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ABSTRACT
The𝑤-event framework is the current standard for ensuring differ-

ential privacy on continuously monitored data streams. Following

the proposition of𝑤-event differential privacy, various mechanisms

to implement the framework were proposed. Their comparability

in empirical studies is vital for both practitioners to choose a suit-

able mechanism and researchers to identify current limitations and

propose novel mechanisms. By conducting a literature survey, we

observe that the results of existing studies are hardly comparable

and partially intrinsically inconsistent.

To this end, we formalize an empirical study of𝑤-event mech-

anisms by a four-tuple containing re-occurring elements found

in our survey. We introduce requirements on these elements that

ensure the comparability of experimental results. Moreover, we

propose a benchmark that meets all requirements and establishes

a new way to evaluate existing and newly proposed mechanisms.

Conducting a large-scale empirical study, we gain valuable new

insights into the strengths and weaknesses of existing mechanisms.

An unexpected – yet explainable – result is a baseline supremacy,

i.e., using one of the two baseline mechanisms is expected to de-

liver good or even the best utility. Finally, we provide guidelines

for practitioners to select suitable mechanisms and improvement

options for researchers to break the baseline supremacy.

1 INTRODUCTION
Monitoring data streams continuously facilitates numerous new

applications, e.g., controlling real-time intelligent traffic [17] or

electricity distribution systems [2]. However, the privacy require-

ments of the data owner have to be fulfilled in order to deploy

them. To ensure strong privacy for streams, the𝑤-event differential

privacy (DP) framework [20] is the standard state-of-the-art. The

idea is to give a provable statistical indistinguishable guarantee of

continuously calculated query results. The guarantee holds for any

rolling window of at most𝑤 timestamps.

In the literature, various mechanisms are proposed that sanitize

streams to achieve𝑤-event differential privacy [7, 8, 21, 23, 26, 28].

All of these mechanisms sanitize the stream by injecting noise into

the query results. Consequently, the design goal of such mecha-

nisms is to minimize the introduced error and hence provide high

data utility. Existing mechanisms aim to achieve high data utility

by exploiting stream properties, e.g., sparse streams [28]. Unfortu-

nately, there are little insights on which stream properties provide

high data utility mainly due to incomparable empirical studies. This

imposes a particular challenge for data administrators that need

to choose a mechanism with suitable utility as well as researchers

that aim to identify the utility limitations of existing solutions since

theoretical examinations mostly analyze worst case scenarios.

Currently, there is no generally accepted and unified procedure to

perform empirical studies on𝑤-event DP mechanisms for streams.

Quite the contrary, our literature survey reveals that existing stud-

ies significantly deviate in relevant aspects, e.g., input data streams

and competitor mechanisms. This hampers the comparison and

evaluation of existing results. Unfortunately, guidelines for em-

pirical studies on static data [18] (e.g., finite time series [16] or

relational databases [5]) cannot be applied since 𝑤-event mecha-

nisms work significantly different. For example, rolling window

techniques keep track of the available privacy budget for each win-

dow of size𝑤 . Summarizing, incomparable empirical studies limit

the practical application of 𝑤-event mechanisms and delays the

introduction of novel mechanisms in the research community.

Limitations of Existing Studies. The comparability of empirical

studies on𝑤-event DP is limited by inconsistent experimental ele-

ments. For example, the selection of data streams and competitor

mechanisms, or the interpretation of the computed errors indicating

a mechanism’s utility.

Specifically, most studies focus on a small set of varying real-

world data streams [7, 8, 21, 23, 26, 28]. We observe two challenges:

First, the selection is hampered by the fact thatmany streams are not

publicly available. Second, in case of available streams, most studies

apply necessary preprocessing steps. However, the preprocessing

might not be known [6, 24] and highly differs among publications

using the same streams. Studies that use artificial data to investigate

the influence of relevant data properties are only available for static

data [18] and finite time series [16].

Analyzing available streams indicates that they are often sparse,

i.e., they mainly contain zero values, especially multi-dimensional

streams. Thus, publishing the same value all the time, as performed

by one of the baseline mechanisms [20], yields good utility w.r.t.

common error metrics.

Next, quantifying the benefit that data administrators can achieve

from the latest 𝑤-event mechanism is virtually impossible since

many studies do not compare to both baselines mechanism. There-

fore, it is hard to decide whether an easy-implementable baseline

suffices the use case, or whether a sophisticated mechanism is

needed. Moreover, state-of-the-art mechanisms are highly complex

and subtle differences in the implementation or initialization param-

eters can have a significant effect on a mechanism’s utility. This is a

serious limitation, especially since implementations of mechanisms

are rarely publicly available.

Contributions. Motivated by the illustrated limitations of previ-

ous experimental studies, we present the following contributions:

Identification of benchmark requirements. Based on a com-

prehensive literature survey, we identify that all existing empirical
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Table 1: Illustration of a location monitoring use case. Data-
base 𝐷𝑡 contains the location of all individuals at timestamp
𝑡 . Query 𝑄 (𝐷𝑡 ) contains the number of individuals (𝑐𝑛𝑡) per
location. The goal is to hide trajectories of𝑤 timestamps.

Ind. 𝐷1 𝐷2 𝐷3 ...

Axl park beach park ...

Joan park park beach ...

Rene beach beach park ...

Query 𝑐𝑛𝑡 (park) = 2 𝑐𝑛𝑡 (park) = 1 𝑐𝑛𝑡 (park) = 2 ...

𝑄 (𝐷𝑡 ) 𝑐𝑛𝑡 (beach) = 1 𝑐𝑛𝑡 (beach) = 2 𝑐𝑛𝑡 (beach) = 1 ...

studies on𝑤-event mechanisms can be described by four elements:

mechanisms, streams, privacy requirements, and utility metrics.

We outline the limitations of prior studies for each element, and

propose and justify requirements on these elements to ensure the

comparability of results. Moreover, our survey reveals that all ex-

isting 𝑤-event mechanisms follow the same abstract framework

simplifying the comparison at a qualitative level.

Benchmark instantiation.We show how tomeet the identified

requirements and introduce the first benchmark for w-event DP.

We include an artificial data generator that allows to analyze the

influence of stream properties on a mechanism’s utility. The bench-

mark establishes a new and comparable way to evaluate existing

or newly proposed mechanisms and is publicly available
1
.

Empirical study and new insights. We conduct the largest

empirical evaluation of w-event DP mechanisms so far based on

our benchmark, comprising of 252,000 single experiments. The re-

sults yield three main insights: Analyzing the influence of stream

properties on a mechanism’s utility, the amplitude is decisive rather

than the period length. Further, an unexpected baseline supremacy

is observed, i.e., one of the two baseline mechanisms provide the

highest utility for every combination of stream and privacy require-

ments. Finally, data-adaptive sampling techniques do not yield a

utility improvement if the amplitudes of the stream are large.

