�cant third-party analysis or security claims based on well-

understood design principles and security proofs were favored for the �nalists selection.

The second criterion was the performance of the candidates in constrained environments.

Another criterion of the candidates was the side-channel resistance. [Sön+21]

5.2 Superposition attacks on Elephant

Elephant was �rst proposed by Mennink et al. in 2019 [Men21]. It is a family of authenti-

cated encryption schemes. It is currently one of the ten NIST lightweight standardization

�nalists, see subsection 5.1.1. The mode of Elephant is a permutation- and nonce-based

encrypt-then-MAC construction. The message authenticated and encryption mode both

use a cryptographic permutation internally which is masked using LFSRs, like the masked

Even-Mansour construction of Granger et al. [Gra+16a]. The permutation is only evaluated

in the forward direction and hence inverse-free.

Two versions of Elephant will be presented here. Elephant v1.1 [DM19] was presented

in 2019 for the second round of the NIST lightweight standardization challenge and v2

[Men21] was introduced in 2021 as a candidate of the �nal round of said NIST challenge. In

both versions are vulnerabilities which allows an adversary to recover the encryption key

in the Q2 model. Both attacks will be presented in subsection 5.2.2 and subsection 5.2.3.

The di�erences between the two versions are minor. Hence only the speci�cations of

Elephant v2 will be introduced in the following section. All changes of the Elephant v1.1

will be noted in subsection 5.2.3.

5.2.1 Specification

The Elephant authenticated mode consists of two algorithms, encryption enc and decryp-

tion dec. The description of the decryption algorithm is not important for the attacks and

can be found in [Men21].

46



5.2 Superposition attacks on Elephant

Let :,<, =, C ∈ N with :,<, C ≤ =. The encryption algorithm enc takes a key  ∈ {0, 1}: ,

a nonce # ∈ {0, 1}<, associated data � ∈ {0, 1}∗, and a message " ∈ {0, 1}∗ as input. It

outputs a ciphertext � ∈ {0, 1} |" | and a tag ) ∈ {0, 1}C . The description of the algorithm

enc is given in Algorithm 3. The size of the key  is always 128-bit and the nonces are

restricted to 96-bit. The only tunable parameter of Elephant is C ∈ N which de�nes the

length of the tag ) .

The algorithm enc consists of two parts. The �rst four lines of Algorithm 3 describe the

generation of the ciphertext� which will be outlined later in this section. The second part

of the algorithm describes the authentication part with additional data and outputs the

tag ) .

Algorithm 3: Elephant v2 encryption algorithm enc

Input: ( , #,�,") ∈ {0, 1}: × {0, 1}< × {0, 1}∗ × {0, 1}∗
Output: (�,) ) ∈ {0, 1} |" | × {0, 1}C

1 "1, "2, . . . , ";"

=←− "
2 for 8 ← 1 to ;" do
3 �8 ← "8 ⊕ P(# ‖ 0=−< ⊕ mask8−1,1

 
) ⊕ mask8−1,1

 

4 � ← b�1, . . . ,�;" c |" |
5 �1, �2, . . . , �;�

=←− # ‖� ‖ 1
6 �1,�2, . . . ,�;�

=←− � ‖ 1
7 ) ← �1

8 for 8 ← 2 to ;� do
9 ) ← ) ⊕ P(�8 ⊕ mask8−1,0

 
) ⊕ mask8−1,0

 

10 for 8 ← 1 to ;� do
11 ) ← ) ⊕ P(�8 ⊕ mask8−1,2

 
) ⊕ mask8−1,2

 

12 ) ← P() ⊕ mask0,0
 
) ⊕ mask0,0

 

13 return (�, b) cC )

Let P : {0, 1}= → {0, 1}= be an =-bit permutation and φ1,φ2 : {0, 1}= → {0, 1}= be two

masking LFSRs that satisfy φ2 = φ1 ⊕ id, where id is the identity function. The function

mask0,1
 

is then de�ned as follows

mask0,1
 

: {0, 1}: × N2 → {0, 1}=

( , 0, 1) ↦→ φ1
2
◦ φ0

1
◦ P

(
 ‖ 0=−:

)
,

(5.1)

where the parameter 0, 1 ∈ N for φ1,φ2 are used to ensure that every occurrence of

the masking in the Elephant mode gets di�erent parameters. For the encryption layer

(0, 1) = (8, 1) is used, for the ciphertext authentication (0, 1) = (8, 2), and for associated

data authentication (0, 1) = (8, 0).
Elephant consists of three instances with Dumbo being the primary member. The main

di�erence is their parameterization, used permutation and masking LFSRs. The di�erences
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5 Superposition attacks on lightweight cryptography

are listed in the Table 5.1 below. The expected classical security strength is measured

in terms of o�ine complexity, for example the amount of classical evaluations of the

primitive done by the adversary.

expected classical Online

Instance k m n t P security strength complexity limit

Dumbo 128 96 160 64 Spongent-c[160][Bog+11] 2
112

2
50

bytes

Jumbo 128 96 176 64 Spongent-c[176][Bog+11] 2
127

2
50

bytes

Delirium 128 96 200 128 Keccak-f[200][Ber+11] 2
127

2
74

bytes

Table 5.1: Parameterization of the Elephant instances.

The encryption process is illustrated in Figure 5.1. The ciphertext blocks can be generated

in parallel since each block is independent from the others. The message is �rst padded as

"1, . . . , ";"

=←− " then the ciphertext block �8 is generated as follows

�8 = "8 ⊕ mask8,2
 
⊕ P

(
mask8,2

 
⊕ (# ‖ 0=−<)

)
. (5.2)

The resulting ciphertext equals to � =
⌊
�1 . . .�;"

⌋
|" | .

P

# ‖ 0=−<

�1

mask0,1
 

"1

P

# ‖ 0=−<

�2

mask1,1
 

"2

· · · · · · P

# ‖ 0=−<

�=

mask
;"−1,1
 

";"

Figure 5.1: The encryption part of Elephant: Message is padded as "1, . . . , ";"

=←− " and

the resulting ciphertext equals to � = b�1 . . .�;" c |" | . The rounded squares

represent permutation calls.

The authentication mode of enc is illustrated in Figure 5.2. The nonce # is padded with

the given associated data � and afterwards split into =-bit blocks

�1, �2, . . . , �;�
=←− � ‖# ‖ 1. (5.3)

The tag ) is then generated with use of the padded associated data and the padded

ciphertext �1, . . .�;�
=←− � ‖ 1. The produced tag ) is truncated to C bits and returned

together with the ciphertext � .
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This procedure is an encrypt-then-MAC mode, where the encryption is realized by counter

mode and the message authentication by a variant of the counter sum [Luy+16; Ber99].

Both instantiated using the masked Even-Mansour procedure by Granger et al. [Gra+16a].

�1 �2

Pmask1,0
 

. . .

P

�;�

mask
;�−1,0
 P

�1

mask0,2
 

. . .

P

�;�

mask
;�−1,2
 

P

mask0,0
 

C )

Figure 5.2: Authentication part: The nonce is prepended to the associated data and split into

=-bit blocks �1, . . . , �;�
=←− # ‖� ‖ 1, the ciphertext is padded as �1, . . . ,�;�

=←−
� ‖ 1.

In their security analysis [Men21, Section B] the creators of Elephant prove that in the

ideal permutation model the mode of Elephant is structurally sound. They also emphasize

that the Elephant security claims only hold in the nonce-respecting setting, the adversary

may not evaluate the encryption function twice under the same nonce.

5.2.2 Quantum key recovery attack on Elephant v2

A brief summary of existing superposition attacks against the Elephant block cipher.

Version Model Queries Type of Simon Reference

v1.1 Q1 O(2=/3) O�ine Simon Bonnetain and Jaques in [BJ20]

v1.1 Q2 O((= +<) · 2</2) Grover-meets-Simon this thesis in subsection 5.2.3 and

the concurrent work by Shi et al. in [Shi+21]

v2 Q2 O(=) Basic Simon this thesis in subsection 5.2.2

v2 Q1 O(2=/3) O�ine Simon this thesis in subsection 5.2.2

Table 5.2: Existing superposition attacks against the Elephant block cipher.

Remark: The attack presented by Shi et al. and the attack in subsection 5.2.3 are very

similar but have been created independently from each other. The attack in subsection 5.2.3

takes a di�erent approach when testing for the correct period. This reduces the number of

queries required and makes the attack cheaper overall.

One of the changes from Elephant v1.1 to v2 was the change in the positioning in the masks.

The round key mask0,0
 

is now used as the last step in the associated data authentication. As

de�ned in Equation 5.1 the mask0,0
 

correspond to the expanded key P
(
 ‖ 0=−:

)
. Thus, an

adversary having access to the expanded round key is able to recreate every other round

key mask·,·
 

in Elephant , given that the LFSR φ1,φ2 are publicly known.
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The attack on Elephant v2 is in the Q2 model and an adversary has access to an encryption

Oracle in superposition. First the attack will be introduced without taking truncation into

account. Looking at Figure 5.2 the adversary is only considering the �nal masking block

with mask0,0
 

. The empty message 0
=

will be used as the message input, the nonce # and

(= −< − 1)-bits of arbitrary associated data G will be used to obtain�1 ← # ‖G ‖ 1 as seen

in Equation 5.3 or line 5 in Algorithm 3.

Since the nonce # will be the input for this attack it has to be queried in superposition.

Therefore the chance to reuse a nonce exists every time enc is called.

Out of convenience the associated data block �1 will be de�ned as # ‖G without the �nal

padded 1. Therefore the associated data G will be of length (= −<) instead of = −< − 1.

This change has no impact on the attack. In addition �1 ∈ {0, 1}= will from now on be

the input for the following functions. It is important to keep in mind that �1 contains the

nonce when applying the attack.

Querying Elephant with this input results in the following structure illustrated in Fig-

ure 5.3.

�1

P

mask0,0
 

)

Figure 5.3: Tag creation of Elephant algorithm enc with input �1 ← # ‖G .

The function tag
1

is then de�ned as a sub-algorithm of enc which only considers the

tag-output ) . The ciphertext can be ignored.

tag
1
: {0, 1}= → {0, 1}=

�1 ↦→ P
(
�1 ⊕ mask0,0

 

)
⊕ mask0,0

 
,

(5.4)

where �1 ← # ‖G is de�ned as mentioned before. Thus the function 5 v2
1

can be de�ned as

5 v2
1

: {0, 1}= → {0, 1}=

�1 ↦→ tag
1
(�1) ⊕ P (�1) = P

(
�1 ⊕ mask0,0

 

)
⊕ mask0,0

 
⊕ P (�1) .

