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Abstract
The threat posed by quantum computers against public-key schemes has been known
for a long time. However symmetric-key schemes were believed to be relatively safe
against quantum adversaries. Recent works have shown the existence of e�cient quantum
attacks against a large number of message authentication codes (MAC) in spite of their
security proof in the classical setting. In response to the new quantum cryptanalysis e�orts,
research has been conducted on the security proofs in the quantum setting. Some existing
schemes have been proven secure in the quantum setting. In addition, new algorithms
have been designed to meet the requirements of quantum security.

This master thesis examines the use of nonces in the design of quantum-secure protocols.
In a previous work, a generic transformation that makes a classically-secure MAC scheme
quantum-secure was introduced. We show that this transform is not secure in general.
However, we then argue that the transform does its intended purpose for many speci�c
cases. To illustrate this, we apply it to the CBC-MAC scheme and prove its security. We
do this by directly proving its existential unforgeability under quantum chosen message
attack security. This allows us to avoid technical complications, and produces a short
security proof in the standard model. Additionally, we formalize some design strategies
for quantum secure protocols.
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Zusammenfassung
Die Gefahr von Quantencomputer gegen asymmetrische Kryptographie ist schon lange be-
kannt. Jedoch wurden die Auswirkungen auf die symmetrische Kryptographie als weniger
einschlägig betrachtet. In den letzten Jahren sind mehrere e�ziente Quantenangri�e gegen
Nachrichtenauthenti�zierungscode (message authentication code, MAC) entdeckt worden.
Aus diesem Grund wurde beweisbare Sicherheit dieser Primitive im Quantenmodell er-
forscht. Einige existierende Algorithmen wurden als quantensicher bewiesen. Darüber
hinaus wurden neuen Protokolle entworfen welche auch Quantenangri�en widerstehen
können.
In dieser Masterarbeit untersuchen wir den Einsatz von Noncen in der Konstruktion

von quantensicheren Protokollen. In diesem Sinne hat eine vorherige Arbeit eine allge-
meine Transformation für MACs eingeführt. Wir zeigen, dass diese Transformation im
Allgemeinen nicht quantensicher ist. Dennoch behaupten wir, dass die Transformation in
vielen spezi�schen Fällen wirksam ist. Wir behandeln denn Fall von der CBC-MAC und
zeigen das die transformierte Version quantensicher ist. Zudem formalisieren wir einige
Entwurfstrategien für quantensichere Protokolle.
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1. Introduction

Shor’s 1994 seminal paper [Sho97] proved to the cryptography world that quantum com-
puters would break the most widely used public-key protocols, such as RSA [RSA78] and
the Di�e-Hellman key exchange [DH06]. To our knowledge, no large-scale quantum
computers capable of executing such an attack currently exists. Still, the development and
standardisation of new protocols is a long enterprise. The quantum-secure algorithms
that will be needed in the future must be designed now. This led the rise of the �eld of
post-quantum cryptography in recent years. In 2016, the National Institute for Standards
and Technology (NIST) started the process of �nding a post-quantum secure standard for
public-key encryption as well as digital signatures algorithms.

Noticeably, this e�ort did not include any work on symmetric-key protocols. Indeed, for
a long time no better algorithm than the Grover search algorithm [Gro96] was known for
such schemes. As this only provided a quadratic speed-up in the exhaustive key-search,
it was believed that a simple re-scaling of the security parameters would be su�cient
for these algorithms. In 2010 Kuwakado and Hidenori [KM10] presented a new kind of
quantum attack on symmetric-key algorithms. In addition to local quantum computations,
their attack assumes access to an encryption oracle that accepts queries in quantum
superposition. In this stronger model, their attack breaks the 3-round Feistel cipher in
polynomial time. Since then, many similar superposition attacks have been found, even
on schemes that were proven secure in the classical setting.

On the other hand, some schemes have been proven secure in this model. Towards this,
new proving techniques had to be developed, since many classical theoretical tools do
not translate well to the quantum setting. This opens up the question of which current
protocols are already quantum secure and motivates the design of new classical quantum-
secure schemes. In this line of thought, Haas proposed a general transform that takes a
message authentication code (MAC) and makes it quantum secure using nonces [Haa20].
The idea being that with a minor design change, it would be possible to make any MAC
scheme quantum secure in exchange for a small execution-time increase.

This master thesis examines the use of nonces in the design of quantum-secure protocols.
More generally, it aims at identifying the design strategies that make protocols quantum
secure. We focus our approach on lightweight protocols based on quantum secure block
ciphers. By de�nition, these are schemes that have a sparing structure for e�ciency reasons.
They often use bitwise operation that can be e�ciently implemented on low-resource
devices.
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Figure 1.1.: CBC-MAC
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Figure 1.2.: Transformed CBC-MAC scheme. The gray part highlights the transformation.

1.1. Contributions
We start by considering Haas’ transform. It essentially XORs an encrypted nonce on the
�rst message block before passing it to the MAC algorithm. We show that the transform
is not quantum-secure in general, even when the MAC is based on a quantum-secure
block cipher. Indeed, we are able to build a pathological construction and give an e�cient
quantum attack against it.

We then argue that the transform works in speci�c cases. We show this by applying it to
the CBC-MAC, depicted in Figure 1.1. We prove the quantum security of the transformed
version, shown in Figure 1.2.

Main Theorem (Informal). If 𝐸 is a quantum-secure pseudorandom permutation, then the
transformed CBC-MAC is a quantum-secure MAC against nonce-respecting adversaries.

The existentially unforgeable under quantum chosen-message attack (EUF-qCMA) security
notion requires a successful adversary to output 𝑞 + 1 distinct classical message-tag pairs.
Hence, we chose to directly prove the EUF-qCMA security of the scheme instead of �rst
proving its pseudorandomness as is usually the case in the classical setting proofs. This
allows us to work on a set of classical values for our reduction. This leads to a compact
proof that does not require highly technical techniques such as Zhandry’s compressed
oracle [Zha18].
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1.2. RelatedWorks
After their �rst paper on the quantum attack against the 3-round Feistel [KM10], Kuwakado
and Hidenori published in 2012 a superposition attack on the Evan-Mansour block cipher
[KM12]. In 2016, Kaplan et al. [Kap+16] give attacks on the LRW tweakable block cipher,
block cipher based authentication protocols such as the OCB, GCM, or the CBC-MAC, as
well as multiple CAESAR candidates. Furthermore, they show that slide attacks obtain an
exponential speed-up in the quantum-setting.
In order to start proving the security of schemes, the appropriate attacker models had

to be formalized �rst. Towards this, Boneh and Zhandry de�ne the indistinguishable
under quantum chosen-message attacks (IND-qCPA) model in [BZ13b]. This is meant to be
a quantum equivalent to the indistinguishable under chosen-message attacks (IND-CPA)
security de�nition for encryption schemes. When de�ning security models, a �ne balance
has to be met between giving a strong model that will indeed guarantee good security in
practice, and a model so strong that no scheme could possibly achieve it. Bhaumik et al.
further discuss this model in [Bha+20], and give an impossibility result for an alternative,
stronger de�nition. In 2013, Boneh and Zhandry de�ne the EUF-qCMA security for MACs
in [BZ13a]. This security notion has been widely used in the subsequent papers, such
as the one by Kaplan et al. we mentioned above. However, in 2017 Garg et al. propose
a di�erent model in [GYZ17]. They show that certain MACs that are secure in Boneh
and Zhandry’s model su�er from unwanted attacks. For the same reasons, a third model
has been published in 2018 by Alagic et al. [Ala+20]. However, Boneh and Zhandry’s
original EUF-qCMA de�nition remains the most widely used in spite of its �aws. Indeed,
it is technically less demanding to prove security in this model.

Many of the reduction technique used in the classical setting cannot be used directly in
the quantum setting. In particular, we cannot easily record quantum queries, as this would
mean measuring them which perturbs the adversary’s state. Zhandry’s groundbreaking
compressed oracle technique [Zha18] is meant to bridge this gap. It allows to record the
queries to a random oracle under certain conditions. When using this tool, we can use
lazy-sampling ideas for the quantum random oracle. This means that some classical
intuition can be applied to quantum security proofs. This technique has given rise to many
subsequent works. Hosoyamada and Iwata have given an alternative formalization of the
technique called recording standard oracle with error (RstOE). The compressed oracle is a
highly technical tool, the RstOE is designed to be simpler to use. The "Bad-�ag" analysis is
another common classical technique that cannot be used direclty in the quantum setting.
In [Unr15], Unruh presents the one-way to hiding lemma. This is the quantum equivalent
to the classical "Bad-�ag" analysis. Czajkowski et al. show how to apply the compressed
oracle technique in conjunction with the one-way to hiding lemma [Cza+19]. They use
this to de�ne a game-playing proof framework.

Alagic and Russel have presented a generic transformation against superposition attacks
[AR17]. Their idea is to replace additions in (Z/2)𝑛 , i.e the XOR, with an operation over
alternative �nite groups such as (Z/2𝑛). Indeed they observe that the group (Z/2)𝑛 has
too much structure, which is exploited in the attacks through Simon’s algorithm. They
applied their transformation on the Evan-Mansour construction and the CBC-MAC. They
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are then able to give a reduction from the security of these schemes to the general hidden
shift problem, which is considered a good quantum hardness assumption. A follow-up
to this work has been published by Bonnetain and Naya-Plasencia in 2018 [BN18]. They
claim that while Alagic and Russel’s construction does indeed increase the security of
the schemes, it comes at the price of e�ciency. They show that the construction requires
a signi�cant increase in the size of the internal states of the schemes. This makes the
transformation ill suited in resource-constrained settings.

1.3. Structure of the Work
Chapter 2 describes notation and gives the basic de�nitions used in the rest of the paper.
Chapter 3 contains a discussion on the issues that arise when conducting security proofs
in the Q2 setting. We then address the quantum security of the generic transform by Haas
in Chapter 4 and prove the quantum-security of the transformed CBC-MAC. Finally, in
Chapter 5 we relate the security of the Haas transformation with earlier security proofs in
the Q2 setting to give some heuristics on designing quantum-secure protocols.
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Figure 1.3.: Theorem Dependencies Overview
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2. Preliminaries
We start this chapter by de�ning the notations used in the rest of the work. We then give
the de�nitions for the primitives and security notions that we will encounter. Furthermore,
we give a formal description of the quantum-setting. In particular, we describe the quantum
oracle access. For the basics of quantum computation, we refer the reader to [NC00].

Notations. In the whole thesis, we de�ne 𝑛 ∈ N to be the security parameter. We
write in uppercase cursive letters K,X,Y to denote sets. We usually use families of sets
parametrized by the security parameter such as (X𝑛)𝑛 , but we will omit explicitly writing
it when it is clear from context. It is then understood that X stands for (X𝑛)𝑛 .

We say that a function 𝑓 is polynomially-bounded if and only if there exists a polynomial
function 𝑝 and an 𝑥∗ ∈ R, such that for every |𝑥 | ≥ |𝑥∗ |, we have |𝑓 (𝑥) | ≤ |𝑝 (𝑥) |. We
write poly(𝑛) to denote an unspeci�ed pollynomially-bounded function. We say that a
function 𝑔 is negligible if and only if, for any polynomial 𝑝 , there exists an 𝑥∗ ∈ R, such that
for every |𝑥 | ≥ |𝑥∗ |, we have |𝑔(𝑥) | ≤

�
1

𝑝 (𝑥)
�
. We write negl(𝑛) to denote an unspeci�ed

negligible function in the security parameter. We sometimes omit the security parameter
𝑛.

We use cursive letters A,B or D to denote algorithms. We sometimes call them
adversary or distinguisher. They can be de�ned to be deterministic polynomial-time (DPT),
probabilistic polynomial-time (PPT) or quantum polynomial-time (QPT). For an algorithm
A, and an oracle O, we write 𝛼 ← AO the event that A runs relative to the oracle O and
outputs 𝛼 . If the adversary has quantum access to its oracle, we denote that by putting the
oracle in a ket, e.g 𝛼 ← A|O� . The integer 𝑞 will always denote the numbers of queries
an algorithm A makes to an oracle O. If not speci�ed otherwise, 𝑞 will be a polynomial
number in 𝑛.

We use the letter 𝐸 to denote a block cipher. Let 𝑘 ∈ K be an element of the key space of
𝐸. We may write 𝐸 (𝑘, ·) or 𝐸𝑘 (·) interchangeably to denote a call to 𝐸 with key 𝑘 . Likewise,
for any keyed algorithm, e.g a signing algorithm Sign, we may write interchangeably
Sign(𝑘, ·) or Sign𝑘 (·). If an algorithm 𝑆 takes a nonce 𝑁 as an additional input, we may
write 𝑆𝑁 (·) or 𝑆 (·;𝑁 ).

2.1. Security Definitions
This section de�nes the primitives we use in this paper. We give their classical security
de�nition for context, before giving their quantum security de�nitions in Section 2.2.3.