Discussion of takeaways. Considering the experimental re-

sults, we provide guidelines that help practitioners to select a suit-

able mechanism and reveal research directions for future work.

2 PRELIMINARIES
We start by providing required background knowledge on𝑤-event

differential privacy, the𝑤-event mechanism framework for mecha-

nism design, and introduce common utility metrics.

2.1 𝑤-Event Differential Privacy
The𝑤-event differential privacy is the current standard for ensuring

differential privacy of aggregation queries computed on continu-

ously monitored data streams. Rather than protecting the stream

entirely which requires an infinite amount of noise, the key idea is

to protect every running window of at most𝑤 timestamps [20].

Let 𝑆 = (𝐷1, 𝐷2, ..) be a data stream collecting database 𝐷𝑡 at

timestamp 𝑡 as shown in the example in Table 1. Each row in 𝐷𝑡

corresponds to a individual and each column to an activity, i.e.,

1
https://dbresearch.uni-salzburg.at/projects/dpbench/index.html

location visit. For such a stream, a query of interest 𝑄 (𝐷𝑡 ) is the
number of individuals per location at each timestamp. This query is

computed using a multi-dimensional count query (i.e., histogram)

with one count per location and timestamp. All differential privacy

frameworks are built upon a notion of neighborhood, i.e., query

results over a stream that are hardly distinguishable by an attacker.

Two databases 𝐷𝑡 , 𝐷
′
𝑡 are neighbors if one can be obtained from

the other by adding or removing one row, i.e., individual. Further,

let 𝑆𝑝 = (𝐷1, . . . , 𝐷𝑝 ) be a stream prefix of length 𝑝 . Intuitively,

two stream prefixes are𝑤-neighbors if (1) the databases collected

at each timestamp are pairwise the same or neighbors, and (2) all

neighboring databases fit in a window of size𝑤 (cf. Definition 1).

Definition 1 (𝑤-Neighboring Stream Prefixes [20]). Let𝑤

be a positive integer, and 𝑡, 𝑡1, 𝑡2 ≤ 𝑝 three timestamps. Two stream

prefixes 𝑆𝑝 , 𝑆
′
𝑝 are 𝑤-neighboring if

(1) 𝐷𝑡 , 𝐷
′
𝑡 are neighboring for each 𝐷𝑡 , 𝐷

′
𝑡 with 𝐷𝑡 ≠ 𝐷 ′𝑡

(2) 𝑡2−𝑡1 < 𝑤 for each𝐷𝑡1 , 𝐷𝑡2 , 𝐷
′
𝑡1
, 𝐷 ′𝑡2 with 𝑡1 < 𝑡2,𝐷𝑡1 ≠ 𝐷 ′𝑡1

and 𝐷𝑡2 ≠ 𝐷 ′𝑡2 .

The desired privacy level 𝜖 is set by the data administrator and

usually lies between 0.1 and 1. A smaller value means better privacy.

From Definition 2,𝑤-event differential privacy is given if the query

results of all𝑤-neighboring stream prefixes are hard to distinguish

,i.e., up to a factor of 𝑒𝜖 .

Definition 2 (𝑤-Event 𝜖-Differential Privacy [20]). LetM
be a randomized mechanism that takes a stream prefix of arbitrary

size as input. We say thatM satisfies 𝑤-event 𝜖-differential privacy

if for all 𝑅 ∈ Range(M), all 𝑤-neighboring stream prefixes 𝑆𝑝 , 𝑆
′
𝑝 ,

and all 𝑝 , holds that

Pr[M(𝑆𝑝 ) = 𝑅] ≤ 𝑒𝜖 · Pr[M(𝑆 ′𝑝 ) = 𝑅] .

To implement a 𝑤-event DP mechanism for numeric queries,

a mechanism usually adds noise based on the zero-mean Laplace

distribution Lap(_) to each of the 𝑑𝑖𝑚 outputs of a query 𝑄 : 𝐷 →
Rdim, e.g., histogram bins. The scale _ =

Δ𝑄
𝜖 depends on the privacy

budget 𝜖 and the global sensitivity Δ𝑄 = max𝐷,𝐷′ | |𝑄 (𝐷)−𝑄 (𝐷 ′) | |1.
The global sensitivity quantifies the maximum difference query

results of neighboring databases may have. For instance, Δ𝑄 =

1 holds for a histogram query. Specifically, 𝑤-event DP can be

implemented by using independent DP sub-mechanismsM𝑡 , e.g.,

Laplace mechanisms, to release the query results at a timestamp, as

long as we ensure that the budget spend by these mechanisms does

not exceed 𝜖 for every rolling window of size𝑤 (cf. Theorem 1).

Theorem 1 (Composition [20]). LetM be a mechanism process-

ing a stream prefix 𝑆𝑝 = (𝐷1, . . . , 𝐷𝑝 ), and outputting a transcript of
released values 𝑅 = (𝑟1, . . . , 𝑟𝑝 ). Assume that we can decomposeM
into 𝑝 sub-mechanismsM1, . . . ,M𝑝 , s.t.M𝑡 (𝐷𝑡 ) = 𝑟𝑡 , eachM𝑡 has

independent randomness and achieves 𝜖𝑡 - differential privacy. Then,

M satisfies𝑤-event differential privacy if

∀𝑡 ∈ [𝑤, 𝑝] :
𝑡∑︁

𝑘=𝑡−𝑤+1
𝜖𝑘 ≤ 𝜖.

https://dbresearch.uni-salzburg.at/projects/dpbench/index.html
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2.2 The𝑤-event Mechanism Framework
We now introduce an abstract framework for sub-mechanismsM𝑡

(cf. Algorithm 1) that is suitable for all mechanisms of our litera-

ture survey. This common framework facilitates the comparison of

mechanisms and experimental results.

Algorithm 1𝑤-event Mechanism Framework

1: functionM𝑡 (𝜖,𝑤, 𝐷𝑡 , 𝑙)

2: if isSamplingPoint(𝜖,𝑤, 𝐷𝑡 , 𝑙) then
3: 𝜖𝑡 ← budgetAllocation(𝜖,𝑤, 𝐷𝑡 , 𝑙)
4: 𝑝𝑡 ← pertubation(𝜖𝑡 ,Δ𝑄,𝐷𝑡 )
5: 𝑟𝑡 ← filtering(𝑝𝑡 ) ⊲ sanitized query result

6: 𝑙 ← 𝑡

7: else 𝑟𝑡 ← 𝑟𝑙 ⊲ approximation

8: end if
9: return 𝑟𝑡
10: end function

A sub-mechanismM𝑡 has four inputs
2
: privacy requirements 𝜖

and𝑤 , database𝐷𝑡 , and the last timestamp 𝑙 where a sub-mechanism

released a sanitized query result. Note that not all timestamps of

the query result are sanitized. Instead, previously sanitized query re-

sults can be releasedmultiple times. The output of the sub-mechanism

is the released query result 𝑟𝑡 . Intrinsically, the sub-mechanism im-

plements four functions that are described below. For illustration,

Table 2 provides example implementations of these functions.

isSamplingPoint-Function. A mechanism has to decide whether

a timestamp is sampled, i.e., the current query result is sanitized

by spending a portion of the privacy budget 𝜖 for perturbation.