(5.5)

This function is periodic with B = mask0,0
 

:

5 v2
1
(G) = P(�1 ⊕ mask0,0

 
) ⊕ mask0,0

 
⊕ P(�1)

= P(�1 ⊕ mask0,0
 
) ⊕ mask0,0

 
⊕ P((�1 ⊕ mask0,0

 
) ⊕ mask0,0

 
)

= P((�1 ⊕ mask0,0
 
) ⊕ mask0,0

 
) ⊕ mask0,0

 
⊕ P(�1 ⊕ mask0,0

 
)

= 5 v2
1
(G ⊕ mask0,0

 
).

(5.6)

Since the permutation is publicly known and the adversary has access to the encryption

Oracle it is possible to create the unitary operator* 5 v2
1

. Using Simon’s algorithm as seen in
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section 3.1 it is possible to extract mask0,0
 

using only O(=) calls to the encryption Oracle.

Looking at the attack more closely shows that this is the Even-Mansour-construction,

presented in subsection 3.5.1, using :0 = :1 = mask0,0
 

.

Dealing with truncation The just presented attack will be considered along with truncat-

ing the output to the C most signi�cant bits. Therefore only C of mask0,0
 

can be extracted

using the following adaptation of the previous attack. First the function tagC is de�ned as

tagC : {0, 1}= → {0, 1}C

�1 ↦→
⌊
P
(
�1 ⊕ mask0,0

 

)
⊕ mask0,0

 

⌋
C
.

(5.7)

tagC can then be used to create the function 5 v2C .

5 v2C : {0, 1}= → {0, 1}C

�1 ↦→ tagC (�1) ⊕ bP (�1)cC =
⌊
P
(
�1 ⊕ mask0,0

 

)
⊕ mask0,0

 

⌋
C
⊕ bP (�1)cC .

(5.8)

This function is still periodic with B = mask0,0
 

as seen in Equation 5.6 and using the promise

that ∀G,~ ∈ {0, 1}∗ : bG ⊕ ~cC = bGcC ⊕ b~cC .
Using the results of section 3.4 it is still possible to apply Simon’s algorithm to recover the

period B regardless of the truncation to C < = bits. Bonnetain proposed in [Bon20] that

only d3.5 + ;>62(@)e output bits are needed (see Heuristic 4) when making @ queries and

having a reversible implementation of Simon’s algorithm.

Simon’s algorithm will return B = mask0,0
 

by running additional times to cancel out

interferences caused by the occurring collisions. Let ?0 describe the expected probability

of collisions to occur, since P is a considered to be a pseudorandom permutation ?0 =
2
=−C

2
= .

According to Theorem 1 in [Kap+16], Simon’s algorithm will recover B within O(2=)
queries, where 2 can be chosen as 2 ≥ 3

(1−?0) . Thus, for this attack choosing 2 > 3 will be

enough to recover B .

Attack on Elephant v2 in Q1 As mentioned in the previous part, the presented attack is like

the basic attack on Even-Mansour with :0 = :1 = mask0,0
 

. Therefore, the o�ine Simon’s

algorithm and the attack presented in subsection 3.5.4 can be applied to this version of

Elephant .

The mask0,0
 

will be divided into mask
0,0,(1)
 

of D-bits and mask
0,0,(2)
 

of = − D-bits. The

mask
0,0,(2)
 

part will be guessed using Grover’s algorithm and with the respective result of

mask
0,0,(2)
 

, it is possible to recover mask
0,0,(1)
 

using Simon’s algorithm. The integer D will

be set to
=
3
. The functions � and 6 used for the o�ine Simon’s algorithm are de�ned by

� : {0, 1}=−D × {0, 1}D → {0, 1}=,
8, G ↦→ % (G ‖ 8),

6 : {0, 1}D → {0, 1}=

G ↦→ tag
1
(G ‖ 0=−D).

(5.9)

Using these two functions � and 6 to create the periodic attack function

5> : {0, 1}=−D × {0, 1}D → {0, 1}=

8, G ↦→ � (8, G) ⊕ 6(G),
(5.10)
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that is periodic in mask
0,0,(1)
 

once the correct 8 = mask
0,0,(2)
 

was found. This can be shown

as follows

5> (mask0,0,(2) 
, G) = � (mask0,0,(2)

 
, G) ⊕ 6(G)

= % (G ‖ mask0,0,(2)
 
) ⊕ % ((G ⊕ mask

0,0,(1)
 

‖ mask0,0,(2)
 
) ⊕ mask0,0

 

= 5> (mask0,0,(2) 
, G ⊕ mask

0,0,(1)
 
) .

(5.11)

The period B = mask0,0
 

can therefore be recovered using the o�ine Simon’s algorithm

described in section 3.3 together with the functions � , 6 and 5> and making O(2=/3) queries.

Since the output is getting truncated additional queries have to be made. As in the analysis

for the Q2 version in the previous section concluded, choosing 2 > 3 is enough to recover

B . The total cost of the attack is O(2 · 2=/3). The attack is nonce respecting, since every

query to the oracle will use a di�erent value for G and therefore a di�erent nonce # .

5.2.3 Quantum key recovery attack on Elephant v1.1

This attack on Elephant v1.1 is in the Q2 model hence the encryption algorithm enc is

accessible in superposition. Combining this fact, Leander and Mays approach on breaking

the FX-construction [LM17] and adjusting the Equation 5.2 it is possible to perform an

encryption key recovery attack on Elephant . Since this attack is independent from the

used permutation it can be applied to every Elephant variation.

Changes from Elephant v2 There are only a few changes from Elephant v1.1 to Elephant

v2. The variant of Wegman-Carter-Shoup MAC function was replaced by a variant of

the protected counter sum MAC function. The roles of the masks was changed as well.

For associated data authentication the mask (·, 0), for encryption (·, 1) and for ciphertext

authentication (·, 2) is now used.

Therefore the Elephant v1.1 uses (·, 0) for encryption, (·, 1) for ciphertext authentication

and (·, 2) for associated data authentication.

The changed algorithm of Elephant v1.1 can be found below. Changes in the Algorithm

besides di�erent masks are in Line 7 where ) is initialized with 0 instead of �1, in Line 8

where the for-loop runs from 1 instead of 2, and there is no additional masked permutation

block between Line 11 and returning the output. This attack targets the encryption

algorithm of Elephant v1.1, besides the mask there was no change made to Elephant v2

see Figure 5.1.
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Algorithm 4: Elephant v1.1 encryption algorithm enc

Input: ( , #,�,") ∈ {0, 1}: × {0, 1}< × {0, 1}∗ × {0, 1}∗
Output: (�,) ) ∈ {0, 1} |" | × {0, 1}C

1 "1, "2, . . . , ";"

=←− "
2 for 8 ← 1 to ;" do
3 �8 ← "8 ⊕ P(# ‖ 0=−< ⊕ mask8−1,0

 
) ⊕ mask8−1,0

 

4 � ← b�1, . . . ,�;" c |" |
5 �1, �2, . . . , �;�

=←− # ‖� ‖ 1
6 �1,�2, . . . ,�;�

=←− � ‖ 1
7 ) ← 0

8 for 8 ← 1 to ;� do
9 ) ← ) ⊕ P(�8 ⊕ mask8−1,2

 
) ⊕ mask8−1,2

 

10 for 8 ← 1 to ;� do
11 ) ← ) ⊕ P(�8 ⊕ mask8−1,1

 
) ⊕ mask8−1,1

 

12 return (�, b) cC )

Only one encryption block of enc will be considered in the attack. The input in this

case is the nonce # and not the message "8 . The message "1 is not of importance and

hence set to the empty message"1 = 0. The fundamental idea is to transform Equation 5.2

into the following function. For convenience G will denote the nonce used as input and ^8

will denote the round key mask8,0
 

. The superscript 8 will be dropped as well since only one

encryption block will be considered.

51 : {0, 1}< → {0, 1}=

G ↦→ �1 ⊕ P (G ‖ 0=−<) = ^ ⊕ P (G ‖ 0=−< ⊕ ^) ⊕ P (G ‖ 0=−<) .
(5.12)

Even though the function seems to be periodic with B = ^ this is not the case. The last

(= −<) bits are unknown and therefore Simon’s Algorithm is not applicable. The attack

is possible if the last (= −<) bits of the round key ^ are known. This can be achieved by

adjusting the function 5 (G). Instead of XORing P (G ‖ 0=−<) with �1 one can use P (G ‖ A )
instead with arbitrary A ∈ {0, 1}=−< . This is similar to the attack of Leander and May in

[LM17] if the last unknown (= −<) bits of P are considered as a block cipher � with key

A . This results in the following function

52 : {0, 1}< × {0, 1}=−< → {0, 1}=

G, A ↦→ �1 ⊕ P (G ‖ A ) = ^ ⊕ P (G ‖ 0=−< ⊕ ^) ⊕ P (G ‖ A ) .
(5.13)

The round key can be written as ^ = ^1 ‖^2 where ^1 denote the �rst<-bits of ^ and ^2
the last (= −<) bits. Once A is equal to ^2 the function 52(G, A ) is periodic with B = ^1. The
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last steps in the following proof are inspired by [Shi+21] and [BJ20].

52(G, A ) = ^ ⊕ P (G ‖ 0=−< ⊕ ^) ⊕ P (G ‖ A )
= ^ ⊕ P (G ‖ 0=−< ⊕ ^1 ‖^2) ⊕ P (G ‖ A )
= ^ ⊕ P ((G ⊕ ^1) ‖^2) ⊕ P (G ‖^2)
= ^ ⊕ P ((G ⊕ ^1) ‖^2) ⊕ P ((G ⊕ ^1 ⊕ ^1) ‖^2)
= ^ ⊕ P ((G ⊕ ^1 ⊕ ^1) ‖^2) ⊕ P ((G ⊕ ^1) ‖^2)
= ^ ⊕ P ((G ⊕ ^1) ‖ 0=−< ⊕ ^1 ‖^2) ⊕ P ((G ⊕ ^1) ‖^2)
= ^ ⊕ P ((G ⊕ ^1) ‖ 0=−< ⊕ ^) ⊕ P ((G ⊕ ^1) ‖^2)
= 52(G ⊕ ^1, A ).