Oracle distinguishing advantage For two oracles O1 and O2, we de�ne the distin-
guishing advantage of an oracle aided algorithm A by,

7



2. Preliminaries

AdvdistO1,O2
(A) �

���Pr �𝑏 ← AO1 : 𝑏 = 1
�
− Pr

�
𝑏 ← AO2 : 𝑏 = 1

� ���
where the probabilities are over the randomness of the oracles O1, O2 and adversary A.

If for any polynomial-time algorithm A, the distinguishing advantage AdvdistO1,O2
(A) is

negligible in the security parameter, we call O1 and O2 computationally indistinguishable.
If for any unbounded algorithm A, the distinguishing advantage AdvdistO1,O2

(A) is negli-
gible in the security parameter, we call O1 and O2 statistically or information theoretically
indistinguishable.

The following de�nitions are based on [Gag17, Section 3.1]. A (family of) pseudoran-
dom functions (PRF) is a family indexed by 𝑘 ∈ K of e�ciently computable functions
𝐹 : K × X → Y such that, without knowledge of 𝑘 , it is classically computationally
indistinguishable from the collection of all function from X to Y (denoted by YX). We
write 𝐹𝑘 : X → Y to denote the member of the family indexed by 𝑘 .

De�nition 2.1.1 (Pseudorandom Function (PRF)). A (family of) pseudorandom functions
(PRF) from X to Y with key space K is a DPT algorithm 𝐹 : K × X → Y such that for
any classic PPT algorithm D it holds that,

AdvPRF𝐹 ,𝑅𝐹 (D) � Advdist𝐹 ,𝑅𝐹 (D) =
����� Pr
𝑘

$←−K

�
1 ← A𝐹𝑘

� − Pr
�
1 ← A𝑅𝐹

� ����� ≤ negl

where 𝑅𝐹 is a random oracle, and the probabilities are over the choice of 𝑘 , the random-
ness of 𝑅𝐹 and of D.

A (family of) pseudorandom permutations (PRP) is a (family of) pseudorandom functions
that is also an invertible permutation on some space X. We write 𝑃𝑘 : X → X to denote
the member of the family indexed by 𝑘 .

De�nition 2.1.2 (Pseudorandom Permutation (PRP)). A (family of) pseudorandom per-
mutations (PRP) on X with key space K is a pair of DPT algorithm 𝑃, 𝑃−1 : K × X → X
such that:

• For all keys 𝑘 ∈ K , we have that 𝑃𝑘 , 𝑃−1𝑘 are permutations on X;

• For all keys 𝑘 ∈ K , we have that (𝑃𝑘)−1 = (𝑃−1
𝑘
); and

• for any classical PPT algorithm D it holds:

AdvPRF𝑃,𝑅𝑃 (D) � Advdist𝑃,𝑅𝑃 (D) =
����� Pr
𝑘

$←−K

�
1 ← A𝑃𝑘

� − Pr
�
1 ← A𝑅𝑃

� ����� ≤ negl

where 𝑅𝑃 is a random permutation oracle, and the probabilities are over the choice of 𝑘 ,
the randomness of 𝑅𝑃 and of D.

8



2.1. Security De�nitions

In this work, we will interchangeably use the term block cipher for a pseudorandom
permutation. We now give the well known random permutation/random function switch-
ing lemma. Block ciphers are de�ned to behave as pseudorandom permutations, but
oftentimes, it is easier to handle pseudorandom functions in security proofs. This lemma
bridges this gap.

Lemma 1 (RF/RP Switching Lemma [BR04]). Let 𝑅𝑃 : X → X be a random permutation
oracle, and let 𝑅𝐹 : X → X be a random function oracle. Let A be a classical adversary that
makes at most 𝑞 oracle queries. Then,

��Pr �A𝑅𝑃 = 1
� − Pr

�A𝑅𝐹 = 1
� �� ≤ 𝑞2

2|X|

We will also encounter tweakable block ciphers. This is a concept introduced by Liskov,
Rivest and Wagner in [LRW02]. This can be seen as a block cipher that receives an
additional input called tweak. Conceptually, this tweak should be "cheaper" to change
than the key, and should have no requirement to stay secret for the safety of the scheme.

De�nition 2.1.3 (Tweakable Block Cipher). A tweakable block cipher with message space
M, key spaceK , and tweak space T , is a pair of DPT algorithm 𝐸, 𝐸−1 : K×T ×M → M
such that:

• For all key-tweak pairs (𝑘, 𝑡) ∈ K×T , we have that 𝐸𝑘 (𝑡, ·), 𝐸−1𝑘 (𝑡, ·) are permutations
on X;

• For all key-tweak pairs (𝑘, 𝑡) ∈ K × T we have that (𝐸𝑘)−1(𝑡, ·) = (𝐸−1
𝑘
) (𝑡, ·); and

• for any classic PPT algorithm D it holds:

Adv
�qPRP
𝐸,�𝑅𝑃 (D) � Advdist

𝐸,�𝑅𝑃 (D) =
����� Pr
𝑘

$←−K

�
1 ← A𝐸

�
− Pr

�
1 ← A�𝑅𝑃 � ����� ≤ negl

where �𝑅𝑃𝑡 is a family of independently drawn random permutation indexed by the
tweak 𝑡 . We may write 𝐸𝑡

𝑘
(·) instead of 𝐸𝑘 (𝑡, ·).

This master thesis concerns itself with message authentication codes (MAC). These are
schemes that allow authentication in the symmetric-key setting, by pairing any sent
message with an authentication tag.

De�nition 2.1.4 (Message Authentication Code (MAC)). A message authentication code
(MAC), with keyspace K , message spaceM, and tag space T , is a tuple of PPT algorithms
Π = (Gen, Sign,Verify) such that,

• Gen(1𝑛) → 𝑘 generates a secret key 𝑘 ∈ K
• Sign(𝑘,𝑚) → 𝑡 for any𝑚 ∈ M outputs a tag 𝑡 ∈ T

9



2. Preliminaries

• Verify(𝑘,𝑚, 𝑡) → 𝑏 is a deterministic algorithm that either outputs 𝑏 = 1 to accept
the message-tag pair or 𝑏 = 0 to reject it.

In the classical setting, we consider MACs that are secure under chosen message attack
(CMA). Here the attacker has access to a tag oracle. The usual adversary goal is to
�nd a valid forgery for any message in the message space. We call this goal existential
unforgeability (EUF).

De�nition 2.1.5 (ExpEUF-CMA
Π,A (𝑛)). Let Π = (Gen, Sign,Verify) be a MAC scheme. Let

𝑛 ∈ N be the security parameter and let A be a PPT adversary. We de�ne the EUF-CMA
security experiment by,

ExpEUF-CMA
Π,A (𝑛)

𝑄 � ∅
𝑘 ← Gen(1𝑛)
(𝑚∗, 𝑡∗) ← ASign𝑘

return Verify(𝑘,𝑚∗, 𝑡∗) ∧ (𝑚∗ ∉ 𝑄)

Sign𝑘 (𝑚)
𝑡 ← Sign(𝑘,𝑚)
𝑄 � 𝑄 ∪𝑚
return 𝑡

We say that the MAC Π is EUF-CMA secure if for any PPT adversary A,

Adv𝐸𝑈 𝐹−𝐶𝑀𝐴Π (A) � Pr[ExpEUF-CMA
Π,A (𝑛) = 1] ≤ negl(𝑛)

2.2. The Quantum Setting
The term "quantum security" has been sometimes used inconsistently in the literature.
To avoid any confusion, we use the classi�cation of quantum models introduced by
Gargliardoni in [Gag17].
Q0: The classical setting
This is the classical setting, where the adversary has no access to any kind of quantum
computation. This encompasses all the de�nitions given above in Section 2.1.
Q1: Local quantum computations, classical queries
In this setting, an adversary may have access to a quantum computer and do local quantum
computations. On the other hand, any queries to an oracle have to be made classically.
Security in this model is called post-quantum security or sometimes standard security.
Q2: Local quantum computations, quantum queries
In this setting, an adversary is given quantum superposition access to its oracles. Speaking
loosely, this means that an adversary may query a superposition of inputs, and the oracle
will respond with the corresponding superposition of outputs. We de�ne this formally in
section 2.2.1. We call security in this model quantum security.

Notice that in the Q2 model, the adversary is allowed to make quantum queries to
a classical algorithm. This may seem like an unlikely situation at �rst. But consider a

10



2.2. The Quantum Setting

hypothetical future situation where a quantum computer runs an encryption algorithm. It
could be possible that the scheme runs a classical protocol as a subroutine. In that case,
you would require the use of Q2 secure schemes.

A further motivating example for the relevance of the Q2 setting is given in [GHS16,
"frozen smart-card" example]. Consider a small device, such as an RFID tag or a smart-
card, running a purely classical encryption scheme (such as AES) on classical inputs, and
outputting classical values. A potential future adversary could attempt a new kind of
side-channel attack on the device, by putting it in conditions that would make it "take on"
a quantum behavior, i.e answering queries in superposition with answers in superposition.
This would be akin to fault-injection side-channel attacks we see nowadays, where an
adversary might freeze a smart-card to make it take on some faulty behavior.

A quantum-secure algorithm could be implemented in a black-box manner, and remain
secure long into the future with no additional hardware requirements. On the contrary,
quantum-insecure schemes could only be used in cases where no such side-channel attacks
would be realistic (e.g queries must go through a classical network).

2.2.1. QuantumOracle and Quantum Adversary
In this section, we de�ne our model for quantum adversaries. Moreover, we give the
quantum oracle access model used in thesis. We base this section on [Bha+20, Section 2.2].

In this thesis, a quantum adversary A that makes 𝑞 queries to its oracle is modelled
as a sequence of unitary operators (𝑈0, . . .𝑈𝑞), where each 𝑈𝑖 is an unitary operator on
an 𝑠-qubit quantum system. We will see 𝑈0 and 𝑈𝑞 as an initialization and �nalization
processes respectively. For 1 ≤ 𝑖 ≤ 𝑞 − 1, 𝑈𝑖 is the work after the 𝑖-th query. We assume
that A’s quantum state is a vector of a Hilbert space

HA = Hquery ⊗ Hanswer ⊗ Hwork

where Hquery, Hanswer, Hwork correspond to A’s query, answer, and o�ine work regis-
ters respectively.

A quantum oracle is a unitary operator that acts on the adversary’sHquery ⊗ Hanswer
register. In this thesis, we use the standard oracle de�nition.

De�nition 2.2.1 (Quantum oracle). Let 𝑓 : {0, 1}𝑚 → {0, 1}𝑛 be a function. Then, the
quantum oracle of 𝑓 is de�ned as the unitary operator

O𝑓 : |𝑥,𝑦� → |𝑥,𝑦 ⊕ 𝑓 (𝑥)�
where |𝑥� |𝑦� are registers provided by the adversary and correspond to its query and

answer registers respectively.

Note that if 𝑓 is a random function, the same randomness is used to answer every
message in the superposition. The oracle only draws a new random value between
subsequent queries.
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Assume we run A relative to the oracle O𝑓 . Then the unitary operators𝑈𝑖 and oracle
calls O𝑓 act sequentially on the initial state |0𝑙�. The �nal state is then,

𝑈𝑞O𝑓 𝑈𝑞−1 . . .O𝑓 𝑈0 |0𝑙� (2.1)

This �nal state is then measured andA returns the result as its output. In this thesis, we
will always use the adversary as a black-box algorithm. In particular, we do not consider
the state of the work registerHwork. We only care about the adversary’s �nal output. Note
that this is always a classical value. Hence, we omit writing theHwork register from now
on.

2.2.2. Simon’s Algorithm
Many of the published attacks in the Q2 setting use Simon’s algorithm [Sim94] to solve
the following problem in polynomial-time.

De�nition 2.2.2 (Simon problem). Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 be a function such that for
an 𝑠 ∈ {0, 1}𝑛, for all 𝑥,𝑦 ∈ {0, 1}𝑛, 𝑓 (𝑥) = 𝑓 (𝑦) if and only if 𝑥 ⊕ 𝑦 ∈ {0𝑛, 𝑠}. The aim of
the problem is to �nd 𝑠 .

Theorem 1 ([Sim94]). After 𝑛 +𝛼 iterations, Simon’s algorithm solves Simon’s problem with
probability 1 − 2−𝛼 .

In each round, Simon’s algorithm recovers a vector orthogonal to the period 𝑠 . Hence,
in O(𝑁 ) queries, the algorithm provides a full rank system of linear equations. This allows
to compute the period 𝑠 using linear algebra techniques such as Gaussian elimination.

The attacks based on Simon’s algorithm build a periodic function from their oracle.
They then run Simon’s algorithm to recover the period. This can then either directly
leads to a distinguishing attack, or the period contains sensitive information that allows a
forgery attack.

In some cases, the function 𝑓 is not perfectly periodic and has unwanted "parasitic"
collisions. In that case, Kaplan et. al [Kap+16] have shown that Simon’s algorithm may
still be able to �nd the period, provided the number of additional collisions is not too high.

For 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 such that 𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑠) for all 𝑥 , consider,

𝜖 (𝑓 , 𝑠) � max
𝑡∈{0,1}𝑛\{0,𝑠}

Pr
𝑥
[𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑡)] (2.2)

Theorem 2 (Simon’s algorithm with approximate promise [Kap+16]). If 𝜖 (𝑓 , 𝑠) ≤ 𝑝0, then
Simon’s algorithm returns 𝑠 in 𝑐 · 𝑛 queries, with probability at least 1 −

�
2
�
1+𝑝0
2

�𝑐 �𝑛
.