Then,M𝑡 releases this sanitized query result. The alternative to

sampling is called approximation, i.e., the mechanism approximates

the current query result with the one(s) sanitized last at timestamp

𝑙 . The rationale for approximation is to save budget in case the

query results change only marginally over time.

budgetAllocation-Function. This function is called in case the

mechanism decides to sample. It determines and allocates the share

of privacy budget used for perturbation. Here, the used strategies

differ highly among the mechanisms.

Perturbation-Function. The mechanism first calculates the true

query result which is then perturbed using the allocated budget.

Note that all identifiedmechanisms leverage the Laplacemechanism

for perturbation.

Filtering-Function. The post-processing immunity of differen-

tial privacy [12] allows to modify the perturbed query results 𝑝𝑡
in an arbitrary way without spending budget or loosing the pri-

vacy guarantee, as long as no private information computed on

𝐷𝑡 is used. Consequently, sub-mechanisms take advantage of this

property within the filtering function to increase the utility. A

straight-forward filtering function truncates the perturbed query

result such that it fits in the domain Range(𝑄) of the query 𝑄 . For

instance, Range(𝑄) contains all non-negative integers for count

queries. During truncating, the mechanism takes the perturbed

2
Note that individual mechanisms may use additional input parameters.

query result 𝑝𝑡 and releases𝑚𝑎𝑥 (0, round(𝑝𝑡 )), where round is a
function that rounds a floating point number to the next integer.

Table 2: Computation of the functions in the𝑤-event mecha-
nism framework for the baselines Uniform and Sample [20].

Function Uniform Sample

isSamplingPoint true if w%t=0 then true else false
budgetAllocation 𝜖𝑡 ← 𝜖

𝑤 𝜖𝑡 ← 𝜖

pertubation 𝑝𝑡 ← 𝑄 (𝐷𝑡 ) + Lap( Δ𝑄𝜖𝑡 )
filtering 𝑝𝑡

2.3 Utility Metrics
To measure the utility of the released stream, researchers frequently

quantify the difference of 𝑟𝑡 to the true query result 𝑄 (𝐷𝑡 ) at each
timestamp 𝑡 mainly using the mean absolute error (MAE) or the

mean relative error (MRE) [4, 15, 20, 21, 27, 30]. The mean absolute

error is defined as

MAE(𝑄 (𝑆𝑝 ), 𝑅) =
1

𝑝

𝑝∑︁
𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |.

Similar, for 𝛾 > 0, the mean relative error is defined as

MRE(𝑄 (𝑆𝑝 ), 𝑅) =
1

𝑝

𝑝∑︁
𝑡=1

|𝑄 (𝐷𝑡 ) − 𝑟𝑡 |
max {𝑄 (𝐷𝑡 ), 𝛾}

.

Here,𝛾 is a sanity bound tomitigate the effect of small query results.

3 BENCHMARK REQUIREMENTS
In this section, we state and justify requirements on common el-

ements of empirical studies on 𝑤-event mechanisms to ensure

the comparability of their results. We identify these elements by

conducting a comprehensive literature survey with the following

methodology: We consider all publications that cite the original

work on 𝑤-event DP [20]. We further include publications from

the proceedings of the VLDB and SIGMOD conferences (2020 to

2022) and the ACM CCS conference (2020 to 2021). Summarizing,

we include all publications that perform an experimental evalua-

tion on streams (i.e., not only finite time series which excludes, e.g.,

[1, 10]) and are published at notable peer-reviewed conferences or

journals. Note that this also includes publications on event-level

DP or custom privacy definitions that generalize 𝑤-event DP. In

total, we included 16 publications listed in Table 3.

As a result of our survey, we formalize the requirements of an

empirical study on𝑤-event mechanisms with a 4-tuple (M, S, P,E)
with the following semantics:

• M is a set of mechanisms compared.

• S is a set of streams, i.e., datasets.

• P is a set of privacy requirements, i.e., (𝑤 ,𝜖)-tuples.

• E is a set of (error) metrics to quantify mechanism utility.

We next describe the elements in more detail and introduce

requirements on the elements that ensure the comparability of em-

pirical studies. Based on the requirements, we reveal the limitations

of existing studies.
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Table 3: Requirements analysis of related work w.r.t.M, P, and E (✓yes, ✗no, ✓partially, - not considered). 𝑢 denotes unknown
and 𝑑 dimension. Note that (M-R4) and (M-R5) are not applicable.

Reference Privacy (M-R1) (M-R2) (M-R3) (P - R1) (P - R2) (E - R)

Definition Proof Baselines Sources (𝜖, 𝑤) (𝑤, 𝜖) Utility metrics

BA, BD, FAST𝑤 [20] 𝑤-event ✓ both ✓a
- ([40,200], 1) MAE, MRE 𝛾 = 𝑢

Retroactive Grouping [5] event-level ✓ Uniform ✗ ([000.2,0.1], 1) n.a. MAE, MRE 𝛾 = 𝑢

DSAT𝑤 [21] 𝑤-event ✓ none
b ✗ ([0.5,1], 800) ([200,1000], 𝑢) total sum of squared error

SecWeb [26] 𝑤-event ✓ Uniform ✗ ([0.01,1], 120) ([40,240], 1) MAE, MRE 𝛾 = 1

G-event [8] 𝑤-event ✗ Sample ✗ ([0.5,1.5], 𝑢) ([40,200], 𝑢) MAE, MRE 𝛾𝑑 = 0.1% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑 ]

RGP [23] 𝑤-event ✓ Uniform ✗ ({0.5,1.0}, 1) ({10,50}, 𝑢) MRE 𝛾 = 𝑢

RescueDP [27, 28] 𝑤-event ✓ none ✗ ([0.1,1], 200) ([40,240], 1) MAE, MRE 𝛾𝑑 = 0.1% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑 ]

Re-DPoctor [34] 𝑤-day event ✗ none ✗ ([0.5,1.5],14) ([7,35],1) MAE, MRE 𝛾 = 0.05% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 )