(5.14)

The Equation 5.14 shows that once the correct A is chosen Simon’s algorithm can be applied

and the round key ^ extracted. The value of ^2 can be found using the Grover-meets-Simon

algorithm by Leander and May in [LM17].

The Grover-meets-Simon algorithm is presented in section 3.2. Let ; denote the amount

of computations run in parallel and as Leander and May suggest, choosing ; > 3= is

su�ciently large enough. Let ℎ be de�ned as the function evaluating 52(·, ·) in parallel on

; arguments in the �rst component. Thus,

ℎ : ({0, 1}<); × {0, 1}=−< → {0, 1}=·;

(G1, . . . , G; , D) ↦→ 5 (G1, D) ‖ . . . ‖ 5 (G; , D).
(5.15)

Let the unitary operator*ℎ be the embedding of ℎ on : + 2=; qubits and map

|G1, . . . , G; , D, 0, . . . , 0〉 ↦→ |G1, . . . , G; , D, ℎ(G1, . . . , G; , D)〉 .
Thus, the quantum algorithm A presented in section 3.2 can be applied. This results in a

set of vectors ( = {~1, . . . , ~; } orthogonal to the secret ^2. Instead of testing if the ; vectors

of ( span the< − 1 dimensional subspace orthogonal to ^2, one computes the basis B; of (

and checks if the function 5 ful�lls 52(0, 0) = 52(D, B; ) [Bon20]. For the amplifying part of

the Grover-meets-Simon algorithm on A, the Classi�er B is then de�ned as

B : {0, 1}(=−<)+<; → {0, 1}

(~1, . . . , ~; , D) ↦→
{
B |~1, . . . , ~; , D〉 = 1, if 52(0, 0) = 52(D, B; ),
B |~1, . . . , ~; , D〉 = 0, if 52(0, 0) ≠ 52(D, B; ).

(5.16)

Let (B be the operator that performs a phase shift of the good state

|G〉 ↦→
{
− |G〉 , if B(G) = 1,

|G〉 , if B(G) = 0.
(5.17)

De�ne the unitary operator& = −A(0A−1(B , as seen in section 3.2, where (0 changes the

sign of the amplitude only for the state |0〉. After computing &[A |0〉, where [ ≈ 2
(=−<)/2

,

one is able to recover B = ^1 ‖^2 by making O(< + =) · 2</2 oracle queries.

This attack is applicable to Elephant v2 since the encryption process did not change

between v1.1 and v2, beside using mask0,2
 

instead of mask0,0
 

. Looking at Equation 5.1, the

only downside is that other round keys mask8,2
 

can not be generated using the extracted

mask0,2
 

.
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5.3 LightMAC

LightMAC proposed by Luykx et al. in 2016 [Luy+16]. It uses a keyed block cipher as

underlying construction and functions as a MAC mode of operation, a construction which

aims to provide data authenticity for long messages. LightMAC can be used as a MAC and

as a PRF as well. Contrary to other MAC modes of operation the provided security of

LightMAC is independent from the message length. LightMAC can therefore be used for

much longer messages.

5.3.1 Specification

LightMAC uses the block ciphers PRESENT [Bog+07] or AES-128 [01]. PRESENT is a lightweight

64-bit block cipher. The block cipher calls can be made in parallel and are based on Bern-

steins’s protected counter sum [Ber99]. When tagging messages an additional counter

must be used. This counter uses up to half of the block size. Therefore one of LightMAC

disadvantages is that its rate is low.

Algorithm 5: LightMAC 1, 2
(")

Input:  1,  2 ∈ {0, 1}: , " ∈ {0, 1}≤2
B (=−B)

Output: ) ∈ {0, 1}C
1 + ← 0

= ∈ {0, 1}=

2 "1, "2, . . . , ";"

=−B←−− "
3 for 8 ← 1 to ;" − 1 do
4 + ← + ⊕ � 1

(8B ‖"8)
5 + ← + ⊕

(
";" ‖10∗

)
6 ) ←

⌊
� 2
(+ )

⌋
C

7 return )

Let :, a, =, C ∈ Nwith C ≤ = and a ≤ =
2
. The parameter C donates the length of the truncation

to C bits and the designers of LightMAC advice to use full tag length C = =. The parameter

a denotes the length of the counter. Both parameter a and C are publicly known and can

not be For an integer 1 ≤ 8 ≤ 2
a
, 8a de�nes some a-bit constant with 1 ≤ 8 ≤ 9 ≤ 2

a
then

8a ≠ 9a . Let � 
1/2 : {0, 1}: × {0, 1}= → {0, 1}= be a keyed block cipher with  1,  2 ∈ {0, 1}: ,

and a message " of length at most 2
a (=−a)

. The expected upper classical security bound

for LightMAC is expected to be (1 + n) · @
2

2
= , where n ∈ O

(
1

2
=/2−1

)
. When LightMAC is used

as a PRF, Algorithm 5 fully describes how the output is produced.
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E 1
E 1

E 1

. . .

1B ‖"1 2B ‖"2
(;" − 1)B ‖";"−1 ";" ‖10∗

. . . E 2
C )

Figure 5.4: MAC mode of LightMAC : Message is padded as "1, . . . , ";"

=−a←−−− " . The

rounded squares represent block cipher calls and the trapezium is a truncation

to C bits.

The values for a can be chosen according to the needed purpose:

• . = n
2 : maximum supported message length (and hence with lowest rate

1

2
).

• . = n
3 : rounded to nearest multiple of 8 (with rate

2

3
).

• . = 8: short maximum message length (with highest rate (1 − 8

=
)).

To use LightMAC in the MAC or PRF mode, the message " is �rst split into ;" blocks of

size (= − a). The constants 8a ∈ {0, 1}a are prepended to the �rst ;" − 1 message blocks.

The last block";" ∈ {0, 1}≤= is padded with 10
∗

to the length of = if needed. The MAC and

PRF mode are illustrated in Figure 5.4. LightMAC gets two encryption keys  1,  2 ∈ {0, 1}:
for the underlying block cipher and the message" ∈ {0, 1}≤2a (=−a) as input. The parameter

a and C must be agreed upon before a session starts, and remain constant during.

LightMAC : {0, 1}2: × {0, 1}≤2a (=−a ) → {0, 1}C

( 1,  2, ") ↦→ ) =

⌊
� 2

(
";" ‖ 10∗ ⊕

;"−1⊕
8=1

� 1
(8a ‖"8)

)⌋
C

.
(5.18)

When using the LightMAC as a PRF, the generated tag ) is used as its output and when

used as a MAC, the Tag ) can be used to verify a message " as )
?

= LightMAC("). The

classical security analysis of the PRF and MAC mode can be found in [Luy+16, Section 4].

5.3.2 Distinction attack

A brief summary of existing superposition attacks against the LightMAC block cipher.

Model Queries Type of Simon Reference

Q2 O(= · 2a+2) Basic Haas in [Haa20]

Table 5.3: Existing superposition attacks against the Elephant block cipher

While the LightMAC PRF is classically proven to be indistinguishable from a uniformly

distributed random function [Luy+16, Section 4.2] this assumption does not hold in a
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quantum setting. Jonas Haas showed in his masters thesis [Haa20, Section 4.2] that a

distinction attack on LightMAC in a Q2 setting is possible given an oracle$ that implements

LightMAC . This attack is similar to the distinguishing attack on the three-round Feistel

construction in subsection 3.5.2 and uses Simon’s algorithm see section 3.1.

The attack will be introduced without taking truncation of the output into account. The

authors of [Luy+16, Section 5.2] advise to use the full tag lengths C = =, hence 64−bit tags

for PRESENT and 128−bit tags for AES. If instances still truncate the output, the results of

section 3.4 are applicable. Therefore this attack still holds in a truncated settings.

Let U0 ≠ U1 ∈ {0, 1}=−a arbitrary but �xed, G ∈ {0, 1}=−a−1 and 1 ∈ {0, 1}. The oracle

$ implements LightMAC as de�ned in Equation 5.18. Then the function 5 is de�ned as

follows

5 : {0, 1} × {0, 1}=−a−1 → {0, 1}=

1, G ↦→ $ (U1 ‖G) = � 2

(
G ‖ 10a ⊕ � 1

(1a ‖U1)
)
.

(5.19)

The function 5 is illustrated in Figure 5.5 below.

E 1

1a ‖U1 G‖10a

E 2
5 (1‖G)

Figure 5.5: Function 5 used for the distinction attack with U0 ≠ U1 ∈ {0, 1}=−a , G ∈
{0, 1}=−a−1 and 1 ∈ {0, 1}.

Looking at 5 one can see that the function is periodic in B = 1 ‖� 1
(1a ‖U0) ⊕ � 1

(1a ‖U1).

5 (1 ‖G) = 5 (1′ ‖G′) ⇔ � 1
(1a ‖U1) ⊕ (G ‖ 10a ) = � 1

(1a ‖U1 ′) ⊕ (G′ ‖ 10a )

⇔
{
G = G′, if 1 = 1′,

� 1
(1a ‖U1) ⊕ � 1

(1a ‖U1 ′) = (G ‖ 10a ) ⊕ (G′ ‖ 10a ), if 1 ≠ 1′.
(5.20)

Haas remarked that the last a + 1 bits of the term � 1
(1a ‖U0) ⊕ � 1

(1a ‖U1) have to be 0 for

this attack to work. The probability of this to happening is about
1

2
a+1 , since � is considered

to be a pseudorandom function. This would result in an overall cost of O(2a+2 · =) queries

to the oracle.

However, using the result of section 3.4 shows that the attack is still applicable even if

the last a + 1 bits are arbitrary or unknown. Therefore, the attack works every time and

the cost can be reduced from O(2a+2 · =) to O(2=) oracle queries.

Let * 5 be the unitary operator that implements 5 using the oracle $ . Afterwards perform

Simon’s algorithm subroutine until = − 1 linear independent vectors are found or at most

2= times. If not enough linear independent vectors were found, assume that$ implements

a random function and not LightMAC .
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If enough independent vectors were found, it is possible to reconstruct B and query the

oracle for arbitrary G ∈ {0, 1}= and G ⊕B . If$ (G) = $ (G ⊕B) holds, the oracle$ implements

LightMAC , if not the oracle implements a random function.

An adversary is therefore able to distinguish between LightMAC and a random function

within O(=) time and making at most O(2=) queries to the oracle $ .