Kaplan et al. further note that choosing 𝑐 ≥ 3/(1 − 𝑝0) makes the error probability
decrease exponentially.
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2.2.3. Quantum Security Definitions
We now give the security de�nitions adapted to the Q2 setting. This mostly follows [Gag17,
section 5.2]. For most de�nitions it is only a matter of allowing quantum adversaries, and
giving them quantum access to the oracles. However, we will see that some primitives
demand a more subtle approach.

De�nition 2.2.3 (Quantum-Secure Pseudorandom Function (qPRF)). A (family of) quan-
tum-secure pseudorandom functions (qPRF) from X to Y with key space K is a DPT
algorithm 𝐹 : K × X → Y such that for any QPT algorithm A it holds:

AdvqPRF𝐹 ,𝑅𝐹 (A) � Advdist𝐹 ,𝑅𝐹 (A) =
����� Pr
𝑘

$←−K

�
1 ← A|𝐹𝑘 �

�
− Pr

�
1 ← A|𝑅𝐹 �

� ����� ≤ negl

where |𝑅𝐹 � is a quantum random oracle, and the probabilities are over the choice of 𝑘 ,
the randomness of 𝑅𝐹 and of A.

De�nition 2.2.4 (Quantum-Secure Pseudorandom Permutation (qPRP)). A (family of)
quantum-secure pseudorandom permutations (qPRP) on X with key space K is a pair of
DPT algorithm 𝑃, 𝑃−1 : X → X such that:

• For all keys 𝑘 ∈ K , we have that 𝑃𝑘 , 𝑃−1𝑘 are permutations on X;

• For all keys 𝑘 ∈ K , we have that (𝑃𝑘)−1 = (𝑃−1
𝑘
); and

• for any QPT algorithm A it holds:

AdvqPRF𝑃,𝑅𝑃 (A) � Advdist𝑃,𝑅𝑃 (A) =
����� Pr
𝑘

$←−K

�
1 ← A|𝑃𝑘 �

�
− Pr

�
1 ← A|𝑅𝑃�

� ����� ≤ negl

where |𝑅𝑃� is a quantum random permutation oracle, and the probabilities are over
the choice of 𝑘 and the randomness of 𝑅𝑃 and of A.

De�nition 2.2.5 (Quantum-secure Tweakable Block Cipher). AQuantum-secure tweakable
block cipher (qTBC) with message space M, key space K , and tweak space T , is a pair of
DPT algorithm 𝐸, 𝐸−1 : K × TM → M such that:

1. For all key-tweak pair (𝑘, 𝑡) ∈ K×T , we have that 𝐸𝑘 (𝑡, ·), 𝐸−1𝑘 (𝑡, ·) are permutations
on X;

2. For all key-tweak pair (𝑘, 𝑡) ∈ K × T , we have that (𝐸𝑘)−1(𝑡, ·) = (𝐸−1
𝑘
) (𝑡, ·); and
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3. for any classic QPT algorithm D it holds:

AdvPRF
𝐸,�𝑅𝑃 (D) � Advdist

𝐸,�𝑅𝑃 (D) =
����� Pr
𝑘

$←−K

�
1 ← A|𝐸�

�
− Pr

�
1 ← A|�𝑅𝑃�� ����� ≤ negl

where �𝑅𝑃 is a family of independently drawn random permutations indexed by the
tweak 𝑡 . The probabilities are over the choice of 𝑘 and the randomness of 𝑅𝑃 and of
D.

While the de�nition of a MAC does not change compared to De�nition 2.1.4, we need
to carefully approach translating EUF-CMA security to the Q2 setting. In the classical
setting, we require the forgery to be made for a fresh message. In the quantum case, any
query to the tag oracle can be a superposition of all the messages in the message space. As
such, an adversary could submit di�erent queries in superposition designed to have a high
probability of collapsing to the same message. Boneh and Zhandry de�ne the EUF-qCMA
model in [BZ13b, De�nition 2.1]. They require an adversary that makes 𝑞 queries, to
provide 𝑞 + 1 distinct and valid classical message-tag pairs to win the experiment. Notice
that for a classical adversary, this corresponds to the EUF-CMA security.

De�nition 2.2.6 (ExpEUF-qCMA
Π,A (𝑛)). Let Π = (Gen, Sign,Verify) be a MAC scheme. Let

𝑛 ∈ N be the security parameter and 𝑞 a polynomial number in 𝑛. Let A be a QPT
adversary that makes 𝑞 quantum queries to its oracle. Then we de�ne the EUF-qCMA
security experiment by,

ExpEUF-qCMA
Π,A (𝑛,𝑞)

𝑘 ← Gen(1𝑛)
𝑆 = {(𝑚1, 𝑡1), (𝑚2, 𝑡2), . . . (𝑚𝑞+1, 𝑡𝑞+1)} ← A|Sign𝑘 �

return isForgeSet(𝑆)

Sign𝑘
|𝑚� |𝑦� → |𝑚� |𝑦 ⊕ Sign(𝑘,𝑚)�

isForgeSet(𝑆)
𝑉𝑎𝑙𝑖𝑑 ≔ 1
𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ≔ 1
for 𝑖 = 1 to 𝑞 + 1 :
𝑉𝑎𝑙𝑖𝑑 ≔ 𝑉𝑎𝑙𝑖𝑑 ∧ Verify(𝑘,𝑚𝑖 , 𝑡𝑖)
𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ≔ 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ∧ (� 𝑗 ≠ 𝑖, (𝑚𝑖 , 𝑡𝑖) = (𝑚 𝑗 , 𝑡 𝑗 ))

return 𝑉𝑎𝑙𝑖𝑑 ∧ 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡

We say that the MAC Π is existentially unforgeable under quantum chosen-message attack
(EUF-qCMA) if for any QPT adversaries A that makes 𝑞 queries to its oracle,

AdvEUF-qCMA
Π (A) � Pr[ExpEUF-qCMA

Π,A (𝑛,𝑞) = 1] ≤ negl(𝑛)

14
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2.3. Nonces

In the classical setting, the use of nonces is a well known concept. A nonce is an additional
input to the primitive that is meant to be used only once (hence the name). It is used in
deterministic algorithms to give variance to successive runs of a primitive on the same
input. The nonce does usually not need to be kept secret for the security of a scheme.
Moreover, we even let the adversary choose the nonces in the security games.

The nonce version of any classical experiment proceeds similarly to the regular version
of it. If in the regular experiment, the PPT adversary A sends a query 𝑚, then in the
nonce experiment, A additionally chooses a nonce 𝑁 and queries the tuple (𝑁 ,𝑚). The
oracle veri�es if the nonce is new before sending the corresponding answer. If the nonce
is repeated, then the experiment is aborted and the adversary loses.

The use of nonces is trickier in the quantum setting. As discussed previously for MACs,
it is not clear how to de�ne freshness for nonces when the adversary is allowed to make
queries in superposition. An attempt at giving an appropriate model has been made in
[Haa20]. Haas introduces the no quantum nonce reuse (NQNR) model. It allows nonces to
be queried in superposition, but they have to me measured at the latest, at the end of the
interaction. If the same nonce is measured twice, then the experiment is lost.

We argue that this model is too arti�cial for our purposes. We will instead require the
nonces to be classical and distinct i.e we assume the adversary to be nonce-respecting
in the classical sense. This is the model used by Bhaumik et al. in [Bha+20]. If an oracle
implements a scheme 𝑓 that admits a nonce, we model this as a family of unitary operators
(O𝑓 ,𝑁 )𝑁 indexed by the nonce. We now de�ne the nonce version of the EUF-qCMA
security experiment.

De�nition 2.3.1 (Expnonce-EUF-qCMA
Π,A (𝑛)). Let Π = (Gen, Sign,Verify) be a MAC scheme

that uses nonces. Let A be a QPT adversary that makes 𝑞 quantum queries to its oracle.
The nonce-EUF-qCMA security game proceeds in two phases.

1. For the 𝑖’th query, the adversary A chooses a fresh classic value 𝑁𝑖 as a nonce. The
oracle then answers with the unitary operator Sign𝑁𝑖

that is de�ned by

|𝑥� |𝑦� → |𝑥� |𝑦 ⊕ Sign(𝑘, 𝑥 ;𝑁𝑖)�

2. A produces 𝑞 + 1 classic tuple (𝑁 ,𝑀,𝑇 ) with any 𝑁 of its choice and wins the game
if they are all valid and distinct.

We say that the MAC Π is nonce existentially unforgeable under quantum chosen-message
attack (nonce-EUF-qCMA) if for any QPT adversaries A that makes 𝑞 queries to its oracle,

Advnonce-EUF-qCMA
Π (A) � Pr[Expnonce-EUF-qCMA

Π,A (𝑛,𝑞) = 1] ≤ negl(𝑛)
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2.4. Derivatives of Binary Functions
De�nition 2.4.1. For a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛, we de�ne the derivative of 𝑓 at
point 𝑎 ∈ {0, 1}𝑛 as

Δ𝑎 𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑎) ⊕ 𝑓 (𝑥)
As the derivative of 𝑓 is also a function from {0, 1}𝑛 to {0, 1}𝑛 , we can de�ne the 𝑖’th

(𝑖 > 1) as derivative of 𝑓 at points (𝑎1,𝑎2 . . . 𝑎𝑖) as

Δ(𝑖)
𝑎1,𝑎2 ...𝑎𝑖 𝑓 (𝑥) = Δ𝑎𝑖 (Δ(𝑖−1)

𝑎1,𝑎2 ...𝑎𝑖−1 𝑓 (𝑥))
where the 0’th derivative is 𝑓 itself. The following proposition from [Lai94, Proposition

3] gives the general form of the derivative of a binary function.

Proposition 1. Let 𝐿[𝑎1, . . . ,𝑎𝑖] be the set of all 2𝑖 possible linear combinations of 𝑎1, . . . 𝑎𝑖 .
Then,

Δ(𝑖)
𝑎1,...,𝑎𝑖 𝑓 (𝑥) =

�
𝑐∈𝐿[𝑎1,...,𝑎𝑖 ]

𝑓 (𝑥 ⊕ 𝑐)

16



3. Security Proofs in the Quantum Setting
In this chapter, we discuss some of the speci�c issues to proving security in the Q2 setting.
Security proofs are a combination of two elements: a hardness assumption and a reduction.
This also holds in the quantum setting, although we now need a quantum hardness
assumption and a reduction that takes into account the abilities of a quantum adversary.
We discuss these in Section 3.1 and in Section 3.2 respectively. In Section 3.3, we give the
quantum tools that will be used in our proof in Chapter 4.

3.1. Hardness Assumptions
Concrete hardness assumptions are computational problems that are believed to be very
di�cult to solve. For our purposes a "hard" problem is one that is exponential in time
(sometimes also in space) complexity. Identifying these problems as hard is a communal
process. The con�dence in a hard problem is build through years of research in which no
signi�cant contradiction to the hardness of the problem has been found (e.g a polynomial-
time solution).
Quantum computers come as a new variable in this conversation. Since they behave

in fundamentally di�erent ways to a classical computer, every previously used hardness
assumption has to be reassessed. Famously, Shor’s algorithm [Sho97] is able to solve both
the integer factorization problem as well as the discrete logarithm problem in polynomial
time. On the other hand, problems such as the learning with error problem [Reg05] or the
general decoding of linear codes problem [BMT78] both, for now, stand up to the quantum
cryptanalysis e�orts.
A shocking example relevant to our work is the case of the one-time pad. Famously,

this scheme provides statistical security in the classical setting, and is the underlying idea
behind stream ciphers. However, a quantum adversary can distinguish a one-time pad
from a random function in a single query.

Lemma 2 ([Bon19]). Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 be a function that implements a one time
pad, i.e

𝑓 (𝑥) = 𝑥 ⊕ 𝑟 , 𝑟
$←− {0, 1}𝑛

There exists a quantum algorithm that makes a single query, that can distinguish between
𝑓 and random function with probability 1 − 1

2𝑛−1

It is common for classical proofs to reduce the security of a scheme to a one-time pad.
In the quantum setting, this is not an option. This a case where the classical intuition is
very misleading when trying to prove quantum-security.
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In this thesis, we often work with generic hardness assumptions. These are the building
blocks for theoretical cryptography such as one-way functions (OWF), pseudorandom
functions (PRF) or secret-key encryption schemes (SKE). We directly de�ne these objects
as having certain properties. This allows for a more general approach to security proofs.

As opposed to the concrete hardness assumption, these can be simply translated to the
Q2 setting. We only need to tweak the de�nitions. As we have seen in Section 2.2.3, this is
usually only a matter of allowing quantum adversaries and providing them with quantum
oracle access.

3.2. Reduction
A reduction is an algorithm that transforms a problem into another one. In the context of
cryptography, it is used to transform an adversary that breaks the security of a scheme
into the an algorithm that solves a hardness assumption.