PeGaSuS [7] event-level ✓ Uniform ✗ ({0.01, 0.1},1) n.a. MAE, true positive rate

Local DP
c
[13] local 𝑤-event ✓ none ✗ ({1.1,1.9},4) ([10,100],1) MAE, RMSE

STBD [22] (𝑤,𝑛)-DP ✓ Uniform ✗ ([0.2,1.0],120) ([40,200],1) MAE

DPS [14] local 𝑤-event ✗d
Uniform ✗ - ([0.01,1], 𝑢) unspecified ’average error’

AdaPub [30] 𝑤-event ✓ none ✗ ([0.1,0.9], 100) ([40,200], 1) MRE 𝛾𝑑 = 1% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑 ]

DADP [31] distr. 𝑤-event ✓ none ✗ ([0.1,1],40) (1.0, [20,200]) MAE, MRE 𝛾 = 0.1% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 )

ToPS [29] event-level ✓ none ✗ ([0.01,0.5],1) n.a. mean squared error

LPD-IDS [25] local 𝑤-event ✓ both ✗ ({0.5, 2.5},20) ({10, 50},1) MRE 𝛾𝑑 = 𝑢, event monitoring ratio

a
FAST used for FAST𝑤 : http://www.mathcs.emory.edu/~lxiong/aims/FAST/

b
Only the user-level mechanism is compared to Uniform.

c
The publication does not propose a name. For convenience, we use the name Local DP relating to the query the mechanism computes.

d
Privacy proof missing.

3.1 Mechanism SetM
Below, we state five requirements (M-R1) to (M-R5) that the mech-

anism setM needs to fulfill in order to provide comparability. We

further discuss to which extend previous works address these re-

quirements (summarized in Table 3).

(M-R1) Proofing the Desired Privacy Definition. Upon selecting a

mechanism, the most fundamental requirement is that the mecha-

nism provides the desired privacy guarantee, i.e.,𝑤-event DP in our

case. We distinguish two cases : (1) If the definition is used directly,

the authors need to prove that the definition is satisfied. (2) If a

novel guarantee is proposed, e.g., a generalization of𝑤-event DP,

the authors need to prove that their mechanism satisfies the novel

guarantee. Further, they need to state how the mechanism can be

parameterized such that it fulfills𝑤-event DP. Though this appears

to be self-evident, our survey reveals that there are mechanism

propositions without a privacy proof (cf. Table 3).

(M-R2) Inclusion of Baseline Mechanisms Uniform and Sample. In

the original𝑤-event DP publication [20], the authors propose two

baseline algorithms: Uniform and Sample. Their design is based on

the fact that any mechanism introduces two types of errors into the

stream, namely the perturbation and the approximation error. One

of them is dominant for each baseline. Specifically, the perturbation

error occurs in the Perturbation function that perturbs𝑄 (𝐷𝑡 ) by
adding noise. It is defined as the difference between the true query

result 𝑄 (𝐷𝑡 ) and the perturbed one 𝑝𝑡 . The approximation error

occurs when a mechanism does not sample and hence approximates

the current query 𝑄 (𝐷𝑡 ) with the last released sanitized result 𝑟𝑙 .

It is defined by the difference between the true query result 𝑄 (𝐷𝑡 )

and the last released one 𝑟𝑙 . Especially if the query result fluctuation

is small, the approximation error is also small.

Uniform samples every timestamp by allocating 𝜖𝑡 =
𝜖
𝑤 budget

for perturbation; hence, only a perturbation error is introduced.

By contrast, Sample only samples a new query result every 𝑤 th

timestamp and approximates the query results at the remaining

timestamps. Thus, it uses the total budget, i.e., 𝜖𝑡 = 𝜖 , for pertur-

bation and its error is dominated by the approximation error. As

a result, we suggest to include both baseline mechanisms, as they

allow to study the dominant error type and help quantifying the

improvement of a newly proposed mechanism. However, our lit-

erature study reveals that 7 out of a total of 16 publications do

not include any of these baselines. Moreover, 7 publications only

compare to one of the baseline mechanisms.

(M-R3) Availability of Mechanism Implementations. Most mecha-

nisms proposed in literature are intrinsically complex. For instance,

the sampling decision of multiple mechanisms rely on a so-called

proportional-integral-derivative (PID) controller [3, 16, 21, 28] or

Kalman filter [16, 28, 33]. Aiming at validating experimental results,

we observed that minor differences in the implementation or pa-

rameter initialization can have a significant effect on a mechanism’s

utility. For example, is the query result in the Filtering function

rounded to the query domain or not. Therefore, we advocate to

make implementations available online to provide additional in-

sights and facilitate the comparison. Our literature survey reveals

that only one out of 16 publications provide access to their im-

plementation. Moreover, we got access to re-implemented sources

by contacting the authors of the original𝑤-event publication [20]

which highly helped to validate our own implementations.

http://www.mathcs.emory.edu/~lxiong/aims/FAST/
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(M-R4) Private Parameter Determination. Generally, all parame-

ters of a mechanism that are computed on the true stream need to

be computed in a private way [18], e.g., the number of rows which

is private information. None of our surveyed publications address

this requirement explicitly, even though not all mechanisms sani-

tize these parameters. However, verifying this requirement without

having access to the concrete mechanism implementation (M-R3)

is impossible. Using our benchmark (cf. Section 4), we identify that

three out of 10𝑤-event mechanism do not fulfill this requirement.

To solve this issue, we suggest to follow the proposal of [18] to use

mechanism repair functions.

(M-R5) Homogeneity of Background Knowledge. Most mecha-

nisms use components, like PID controllers [3], that have parame-

ters as well. Background knowledge of the domain is required to set

them optimally. However, it is important to use them consistently in

the benchmark to provide a fair comparison of all mechanisms [18].

3.2 Data Stream Set S
Ideally, an empirical comparison consists of two parts: First, a se-

quence of micro benchmarks on artificial data is conducted to study

the effect of stream properties on a mechanism’s utility. Second, a

canon of real-world streams is used to reflect use cases.

(S − 𝑅1) Artificial Streams Reflecting Stream Properties. Our sur-

vey reveals that artificial streams are rarely used, e.g., in [25]. Even

though related work [15, 20, 30] indicates that a mechanism’s per-

formance depends on fluctuations and the sparsity of the stream,

further investigations are missing. Therefore, the identification of

stream properties that are relevant for either the mechanism’s util-

ity or the reflection of real-world data remains an open challenge.

To this end, we propose and discuss relevant stream properties

when instancing our benchmark (cf. Section 4).