5.4 ESTATE

ESTATE was �rst proposed by Chakraborti et al. in 2019 [Cha+20]. It is an energy e�cient

Single-state Tweakable block cipher based MAC-Then-Encrypt authenticated encryption

scheme. ESTATE was proposed as a candidate to the NIST lightweight standardization

process. It made it to the second round but was not chosen as a �nal candidate afterwards.

To instantiate ESTATE two tweakable block ciphers TweGIFT-128 and TweAES-128 were

proposed by the authors. TweAES-128 is a tweakable variant of AES-128 [01] block cipher

and TweGIFT-128 the tweakable version of the GIFT-128 [Ban+17] block cipher. Both

tweakable block ciphers are designed for e�cient processing of small tweaks of size 4 bits.

5.4.1 Specification

The ESTATE mode of operation using the block ciphers TweAES-128 and TweGIFT-128 for

instantiating will be presented in this section.

Let =, g, :, C ∈ N denote the block size, tweak size, key size, and tag size. The authors of

ESTATE advice to �x those values to = = 128, g = 4, : = 128, and C = =. Throughout this

section these values will be set as shown and otherwise will be noted.

The ESTATE authentication mode receives a key  ∈ {0, 1}: , a nonce # ∈ {0, 1}=, an

associated data� ∈ {0, 1}∗, and a message" ∈ {0, 1}∗ as inputs. It returns a tag) ∈ {0, 1}C
and ciphertext � ∈ {0, 1} |" | . The description of the decryption algorithm is not important

for this attack but is speci�ed in [Cha+20].

ESTATE is composed of an FCBC [BR05] like MAC, called ����∗, and the OFB [Dwo+16]

mode of encryption, where the tweak value is �xed to 0. It operates on =−bit data blocks

at a time using the tweakable block cipher �T
 
(") with inputs  ∈ {0, 1}: , T ∈ {0, 1}g ,

" ∈ {0, 1}= . Algorithm 6 presents the speci�cation of ESTATE and the illustrated description

is given in Figure 5.6, Figure 5.7, and Figure 5.8.

The functions>I?, 2ℎ>? and the conditional ?-operator are used in the following description

of ESTATE . Since they may not be familiar, they will be brie�y be de�ned below. The

one-zero-padding function >I? maps bit-strings with smaller length than = to blocks of

=-bit length by

>I? (G) : {0, 1}≤= → {0, 1}=

G ↦→
{
0
=−|G |−1 ‖ 1 ‖G, if |G | < =,
G, else.

The function 2ℎ>? takes a string G and an integer 8 ≤ |G | and returns the least signi�cant

8-bits of G . The conditional ? :::-operator functions on some predicates �1 and �2 with
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5.4 ESTATE

possible evaluations 0, 1, 2 and 3 . Then the ? ::: is de�ned as follows

(�1;�2)?0 : 1 : 2 : 3 :=


0, if �1 ∧ �2,
1, if �1 ∧ ¬�2,
2, if ¬�1 ∧ �2,
3, if ¬�1 ∧ ¬�2.

Algorithm 6: ESTATE Authenticated Encryption Algorithm

1 Function ESTATE.Enc[E](K,N,A,M)
2 ) ← "�� ( , #,�,")
3 � ← $��( ,) ,")
4 return (�,) )
5 Function ESTATE.MAC[E](K,N,A,M)
6 if |�| = 0 and |" | = 0 then
7 return ) ← �8

 
(# )

8 ) ← �1
 
(# )

9 if |�| > 0 then
10 �0−1 ‖ . . . ‖�0 ← �

11 C ← (|" | > 0; |�0−1 | = =) ? 2 : 3 : 6 : 7
12 ) ← ����∗ [�] ( ,) ,�, C)
13 if |" | > 0 then
14 "<−1 ‖ . . . ‖"0 ← "

15 C ← (|"<−1 | = =) ? 4 : 5
16 ) ← ����∗ [�] ( ,) ,", C)
17 return )

18 Function ����∗[E](K,T,D,t)
19 �3−1 ‖ . . . ‖�0 ← �

20 for 8 = 0 to 3 − 2 do
21 ) ← �0

 
() ⊕ �8)

22 ) ← �1
 
() ⊕ >I? (�3−1))

23 return )

24 Function $��[E](K,T,M)
25 "<−1 ‖ . . . ‖"0 ← "

26 for 8 = 0 to< − 1 do
27 ) ← �0

 
() )

28 �8 ← 2ℎ>? (), |"8 |) ⊕ "8

29 return �<−1 ‖ . . . ‖�0

The tag generation phase using ����∗ is a tweakable version of FCBC, where the

di�erent twinks are used to instantiate the block cipher. The distinctness in the tweaks
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is used to distinguish between di�erent cases based on the length of associated data and

message. The 4-bit binary representation of integer 8 denotes the tweak value 8 . The �rst

block, the nonce# , uses the tweak value 1. The following blocks are always processed with

tweak 0. The last block may use tweak 2,4,6 if the block is full or 3,5,7 if the block is partial.

The tag generation and the following OFB based encryption process with non-empty

associated data and message, is illustrated in Figure 5.6. With neither the associated data

nor the message being empty, the tag and ciphertext generation is given by

) = �
4/5
 
("<−1 ⊕ �0 (. . . ("0 ⊕ �2/3 

(�0−1 ⊕ �0 (. . . (�0 ⊕ �1 (# )) . . .)) . . .))
�8 = (�0 )

8+1() ) ⊕ "8 .
(5.21)

# E1
 

�0

E0
 

· · · E0
 

�0−1

E2/3
 

+

"0

+ E0
 

· · · E0
 

"<−1

E4/5
 

)

E0
 

E0
 )

"0

· · · E0
 

"<−1"<−2

�0 �<−2 �<−1

Figure 5.6: ESTATE with 0 associated data blocks and< message blocks.

ESTATE allows to query an instance with empty associated data, empty message or both.

The empty associated data will be denoted as _ and the empty message as n . The case

where the associated data is empty is illustrated in Figure 5.7 and in this case the tag

generation is given by

) = �
4/5
 
("<−1 ⊕ �0 (. . . ("0 ⊕ �1 (# )) . . .)) . (5.22)
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# E1
 

"0

E0
 

· · · E0
 

"<−1

E4/5
 

)

E0
 

E0
 )

"0

· · · E0
 

"<−1"<−2

�0 �<−2 �<−1

Figure 5.7: ESTATE with empty associated data and< message blocks.

At last the tag generation with empty message is illustrated in Figure 5.8 and given by

) = �
6/7
 
(�0−1 ⊕ �0 (. . . (�0 ⊕ �1 (# )) . . .)) (5.23)

# E1
 

�0

E0
 

· · · E0
 

�0−1

E6/7
 

)

Figure 5.8: ESTATE with 0 associated data blocks and empty message _.

5.4.2 Tag forgery attack

A brief summary of existing superposition attacks against the ESTATE block cipher.

Model Queries Type of Simon Type of Attack Reference

Q2 O(=) Basic Tag forgery attack Haas in [Haa20]

Q2 (sEstate) O(2=/3) Simon and quantum square attack Key recovery attack Shi et al. in [Shi+21]

Table 5.4: Existing superposition attacks against the Elephant block cipher

This tag forgery attack was presented by Jonas Haas in his masters thesis [Haa20]. The

attack is set in the Q2 model and in contrary to the other attack this adversary is not nonce

respecting. The adversary is able to forge tags to almost arbitrary messages, authenticated

data or ciphertexts. The only restriction being that all but one block can be chosen freely.

The nonce # will be �xed and therefore this attack is not nonce respecting since the same

nonce will be reused.
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Let V = V0, V1, . . . , V;V−2.U1 denote the ;V · =-bit pre�x of the message for which a tag is

forged. For U0 ≠ U1, let V′ denote the pre�x V0, V1, . . . , V;V−2.U0 and W = W0, . . . , W;W−1 the

;W · =-bit su�x of the message.

The function C06(0,<) models a call to the oracle $ implementing the tag generation part

of ESTATE , hence the ESTATE.MAC[�] ( , #,�,") part of Algorithm 6.

For parameters 1 ∈ {0, 1} and G ∈ {0, 1}= , consider the function 5

5 : {0, 1}=+1 → {0, 1}=

1, G ↦→ C06(_, V0 ‖ V1 ‖ . . . V;V−2 ‖U1 ‖G)
= �4 (G ⊕ �

0

 (U1 ⊕ �
0

 (V;V−2 ⊕ . . . �
0

 (V0 ⊕ �
1

 (# )) . . .)︸                                         ︷︷                                         ︸
:=q

). (5.24)

The unitary operator * 5 that implements the function 5 can be constructed using a single

call to the oracle $ . The function 5 is periodic within B = 1 ‖ �0
 
(U0 ⊕ q) ⊕ �0 (U1 ⊕ q)

since

5 (1 ‖G) = 5 (1′ ‖G′) ⇔ �4 (G ⊕ �
0

 (U1 ⊕ q)) = �
4

 (G
′ ⊕ �0 (U1 ′ ⊕ q))

⇔ G ⊕ �0 (U1 ⊕ q) = G
′ ⊕ �0 (U1 ′ ⊕ q)

⇔
{
G = G′, if 1 = 1′,

�0
 
(U0 ⊕ q) ⊕ �0 (U1 ⊕ q) = G ⊕ G

′, if 1 ≠ 1′.

(5.25)

Let B′ denote the period B without the leading bit 1. Then an adversary is able to forge a

tag in the Q2-EUF-CMA experiment by

1. Reconstruct B using Simon’s algorithm.

2. Perform a classical query with empty associated data and the message

"′ = V0, V1, . . . , V;V−2, U0, 0
=, W0, W1, . . . , W;W−1 to retrieve the corresponding tag ) and

ciphertext �′ = �0,�1, . . . ,�;V+;W .

3. Output the tuple ((_,"),) ,�) as the forgery in the experiment, with

" = V0, V1, . . . , V;V−2, U0, B
′, W0, W1, . . . , W;W−1, the same tag ) as in the previous query

and the ciphertext � = �0, . . . ,�;V−2,�;V−1 ⊕ U0 ⊕ U1,�;V ⊕ B′,�;V+1, . . . ,�;V+;W .