In the Q1 setting, most classical reductions are still valid. If the reduction treats the
adversary as a black-box, then it does not matter if the adversary is quantum or classical.
More speci�cally, if the reduction algorithm only interacts with the adversary through
classical queries and answers, then the reduction can be fully classical. This means that
as long as the hardness assumption is adapted to the Q1 setting appropriately, a classical
proof will also hold in the Q1 setting. Note that this does not hold true if the reduction
algorithm tries more sophisticated interactions with the adversary such as rewinding. The
rewinding technique essentially corresponds to the cloning of the adversary’s state. In
the quantum setting, this would mean cloning a quantum state. However, the well known
"no-cloning theorem" [WZ82] forbids this. As such the rewinding technique is not directly
applicable in the quantum setting, and proofs that require it do not translate well. As we
will not need this technique in this work, we refer the reader to [ARU14] for an in-depth
discussion on this subject.

In the Q2 setting, the reduction algorithm, by de�nition, has to treat quantum queries.
This means that its interaction with the adversary is inherently quantum. This a�ects
some of the most used classical reduction techniques such as the "bad �ag analysis" or the
"lazy sampling" of a random oracle.

3.2.1. Lazy Sampling and Bad Flag Analysis

Lazy sampling is a powerful classical proof technique. It allows for the e�cient implemen-
tation of random oracles. The idea is as follows. Whenever a query is submitted, the oracle
checks if the value has already been queried previously. If the query is fresh, it outputs a
random value. If the query is not fresh, the oracle outputs the same value as it did before.
Lazy sampling allows for many useful reduction techniques. When a reduction al-

gorithm implements a random oracle using lazy sampling, it can learn the inputs the
adversary queries and their corresponding outputs or even program the output of the
oracle. Furthermore, it is often used for bad �ag analysis.

18



3.3. Other Quantum Tools

The bad �ag analysis is another commonly used classical proof technique. It is used to
show indistinguishability between two oracles. The technique works in three steps. We
de�ne a bad event, which is typically conditioned on the queries the oracle receive, e.g the
adversary queries two di�erent inputs that cause a collision at the output. We then show
that as long as the event does not happen, the oracles behave identically. Finally, we show
that the event has a negligible probability of happening.

In the Q2 setting, both techniques su�er from similar problems. Let 𝐹 : X → Y be
a random function. A quantum adversary can submit a query that is a superposition of
the whole message space X. In that case, it is unclear how to do lazy sampling. Should
the oracle answer by sampling |X| values? This solution is obviously not e�cient for
an exponentially sized X. A further problem comes when the adversary makes a second
query. Indeed, to assure the consistency between subsequent queries, the oracle has to
"remember" the previous query/answer pairs. However, the only way to learn anything
about a quantum query is to measure it. Measuring the query register can be detected by
the adversary. In this case, the adversary may abort its run as it notices that it is interacting
with a reduction algorithm instead of the normal protocol. Both these issues also make it
di�cult to know whether a problematic value has been queried triggering a bad event in
the bad �ag analysis.

Example. Let 𝑅𝐹 : X → X be a random function and let 𝑅𝑃 : X → X be a random
permutation. A common application of both lazy sampling and bad �ag analysis is the
proof of the well-known Switching Lemma 1. We want to show that an adversary cannot
e�ciently distinguish between 𝑅𝐹 and 𝑅𝑃 . Against a classical adversary, the proof is
straight forward. We implement both oracles with lazy sampling. If the randomly drawn
value has already been drawn before, we set a "Bad" �ag. For 𝑅𝐹 this does nothing. For
𝑅𝑃 , a new value is drawn from the pool of values that have not been drawn yet. This is
depicted in Figure 3.1. Now it is easy to see that, after 𝑞 queries, a collision happens with
probability Pr[Bad] ≤ 𝑞2

2|X| . The claimed bound follows. A full proof of this lemma can be
found in [BR04].

As discussed above, we cannot implement the oracles in this way in the quantum setting.
Neither lazy sampling nor bad �ag analysis is directly applicable here. Nevertheless, a
generalisation of the switching lemma to the quantum setting has been proven, although
it required di�erent techniques. We give it in Section 3.3.

3.3. Other Quantum Tools

In this section we give the quantum proof tools that we will use. As mentioned above, a
generalisation of the RF/RP switching lemma exists for the quantum setting. This was
shown by Zhandry in [Zha13].

Theorem 3 (Quantum RF/RP Switching Lemma as in [HI20, Theorem 1]). Let RF and RP
denote quantum oracles of a random function from X to X and a random permutation on X
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𝑅𝐹 (𝑥)
if 𝑇 [𝑥] ≠ ⊥
return 𝑇 [𝑥]

𝑦
$←− X

if 𝑈 [𝑦] ≠ ⊥
Bad � 1

𝑇 [𝑥] � 𝑦

𝑈 [𝑦] = 𝑥
return 𝑇 ] [𝑥]

𝑅𝑃 (𝑥)
if 𝑇 [𝑥] ≠ ⊥
return 𝑇 [𝑥]

𝑦
$←− X

if 𝑈 [𝑦] ≠ ⊥
Bad � 1

𝑦
$←− X \ keys(𝑈 )

𝑇 [𝑥] � 𝑦

𝑈 [𝑦] = 𝑥
return 𝑇 ] [𝑥]

Figure 3.1.: Lazy sampling implementation of a random function and a random permutation

respectively. Let A be a QPT adversary that makes at most 𝑞 quantum queries. Then,

Advdist𝑅𝐹 ,𝑅𝑃 (A) ≤ O
�
𝑞3

|X|

�

Let 𝐻 : X → Y be a random oracle. In the classical setting, an adversary can only
guess the value of 𝐻 (𝑥) for a fresh value 𝑥 . Therefore, its success probability is at most
1
|Y| . In the quantum setting, this assertion is not as clear, since a single query can "touch"
the whole domain. The following theorem by Boneh and Zhandry [BZ13a, Theorem 4.1]
shows that a quantum adversary does not have a signi�cant advantage over a classical
one.

Theorem 4. Let A be a quantum algorithm that makes 𝑞 queries to a random oracle
𝐻 : X → Y. The probability that A is able to produce 𝑘 > 𝑞 distinct pairs (𝑥𝑖,𝑦𝑖) such that
𝑦𝑖 = 𝐻 (𝑥𝑖) for all 𝑖 ∈ [𝑘] is at most

1
|Y|

𝑞�
𝑟=0

�
𝑘

𝑟

�
(𝑛 − 1)𝑟

.

For our purposes, we are interested in the case where |Y| is exponentially large and
𝑘 = 𝑞 + 1. This case is shown in [BZ13a, Equation (4.1)].

Lemma 3. Let |Y| = 2𝑛 and 𝑘 = 𝑞 + 1. Then,

1
|Y|

𝑞�
𝑟=0

�
𝑘

𝑟

�
(𝑛 − 1)𝑟 ≤ 𝑞 + 1

2𝑛

Boneh and Zhandry then use this to show that any secure qPRF is also an EUF-qCMA
secure MAC. This is given by the following theorem [BZ13a, Theorem 5.1 ].
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3.3. Other Quantum Tools

Theorem 5. If 𝑃𝑅𝐹 : K × X → Y is a quantum-secure pseudorandom function and 1/|Y|
is negligible, then 𝑆 (𝑘,𝑚) = 𝑃𝑅𝐹 (𝑘,𝑚) is an EUF-qCMA-secure MAC, and,

AdvEUF-qCMA
𝑆 ≤ AdvqPRF𝑃𝑅𝐹 + 𝑞 + 1

|Y|
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4. A Quantum Secure Nonce-based MAC

In his master thesis [Haa20], Haas proposes a generic transformation, making any EUF-
CMA secure MAC scheme into a quantum secure nonce-EUF-qCMAMAC scheme [Haa20].
In this chapter, we �rst give a formalized description of this transformation. We then show
that there exists a pathological case where this transformation does not make the MAC
scheme quantum secure. We also underline the sensitive nature of nonce based schemes
in the quantum setting by applying the transformation to a qPRP. We show that if the
nonce is allowed to be reused, then the transformed qPRP su�ers from a superposition
attack. Finally, we argue that while the transformation is not secure in general, it still
works for many practical use cases. We illustrate this by applying it to the CBC-MAC and
proving the nonce-EUF-qCMA security of the transformed version.

4.1. Description
Haas describes in [Haa20, Theorem 2] a transformation for any tweakable block cipher
based MAC. We give here a slightly modi�ed version of it using block ciphers. In Haas’
original version, multiple di�erent but �xed tweaks are used. We instead use di�erent
keys for the block cipher where a di�erent tweak would have been used in the original
version. In the original version, the tweaks are chosen internally, therefore, modifying the
transformation to use di�erently keyed block ciphers is equivalent to the original scheme
in terms of security. Any security proof for our version also applies to Haas’ version. This
is strictly a generalization, as the transformation still applies to tweakable block cipher
based schemes.

De�nition 4.1.1 (Haas Transform). Let Π = (Gen�, Sign�,Verify�) be a deterministic EUF-
CMA secure MAC over (K = {0, 1}poly(𝑛),M = {0, 1}𝑙 ·𝑛,T = {0, 1}𝑛). Assume that the
signing algorithm is of the form,

Sign�(𝑘,𝑚) = Φ𝑘,𝑚 (𝐸𝑘 (Ψ(𝑚0)),𝑚1 . . .𝑚𝑙−1)
where𝑚 is an 𝑙-blocks message𝑚 =𝑚0 . . .𝑚𝑙−1, 𝐸𝑘 is a quantum-secure block cipher, Ψ

is a public permutation, and Φ𝑘,𝑚 is the rest of the structure of the algorithm. We further
require Ψ−1 to be e�ciently computable.

We denote the transformed MAC by Π𝑁 = (Gen, Sign,Verify). The new generation
algorithm Gen runs Gen� twice to obtain 𝐾 = (𝑘0,𝑘1). The new signing algorithm takes a
nonce 𝑁 ∈ {0, 1}𝑛 as an additional input. The signing algorithm is then,

Sign(𝑘0,𝑘1,𝑁 ,𝑚) = Φ𝑘,𝑚 (𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ Ψ(𝑚0)),𝑚1 . . .𝑚𝑙−1)
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4. A Quantum Secure Nonce-based MAC

Figure 4.1.: Haas Transform

For ease of notation, we will omit to write the input to Ψ, the second input of Φ as well
as its indices, and write

Sign𝑁 (𝑘0,𝑘1,𝑚) = Φ(𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ Ψ))
As we require the signing algorithm to be deterministic, we can use the canonical

veri�cation algorithm, i.e we run the signing algorithm again and check if the submitted
tag is equal to the output. The transform is depicted in Figure 4.1.

We show that the transform preserves the classical security of the transformed scheme
in Appendix A.
Example. Consider the CBC-MAC for messages in {0, 1}3𝑛 . The signing algorithm is:

CBC�(𝑘,𝑚0�𝑚1�𝑚2) = 𝐸𝑘 (𝐸𝑘 (𝐸𝑘 (𝑚0) ⊕𝑚1) ⊕𝑚2)
where 𝐸𝑘 is a block cipher. In this case, Ψ is the identity function, and Φ(𝑥,𝑚0,𝑚1,𝑚2) =

𝐸𝑘 (𝐸𝑘 (𝑥 ⊕𝑚1) ⊕𝑚2). After the transformation, the new signing algorithm is:

CBC𝑁 (𝑘0,𝑘1,𝑚0�𝑚1�𝑚2) = 𝐸𝑘1 (𝐸𝑘1 (𝐸𝑘1 (𝑚0 ⊕ 𝐸𝑘0 (𝑁 )) ⊕𝑚1) ⊕𝑚2)
where 𝐾 = (𝑘0,𝑘1)

4.2. Pathological Case
Haas gave a generic transformation for any MAC without restriction on its structure. In
this section, we give a pathological case, showing that this transformation does not achieve
quantum security for any MAC in general.

Proposition 2. The Haas transform given in De�nition 4.1.1 does not produce nonce-EUF-
qCMA secure MACs in general.

Proof. Let 𝑀𝐴𝐶� = (Gen�, Sign��,Verify�) be a deterministic EUF-CMA secure MAC that
accepts inputs of variable length. Assume further that it su�ers from a key recovery attack
against quantum adversaries. We then de�ne𝑀𝐴𝐶 = (Gen�, Sign�,Verify) to be a second
MAC scheme with,
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4.2. Pathological Case

Sign� : K × {0, 1}𝑙𝑛 → {0, 1}𝑙𝑛 × {0, 1}𝑛 × {0, 1}𝑛
(𝑘,𝑚0�𝑚1 . . . �𝑚𝑙−1) ↦→ ((𝑚0�𝑚1� . . . �𝑚𝑙−1),𝜎�0,𝜎�1)

where 𝜎�0 = Sign��(𝑘,𝑚1� . . . �𝑚𝑙−1) and 𝜎�1 = Sign��(𝑘,𝑚0�𝑚1� . . . �𝑚𝑙−1). Verify is the
canonical verifying algorithm.