(S − 𝑅2) Available Real-World Streams with Reproducible Prepro-

cessing. Our literature survey reveals that most approaches focus

on real-world streams from specific use cases, e.g., location moni-

toring. Even though multiple publications use the same streams, the

respective study results are not necessarily comparable. The reason

is that the streams are preprocessed which highly varies between

most studies. We illustrate this fact with two examples referring to

the most common stream data, namely WorldCup. Its raw dataset

contains the logs of 89,997 URLs of the FIFA 1998 Soccer World

Cup website. (a) [20] refers to all 89,997 web pages, i.e., dimensions,

while [28] samples 2,000 of them. The reported utilities in both

publications indicate that the same mechanisms may have a highly

different utility depending on the conducted preprocessing. (b) [32]

aimed to reproduce the results of [20]. Only after having access to

the preprocessed stream, kindly provided by the original authors,

an additional preprocessing step was identified, i.e., normalizing

the counts. Both examples suggest that the result deviation origi-

nates from stream preprocessing. In many other cases, the reason

remains unknown. Since we are aware that due to license issues

most publications must not publish their preprocessed streams,

it is particularly important that all preprocessing steps are well

documented and publicly available [6, 24].

3.3 Privacy Requirements Set P
In the𝑤-event DP framework, data owners express their privacy

requirements by a tuple (𝜖,𝑤) where 𝜖 is the available privacy

budget and 𝑤 is the window length. However, there is no clear

consensus in the literature regarding the range of examined privacy

budgets, window sizes, and their combination (cf. Table 3). In all

publications, the authors conduct two types of experiments:

(P - R1) Vary-𝜖 . The authors examine the effect of 𝜖 for a fixed

value of𝑤 . Mostly, 𝜖 is varied between 0.1 and 10.

(P - R2) Vary-𝑤 . The authors examine the effect of𝑤 for a fixed

value of 𝜖 , mostly 𝜖 = 1.

However, there is no consensus regarding the window size𝑤 for

both types of experiments. The𝑤-values even differ for the same

stream. The overall tendency is a lower bound of 𝑤 > 10 and an

upper bound in the low hundreds.

3.4 Error Metrics Set E
Researchers typically compute an error metric between the true and

the sanitized stream to determine the utility of a mechanism. As

shown in Table 3, most studies use the mean absolute error (MAE)

or the mean relative error (MRE), as defined in Section 2.3. However,

there are subtle differences in the error calculation; in particular, in

the selection of the sanity bound of MRE. For instance, [28] uses

a data-dependent sanity bound 𝛾 , whereas [8] fixes 𝛾 = 1.0. In

three publications, the sanity bound is not stated, even though the

used streams contain query results of 0, requiring 𝛾 > 0. Moreover,

since mechanisms rely on random values, two runs of the same

mechanism using the same combination of stream and privacy

requirements may result in a highly different error. Consequently,

as suggested in [18], we suggest to run each combination multiple

times, and compare the average and the 0.95-quantile of the error.

4 BENCHMARK DEFINITION
We now introduce a benchmark for𝑤-event DPmechanisms aiming

at the comparability of experimental results. The benchmark is

defined based on the elements identified in Section 3 and meets all

comparability requirements.

Table 4 gives a brief overview of the element selection which

results in the so far largest empirical study, comprising 252,000

single experiments, i.e., mechanism runs. Next, we discuss how to

meet the requirements of each element and argue how to ensure

the validity and comprehensiveness of the study results.

4.1 Mechanism SetM
We first discuss the selection of mechanisms in our benchmark. We

give a detailed discussion on meeting all the identified requirements

from Section 3 to ensure the comprehensiveness and validity of the

intended results.

(M-R1)-(M-R2) Considered Mechanisms. We include (1) the base-

line mechanisms Sample and Uniform, as well as (2) all mechanisms

found in our literature study that either (a) support 𝑤-event DP

directly or can be parameterized such that they achieve𝑤-event DP.

We exclude mechanisms that provide local or distributed𝑤-event
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Table 4: Benchmark instantiation of the 4-Tuple (M, S, P,E).

Elem. Instantiation

M (1) Baselines: Sample [20], Uniform [20];

(2) Competitors: FAST𝑤 [20], DSAT𝑤 [21], BD [20],

BA [20], RescueDP [27, 28], AdaPub [30], PeGaSuS [7]

S (1) 20 artificial seasonal streams with dim = 1

(2) 8 real-world streams from Table 5:

WorldCup, Taxi Porto, Flu Outpatient, Taxi Beijing, State

Flu, Flu Death, Retail, and Unemployment

P (1) Vary-𝜖 : 𝜖 ∈ [0.1, 1.0],𝑤 = 120

(2) Vary-𝑤 :𝑤 ∈ [40, 200] , 𝜖 = 1.0

E (1) Average MAE over 100 runs

(2) Average MRE with 𝛾𝑑 = 0.1% · ∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑] for

dimension 𝑑 over 100 runs

(3) Comparison of average error with 0.95 quantile of error

DP, since their utility is lower than the one of pure 𝑤-event DP

mechanisms by definition [9, 25, 31]. We further include (b) all

mechanisms used as competitors for a mechanism in (a). Accord-

ing to Table 3, criterion (a) applies to FAST𝑤 [20], DSAT𝑤 [21],

RGP [23], SecWeb [26], RescueDP [27, 28] and AdaPub [30]. Since

SecWeb is a prequel of RescueDP, we do not include SecWeb in our

benchmark. We furthermore exclude RGP, since it is only appli-

cable to hierarchic location count streams. Criterion (b) includes

PeGaSuS [7] being a competitor of AdaPub. We do not include

Uniform with backwards smoothing (competitor of PeGasuS) since

preliminary experiments revealed that it does not yield a substantial

utility improvement compared to Uniform. Since PeGaSuS provides

event-level DP only, we adjust it such that it provides𝑤-event DP.

Inspired by the Uniform mechanism, we do this by providing a

budget of 𝜖𝑡 =
𝜖
𝑤 per timestamp 𝑡 . Analogously to the proof in [20],

PeGaSuS then fulfills𝑤-event DP.

(M-R4) Private Parameter Determination. A pivotal requirement

is that all mechanism determine data-dependent parameters in a

private way. As discussed in Section 3, we use mechanism repair

functions whenever we find parameters that are not determined in

a private way. Specifically, we use the following repair functions.

DSAT𝑤 Repair Function. This mechanism uses the number of

rows, i.e., total count at each timestamp, in the stream. Since streams

that feature a different number of rows are neighboring, this is pri-

vate information. We repair DSAT𝑤 as follows: Calculate the total

counts at the first timestamp and perturb it by spending 10% of the

privacy budget allocated for 𝑡 = 1. To keep the privacy guarantee,

we reduce the perturbation budget allocated at timestamp 𝑡 = 1 ac-

cordingly. If the sanitized total count equals zero, the repair function

uses the value 5,000 also used in the original publication [21].