The tag is valid for both messages " and "′ since the state after applying the ;V-th

encryption step results in

�0 (U1 ⊕ q) ⊕ (�
0

 (U0 ⊕ q) ⊕ �
0

 (U1 ⊕ q)) = �
0

 (U0 ⊕ q). (5.26)

and hence the same state as generating the tag for "′. The ciphertext is correct since the

tag is valid for each of the messages " and "′.
The adversary is able to forge the tag and win the EUF-CMA experiment by making at

most 2= + 2 queries to the oracle$ . Therefore ESTATE is not able to hold the Q2-EUF-CMA

security for adversaries that are not nonce respecting. This attack can not be applied if

the settings requires the adversary to be nonce respecting, like the attack model presented

by Kaplan et al. in [Kap+16], where the nonce is randomly chosen by the oracle.

Haas notes in [Haa20] that the attack is also adjustable to work with arbitrary �xed

associated data and empty message.
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6 Cost analyses

In this chapter the resource cost of the superposition attacks presented in chapter 5 will

be estimated. They will be analyzed considering the application, logical, and quantum

error correction layer as introduced in section 2.3. The fault tolerant quantum computer to

perform these attacks is based on the surface code. All attacks are following the approaches

by Amy et al. in [Amy+17], Berger and Tiepelt in [BT21] and Fowler et al. in [Fow+12].

The goal of this chapter is to provide comparable results of the di�erent attacks presented

in this thesis.

6.1 Introduction and overview

For all attacks the permutations and block ciphers suggested by the authors will be used

in the following cost analyses. Thus, SPONGENT and KECCAK for the corresponding

instances of Elephant , GIFT128 and AES-128 for ESTATE and AES-128 for LightMAC .

There are di�erent resource analyzes of the quantum circuits for AES-128 and GIFT, like for

example the AES implementation by Grassl et al. presented 2016 in [Gra+16b]. Zou et al.

improved Grassl et al. work in [Zou+20] by presenting quantum circuit implementations

of AES with fewer qubits. In their work they proposed a circuit using fewer qubits for

the S-box of the AES. While the circuit presented by Grassl et al. needs a total of 984

qubits, the one presented by Zou et al. only needs 512 qubits in total. Whereas these works

focus on minimizing the required amount of qubits for their circuits, hence the circuit’s

width, Samuel Jaques et al. have taken a di�erent approach in [Jaq+20] on improving the

circuit. They optimized the circuit under a depth restriction and introduced techniques

that reduce the depth even if that requires more qubits. Since this approach also lowers

the T-depth and needed T-gates, the overall cost for an attack using this AES circuit is

lower. Therefore, the results by Jaques et al. will be used for the following cost analyses

using the AES block cipher. For the GIFT block cipher, the results of Jang et al. in [Jan+21]

and Bijwe et al. [BCS20] were considered. Like the reasoning given above, the results by

Bijwe et al. will be used for the attacks using the GIFT block cipher. For the Elephant

instances, the results by Bonnetain in [BJ20] were used.

6.2 Resource estimate

The resource estimations in this chapter are following the approaches by Amy et al. in

[Amy+17], Berger and Tiepelt in [BT21] and Fowler et al. in [Fow+12].

Assumption 1. [Assumption 1 in [Amy+17]] The resources needed for a large fault-tolerant
quantum computation are well approximated using a surface code based quantum computer.
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6 Cost analyses

The parameters below consider a fault-tolerant quantum computer using surface codes

and approximately correspond to the current state of the art.

Assumption 2. [[Amy+17; Fow+12; Jon+12]] Let ?8= ∈ {10−2, 10−3, 10−4} de�ne the initial
injection error rate of a given quantum state, the error rate for gates is then ?6 ≈ ?8=/10.
Fowler et al. suggest that CB2 = 200=B is a reasonable time for a single surface code cycle.

Assumption 3. All quantum gates are uniformly distributed over all layers.

Assumption 4. (Cost metric [Amy+17]) Let f de�ne the surface code cycles needed for a
quantum computation implementing ; logical qubits. The cost of the quantum computation is
then equal to the classical cost of calling a block cipher ; · f times.

When considering the needed resources to implement gates into surface codes, the fault

tolerant T-gate is the most expensive one. A high �delity logical implementation of a

T-gate uses special ancilla states called magic states. Each T-gate relies on the

|�!〉 =
1

√
2

(
|0!〉 + 48c/4 |1!〉

)
(6.1)

magic state, which is created by a special qubit in an arbitrary but imperfect state. This

process is called state injection, with an initial error rate of ?8= . The imperfect state is then

puri�ed by repeating a probabilistic process called distillation until the desired �delity of

the magic state is achieved. For the entire attack circuit to successfully run, the error rate

of the puri�ed |�!〉 magic states has to be below ?>DC = 1/)62 . The distillation process and

the so called distilleries, requires a large amount of logical and physical qubits.

Quantum error correction layer Let 3 de�ne the distance of the implemented surface

code, ?8= the initial injection error rate of a given quantum state and ?Cℎ the threshold

error per injection state of the surface code. The constants �1,�2 are determined by the

speci�c surface code implementation. The maximum error per logical gate ?>DC can then

be approximated as

?>DC ≈ �1

(
�2

?8=

?Cℎ

) b 3+1
2
c
, (6.2)

as seen in [Jon+12, Section IV A.]. For the number of physical qubits per logical qubit, the

results of Gidney and Ekera in [GE21] are used, which, for a surface code of distance 3 ,

state that each logical qubit requires 2 · (3 + 1)2 physical qubits.

Logic layer For distilling the |�!〉 ancilla states, the 15-qubit Reed-Muller encoding pre-

sented in [Fow+12; RHG06; BK05b], is used. In this scheme, a logical Bell pair is created

and one of the logical qubits from the pair is entangled with 14 other logical qubits. The 15

qubits are then rotated with the help of )
†
!

-gates, where each gate uses an approximation

of the |�!〉 state as an ancilla. These ancillas are either obtained by a state injection or from

the previous round of distillation. From the error probability of an initial injected state

is ?8=, it follows that the error rate of the output state ?38BC will be approximately 35?38= .

Logical errors that may appear during the distillation process will be ignored, following

the work of [Amy+17; FDJ13].
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6.3 Overview of a cost analysis

The term n · ?38BC describes the introduced amount of logical errors and hence ?>DC =

(1 + n)?38BC and thus, ?8= ≈ 3

√
?>DC/35 · ?>DC . The case in which as many new errors are

generated as are eliminated by distillation is called the balanced case with n = 1. The

physical error rate per gate in the surface code is about ten times smaller than ?8= , hence

?6 = ?8=/10. The distillation process is performed over multiple rounds until ?>DC falls

below the required error rate. An algorithm that determines the number of rounds, or

layers, 8 and the corresponding distances 38 of the surface codes is given in Algorithm 7 by

Amy et al. in [Amy+17].

31 denotes the distance of the surface code used for the initial Reed-Muller circuit, hence

the top layer of distillation. Each round of distillation takes 10 · 38 surface code cycles. The

number of required logical qubits per layer equals to &
;>6

8
= 16 · 158−1 and the required

physical qubits depend on the respective distance 38 of the layer.

Application Layer In the implementation of the attack circuits, the number of logical )−,

CNOT and single qubit gates as well as the T-depth and width is considered. Let )* de�ne

be the number of logical T-gates and )3
*

the T-depth. The logical T-gates that can be done

in parallel for each layer of depth is denoted as the T-width of the circuit and is computed

as )F
*

= )* /)3* . The total number of T-gates needed to implement Simon’s algorithm,

using the circuit* , is denoted by )(�,* . Thus, )(�,* is the number of T-gates required for

an iteration of Simon’s algorithm. This notation also applies for the depth and width.

Let f38BC de�ne the total number of surface codes cycles needed to perform the distillation

procedure and _(� the required number of iteration for Simon’s algorithm. The total

number of surface code cycles is therefore

f(� = _(� · f38BC ·)3* . (6.3)

Let &
;>6

*
de�ne the needed logical qubits to implement the circuit * and &

;>6

38BC
the total

number of logical qubits required for the magic state distillation process. The number of

logic-qubit-cycles as de�ned in Assumption 4 and [Amy+17; BT21] is then considered to

be the total cost of the attack

2>BC* =

(
&
;>6

*
+&;>6

38BC

)
· f(� . (6.4)

6.3 Overview of a cost analysis

The attacks presented in chapter 5 will be analyzed. All di�erent instances of the corre-

sponding cipher will be considered, as well as the suggested implementations proposed

by the authors. Every cost analysis will be carried out by examining the initial injection

error tolerance of a given quantum state ?8= = {10−4, 10−3, 10−2}, as this is the range that is

reasonably achievable in the current state of art [Fow+12]. For the magic state distillation

only n = 1, hence the balanced case, will be considered in the following cost estimates.

This is the case in which as many new errors are generated as are eliminated by distillation.

Overview The following section describes the process of a cost analysis. The respective

results of the individual attacks are presented in section 6.4, section 6.5 and section 6.6.
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6 Cost analyses

Let * de�ne the scheme being analyzed. Using the notation of the previous section, let

)* de�ne the number of logical T-gates needed in the circuit implementing * , )(�,* the

number of T-gates in one iteration of Simon’s algorithm and _(� the required number of

iteration for Simon’s algorithm. The logical T-gates needed for Simon’s algorithm is then

)(� = _(� ·) 2(� . (6.5)

The exact value of)(� depends on the used variant of Simon’s algorithm and is explained in

more detail in the respective sections. With the just obtained result for the required T-gates,

the target output error rate for the state distillation can be determined as ?>DC = 1/)(�.

The needed layers 8 and distances 38 of the surface codes for ?>DC can be computed using

Algorithm 7 by Amy et al. in [Amy+17, Algorithm 4].

Algorithm 7: Determining the required number of rounds of magic state distilla-

tion and the distances of the concatenated codes [Amy+17, Algorithm 4]

Input: n, ?@, ?6, ?>DC
Output: 3 = [31, . . . , 38]

1 3 ← empty List []

2 ? ← ?>DC
3 8 ← 0

4 repeat
5 8 ← 8 + 1
6 ?8 ← ?

7 Find minimum 38 such that 19238 (100?6)
38+1
2 <

n?8
1+n

8 ? ← 3

√
?8/(35(1 + n))

9 3.0??4=3 (38)
10 until ? > ?8=

The required number of physical qubits per logical qubit is 2 · (3 + 1)2. The total logical

qubits and physical qubits per layer 8 can then be computed as

&
;>6

8
= 16 · 158−1.

&
?ℎ~

8
= &

;>6

8
· 2 · (3 + 1)2 = 16 · 158−1 · 2 · (3 + 1)2.