It is clear that 𝑀𝐴𝐶 is also an EUF-CMA secure MAC scheme. We now apply the
transformation to it. 𝑀𝐴𝐶𝑁 , the transformed version of𝑀𝐴𝐶 has the following signing
algorithm,

Sign𝑁 : K ×K × {0, 1}𝑙𝑛 → {0, 1}𝑙𝑛 × {0, 1}𝑛 × {0, 1}𝑛
(𝑘0,𝑘1,𝑚0�𝑚1 . . . �𝑚𝑙−1) ↦→ ((𝑚0 ⊕ 𝐸𝑘0 (𝑁 )�𝑚1� . . . �𝑚𝑙−1),𝜎0,𝜎1)

where 𝜎0 = Sign��(𝑘1,𝑚1� . . . �𝑚𝑙 ) and 𝜎1 = Sign��(𝑘1,𝑚0 ⊕ 𝐸𝑘0 (𝑁 )�𝑚1� . . . �𝑚𝑙−1).
We now show that𝑀𝐴𝐶𝑁 is not nonce-EUF-qCMA secure (de�nition 2.3.1). Let A be a

quantum adversary that makes 𝑞 tag queries to 𝑀𝐴𝐶� and recovers the secret key with
non-negligible probability 𝜖 . Then there exists the following quantum adversary B that
wins the nonce-EUF-qCMA security game against𝑀𝐴𝐶𝑁 .

1. Use A to get the secret key 𝑘1. Answer A’s 𝑖’th query 𝑚𝑖 = 𝑚1,𝑖 � . . . �𝑚𝑙−1,𝑖 by
choosing a random𝑚0,𝑖 and a fresh 𝑁𝑖 , and querying (𝑁𝑖,𝑚 =𝑚0,𝑖 �𝑚1,𝑖 � . . . �𝑚𝑙−1,𝑖)
to𝑀𝐴𝐶𝑁 .

2. Get the �rst 𝑞 tuples (𝑁 ,𝑚0�𝑚1� . . . �𝑚𝑙−1, Sign𝑁 (𝑘0,𝑘1,𝑚0�𝑚1� . . . �𝑚𝑙−1) by mea-
suring the 𝑞 queries in the computational basis, as usual in the EUF-qCMA game.

3. Choose a pair (𝑚0,𝑖,𝑁𝑖) from any of the 𝑞 queries. Then choose (𝑚∗
1� . . . �𝑚∗

𝑙−1 such
that𝑚∗ = (𝑚0,𝑖 �𝑚∗

1� . . . �𝑚∗
𝑙−1) is a fresh message. Using the recovered key, we can

sign (𝑚∗
1� . . . �𝑚𝑙−1∗) and obtain,

𝜎0 = Sign��(𝑘1,𝑚∗
1� . . . �𝑚∗

𝑙−1)

As we used𝑚0,𝑖 and 𝑁𝑖 in a previous query, we know the value of𝑚0,𝑖 ⊕𝑁 . Therefore
we can sign (𝑚0,𝑖 ⊕ 𝐸𝑘0 (𝑁𝑖)�𝑚∗

1� . . . �𝑚∗
𝑙−1) and get,

𝜎1 = Sign��(𝑘1,𝑚0,𝑖 ⊕ 𝐸𝑘0 (𝑁𝑖)�𝑚∗
1� . . . �𝑚∗

𝑙−1)

4. Finally submit (𝑁𝑖,𝑚∗,𝜎0,𝜎1) as well as the 𝑞 tuples from step 2.

Note that we do not violate the freshness condition of the nonces from the nonce-EUF-
qCMA game. Freshness is only required when querying. A forgery is allowed to be issued
for an old nonce. Therefore, B wins with probability at least 𝜖 , and it follows that𝑀𝐴𝐶𝑁
is not nonce-EUF-qCMA secure. �
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4.3. Nonce-Reuse Attacks
In this section, we consider a trivial application of the transformation. We do so to illustrate
an attack that can occur when nonces are allowed to be reused. Let 𝑆� be de�ned by,

𝑆�(𝑘,𝑚) = 𝐸𝑘 (𝑚)
where 𝐸 is a qPRP. Then Π = (Gen�, 𝑆�,Verify�) is an EUF-CMA secure MAC. Since 𝐸𝑘 is

assumed to be a qPRP, it follows from Theorem 3 and Theorem 5 that Π is already an EUF-
qCMA secure MAC. Yet, we will show that the transformed version is not quantum-secure
against nonce-abusing adversaries.
Towards this, we now apply the transformation to Π. The signing algorithm for Π𝑁 =

(Gen, 𝑆,Verify) is given by:

𝑆𝑁 (𝐾,𝑚) = 𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕𝑚) (4.1)
We show that this scheme is not nonce-reuse resistant. Indeed, we give an e�cient

attack against both the qPRF and the EUF-qCMA security of Π𝑁 . Consider our scheme
Π𝑁 = (Gen, 𝑆,Verify) in a setting where the adversary is freely allowed to reuse nonces.
We show that there exists a quantum algorithm A making 𝑞 queries to the oracle, that
distinguishes 𝑆 from a random function. Therefore Π𝑁 is not a qPRF. Further, we show
that Π𝑁 is not an EUF-qCMA secure MAC either. Indeed, there exists a quantum algorithm
B that makes 𝑞 + 1 queries and is able to output 𝑞 + 2 distinct and valid message-tag pairs.

Proposition 3. Let Π𝑁 = (Gen, 𝑆,Verify) be de�ned as described above. Then Π𝑁 is not
a qPRF. More precisely, there exists a nonce-abusing adversary A that makes 𝑞 quantum
queries and wins the qPRF game against Π with non-negligible probability.

Proof. We de�ne A to be a quantum adversary that makes 𝑞 queries to an oracle. In the
qPRF game (de�nition 2.2.3), the adversary gets access to an oracle O. At the beginning of
the interaction, it is decided by coin �ip if this oracle is the signing oracle 𝑆 or a random
function. The algorithm then proceeds as follows.

• Chose 𝑁 ,𝑁 � ∈ {0, 1}𝑛 , two di�erent nonces. Then let 𝑓 be the following function.

𝑓 (𝑀) = O(𝑁 ,𝑀) ⊕ O(𝑁 �,𝑀)
This function can be e�ciently implemented with two calls to the oracle. If the
oracle implements 𝑆 , then the function has a period 𝑝 = 𝐸𝑘0 (𝑁 ) ⊕ 𝐸𝑘0 (𝑁 �). Indeed,
for every𝑀 ∈ {0, 1}𝑛 we have,

𝑓 (𝑀 ⊕ 𝑝)
= 𝐸𝑘1

�
𝐸𝑘0 (𝑁 )�������� ⊕𝑀 ⊕ 𝐸𝑘0 (𝑁 )�������� ⊕𝐸𝑘0 (𝑁 �)

�
⊕ 𝐸𝑘1

�
𝐸𝑘0 (𝑁 �)�������� ⊕𝑀 ⊕ 𝐸𝑘0 (𝑁 ) ⊕ 𝐸𝑘0 (𝑁 �)��������

�

= 𝐸𝑘1
�
𝑀 ⊕ 𝐸𝑘0 (𝑁 �)

�
⊕ 𝐸𝑘1

�
𝑀 ⊕ 𝐸𝑘0 (𝑁 )

�
= 𝑓 (𝑀)
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4.3. Nonce-Reuse Attacks

• Use Simon’s algorithm (theorem 2) on 𝑓 . If the algorithm gives a period 𝑠 then A
returns that the oracle O is the signing oracle 𝑆 . Else, A returns that the oracle O is
a random function.

A random function has a period only with negligible probability. So if Simon’s algorithm
returns a period, then the distinguisherA is right with overwhelming probability. Theorem
2 requires that we bound the number of periods that 𝑓 could have apart from 𝑝 . We show
that 𝜖 (𝑓 , 𝑝) = max𝑡∈{0,1}𝑛\{0,𝑝} Pr𝑥 [𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑡] < 1

2 , assuming 𝐸 to behave as a random
permutation. Assume towards contradiction that there exists a 𝑡 ∈ {0, 1}𝑛 \ {0, 𝑝} such
that Pr𝑥 [𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑡] ≥ 1

2 , i.e

Pr
𝑥
[𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ 𝑥) ⊕ 𝐸𝑘1 (𝐸𝑘0 (𝑁 �) ⊕ 𝑥) ⊕ 𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ 𝑥 ⊕ 𝑡) ⊕ 𝐸𝑘1 (𝐸𝑘0 (𝑁 �) ⊕ 𝑥 ⊕ 𝑡)] ≥ 1

2 .

We can then make a change of variables, replacing 𝑥 with 𝑋 = 𝑥 ⊕ 𝐸𝑘0 (𝑁 ). 𝑋 is still
distributed uniformly at random. Therefore we have,

Pr
𝑋
[𝐸𝑘1 (𝑋 ) ⊕ 𝐸𝑘1 (𝑋 ⊕ 𝑝) ⊕ 𝐸𝑘1 (𝑋 ⊕ 𝑡) ⊕ 𝐸𝑘1 (𝑋 ⊕ 𝑝 ⊕ 𝑡)] ≥ 1

2 .

It follows from Proposition 1 that this corresponds to a higher order di�erential for 𝐸𝑘1
with probability 1

2 . This only happens with negligible probability for a random permutation,
which leads to a contradiction. Therefore Simon’s algorithm returns 𝑝 with non-negligible
probability when O is the signing oracle 𝑆 . It follows that A distinguishes between a
random oracle and 𝑆 with non-negligible probability and Π𝑁 is not a qPRF when we allow
nonces to be reused.

�

Proposition 4. Let Π = (Gen, 𝑆,Verify) be de�ned as described above. Then Π is not an
EUF-qCMA secure MAC. More precisely, there exists a nonce-abusing adversary A that
makes 𝑞 + 1 quantum queries and wins the EUF-qCMA game against Π with non-negligible
probability.

Proof. We de�ne B to be a quantum adversary that makes 𝑞 + 1 queries to an oracle. In
the EUF-qCMA game (de�nition 2.2.6), the adversary gets access to the signing oracle 𝑆
and must output 𝑞 + 2 distinct and valid message-tag pairs. The algorithm then proceeds
as follows.

• Choose two arbitrary di�erent values 𝑁 ,𝑁 � ∈ {0, 1}𝑛 . Then, retrieve 𝑝 = 𝐸𝑘0 (𝑁 ) ⊕
𝐸𝑘0 (𝑁 �) using Simon’s algorithm as described in proposition 3.

• Query (𝑁 ,𝑀0 ⊕ 𝑝) to the tag oracle, with𝑀0 a fresh message, and receive answer 𝜏 .
We have,

𝜏 = 𝑆 (𝑁 ,𝑀0 ⊕ 𝑝) = 𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ 𝑀0 ⊕ 𝑝)
= 𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ 𝑀0 ⊕ 𝐸𝑘0 (𝑁 ) ⊕ 𝐸𝑘0 (𝑁 �))
= 𝐸𝑘1 (𝐸𝑘0 (𝑁 �) ⊕ 𝑀0)
= 𝑆 (𝑁 �,𝑀0)
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4. A Quantum Secure Nonce-based MAC

• Recover the �rst 𝑞 message-tag pairs by measuring every query made during the
execution of Simon’s algorithm in the �rst step and submit them.

• Submit
�(𝑁 �,𝑀0), 𝜏

�
as well as

�(𝑁 ,𝑀0 ⊕ 𝑝
�
, 𝜏) as the remaining two message-tag

pairs.

We showed in Proposition 3 that Simon’s algorithm revocers 𝑝 with non-negligible
probability. It follows that B is able to output 𝑞 + 2 distinct and valid message-query pairs
with non-negligible probability. As such, Π𝑁 is not EUF-qCMA secure when we allow the
nonces to be reused. �

Both these attacks underline the sensitive nature of nonces for this transformation. Note
that we started of with 𝑆�(𝑘,𝑚) = 𝐸𝑘 (𝑚), an already secure qPRP. This already provided a
secure EUF-qCMA MAC. The transformation opened it up to an avenue of attack that did
not exist before.

4.4. Case Study: The Transformed CBC-MAC
Up until this point, we have only seen negative results for the Haas transform. However,
we argue that for speci�c applications, and against nonce-respecting adversaries, the
transformation does produce quantum-secure MACs. In this section, we apply it to the
CBC-MAC. This scheme su�ers from a superposition attack [SS16]. This seems to be a
good candidate for the transform, as the sequential structure means that no attack such
as the one from Section 4.2 can exist. In fact, we are able to prove the nonce-EUF-qCMA
security of the transformed CBC-MAC.

Let 𝐸 be a pseudo-random permutation over {0, 1}𝑛 with key spaceK . The CBC-MAC =
(Gen�,𝐶𝐵𝐶,Verify�) for messages of length 𝑙 is de�ned by,

𝐶𝐵𝐶 : K × {0, 1}𝑙𝑛 → {0, 1}𝑛
(𝑘,𝑀) ↦→ 𝑥𝑙

where 𝑥0 = 0, 𝑥𝑖 = 𝐸𝑘 (𝑥𝑖−1 ⊕𝑚𝑖) and𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 .