BD/BA - Column Partitioning Repair Function. Mechanisms BA

and BD may use an optimization requiring to group the dimen-

sions based on their correlation. Since non-coincidental correlation

among dimensions is private information, it needs to be determined

in a private way. This also holds despite the observation in the

original publication [20] that both mechanisms are very sensitive

towards this parameter. The original results indicate the number

of groups should be rather small. For instance, on the WorldCup

stream, they achieve the best results with 150 groups for 89,997

dimensions [20]. Consequently, we repair BD by using 0.2% of the

dimensions as number of groups. We do not group in BA, because

initial tests suggest no significant improvement.

(M-R5) Homogeneity of Background Knowledge. All mechanisms

(except for Uniform, Sample, BD, and BA) use components that rely

on configuration parameters, e.g., a PID controller. A mechanism

specific parameter is set as given in the publication. If mechanisms

share parameters, we set these parameters consistently in all mech-

anisms. Specifically, there are two parameters used in more than

one mechanism: (1) The desired sampling rate used in Fast𝑤 and

DSAT. The FAST publication [16], a subroutine of FAST𝑤 [20], uses

a rather high (15%) sampling rate, while the publication proposing

DSAT𝑤 uses a rather small one (1%). As preliminary experiments

revealed, both mechanisms tend to provide higher utility for higher

rates. Therefore, we use 15% as desired sampling rate in both mech-

anisms. (2) The parameters of the PID controller that is used in

FAST𝑤 , RescueDP, and DSAT𝑤 . While the publications propos-

ing RescueDP [27, 28] and FAST [16] suggest the same parameter

values, the values used in DSAT𝑤 [21] differs. However, while in

DSAT𝑤 , the PID controller controls the change in the sampling rate,

in RescueDP and FAST𝑤 , it controls the change in the sanitized

values. Consequently, the operational purpose of the use of the PID

controller is different. As a result, we use the parameters suggested

in the respective publication.

(M-R3) Mechanism Implementation. A correct implementation of

the mechanisms is a key factor to ensure result validity. We ensure

validity of our results by the following four key principles: (a) fa-

vor original implementation, (b) re-use of well-known mechanism

parts, (c) consistency checks of independent implementations, and

(d) contact original authors if necessary. Next, we explain these

principles in more detail: First, in case the publication proposing a

mechanism offers an implementation, we use this implementation.

However, as shown in Table 3, this only holds for one mechanism,

namely, FAST𝑤 . Second, multiple mechanisms use the same com-

ponent (e.g., the sampler), which is itself available open source. For

instance, FAST𝑤 uses a Kalman filter and PID controller. In such

cases, we use this component consistently in all mechanisms. Third,

all mechanisms are implemented redundantly and independently

by up to three different people, possibly all leading to consistent

results. Finally, the results are consistent among our implementa-

tions but highly deviate from the results in the original publication.

Consequently, we contacted the original authors of𝑤-event DP [20]

and thankfully received implementations from them. This not only

helped to ensure that all baselines and advanced mechanisms pro-

posed in [20] are correct, but also for principle (b) since we had

more mechanism parts for re-usage.

4.2 Data Streams Set S
Concerning data streams, we meet the requirements from Section 3

as follows: First, we conduct a series of micro benchmarks with

artificial data (i.e., S-R1). Second, we conduct experiments on a

comprehensive set of data streams used in literature (i.e., S-R2).



Benchmarking 𝑤-event Differential Privacy Mechanisms

Table 5: Requirement (S − 𝑅2): Availability of real-world
streams used in prior work: ✓yes, ✗no/removed, ✓partially.

Stream Publicly Used in Limitations

available reference

WorldCup ✓ [5, 8, 20, 26, 28? ] raw data only

Rome traffic 1 ✗ [20] -

Montreal traffic ✗ [5] -

Rome traffic 2 ✗ [23] -

Heart rates ✗ [34] -

Taxi Porto ✓ [21, 22, 28, 31? ] raw data only

San Joaquin / ✓ [21, 28? ] data generator only

Oldenburg

WiFi traces 1 ✗ [7] -

WiFi traces 2 ✗ [13] -

GeoLife ✗ [22] -

Flu Outpatient ✓ [15] only other years and ages

traffic Seattle ✗ [15] -

Unemployment ✓ [15] -

US census ✓ [21] raw data only

TDrive ✓ [21, 25] -

APASCologne ✓ [14] -

State Flu ✓ [30] -

Flu Death ✓ [30] only from other seasons

Retail ✓ [30] -

Nice ride ✓ [31] -

DNS ✗ [29] -

Fare ✓ [29] raw data only

Kosarak ✓ [29] raw data only

POS ✗ [29] -

Foursquare ✓ [25] -

Taobao ✗ [25] requires account

(S-R1) Artificial Streams Reflecting Stream Properties. The inten-

tion behind using artificial data is to study the influence of relevant

stream properties on a mechanism’s utility in a structured way.

Generating meaningful artificial data is challenging. For streams

in general, there are various properties known to have an influ-

ence on data processing, e.g., dimensionality, seasonality, level, and

trend [19]. However, neither the properties nor their influence on

the utility of a mechanism on real-world streams used in previous

studies have been investigated so far. Next, we (a) analyze which

of these properties do occur in the real-world streams listed in

Table 5, and (b) describe the design of our artificial data generator

that allows to investigate each of the properties in isolation. Finally,

we present the data generator itself.

Dimensionality. The streams in Table 5 provide a dimensionality

between 1 and 80,000. In our micro benchmark, however, we con-

sider univariate query results per timestamp, i.e., 𝑑𝑖𝑚 = 1. We aim

to understand a mechanism’s ability to retain utility of the stream

using clever budget allocation, sampling, filtering, and leveraging

the inertia of the stream. We intentionally exclude the additional

utility improvement of some mechanisms, gained by taking advan-

tage of correlated dimensions, in our micro benchmarks by setting

𝑑𝑖𝑚 = 1. The reason is that introducing known correlations in

multi-dimensional streams is highly challenging.
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stream.

0 100 200 300 400

0

100

200

300

Time 𝑡

Q
u
e
r
y
R
e
s
u
l
t
𝑄
(𝐷

𝑡
)

(b) Flu Death stream.

Figure 1: Artificial data stream with domain [0, 600] and ex-
pected season length 𝑠 = 40 vs. a real-world 1D stream.

Level. Most seasonal streams feature inter-seasonal downtimes,

i.e.,𝑄 (𝐷𝑡 ) is close to zero (cf. Figure 1b). The minimum query result

is usually also the most frequent one. To decouple the level from the

seasonality, we quantify the level by the minimum query result𝑞min.