(6.6)

The most bottom layer of the circuit occupies therefore the most physical qubits in the

surface code. The physical qubits can be reused in the higher layers. Therefore, for a single

distillery, the total required number of physical and logical qubits to get a puri�ed |�!〉
state is that of the most bottom layer. They will be noted as &

?ℎ~

38BC
and &

;>6

38BC
.

The needed surface code cycles per layer of distillation equals to f8
38BC

10 · 38 . The total

number of cycles for the magic state distillation is thus

f38BC =

8∑
9=0

f
9

38BC
. (6.7)
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6.3 Overview of a cost analysis

Reusing qubits for the middle layers allows potentially pipelining the distillation process

to produce multiple magic states in parallel. The ratio

q = &
?ℎ~

38BC
/&?ℎ~

<833;4
(6.8)

describes how many |�!〉 can be produced in parallel in one distillation round f38BC . The

q many magic states can therefore be produced every f38BC · CB2 . The required )(� many

states can be produced by a single magic state distillery in CB8=6;4 = )(�/q · f38BC · CB2 time.

To determine the needed distance for embedding the algorithms into a single surface

code, the amount of Cli�ord gates in a single iteration of Simon’s algorithm has to be taken

into account. In the considered cases, the number of Cli�ord gates consists of CNOT and

single qubit gates. They will be refereed to as �;�#$)
*

, �;
1&�

*
and accordingly �!

�#$) /1&�
(�

and �!
�#$) /1&�
(�

. The total amount of Cli�ord gates is then

�;(� ≈ _(� · (�;�#$)* +�;1&�
*
). (6.9)

The error rate of the circuit should therefore be lower than

?�>DC = 1/�;(� . (6.10)

For this, the smallest 3* is required that satis�es the following inequality [FDJ13]( ?8=

0.0125

) 3* +1
2

< ?�>DC . (6.11)

Here the number of logical qubits depends solely on the implemented circuit* . However,

the number of required physical qubits depends on the distance 3* of the surface code

&
?ℎ~

(�
= &

;>6

*
· 2 · (3* + 1)2. (6.12)

Furthermore, the logical T-gates that can be done in parallel for each layer of depth

are denoted as the T-width of the circuit and are computed as )F
(�

= )(�/)3(� . To keep

up computing the )F
(�

T-gates in the same f38BC amount of cycles multiple magic state

distilleries might be needed. The approximated number can be computed knowing that q

many states can be distilled in f38BC cycles, hence one needs

Φ =
⌈
)F(� /q

⌉
(6.13)

many magic state factories working in parallel. This increases the needed physical qubits

for the distillation part to

&
?ℎ~

C>C0;
= Φ ·&?ℎ~

38BC
. (6.14)

With Assumption 3 the average number of Cli�ord gates per layer of T-depth can then be

de�ned as

'�#$)* ≈ �;�#$)* /(&;>6
*
·)3(� ),

'
1&�

*
≈ �;1&�

*
/(&;>6

*
·)3(� ).

(6.15)
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6 Cost analyses

A CNOT gate takes 2 surface code cycles, the single qubit gates can be evaluated in one

cycle and Hadamard gates need surface code cycles equal to the code distance [Fow+12].

The required surface code cycles to implement the Cli�ord gatesf�; can then be determined

by the ratio of the corresponding Cli�ord gate times the needed surface code cycles. For all

considered attacks, the required surface code cycles to implement the Cli�ord gates f�; are

substantially lower than the surface code cycles needed for the magic state distillation f38BC .

Hence, most of the qubits performing the Cli�ord gates will be idle most of the f38BC cycles.

The production of the magic states is the most limiting step in the process. Therefore, only

the process of providing the logical T-gates with the puri�ed magic states has to be taken

into account when determining f(�, the �nal number of surface code cycles.

f(� = _(� · f38BC ·)3* . (6.16)

The �nal cost estimate is then equal to the total number of logical qubits and the number

of code cycles.

2>BC* =

(
&
;>6

*
+&;>6

38BC

)
· f(� (6.17)

6.4 Key recovery attacks on Elephant

For the attacks presented in section 5.2 the resource estimation for the quantum attack

circuit by Bonnetain in [BJ20] were used and can be found in Table 6.1 below.

Instance Qubits T-gates #CNOT #1QC T-depth Full depth

Elephant[160] 160 1.76 · 105 4.4 · 105 76677 3095 21135

Elephant[176] 176 2.18 · 105 5.5 · 105 95027 3605 27525

Elephant[200] 400 43581 5.61 · 105 70779 343 1.69 · 105

Table 6.1: Quantum circuit costs of the Elephant variants. 1QC denotes the single qubit

Cli�ord operations

6.4.1 Q2 attack on Elephant v2

Setup Using the analysis of the superposition attack in subsection 5.2.2 and Bonnetain’s

results from [Bon20], the approximated cost of the attack can be computed. For this attack

the standard version of Simon’s algorithm will be used. According to Heuristic 1, it is

su�cient to execute = + 3 iterations of Simon’s algorithm to achieve a successful result.

The truncated output of the Elephant function to 64-bits is still su�cient large to apply

Simon’s algorithm, as seen in the results of section 3.4 and Heuristic 4. Therefore a total of

_(� = 3 · (= + 3)

iterations of Simon’s algorithm is needed to successfully recover the hidden period B .

In each iteration of Simon’s algorithm, a single call to the oracle is made. Thus, the T-

gates of a single Simon iteration ((� ) is approximated that of an Elephant call) 2
(�
= ) 2

�;4?ℎ0=C
.
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6.4 Key recovery attacks on Elephant

The process of section 6.3 for a cost estimate are applied here and the results will be

presented below. The �nal cost estimate can be found in Table 6.5.

Magic state distillation The output error rates ?>DC of the di�erent Elephant instances are

presented in Table 6.2.

Instance T-gates ?>DC

Elephant[160] 8.61 · 107 1.16 · 10−8

Elephant[176] 1.17 · 108 8.54 · 10−9

Elephant[200] 2.65 · 107 3.77 · 10−8

Table 6.2: T-gates and the desired error rate of the di�erent Elephant instances.

Using Algorithm 7 to determine the number of layers and corresponding distances of

the surface codes leads to the following results for the respective instances of Elephant in

Table 6.3 below.

Instance ?8= Layer i 38 &
;>6

8
&
?ℎ~

8
f38BC q CB8=6;4

Elephant[160]

10
−4

1 7 16 2048 70 - 1204.9 s

10
−3 1 11 16 4608

170 5 585.24 s

2 6 240 23520

10
−2 1 23 16 18432

360 5 1239.32 s

2 13 240 94080

Elephant[176]

10
−4

1 7 16 2048 70 - 1638.92 s

10
−3 1 11 16 4608

170 5 796.05 s

2 6 240 23520

10
−2 1 24 16 20000

380 5 1779.40 s

2 14 240 108000

Elephant[200]

10
−4

1 7 16 2048 70 - 180.48 s

10
−3 1 11 16 4608

170 5 371.57 s

2 6 240 23520

10
−2 1 22 16 16928

350 5 371.57 s

2 13 240 94080

Table 6.3: Resource costs for the magic state distilleries.

Application Layer The number of Cli�ord gates is responsible for the distance of the

surface code to implement the algorithm on the application layer. For all instances of

Elephant , the most limiting step in the process is the production of the magic states. The

results of the application layer can be found in Table 6.4 below.
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6 Cost analyses

Instance ?8= 3�;4?ℎ0=C &
?ℎ~

(�
)F
(�

Φ &
?ℎ~

C>C0;
f�;

Elephant[160]

10
−4

8 2.59 · 104
56

56 1.15 · 105
210

−3
15 8.19 · 104 12 2.82 · 105

10
−2

173 9.69 · 106 12 1.13 · 106

Elephant[176]

10
−4

8 2.85 · 104
60

60 1.23 · 105
210

−3
15 9.01 · 104 12 2.82 · 105

10
−2

176 1.10 · 107 12 1.30 · 106

Elephant[200]

10
−4

8 6.48 · 104
127

127 2.66 · 105
910

−3
15 2.05 · 105 26 6.12 · 105

10
−2

177 2.53 · 107 26 2.45 · 106

Table 6.4: Resource costs for the application layer.

Total cost estimates Taking all the results into account lead to the following Table 6.5

showing the �nal cost estimates.

Elephant[160] Elephant[176] Elephant[200]

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

S
i
m

o
n

T-gates 8.61 · 107 1.17 · 108 2.65 · 107
T-depth 1.51 · 106 1.94 · 106 2.09 · 105
Log. QB 160 176 400

Distance 8 15 173 8 15 176 8 15 177

Phys. QB 2.59 · 104 8.19 · 104 9.69 · 106 2.85 · 104 9.01 · 104 1.10 · 107 6.48 · 104 2.05 · 105 2.53 · 107

D
i
s
t
i
l
l
e
r
i
e
s

Log. QB 16 240 240 16 240 240 16 240 240

#Distill. 56 12 12 60 12 12 127 26 26

Distance(s) [7] [11, 6] [23, 13] [7] [11, 6] [24, 14] [7] [11] [22, 13]

Phys. QB 1.15 · 105 2.82 · 105 1.13 · 106 1.23 · 105 2.82 · 105 1.30 · 106 2.66 · 105 6.12 · 105 2.45 · 106

T
o

t
a
l

Log. QB 1056 3040 3040 1136 3056 3056 2432 6640 6640

code cycles 1.06 · 108 2.57 · 108 5.45 · 108 1.36 · 108 3.29 · 108 7.36 · 108 1.46 · 107 3.55 · 107 7.31 · 107
Total time in s 21.19 51.46 108.97 27.1 65.82 147.13 2.94 7.1 14.62

Total cost 1.12 · 1011 7.82 · 1011 1.66 · 1012 1.54 · 1011 1.01 · 1012 2.25 · 1012 3.56 · 1010 2.36 · 1011 4.85 · 1011

Table 6.5: Final cost estimates of the di�erent Elephant instances using Simon’s algorithm.

6.4.2 Q1 attack on Elephant v2

Setup Combining the analysis of the superposition attack in subsection 5.2.2 and Bon-

netain’s results from [Bon20], the approximated cost of the attack can be computed. Using

Heuristic 3 results in a total of

_(� =
c

4 arcsin

√
2
−:

required iterations of Simon’s algorithm with = + : + U + 4 queries each. The values U and

: are chosen as : = =/3 and U = 7 to ensure a success probability of more than 99%. The

cost estimate proceeds in the same way as seen in the previous sections. The �nal results

are displayed in Table 6.9.
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6.4 Key recovery attacks on Elephant

Magic state distillation The target output error rates ?>DC of the di�erent Elephant in-

stances are presented in Table 6.6 below.