CBC-MAC is represented in Figure 1.1. It has been proven to be EUF-CMA secure in
[BKR00]. Consider the transformed version of it, nonce-CBC = (Gen,𝐶𝐵𝐶𝑁 ,Verify) with
𝐶𝐵𝐶𝑁 given by,

𝐶𝐵𝐶𝑁 : K × {0, 1}𝑙𝑛 × {0, 1}𝑛 → {0, 1}𝑛
(𝑘0,𝑘1,𝑀 ;𝑁 ) ↦→ 𝑥𝑙 .

where 𝑥0 = 𝐸𝑘0 (𝑁 ), 𝑥𝑖 = 𝐸𝑘1 (𝑥𝑖−1 ⊕𝑚𝑖), CBC𝑁 (𝑘,𝑀) = 𝑥𝑙 and𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 .
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4.4. Case Study: The Transformed CBC-MAC

The transformed CBC-MAC is shown in Figure 1.2. We show that this is a nonce-
EUF-qCMA secure MAC. The classical security proof for the CBC-MAC �rst shows the
PRF security of the scheme [BKR00]. We do not take this approach as it would require
some very technical proving techniques such as Zhandry’s compressed oracle [Zha18].
Instead we directly prove the nonce-EUF-qCMA security. The crux of the proof is that the
nonce-EUF-qCMA game (de�nition 2.3.1) requires the adversary to output 𝑞 + 1 classical
message-tag pairs. Hence, we are able to use mostly classical arguments.

Theorem 6. If 𝐸 is a qPRP, then the transformed scheme nonce-CBC = (Gen,𝐶𝐵𝐶𝑁 ,Verify)
is nonce-EUF-qCMA secure MAC. More precisely, for any nonce-respecting quantum adversary
A that makes at most 𝑞 tag queries,

Advnonce-EUF-qCMA
𝐶𝐵𝐶𝑁

≤ 𝑐 · 𝑙 + 1
2𝑛 + negl(𝑛)

Proof. Let A be a nonce-respecting quantum adversary that makes at most 𝑞 queries. We
consider games 𝐺0, 𝐺1. We write𝑊𝑖 to denote the event that A wins the game 𝐺𝑖 .

Game 𝐺0. This is the nonce-EUF-qCMA game (de�nition 2.3.1) with nonce-CBC =
(Gen,𝐶𝐵𝐶𝑁 ,Verify). The oracle �rst draws keys 𝑘0,𝑘1 and then answers any query
(𝑀 =𝑚1�𝑚2 . . . �𝑚𝑙 ,𝑁 ) with,

O(𝑀 ;𝑁 ) = 𝐶𝐵𝐶𝑁 (𝑘0,𝑘1,𝑀 ;𝑁 )𝐸𝑘1 (𝐸𝑘1 (. . . 𝐸𝑘1 (𝐸𝑘1 (𝑚1 ⊕ 𝐸𝑘0 (𝑁 )) ⊕𝑚2) . . . ) ⊕𝑚𝑙 )

where 𝑁 must be a fresh classical value. If the adversary queries a nonce twice, then
the oracle aborts the game.

Game𝐺1. This game proceeds as𝐺0, only we slightly modify the oracle. Let (Π̃𝑁 )𝑁∈{0,1}𝑛
be a family of independently drawn random permutations indexed by 𝑁 ∈ {0, 1}𝑛 . At the
beginning of the game, we draw a random value 𝑡 $←− [𝑙]. We replace the call to 𝐸 in the
𝑡 ’th round of the CBC-MAC with a call to Π̃𝑁 )𝑁 . More precisely, the oracle answers any
query (𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 ,𝑁 ) by performing the following steps,

• Compute the �rst 𝑡 − 1 rounds of the signing algorithm. We denote this with,

ℎ𝑡 (𝑀 ;𝑁 ) � 𝐸𝑘1 (𝐸𝑘1 (. . . 𝐸𝑘1 (𝐸𝑘1 (𝑚1 ⊕ 𝐸𝑘0 (𝑁 )) ⊕𝑚2) . . . ) ⊕𝑚𝑡−1)

• Compute Π̃𝑁 (ℎ𝑡 (𝑀 ;𝑁 ) ⊕𝑚𝑡 )

• Compute the remaining steps of the signing algorithm. The output of the oracle is
given by

O(𝑀 ;𝑁 ) = 𝐸𝑘1 (𝐸𝑘1 (. . . 𝐸𝑘1 (𝐸𝑘1 (Π̃𝑁 (ℎ𝑡 (𝑀 ;𝑁 ) ⊕𝑚𝑡 )) ⊕𝑚𝑡+1) . . . ) ⊕𝑚𝑙 )
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𝐵 | (Π̃𝑁 )𝑁 �

𝑡
$←− [𝑙]

𝑘0,𝑘1
$←− K

𝑆 ← A𝐶𝐵𝐶
(Π̃𝑁 )𝑁
𝑡

𝐶𝐵𝐶 (Π̃𝑁 )𝑁
𝑡 (𝑀 ;𝑁 )

𝑥 ≔ 𝐸𝑘0 (𝑁 )
for 𝑖 = 1 to 𝑡 − 1 :
𝑥 ≔ 𝐸𝑘1 (𝑥 ⊕𝑚𝑖)

𝑥 ≔ Π̃𝑁 (𝑥 ⊕𝑚𝑡 )
for 𝑖 = 𝑡 + 1 to 𝑙 :
𝑥 ≔ 𝐸𝑘1 (𝑥 ⊕𝑚𝑖)

return 𝑥

Figure 4.2.: Simulator B

We denote this oracle by 𝐶𝐵𝐶 (Π̃𝑁 )𝑁
𝑡 . It follows from Lemma 4 that,

| Pr[𝑊0] − Pr[𝑊1] | ≤ negl(𝑛) (4.2)

We now bound Pr[𝑊1]. Let B be a quantum algorithm that has oracle access to
(Π̃𝑁 )𝑁∈{0,1}𝑛 . Algorithm B simulates game 𝐺1 for A. It does so by drawing keys 𝑘0
and 𝑘1. It then can perfectly answer the adversary’s query by computing the calls to 𝐸 and
using its (Π̃𝑁 )𝑁∈{0,1}𝑛 oracle. This is shown in �gure 4.2. We de�ne

S = {(𝑁 (1),𝑀 (1),𝑇 (1)), . . . , (𝑁 (𝑞),𝑀 (𝑞),𝑇 (𝑞)), (𝑁 (𝑞+1),𝑀 (𝑞+1),𝑇 (𝑞+1))}
to be the set containing the 𝑞 + 1 classical nonce-message-tag tuples A outputs as

forgeries when playing in game 𝐺1. Let further I = {𝑁 �
𝑖 |1 ≤ 𝑖 ≤ 𝑞} denote the set of all

nonces used during the 𝑞 queries. Notice that both set are completely classical. We de�ne
the following events.

• Event𝐴: There exists an 𝑖 such that 𝑁 (𝑖) ∉ I.
• Event𝐵 There exists 𝑖 ≠ 𝑗 such that 𝑁 (𝑖) = 𝑁 ( 𝑗) .

Notice that these events partition all possible valid sets 𝑆 . Indeed, all tuples in 𝑆 are
distinct, and |𝑆 | = 𝑞 + 1 but |I | = 𝑞. It follows that,

Pr[𝑊2] ≤ Pr[Event𝐴] + Pr[Event𝐵] (4.3)

Consider a tuple (𝑁 (𝑖),𝑀 (𝑖),𝑇 (𝑖)) ∈ 𝑆 . If the set is valid, B can e�ciently compute
ℎ𝑡 (𝑀 (𝑖) ;𝑁 (𝑖)) using only 𝐸𝑘0 and 𝐸𝑘1 . It can also e�ciently compute Π̃𝑁 (𝑖) (ℎ𝑡 (𝑀 (𝑖) ;𝑁 (𝑖)) ⊕
𝑚(𝑖)
𝑡 ) without using its Π̃𝑁 oracle, by using 𝐸−1

𝑘1
on 𝑇 (𝑖) . Using these facts, we now bound

each event.

We �rst bound the probability that Event𝐴 happens. Assume that A outputs a tuple
(𝑁 (𝑖),𝑀 (𝑖),𝑇 (𝑖)) such that 𝑁 (𝑖) ∉ I. It follows from the above discussion that B can use
the tuple to compute the pair,
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�
𝑋 = ℎ𝑡 (𝑀 (𝑖) ;𝑁 (𝑖)), Π̃𝑁 (𝑖) (𝑋 )

�
without any query to the permutation Π̃𝑁 (𝑖) . Notice that the permutation Π̃𝑁 (𝑖) has not

been queried to compute the tuple either, as 𝑁 (𝑖) ∉ I. Since Π̃𝑁 (𝑖) is an independently
drawn random permutation, this happens with probability at most,

Pr[Event𝐴] ≤ 1
2𝑛 (4.4)

We now bound the probability that Event𝐵 happens. Assume thatA outputs two distinct
tuples (𝑁 (𝑖),𝑀 (𝑖),𝑇 (𝑖)) and (𝑁 ( 𝑗),𝑀 ( 𝑗),𝑇 ( 𝑗)) such that 𝑁 (𝑖) = 𝑁 ( 𝑗) . Since the tuples are
distinct, there exists a 𝑢 such that,

ℎ𝑢 (𝑀 (𝑖) ;𝑁 (𝑖)) ⊕𝑚(𝑖)
𝑢 ≠ ℎ𝑢 (𝑀 ( 𝑗) ;𝑁 ( 𝑗)) ⊕𝑚( 𝑗)

𝑢

.
With probability 1/𝑙 , we guessed 𝑢 when drawing 𝑡 and 𝑡 = 𝑢. This means that B can

build two distinct pairs�
𝑋0 =

�
ℎ𝑡 (𝑀 (𝑖) ;𝑁 (𝑖)) ⊕𝑚(𝑖)

𝑡

�
, Π̃𝑁 (𝑖) (𝑋0)

�
and

�
𝑋1 =

�
ℎ𝑡 (𝑀 ( 𝑗) ;𝑁 (𝑖)) ⊕𝑚( 𝑗)

𝑡

�
, Π̃𝑁 (𝑖) (𝑋1)

�
without any additional Π̃(𝑖)

𝑁 query. Remember that Π̃𝑁 (𝑖) has been queried at most once,
since it is indexed by the nonce. Since it is a random permutation, it follows from lemma 3
and from Theorem 3 that,

Pr[Event𝐵] ≤ 𝑙 · 𝑐
2𝑛 (4.5)

where 𝑐 is a constant from Theorem 3 and 𝑙 is the loss that comes from guessing 𝑢. We
can now use Equation (4.2), Equation (4.3), Equation (4.4) and Equation (4.5) to derive the
claimed bound.

Advnonce-EUF-qCMA
𝐶𝐵𝐶𝑁

≤ | Pr[𝑊0] − Pr[𝑊1] | + Pr[𝑊1] (4.6)
≤ negl(𝑛) + Pr[Event𝐴] + Pr[Event𝐵] (4.7)

≤ 𝑙 · 𝑐 + 1
2𝑛 + negl(𝑛) (4.8)

�

In the theorem, we used the fact that we can swap a call to 𝐸 within the structure of the
CBC-MAC with a family of random permutation indexed by the nonce.
Lemma 4. Using the same notation as in the proof of Theorem 6, for any quantum adversary
A that makes at most 𝑞 queries, 𝐺0 and 𝐺1 are indistinguishable. More precisely,

Pr[𝑊0] − Pr[𝑊1] | ≤ negl(𝑛)
This result is used without proof in [AR17, Theorem 4]. We will not show it here either.

We leave this for a future work.
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5. Heuristics for Designing Quantum
Secure Protocols

In this chapter, we compare the architecture of protocols that su�er from quantum attacks
with their quantum-secure counterparts. By doing so, we identify secure design strategies
and pitfalls. We synthesize this into heuristics for the conception of quantum secure
protocols. We focus our approach on the use of nonces in block cipher based schemes.
Towards this, we �rst review some unsecure construction in Section 5.1, to expose the
structural �aws of the algorithm. We then look at protocols that were designed to be their
quantum-secure replacements in Section 5.2.

5.1. Unsecure Designs
In this section, we �rst take a look at some unsecure constructions. We divide these into
deterministic protocols and nonce protocols. Note that the nonce protocols are in fact
also deterministic, but they use nonces to introduce a part of pseudorandomness to each
query. We analyze the published attacks against these schemes, and formalize the �aws
they exploit.

5.1.1. Deterministic Protocols

We �rst consider the CBC-MAC. This MAC has many variants, as the original scheme is
only secure for pre�x-free messages. We work on the �xed-length version, which has been
proven classically secure in [BKR00]. However, similar attacks exists for other variants
[Kap+16].