The minimum query result of the stream influences a mechanism’s

utility in case the filtering technique truncating (cf. Section 2.2) is

applied. For queries like Count and Histogram, truncating filtering

rounds the negative perturbed query results to zero. Consequently,

whenever the Laplace mechanism adds a negative amount of noise

(e.g., −10) which holds in half of the cases, the mechanism releases

the true query result instead. By contrast, themechanism introduces

a relative error of 100% if 𝑄 (𝐷𝑡 ) = 10. Hence, truncating reduces

the noise by taking advantage of the query domain, especially at

low levels of the stream. Consequently, we do not truncate the

sanitized query result in our micro benchmarks. That way, the

utility for streams of different levels is equal if the other properties

are equal and we do not need to investigate the mechanism utility

for varying stream levels.

Seasonality. We observed that most real-world streams have a

seasonality, with an exponential growth and shrinking phase. The

maximum query result 𝑞max highly varies from stream to stream.

The perturbation and approximation error, however, are clearly

influenced by the length of the seasons 𝑠 and the amplitude 𝑎 =

𝑞max −𝑞min where 𝑞min is the minimum query result. Thus, we test

the mechanism utility with respect to both. Note that since 𝑞min =

0 the following holds: 𝑎 = 𝑞max. In our micro benchmarks, we

generate streams for every combination of 𝑠 ∈ {40; 60; 80; 10; 120}
and 𝑎 = 𝑞max ∈ {10; 100; 1,000; 10, 000} reflecting values observed
in real-world streams.

Trend. We do not observe a trend in the sanitized streams listed

in Table 5. Therefore, we do not consider this property.

Data Generator. Figure 1a shows example data we generated

using our data generation algorithm (cf. Algorithm 2). Generally,

the artificial data shall be similar to one-dimensional streams used

in other studies. For the depicted data, we use 𝑝 = 400 timestamps,

amplitude 𝑎 = 𝑞max = 600, and an average season length 𝑠 = 40.

Not all periods have exactly the same length, we therefore dice the

length of each season with G(𝑠 = 40, 2). For the growing phase,

we use an exponential growth function 𝑄 (𝐷𝑡 ) = 𝑒 ·𝑄 (𝐷𝑡−1) with
𝑒 = 1.5. The shrinking phase is symmetric to the growing phase.
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Next, we also mimic inter-seasonal downtime by dicing the season

minimum with with G(𝑠 = 8, 2), i.e, some value close to zero. Since

the maximum value of the stream generated this way depends on

the actual length of the season and the diced minimal values, we

need to normalize the maximum value with the desired amplitude

𝑎. Finally, the stream might be too long because the algorithm

generates the stream season-wise. Thus, we return the stream prefix

until timestamp 𝑝 .

Algorithm 2 Data Generator

1: function generateStream(𝑝, 𝑠, 𝑎)

2: 𝑡 ← 1, 𝑒 ← 1.5

3: while 𝑡 < 𝑝 do ⊲ Each loop generates one season

4: sl← G(𝑠, 2) ⊲ Dice season length

5: val← G(8, 2) ⊲ Dice season minimum, close to 0

6: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +
7: for 𝑖 = 1 to sl/2 do
8: 𝑣𝑎𝑙 ← 𝑒 · 𝑄 (𝐷𝑡−1) ⊲ Exponential growth

9: 𝑄 (𝐷𝑡 ) ← val; 𝑡 + +
10: end for
11: . . . ⊲ Symmetric shrinking phase

12: end while
13: max← max{𝑄 (𝐷1), ..,𝑄 (𝐷𝑝−1) }
14: for 𝑖 = 1 to 𝑝 do
15: 𝑄 (𝐷𝑖 ) ← 𝑄 (𝐷𝑖 )/max · 𝑎 ⊲ Ensure desired amplitude

16: end for
17: return𝑄 (𝐷1), ..,𝑄 (𝐷𝑝 ) ⊲ Ensure correct length

18: end function

(S-R2) Publicly Available Real-World Streams with Reproducible

Preprocessing. For comprehensiveness, we use all real-world streams

that are freely available and at least used once to evaluate a𝑤-event

DP mechanism. According to Table 5, the following streams qualify:

WorldCup, Taxi Porto, Flu Outpatient, TDrive, State Flu, Flu Death,

Retail and Unemployment. All of them use a query 𝑄 with Δ𝑄 = 1.

As far as useful and possible, we preprocess them according to

one of the respective publications. To facilitate comparability and

reproducibility, all preprocessing steps are available at our project

website
3
.

4.3 Privacy Requirements Set P
Inspired by most of the experimental studies found in the related

work, we also conduct the vary-𝜖 and vary-𝑤 experiments, fulfilling

(P-R1) and (P-R2). For the vary-𝜖 experiment, we select a reasonably

large value for parameter 𝑤 = 120 and vary 𝜖 ∈ [0.1, 1] with an

increment of 0.2. For the vary-𝑤 experiments, we use 𝜖 = 1 as most

studies do. Furthermore, we vary𝑤 ∈ [40, 200] with a𝑤 increment

of 40, such that there is an overlap with various other studies.

4.4 Error Metrics E
Since the mechanisms rely on randomness, the utility can dif-

fer highly for the same combination of privacy requirements and

stream. Following various studies from the related work, we run

each experiment 100 times and use the average MAE and average

MRE (with 𝛾𝑑 = 0.1% ·∑𝑝

𝑡=1
𝑄 (𝐷𝑡 ) [𝑑] for dimension 𝑑) to quantify

3
https://dbresearch.uni-salzburg.at/projects/dpbench/index.html

the error the mechanisms introduce into the sanitized data. Besides

the average error, we quantify the variance of the error as suggested

by [18] for static (i.e., standard) DP. To this end, we measure the

0.95 quantile of MAE and MRE reflecting a ’risk averse’ data owner.

5 EXPERIMENTAL RESULTS
We perform an experimental study by executing our benchmark as

instantiated in Table 4. The goal of this study is to gain new insights

into the strengths and weaknesses of existing mechanisms. Further,

we analyze the influence of stream properties on a mechanism’s

utility using our artificially generated streams and verify whether

the results also hold for real-world streams.

5.1 Artificial Streams
With the artificial streams, we aim at understanding the effect of the

two identified stream properties seasonal period length 𝑠 and am-

plitude 𝑎 on a mechanism’s utility. Specifically, we are interested in

the perspective of a data administrator aiming at selecting a mech-

anism for a given stream and privacy requirement. Consequently,

we formulate the following two research questions:

(RQ1) Are stream properties decisive for mechanism selection?