Instance T-gates ?>DC

Elephant[160] 9.91 · 1015 1.01 · 10−16

Elephant[176] 8.54 · 1016 1.17 · 10−17

Elephant[200] 3.09 · 1017 3.24 · 10−18

Table 6.6: T-gates and the desired error rate of the di�erent Elephant instances.

Using Algorithm 7 to determine the number of layers and corresponding distances of

the surface codes leads to the following results for the respective instances of Elephant in

Table 6.7 below.

Instance ?8= Layer i 38 &
;>6

8
&
?ℎ~

8
f38BC q CB8=6;4

Elephant[160]

10
−4 1 13 16 6272

190 3 3977.9 years

2 6 240 23520

10
−3 1 19 16 12800

280 6 5862.1 years

2 9 240 48000

10
−2

1 40 16 53792

710 6 7432.2 years2 19 240 1.92 · 105

3 12 3600 1.22 · 106

Elephant[176]

10
−4 1 13 16 6272

190 3 3.43 · 104 years

2 6 240 23520

10
−3 1 20 16 14112

290 3 5.23 · 104 years

2 9 240 48000

10
−2

1 42 16 59168

740 5 8.01 · 104 years2 20 240 2.12 · 105

3 12 3600 1.22 · 106

Elephant[200]

10
−4 1 14 16 7200

200 3 1.30 · 105 years

2 6 240 23520

10
−3 1 21 16 15488

300 3 1.96 · 105 years

2 9 240 48000

10
−2

1 43 16 61952

750 5 2.93 · 105 years2 20 240 2.12 · 105

3 12 3600 1.22 · 106

Table 6.7: Resource costs for the magic state distilleries.

Application Layer The number of Cli�ord gates is responsible for the distance of the

surface code to implement the algorithm on the application layer. For all instances of

Elephant , the most limiting step in the process is the production of the magic states. The

results of the application layer can be found in Table 6.8 below.
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Instance ?8= 3�;4?ℎ0=C &
?ℎ~

(�
)F
(�

Φ &
?ℎ~

C>C0;
f�;

Elephant[160]

10
−4

15 8.19 · 104
56

19 4.47 · 105
210

−3
30 3.08 · 105 19 9.12 · 105

10
−2

339 3.70 · 107 10 1.22 · 107

Elephant[176]

10
−4

16 1.02 · 105
60

20 4.70 · 105
210

−3
31 3.60 · 105 20 9.60 · 105

10
−2

359 4.56 · 107 12 1.46 · 107

Elephant[200]

10
−4

17 2.59 · 105
127

43 1.01 · 106
910

−3
34 9.80 · 105 43 2.06 · 106

10
−2

384 1.19 · 108 26 3.16 · 107

Table 6.8: Resource costs for the application layer.

Total cost estimates The following Table 6.9 displays the �nal cost estimates of the Q1

superposition attack on Elephant v2.

Elephant[160] Elephant[176] Elephant[200]

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

S
i
m

o
n

T-gates 9.91 · 1015 8.54 · 1016 3.09 · 1017
T-depth 1.74 · 1014 1.41 · 1015 2.43 · 1015
Log. QB 160 176 400

Distance 15 30 339 16 31 359 17 34 384

Phys. QB 8.19 · 104 3.08 · 105 3.70 · 107 1.02 · 105 3.60 · 105 4.56 · 107 2.59 · 105 9.80 · 105 1.19 · 108

D
i
s
t
i
l
l
e
r
i
e
s

Log. QB 240 240 3600 240 240 3600 240 240 3600

#Distill. 19 19 10 20 20 12 43 43 26

Distance(s) [13, 6] [19, 9] [40, 19, 12] [13, 6] [20, 9] [42, 20, 12] [14, 6] [21, 9] [43, 20, 12]

Phys. QB 4.47 · 105 9.12 · 105 1.22 · 107 4.70 · 105 9.60 · 105 1.46 · 107 1.01 · 106 2.06 · 106 3.16 · 107

T
o

t
a
l

Log. QB 4720 4720 36160 4976 4976 43376 10720 10720 94000

code cycles 3.31 · 1016 4.88 · 1016 1.24 · 1017 2.68 · 1017 4.09 · 1017 1.04 · 1018 4.86 · 1017 7.29 · 1017 1.82 · 1018
Total time in years 209.9 309.3 784.2 1699.6 2594.2 6619.6 3078.4 4617.5 1.15 · 104

Total cost 1.56 · 1020 2.30 · 1020 4.47 · 1021 1.33 · 1021 2.04 · 1021 4.53 · 1022 5.21 · 1021 7.81 · 1021 1.71 · 1023

Table 6.9: Final cost estimates of the di�erent Elephant instances using o�ine Simon’s

algorithm.

6.4.3 Q2 attack on Elephant v1.1

Setup Using the results of subsection 5.2.3 and Heuristic 2 one can use 5 (0) == 5 (B′),
where B′ is the potential guess for the correct period B , as a perfect test. The attack succeeds

by making approximate

_(� =
c

4 arcsin

√
2
−:

iterations with = +U/2 queries each. The variables will be chosen as : = (= −<), where

< = 96 as discussed in subsection 5.2.3 and U = 7 to guarantee a success probability of

99%. The �nal results of the attack can be seen in Table 6.13.
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6.4 Key recovery attacks on Elephant

Magic state distillation The output error rates for the di�erent Elephant instances are

listed in Table 6.10 below

Instance T-gates ?>DC

Elephant[160] 2.91 · 1017 3.43 · 10−18

Elephant[176] 1.01 · 1020 9.86 · 10−21

Elephant[200] 9.41 · 1022 1.06 · 10−23

Table 6.10: T-gates and the desired error rate of the di�erent Elephant instances.

Using the respective values for ?>DC as input for Algorithm 7, the following results for

the number of layers, distances of the corresponding surface codes, number of logical and

physical qubits of the magic state distillation are obtained.

Instance ?8= Layer i 38 &
;>6

8
&
?ℎ~

8
f38BC q CB8=6;4

Elephant[160]

10
−4 1 14 16 7200

200 3 1.23 · 105 years

2 6 240 23520

10
−3 1 21 16 15488

300 3 1.85 · 105 years

2 9 240 48000

10
−2 1 43 16 61952

750 5 2.77 · 105 years2 20 240 2.11 · 105

3 12 3600 1.22 · 106

Elephant[176]

10
−4 1 15 16 8192

220 3 4.71 · 107 years

2 7 240 30720

10
−3

1 23 16 18432

390 6 4.18 · 107 years2 10 240 58080

3 6 3600 3.53 · 105

10
−2 1 48 16 76832

830 5 1.07 · 108 years2 22 240 2.54 · 105

3 13 3600 1.41 · 106

Elephant[200]

10
−4 1 17 16 10368

240 2 7.16 · 1010 years

2 7 240 30720

10
−3 1 26 16 23328

430 5

5.13 · 1010 years

2 11 240 69120

3 6 3600 3.53 · 105

10
−2 1 54 16 96800

920 5 1.10 · 1011 years2 24 240 3.00 · 105

3 14 3600 1.62 · 106

Table 6.11: Resource costs for the magic state distilleries.
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6 Cost analyses

Application Layer The distance of the surface code to implement the algorithm on the

application layer can be obtained by considering the number of required Cli�ord gates.

The results for the application layer can be found in Table 6.12.

Instance ?8= 3�;4?ℎ0=C &
?ℎ~

(�
)F
(�

Φ &
?ℎ~

C>C0;
f�;

Elephant[160]

10
−4

17 1.04 · 105
56

19 4.47 · 105
210

−3
32 3.48 · 105 19 9.12 · 105

10
−2

370 4.40 · 107 12 1.46 · 107

Elephant[176]

10
−4

19 1.41 · 105
60

20 6.14 · 105
210

−3
37 5.08 · 105 10 3.53 · 106

10
−2

422 6.30 · 107 12 1.69 · 107

Elephant[200]

10
−4

23 4.61 · 105
127

64 1.97 · 106
910

−3
44 1.62 · 106 26 9.17 · 106

10
−2

498 1.99 · 108 26 4.21 · 107

Table 6.12: Resource costs for the application layer.

Total cost estimates Using these results one can estimate the �nal cost of each attack.

They can be found in Table 6.13.

Elephant[160] Elephant[176] Elephant[200]

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

S
i
m

o
n

T-gates 2.91 · 1017 1.01 · 1020 9.41 · 1022
T-depth 5.12 · 1015 1.68 · 1018 7.41 · 1020
Log. QB 160 176 400

Distance 17 32 370 19 37 422 23 44 498

Phys. QB 1.04 · 105 3.48 · 105 4.40 · 107 1.41 · 105 5.08 · 105 6.30 · 107 4.61 · 105 1.62 · 106 1.99 · 108

D
i
s
t
i
l
l
e
r
i
e
s

Log. QB 240 240 3600 240 3600 3600 240 3600 3600

#Distill. 19 19 12 20 10 12 64 26 26

Distance(s) [14, 6] [21, 9] [43, 20, 12] [15, 7] [23, 10, 6] [48, 22, 13] [17, 7] [26, 11, 6] [54, 24, 14]

Phys. QB 4.47 · 105 9.12 · 105 1.46 · 107 6.14 · 105 3.53 · 106 1.69 · 107 1.97 · 106 9.17 · 106 4.21 · 107

T
o

t
a
l

Log. QB 4720 4720 43360 4976 36176 43376 15760 94000 94000

code cycles 1.02 · 1018 1.54 · 1018 3.84 · 1018 3.69 · 1020 6.54 · 1020 1.39 · 1021 1.78 · 1023 3.18 · 1023 6.81 · 1023
Total time in years 6490.9 9736.3 2.43 · 104 2.34 · 106 4.14 · 106 8.82 · 106 1.13 · 109 2.02 · 109 4.32 · 109

Total cost 4.83 · 1021 7.25 · 1021 1.67 · 1023 1.84 · 1024 2.37 · 1025 6.04 · 1025 2.80 · 1027 2.99 · 1028 6.41 · 1028

Table 6.13: Final cost estimates of the di�erent Elephant instances using the Grover-meets-

Simon algorithm.