The CBC-MAC is a MAC for messages of �xed length 𝑙 · 𝑛, where 𝑛 is the input size of
the underlying block cipher 𝐸. We give its de�nition again here. For any message message
𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 , the signing algorithm is given by,

𝑥0 = 0, 𝑥𝑖 = 𝐸𝑘 (𝑥𝑖−1 ⊕𝑚𝑖), CBC-MAC(𝑘,𝑀) = 𝑥𝑙
The CBC-MAC signing algorithm is represented in Figure 1.1. Santoli and Scha�ner

have found the following attack [SS16] against the EUF-qCMA security of the scheme.
Choose two distinct values 𝛼0,𝛼1 ∈ {0, 1}𝑛 and some integer 𝑗 such that 1 ≤ 𝑗 ≤ 𝑙 − 1.
Consider the following function,

𝑓 (𝑏�𝑥) = CBC-MAC(𝛼𝑏 �0( 𝑗−1) �𝑛�𝑥 �0(𝑙− 𝑗−1)·𝑛) = 𝐸 (𝑙− 𝑗)𝑘
(𝐸 𝑗
𝑘
(𝛼𝑏) ⊕ 𝑥)
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Figure 5.1.: The LRW Tweakabl Block Cipher

where CBC-MAC(𝑀) is the oracle provided in the EUF-qCMA security game. We can
construct 𝑓 with two calls to the oracle. Notice that 𝑓 (𝑏�𝑥) = 𝑓 (𝑏��𝑦) if and only if
𝑥 = 𝑦 ⊕ 1� �𝐸 𝑗

𝑘
(𝛼0) ⊕ 𝐸 𝑗𝑘 (𝛼1)

�
.

It follows that we can recover
�
𝐸 𝑗
𝑘
(𝛼0) ⊕ 𝐸 𝑗𝑘 (𝛼1)

�
in polynomial time using Simon’s

algorithm. This is then enough to produce forgeries. We have,

𝐸 (𝑙− 𝑗)
𝑘

�
𝐸 𝑗
𝑘
(𝛼0) ⊕ 𝑥

�
= 𝐸 (𝑙− 𝑗)

𝑘

�
𝐸 𝑗
𝑘
(𝛼0) ⊕ 𝑥 ⊕ �

𝐸 𝑗
𝑘
(𝛼0) ⊕ 𝐸 𝑗𝑘 (𝛼1)

� �

In their paper, Santoli and Scha�ner extend this attack further, but we will not cover
this, since this su�ces to illustrate our point. CBC-MAC is a sequential construction, that
uses a "Horner-type" structure for e�ciency. This means that every round of the protocol
has the form,

𝐸𝑘
�
𝐸𝑘 (·) ⊕𝑚𝑖

�
(5.1)

We observe a similar structure when considering the LRW construction. This is a
tweakable block cipher construction, introduced by Liskov, Rivest and Wagner [LRW02].
Let ℎ be an almost-universal hash function. Then the tweakable block cipher is given by

𝐸𝑡𝑘 (𝑚) = 𝐸𝑘
�
𝑚 ⊕ ℎ(𝑡)

�
�������������������������� ⊕ℎ(𝑡) (5.2)

The LRW algorithm is represented in Figure 5.1. We recognise that the underlined part
has a similar structure to the one described in Equation (5.1). This leads to a very similar
attack as on the CBC-MAC found by Kaplan et al. [Kap+16]. Choose two distinct tweaks
𝑡, 𝑡 �. Consider the function 𝑓 given by,

𝑓 (𝑥) = 𝐸𝑡𝑘 (𝑥) ⊕ 𝐸𝑡
�
𝑘 (𝑥) (5.3)

= 𝐸𝑘
�
𝑥 ⊕ ℎ(𝑡)

�
⊕ ℎ(𝑡) ⊕ 𝐸𝑘

�
𝑥 ⊕ ℎ(𝑡 �)

�
⊕ ℎ(𝑡 �) (5.4)
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This function can be built with two calls to 𝐸𝑡
𝑘
. Notice that it admits a period 𝑝 =

ℎ(𝑡) ⊕ ℎ(𝑡 �). This allows to build an e�cient distinguisher against the tweakable block
cipher security of the LRW construction.

We have identi�ed a design �aw. For e�ciency reasons, the above problematic structure
is commonly used. Going forward, we will call a structure of the following form a "Horner-
structure:

𝐸𝑘
�
𝛾 ⊕ 𝑥

�
(5.5)

where 𝛾 is any value and 𝑥 can be queried in quantum superposition. The crux of both
of the previous attacks is that 𝛾 can be �xed to be two di�erent values 𝛾0,𝛾1. This then
allows to build a function that has a period 𝑝 = 𝛾0 ⊕ 𝛾1. This is then used to continue the
attack. Notice that 𝛾 may be a classical value.

5.1.2. Nonce Protocols

Consider the OCB3 protocol published by Rogaway [KR11]. It is an authenticated encryp-
tion scheme closely related to the LRW construction. Let 𝐹𝑘 be a qPRF. Let Δ𝑖 be some
value that depends on 𝑖 and de�ne Δ𝑁𝑖 = Δ𝑖 ⊕ 𝐹𝑘 (𝑁 ). We do not detail the generation of
Δ𝑖 further as it is not relevant to the attack. For any message 𝑀 = 𝑚1�𝑚2� . . . �𝑚𝑙 with
associated data𝐴 = 𝑎1�𝑎2� . . . �𝑎𝑙 � , the protocol outputs a ciphertext𝐶 = 𝑐1�𝑐2� . . . �𝑐𝑙 and
a tag 𝑇 such that,

𝑐𝑖 = 𝐸𝑘 (𝑚𝑖 ⊕ Δ𝑁𝑖 ), 𝑇 =
�
𝑖

𝐸𝑘 (𝑎𝑖 ⊕ Δ𝑖) ⊕ 𝐸𝑘
��

𝑖

𝑚𝑖 ⊕ Δ𝑁𝑙+1

�
(5.6)

OCB3’s structure is represented in Figure 5.2. Bhaumik et al. describe two attacks
against the scheme [Bha+20]. The �rst one focuses on the authentication part. Let 𝑓𝑁 be a
function that queries an empty message and two variable identical associated data blocks
with a nonce 𝑁 to the 𝑂𝐶𝐵3𝑁 oracle and outputs the tag. We have,

𝑓𝑁 (𝑥) = 𝐸𝑘 (Δ𝑁𝑙+1) ⊕ 𝐸𝑘 (𝑥 ⊕ Δ1) ⊕ 𝐸𝑘 (𝑥 ⊕ Δ2)

This function has a period 𝑝 = Δ1 ⊕ Δ2. The issue is that Simon’s algorithm requires
multiple queries to the same 𝑓𝑁 to recover the period. Since 𝑁 must always be fresh for
every query, this is not possible. However, notice that the period does not depend on
the nonce. This means that a single round of Simon’s algorithm, which requires only
one query to 𝑓𝑁 , returns a vector orthogonal to 𝑝 for any 𝑁 . Hence, we can run Simon’s
algorithm and let it query a di�erent 𝑓𝑁 in each round. This allows us to recover the period
𝑝 in polynomial time. Bhaumik et al. then use the period to produce forgeries.

Looking back at the structure of the authentication part of OCB3 described in Equa-
tion (5.6), we recognise multiple instances of the problematic Horner-structure we identi-
�ed in Equation (5.5).
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Figure 5.2.: The OCB3 Authenticated Encryption

𝑇 =
�
𝑖

𝐸𝑘 (𝑎𝑖 ⊕ Δ𝑖)
��������������������������������

A

⊕ 𝐸𝑘
��

𝑖

𝑚𝑖 ⊕ Δ𝑁𝑙+1

�
������������������������������������������

B

(5.7)

The instance from part B contains the nonce. In the notation from Equation (5.5),
𝛾 = Δ𝑁

𝑙+1 cannot be �xed as it depends on the nonce. Hence, an attack on this part of the
authentication scheme seems unlikely. The period would depend on the nonce. On the
other hand, notice that the instances in part A do not depend on the nonce. This is the
weakness the attack exploits. Indeed, while part B cannot be directly attacked, it does not
modify the period of part A. It essentially serves as a random permutation on part A, and
a permutation of a periodic function does not modify the period. We identify a second
design �aw. The period of a function cannot be broken from outside of the structure of
the function.

We now consider the attack on the encryption part of OCB3 given by Bhaumik et al.
Let 𝑔𝑁 be a function that queries the same block twice in a single message for a nonce 𝑁
and XORs the corresponding encryption block, i.e

𝑔𝑁 (𝑥) = 𝐸𝑘 (𝑥 ⊕ Δ𝑁𝑖 ) ⊕ 𝐸𝑘 (𝑥 ⊕ Δ𝑁𝑗 )

for some 1 ≤ 𝑖, 𝑗 ≤ 𝑙 . Remember that Δ𝑁𝑖 = Δ𝑖 ⊕ 𝐹𝑘 (𝑁 ). It follows that,

𝑔𝑁 (𝑥) = 𝐸𝑘 (𝑥 ⊕ Δ𝑖 ⊕ 𝐹𝑘 (𝑁 )) ⊕ 𝐸𝑘 (𝑥 ⊕ Δ 𝑗 ⊕ 𝐹𝑘 (𝑁 ))

The function admits a period 𝑝 = Δ𝑖 ⊕ Δ 𝑗 . Again, the period does not depend on the
nonce. It follows that Simon’s algorithm can recover the period and the attack continues
from there.

Looking at the structure of the encryption part of OCB3, each message block is individ-
ually encrypted using a Horner-structure,
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𝑐𝑖 = 𝐸𝑘 (𝑚𝑖 ⊕ Δ𝑁𝑖 ) (5.8)
= 𝐸𝑘 (𝑚𝑖 ⊕ Δ𝑖����

𝛾𝑖

⊕𝐹𝑘 (𝑁 )) (5.9)

However, setting 𝛾𝑖 = Δ𝑁𝑖 does not allow to build a periodic function, since 𝐹𝑘 (𝑁 )
cannot be �xed. Instead, we can set 𝛾𝑖 = Δ𝑖 . In that case, 𝐹𝑘 (𝑁 ) can simply be seen as a
random permutation on𝑚𝑖 ⊕ Δ𝑖 . By itself, this is not a periodic function yet. We cannot
use the same trick as in the attack one the CBC-MAC, that allows to build a periodic
function out of one Horner-structure. Indeed, this requires the adversary to be able to
query 𝛾 in quantum superposition. Now, notice that the parallel-encryption structure of
the OCB3 protocol essentially means, that one query of OCB3 gives you 𝑙 instances of
Horner-structures with the same nonce. This is what allows the attack to go through.

5.1.3. Identified Design Flaws
The Horner-structure. All the attacks we have seen rely on the ability to build a periodic
function out of the oracle. This then allows them to recover sensitive information by
using Simon’s algorithm. We have identi�ed a common structure within the protocols,
that facilitates the construction of a periodic function. Any part of the algorithm with the
following form is a potential weak point of the protocol,

𝐸𝑘
�
𝛾 ⊕ 𝑥

�
We have seen two di�erent strategies that allow to build a periodic function from a

Horner-structure.

1. If 𝛾 if a function of the form 𝛾 (𝑦), where 𝑦 can be queried in quantum superposition,
the adversary can choose two distinct 𝑦0,𝑦1 and build a function of the form

𝑓 (𝑏�𝑥) = 𝐸𝑘
�
𝛾(𝑦𝑏) ⊕ 𝑥

�
(5.10)

where 𝛾𝑏 = 𝛾 (𝑦𝑏). This function has a period 𝑝 = 1� (𝛾 (𝑦0) ⊕ 𝛾 (𝑦1)), and can be built
from a single oracle call.

2. The second strategy requires two oracle calls to build the function, but has looser
requirements on 𝛾 . The adversary builds a function of the form,

𝑓 (𝑥) = 𝐸𝑘
�
𝛾 ⊕ 𝑥

�
⊕ 𝐸𝑘

�
𝛾 � ⊕ 𝑥

�
(5.11)

where 𝛾 and 𝛾 � are two distinct values. This function has a period 𝑝 = 𝛾 ⊕ 𝛾 �. In
this strategy, 𝛾 may be a classical value. We have seen in the case of LRW that the
adversary uses two oracle queries to build the function. However, in the case of OCB,
a single query already provides the two distinct Horner-structures. Notice that in
that case, 𝛾 does not even depend on the input of the adversary.
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Nonces Outside the Periodic Function Using a nonce to break up the periodicity of
a function cannot be done from outside that function. Let 𝑓 be a function that admits a
period 𝑝 . Let 𝑔 be any deterministic function such that the oracle O given to the adversary
is of the form

O(𝑥0, 𝑥1;𝑁 ) = 𝑔(𝑓 (𝑥0), 𝑥1,𝑁 )
For a �xed 𝑥1 and 𝑁 , the oracle O also admits a period 𝑝 . Now the input 𝑥1 can be �xed,

but the nonce, by de�nition, cannot. However, as seen in the attack on the authentication
part of OCB3, Simon’s algorithm can still recover 𝑝 by querying a di�erent function ℎ𝑁 ,𝑥1
in each round of the algorithm, with,

ℎ𝑁 ,𝑥1 (𝑥) = 𝑔(𝑓 (𝑥), 𝑥1,𝑁 )
where 𝑁 gets randomly drawn for each ℎ𝑁 ,𝑥1 . The caveat being if 𝑔 produces more

periods. In order for Simon’s algorithm to return 𝑝 with high probability, Theorem 2 states
that the amount of parasitic periods must be bounded, i.e

𝜖 (ℎ𝑁 ,𝑥1, 𝑝) � max
𝑡∈{0,1}𝑛\{0,𝑝}

Pr
𝑥
[𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑡)] ≤ 𝑝0 (5.12)

for some 𝑝0 speci�ed in the theorem.