6.5 Attack on LightMAC

Setup The superposition attack on LightMAC by Haas in [Haa20] uses the basic version

of Simon’s algorithm. Therefore, using the Heuristic 1 and the results of subsection 5.3.2

the cost of the attack can be estimated. The underlying block cipher used by LightMAC will

be AES, the basic version of Simon’s algorithm will be applied, and the output is truncated

hence the total number of iterations results in

_(� = 3 · (2 · (= + 3))
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6.5 Attack on LightMAC

.

The order of the attack is exactly the same as presented in section 6.3. The used quantum

circuit costs for AES were presented by Jaques et al. in [Jaq+20].

Quantum Circuit Qubits T-gates #CNOT #1QC Gates T-depth Full depth

AES-128 [Jaq+20] 1785 54400 291150 83116 120 2827

Table 6.14: Quantum circuit costs of AES-128.

Remark While the T-depth of the AES block cipher is given as 120, the authors of [Jaq+20]

note that the anticipated T-depth would be higher. Considering n rounds, the expected

T-depth would be 2= times the T-depth of the S-box. They assume that the lower T-depth

comes from the fact that the&# compiler found nontrivial parallelization between elements

of the S-box and the surrounding circuit.

The used values for T-, CNOT-, 1QC-gates and T-depth will be doubled for the analysis

as the block cipher is called in two instances using the function 5 provided in section 5.3.

This leads to the following results

Instance T-gates ?>DC

LightMAC[AES] 8.55 · 107 1.17 · 10−8

Table 6.15: T-gates and the desired error rate of the LightMAC instance using AES as its

internal block cipher.

Magic state distillation The input for Algorithm 7 are ?8=, ?6 = ?8=/10, n = 1 and, ?>DC .

The results for the magic state process are the following.

Instance ?8= Layer i 38 &
;>6

8
&
?ℎ~

8
f38BC q CB8=6;4

LightMAC[AES]

10
−4

1 7 16 2048 70 - 1197.24 s

10
−3 1 11 16 4608

170 5 581.51 s

2 6 240 23520

10
−2 1 23 16 18432

360 5 1231.44 s

2 13 240 94080

Table 6.16: Resource costs for the magic state distilleries in the LightMAC attack.

Comparing the overhead produced by Cli�ord gates per layer of T-depth to the magic

state distillery one will be skipped in the following analysis, as it will not outweigh the

cost of producing the magic states.

Application Layer This leads to the following results, using the same method of analysis

as was used in the Elephant cost estimate. The width of the circuit is &
;>6

!86ℎC"��
= 1785.
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6 Cost analyses

Instance ?8= 3!86ℎC"�� &
?ℎ~

(�
)F
(�

Φ &
?ℎ~

C>C0;

LightMAC

10
−4

8 2.89 · 105
453

453 9.28 · 105

10
−3

15 9.14 · 105 91 2.14 · 106

10
−2

180 1.17 · 108 91 8.56 · 106

Table 6.17: Resource costs for the application layer in the LightMAC attack.

Total cost estimates For the total costs, a single implementation of the LightMAC attack is

�rst considered, and then the expected costs with respect to the parameter a are estimated.

LightMAC

10
−4

10
−3

10
−2

S
i
m

o
n

T-gates 8.55 · 107
T-depth 1.89 · 105
Log. QB 1785

Distance 8 15 180

Phys. QB 2.89 · 105 9.14 · 105 1.17 · 108

D
i
s
t
i
l
l
e
r
i
e
s

Log. QB 16 240 240

#Distill. 453 91 91

Distance(s) [7] [11, 6] [23, 13]

Phys. QB 9.28 · 105 2.14 · 106 8.56 · 106

T
o

t
a
l

Log. QB 9033 23625 23625

code cycles 1.32 · 107 3.21 · 107 6.79 · 107
Total time in s 2.64 6.41 13.58

Total cost 1.19 · 1011 7.58 · 1010 1.60 · 1012

Table 6.18: Final cost estimates of the LightMAC instance using AES as its internal block

cipher.

6.6 Tag forgery attack on ESTATE

The superposition attack on ESTATE by Haas in [Haa20] uses the basic version of Simon’s

algorithm. Applying Heuristic 1 for the number of repetitions and the results of subsec-

tion 5.4.2 the cost of the attack can be estimated. The cost analysis will be done considering

the block ciphers AES-128 and GIFT-128.

Quantum Circuit Qubits T-gates #CNOT #1QC Gates T-depth Full depth

GIFT-128[BCS20] 256 35840 87040 18080 160 1320

AES-128 [Jaq+20] 1785 54400 291150 83116 120 2827

Table 6.19: Quantum circuit costs of GIFT and AES.
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6.6 Tag forgery attack on ESTATE

Setup As stated in the analysis of the attack in subsection 5.4.2 at most 2= + 2 calls of the

oracles have to be made. Since the basic version of Simon’s algorithm is used Heuristic 1

can be applied and the total number of iterations is therefore

_(� = 2 · (= + 3) + 2

Two AES-128 or GIFT-128 calls have to be made in each oracle query. For this cost

estimation it is assumed, that the pre�x of the forged message is of length 1 and only one

additional block cipher invocation has therefore to be made. This results in a total of 3

block cipher calls per oracle query. This leads to the following cost estimation. The �nal

results can be found in Table 6.23 at the end of this section.

Magic state distillation The output error rates ?>DC are shown in Table 6.20.

Instance T-gates ?>DC

ESTATE[AES] 4.28 · 107 2.34 · 10−8

ESTATE[GIFT] 2.28 · 107 3.55 · 10−8

Table 6.20: T-gates and the desired error rate of AES and GIFT in the ESTATE attack.

Remark A stated in the section 6.5 the T-depth of the AES block cipher is given as 120,

the authors of [Jaq+20] note that the anticipated T-depth would be higher. Considering n

rounds, the expected T-depth would be 2= times the T-depth of the S-box. They assume that

the lower T-depth comes from the fact that the&# compiler found nontrivial parallelization

between elements of the S-box and the surrounding circuit.

First the Algorithm 7 is used to determine the number of layers and corresponding

distances of the surface codes. This leads to the following results shown in Table 6.21

below.

Instance ?8= Layer i 38 &
;>6

8
&
?ℎ~

8
f38BC q CB8=6;4

ESTATE[AES]

10
−4

1 7 16 2048 70 - 598.62 s

10
−3 1 11 16 4608

170 5 290.76 s

2 6 240 23520

10
−2 1 23 16 18432

360 5 615.72 s

2 13 240 94080

ESTATE[GIFT]

10
−4

1 7 16 2048 70 - 394.38 s

10
−3 1 11 16 4608

170 5 191.56 s

2 6 240 23520

10
−2 1 22 16 16928

350 5 394.38 s

2 13 240 94080

Table 6.21: Resource costs for the magic state distilleries.
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6 Cost analyses

Application Layer The number of Cli�ord gates de�nes the distance of the surface code

of the application layer. For all instances, the most limiting step in the process is the

production of the magic states. The results for the attacks on ESTATE can be found in

Table 6.4. The width of the circuit is &
;>6

!86ℎC"��
= 1785 when the AES-128 block cipher is

being used and &
;>6

!86ℎC"��
= 256 when using the GIFT-128 block cipher.

Instance ?8= 3�()�)� &
?ℎ~

(�
)F
(�

Φ &
?ℎ~

C>C0;
f�;

ESTATE[AES]

10
−4

8 2.89 · 105
453

453 9.28 · 105
310

−3
15 9.14 · 105 91 2.14 · 106

10
−2

174 1.09 · 108 91 8.56 · 106

ESTATE[GIFT]

10
−4

7 3.28 · 104
224

224 4.59 · 105
510

−3
14 1.15 · 105 45 1.06 · 106

10
−2

163 1.38 · 107 45 4.23 · 106

Table 6.22: Resource costs for the application layer.

Total cost estimates Taking all the results into account lead to the following Table 6.5,

showing the �nal cost estimates.

ESTATE[AES] ESTATE[GIFT]

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

S
i
m

o
n

T-gates 4.28 · 107 2.28 · 107
T-depth 9.43 · 104 1.26 · 105
Log. QB 1785 256

Distance 8 15 174 7 14 163

Phys. QB 2.89 · 105 9.14 · 105 1.09 · 108 3.28 · 104 1.15 · 105 1.38 · 107

D
i
s
t
i
l
l
e
r
i
e
s

Log. QB 16 240 240 16 240 240

#Distill. 453 91 91 224 45 45

Distance(s) [7] [11, 6] [23, 13] [7] [11, 6] [22, 13]

Phys. QB 9.28 · 105 2.14 · 106 8.56 · 106 4.59 · 105 1.06 · 106 4.23 · 106

T
o

t
a
l

Log. QB 9033 23625 23625 3840 11056 11056

code cycles 6.60 · 106 1.60 · 107 3.40 · 107 8.80 · 106 2.14 · 107 4.40 · 107
Total time in s 1.32 3.21 6.79 1.76 4.28 8.80

Total cost 5.96 · 1010 3.79 · 1011 8.02 · 1011 3.38 · 1010 2.36 · 1011 4.87 · 1011

Table 6.23: Final cost estimates of the ESTATE attack using Simon’s algorithm.
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7 Conclusion

We proposed multiple attacks on lightweight cryptographic primitives using di�erent

variants of Simon’s algorithm. Theses included three new quantum key recovery attacks

on the NIST Lightweight Cryptography Standardization Process �nalist Elephant as a

result of this thesis. We provided analyses of truncated 2-to-1 functions and concluded

that Simon’s algorithm is still applicable. This result was applicable on already existing

superposition attacks providing an exponential speed-up.

We then estimated the required resources and time of all presented quantum superposi-

tion attacks using a fault-tolerant surface code based quantum computer. These results

are not optimized and are therefore no lower bound. Nevertheless, they showed that the

additional resource cost overhead is immense when quantum error correcting code is

considered. This shows the importance of e�cient fault-tolerant quantum error correcting

code when considering large scale quantum computations.

Another important conclusion of this thesis is the di�erence between an adversary

that is able to query the primitives in superposition and one that only performs classical

queries. Even when using the best known attacks targeting the same primitive will still

di�er in the order of 10
10

logical-qubit-cycles.

The given cost estimates were considered for realistic and optimistic per-gate error

rates from 10
−3

to 10
−5

, highlighting the di�erences between the resulting costs.
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