Parallelization. Protocols may use the nonce to break the period of a part of the scheme,
e.g between Horner-structures. However, parallelization can lead to a situation where
message blocks are being treated individually with the same nonce. As we have seen in the
attack on the encryption part of the OCB3 protocol, this can allow an adversary to build a
periodic function in spite of its dependence on a nonce. Parallel designs can facilitate the
second type of attack on Horner-structures described in Equation (5.11).

5.2. Secure Designs
In this section, we review protocols that have been proven secure in the quantum setting.
We scrutinise these schemes for the structural weaknesses we identi�ed in the last section
and identify the design features used to avoid the associated attacks.

5.2.1. The LRWQ
We start with the LRWQ construction. This is a tweakable block cipher designed by
Hosoyamada and Iwata [HI20]. It is meant to be a quantum secure replacement for the
LRW construction. Let 𝑘0,𝑘1,𝑘2 be three independently drawn keys for the underlying
block cipher 𝐸. Then the LRWQ tweakable block cipher is given by

LRWQ𝑡𝑘1,𝑘2,𝑘3 (𝑚) = 𝐸𝑘3
�
𝐸𝑘1 (𝑚) ⊕ 𝐸𝑘2 (𝑡)

�
The structure of the LRWQ tweakable block cipher is shown in Figure 5.3. Hosoyamada

and Iwata have shown this construction to be a qPRP. When we compare the structure of
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Figure 5.3.: The LRWQ Tweakable Block Cipher

the protocol to the structure of LRW from Equation (5.2), we note two corrections to its
weaknesses.

The outer use of ℎ(𝑡) has been removed. As discussed in Section 5.1.3, this does cannot
break the periodicity of a function, and therefore is not needed for the LRWQ protocol.

More importantly, the periodic nature of the Horner-structure has been broken. This is
done by encrypting the message block𝑚 with 𝐸𝑘1 . This "insulates" the variable part from
the �xed 𝛾 part of the Horner-structure.

5.2.2. The Transformed CBC-MAC
We now look back at the CBC-MAC. This is a sequential design that has as a Horner-
structure at every level. This is a core feature of the design as it allows the protocol to
be very e�cient. The protocol uses 𝑙 calls to the block cipher 𝐸 for an 𝑙-block message.
Breaking the periodicity with the same means as for LRWQ would double that, as it would
add 𝑙 − 1 uses of 𝐸 for every query. The transformed version from Section 4.4 instead
uses nonces. We restate its de�nition. For any message message𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 , the
signing algorithm is given by,

𝑥0 = 𝐸𝑘0 (𝑁 ), 𝑥𝑖 = 𝐸𝑘1 (𝑥𝑖−1 ⊕𝑚𝑖), CBC𝑁 (𝑘,𝑀) = 𝑥𝑙
The transformed CBC-MAC is represented in Figure 1.2. We proved this design EUF-

qCMA secure against nonce-respecting adversaries in Section 4.4. The transformation
e�ciently makes the CBC-MAC quantum secure, as it only requires a single additional
use of the block cipher 𝐸. This synergises well with the sequential nature of the algorithm.
Indeed, every Horner-structure 𝑥𝑖 depends on all the Horner-structures 𝑥 𝑗 , with 𝑗 < 𝑖 ,
from the previous rounds. Consider the �rst Horner-structure 𝑥1,

𝑥1 = 𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕𝑚1) (5.13)
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(a) Encryption

(b) Authentication

Figure 5.4.: QCB Authenticated Encryption

In the notation from equation (5.5), 𝛾 = 𝐸𝑘0 (𝑁 ) cannot be �xed. Hence, this level is
not suitable for an attack. Additionally, 𝑥1 depends on 𝑁 and can not be �xed either, as
the nonce 𝑁 is encrypted. This means that the second Horner-structure 𝑥2 is not suitable
for an attack either. This propagates to every level making the transformed CBC-MAC
quantum secure.

5.2.3. The QBC Authenticated Encryption
The QCB scheme is an authenticated encryption protocol designed by Bhaumik et al.
[Bha+20]. It is meant to be a quantum-secure replacement for the OCB protocol. We
give a slightly simpli�ed version of the scheme to illustrate our point. It is based on a
quantum-secure tweakable block cipher that accepts tweaks of the form (𝑑,𝑁 , 𝑖), where
𝑑 ∈ {0, 1, 2} is a domain separator, 𝑁 is a nonce, and 𝑖 ∈ [𝑙] is the block index. Let �Π(𝑑,𝑁 ,𝑖)

𝑘
be a quantum-secure tweakable block cipher as described above. Then for any message
𝑀 =𝑚1�𝑚2� . . . �𝑚𝑙 with associated data 𝐴 = 𝑎1�𝑎2� . . . �𝑎𝑙 � , the QCB algorithm outputs
a ciphertext 𝐶 = 𝑐1�𝑐2� . . . �𝑐𝑙 and a tag 𝑇 such that,

𝑐𝑖 = �Π(0,𝑁 ,𝑖)
𝑘

(𝑚𝑖), 𝑇 =
�
𝑖

�Π(1,𝑁 ,𝑖)
𝑘

(𝑎𝑖) ⊕ �Π(2,𝑁 ,𝑙+1)
𝑘

(𝑚1 ⊕ · · · ⊕𝑚𝑙 ) (5.14)

We represent the QCB protocol in Figure 5.4. The structure of the QCB protocol is
essentially identical to the structure of the OCB protocol. The scheme encrypts each
message block/associated data block with the tweakable block cipher �Π using the same
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nonce. This directly patches the weakness of the OCB protocol. Indeed, every input from
the adversary is individually "insulated" in the quantum-secure tweakable block cipher.
The quantum attack is avoided by making the structure of QCB denser, similarly to the
LRWQ scheme. The nonce and block index simply serve against the classical attacks as in
the OCB protocol.

5.2.4. Secure Design Strategies
Dense Structure. A dense structure breaks the periodicity of the Horner-structures. This
can be accomplished by encrypting the adversary’s quantum inputs individually.
When applied to the LRWQ tweakable block cipher, this strategy has a big e�ciency

drawback. Indeed, since both the message and the tweak can to be queried in quantum
superposition, both need to be individually encrypted. On the other hand, Bhaumik et al.
are able to e�ciently apply this strategy with QCB. They show in [Bha+20, Section 4.3]
how to instantiate the protocol with a tweakable block cipher that only requires one call
to the underlying block cipher 𝐸.

Nonce in the Horner-Structure. A second strategy consist in using nonces to break the
periodicity of the Horner-structures. The protocol must be built in such a way that every
Horner-structure of the protocol has the following form,

𝐸𝑘
�
𝛾𝑁 ⊕ 𝑥

�
This strategy is particularly e�ective with sequential designs. We have seen an example

of its e�ciency with the transformed CBC-MAC. However, as discussed in Section 5.1.3,
this strategy may be ill suited to parallel designs.
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6. Conclusion
In this thesis, we have studied the use of nonces in the design of quantum-secure proto-
cols. Towards this, we reviewed the Haas transform [Haa20]. We have shown that it is
not quantum-secure in general. Still, we applied it to the CBC-MAC scheme. We have
shown that the transformed CBC-MAC is EUF-qCMA secure against nonce-respecting
adversaries. This demonstrates that while the Haas transform may not be a secure generic
transformation, it is a relevant design strategy against quantum attacks.

In order to build an array of such design strategies, we have surveyed existing quantum
attacks. From this, we have identi�ed parallel-encryption and Horner-structures to be
structural weak points that a quantum attack may exploit. Parallel-encryption and Horner-
structures are both commonly employed in algorithms for e�ciency reasons. By comparing
attacked protocols with their proven quantum-secure counterparts, we have extracted the
design strategies that frustrate the previously mentioned attacks.

Going forward, the structural weaknesses and design strategies identi�ed in this paper
may serve as heuristic while building quantum-secure protocols. Furthermore, they may
also help in cryptanalysing protocols in the Q2 setting.

Our security proof for the transformed CBC-MAC directly shows the EUF-qCMA secu-
rity of the scheme. The security bound given is not tight. A future work may improve
this bound. An interesting approach may be to use Zhandry’s compressed oracle technique
[Zha18] or one of its variant such as the recording standard oracle with error [HI19]. This
could allow to prove the qPRF security of the scheme.
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A. Appendix
In this section, we show that the transformation preserves the classical security of the
transformed scheme.
Lemma 5. Let Π be a deterministic EUF-CMA secure MAC based on a block cipher 𝐸𝑘 :
{0, 1}𝑛 → {0, 1}𝑛 as described in de�nition 4.1.1. Then Π𝑁 is a nonce-EUF-CMA secure MAC.

In particular, for any adversary A that makes at most 𝑞 queries, there exists B0 and B1,
two adversaries against the PRP security of 𝐸 and EUF-CMA security of Π respectively, such
that,

Advnonce-EUF-CMA
Π𝑁

(A) ≤ AdvPRP𝐸 (B0) + AdvEUF-CMA
Π (B1) + 𝑞2

2𝑛+1
Proof. Let A be an e�cient nonce-EUF-CMA adversary against Π𝑁 that makes at most 𝑞
queries to its challenger. We consider a series of games from𝐺0 to𝐺4. Also, for 𝑗 = 0, . . . , 4,
we de�ne𝑊𝑗 to be the event that A wins in game 𝐺𝑗 .

𝐺0: This is the nonce-EUF-CMA game between A and its challenger C. We give de-
scription of the challenger’s behavior.

C draws a random key 𝐾 = (𝑘0,𝑘1) $←− K2 and uses it to answer queries in the following
way,

(𝑁 ,𝑚) → Φ(𝐸𝑘1 (𝐸𝑘0 (𝑁 ) ⊕ Ψ))
Note that for each query, 𝑁 must always be fresh or the challenger interrupts the game.

By de�nition,

Pr[𝑊0] = Advnonce-EUF-CMA
Π𝑁

(A) (A.1)
𝐺1: Let 𝑃 : {0, 1}𝑛 → {0, 1}𝑛 be a random permutation. In this game, the challenger

answers queries by using a call to 𝑃 (𝑁 ) instead of 𝐸𝑘0 (𝑁 ). More precisely, tag queries are
answered as follows,

(𝑁 ,𝑚) → Φ(𝐸𝑘1 (𝑃 (𝑁 ) ⊕ Ψ))
.

Since 𝐸𝑘 is a bloc-cipher,

|Pr[𝑊0] − Pr[𝑊1] | = AdvPRP𝐸 (B0) (A.2)
𝐺2: Let 𝐹 : {0, 1}𝑛 → {0, 1}𝑛 be a random function. In this game, the calls to the family

of random permutations from 𝐺1 are replaced by calls to 𝐹 . The tag queries are answered
as follows,

(𝑁 ,𝑚) → Φ(𝐸𝑘1 (𝐹 (𝑁 ) ⊕ Ψ))
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.
The following distinguishing advantage is given by the Switching Lemma [lemma 1].

|Pr[𝑊1] − Pr[𝑊2] | ≤ 𝑞2

2𝑛+1 (A.3)

𝐺3: In this game, the challenger does not use the given nonce 𝑁 to answer queries.
Instead, it directly draws a random value 𝑟 $←− 2𝑛 .

(𝑁 ,𝑚) → Φ(𝐸𝑘1 (𝑟 ⊕ Ψ)) | 𝑟
$←− {0, 1}𝑛

Since the adversary can never query the same nonce more than once, the games𝐺2 and
𝐺3 behave exactly in the same way. It follows that,

Pr[𝑊2] = Pr[𝑊3] (A.4)

Let Π� be a MAC that answers queries as in game𝐺4. Π being EUF-CMA secure implies
that Π� is also EUF-CMA secure. Indeed, it is possible to perfectly simulate Π� from an
oracle for Π. For any query (𝑁 ,𝑚 =𝑚0,𝑚1, . . .𝑚𝑙−1), this is done by drawing a random
value 𝑟 and querying Ψ−1(𝑟 ⊕ Ψ(𝑚0),𝑚1, . . .𝑚𝑙−1) to Π. It follows that,

Pr[𝑊3] = AdvEUF-CMA
Π (B1) (A.5)

It follows from (A.1), (A.2), (A.3), (A.4) and (A.5) that,

Advnonce-EUF-CMA
Π𝑁

(A) ≤ AdvPRP𝐸 (B0) + AdvEUF-CMA
Π (B1) + 𝑞2

2𝑛+1
�

Note. For our proof to go through with this general descripion, we require Ψ to be a
public permutation and Ψ−1 to be e�ciently computable. Indeed, allowing Ψ to be any
function introduces some bad edge cases: the security of Π could depend upon speci�c
properties of Ψ that would be lost with 𝑟 ⊕ Ψ(𝑚0). Now it seems that for any reasonable
Π where this is not the case, you can allow Ψ to be any function. You could even have
it take the secret key as input. You would then argue that 𝑟 ⊕ Ψ(𝑚0) with a random 𝑟 is
itself random, and the proof would then go from there.
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