(RQ2) If so, can we recommend a mechanism and/or function

design for a given seasonal period length 𝑠 , an amplitude 𝑎,

and privacy requirements (𝜖,𝑤 )?

For brevity, we subsequently focus on the mean MAE, short

MAE, to answer these questions. This is valid because the result

patterns for the 0.95 quantile of MAE and MRE are similar. To make

the mechanism’s MAEs comparable over all streams and privacy

requirements, we consider the MAE deterioration 𝛿MAE (𝑐) for a
specific combination of mechanisms, stream properties, and privacy

requirements 𝑐 = (𝑚 ∈ M, (𝑠 , 𝑎), (𝜖 , 𝑤 ) ∈ P). For a specific combi-

nation 𝑐 , the MAE deterioration compares the MAE of mechanism

𝑚 to the best mechanism𝑚′ with minimum MAE:

𝛿MAE (𝑚, (𝑠, 𝑎), (𝜖,𝑤)) = MAE(𝑚, 𝑠, 𝑎, 𝜖,𝑤)
min{MAE(𝑚′, 𝑠, 𝑎, 𝜖,𝑤) |𝑚′ ∈ 𝑀}

We present the MAE deterioration on artificial streams in Fig-

ure 2. The color gradient marks small values in green, i.e., good

utility, and large values in red, i.e., bad utility. Subsequently, we

discuss the results with respect to the research questions.

5.1.1 (RQ1) Are stream properties decisive for mechanism selection?
For answering this question, we investigate how the stream proper-

ties amplitude 𝑎 and period length 𝑠 as well as privacy requirements

𝜖 and 𝑤 influence MAE. The raw MAE results of the vary-𝜖 and

vary-𝑤 experiments (not illustrated) indicate that the utility be-

haves as expected for most mechanisms. Specifically, they show a

proportional MAE increase or decrease towards a change of the pri-

vacy requirements. For instance, we observe that the MAE declines

by roughly a factor of 2 when doubling the available budget 𝜖 for

constant 𝑎, 𝑠 , and𝑤 . The only notable exception is RescueDP which

hardly benefits from higher budgets when the amplitude 𝑎 > 1, 000.

This is due to the fact that RescueDP is specifically designed for

publishing multi-dimensional data with small amplitudes.

Next, we observe that the period length 𝑠 is not decisive since

the MAE deterioration is equivalent for each 𝑠 when 𝑎, 𝜖 , and 𝑤
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Uniform Sample AdaPub

a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 120.6 62.0 16.4 2.0 0.1 1.0 1.0 2.1 2.6 0.1 150.5 77.5 20.4 2.5

0.3 102.7 25.8 6.0 1.1 0.3 1.0 1.1 2.3 4.1 0.3 127.8 32.3 7.4 1.3

0.5 88.6 26.4 3.8 1.0 0.5 1.0 1.8 2.4 6.4 0.5 110.0 33.2 4.7 1.2

0.7 73.4 21.8 2.9 1.0 0.7 1.0 2.0 2.6 9.0 0.7 91.8 27.1 3.6 1.2

0.9 64.7 19.1 2.2 1.0 0.9 1.0 2.3 2.6 11.5 0.9 81.1 24.0 2.8 1.2

1 61.3 17.4 2.1 1.0 1 1.0 2.3 2.6 12.8 1 76.4 21.7 2.6 1.2

BA BD DSATw
a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 90.2 46.1 12.3 1.7 0.1 393.0 199.1 49.3 6.6 0.1 89.1 47.1 12.5 2.0

0.3 76.3 19.1 4.5 1.0 0.3 311.1 77.6 18.0 4.5 0.3 81.1 21.3 5.0 1.7

0.5 66.5 19.8 3.0 1.0 0.5 277.1 84.1 12.0 4.8 0.5 70.3 22.0 3.4 2.5

0.7 54.7 16.1 2.3 1.1 0.7 247.4 66.8 9.9 6.0 0.7 62.1 17.7 2.7 3.2

0.9 48.5 14.1 1.8 1.1 0.9 205.5 61.5 7.4 6.3 0.9 54.9 15.6 2.2 4.0

1 45.1 12.9 1.7 1.1 1 199.9 52.0 6.7 6.9 1 50.3 13.2 2.0 4.5

FASTw PeGaSuS RescueDP

a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000 a/ε 10 100 1,000 10,000

0.1 8.2 4.2 1.5 1.0 0.1 150.3 77.3 20.3 2.5 0.1 6.7 3.2 1.0 25.7

0.3 6.8 1.9 1.0 1.5 0.3 127.6 32.4 7.5 1.3 0.3 5.9 1.0 1.6 625.7

0.5 5.6 2.0 1.0 2.4 0.5 109.8 33.0 4.7 1.3 0.5 5.2 1.0 3.9 1,768

0.7 4.8 1.8 1.0 3.3 0.7 92.0 27.0 3.6 1.2 0.7 4.1 1.0 9.6 1,585

0.9 4.2 1.6 1.0 4.3 0.9 80.7 23.9 2.8 1.3 0.9 3.0 1.0 27.0 3,201

1 3.9 1.5 1.0 4.7 1 76.4 21.6 2.6 1.3 1 3.2 1.0 39.0 1,977 1
1
,0
0
0

δMAE

(a) Vary-𝜖 experiments with 𝑤 = 120.

Uniform Sample AdaPub

a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 20.1 4.8 1.1 1.0 40 1.0 1.9 4.0 37.5 40 25.1 6.1 1.3 1.2

80 66.6 17.5 2.0 1.0 80 1.0 1.0 1.0 4.9 80 83.2 21.9 2.5 1.2

120 60.7 17.4 2.1 1.0 120 1.0 2.3 2.6 12.8 120 76.0 21.8 2.6 1.2

160 133.1 35.3 4.0 1.0 160 1.0 1.0 1.0 2.5 160 168.0 44.2 5.0 1.3

200 96.7 26.3 4.2 1.0 200 1.0 2.0 3.2 7.5 200 120.5 32.9 5.3 1.2

BA BD DSATw
a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 14.7 3.7 1.0 1.3 40 22.7 5.4 1.4 2.3 40 17.6 4.3 1.8 11.6

80 49.9 13.3 1.7 1.2 80 142.2 37.8 4.7 6.6 80 58.6 14.5 2.7 10.6

120 44.6 13.1 1.7 1.1 120 180.7 54.6 7.3 6.7 120 51.1 14.8 2.1 4.4

160 99.4 26.1 3.2 1.1 160 552.2 137.7 17.3 9.4 160 103.7 28.3 3.8 4.6

200 71.9 19.4 3.3 1.0 200 411.7 126.4 20.6 8.7 200 74.4 21.6 4.0 3.3

FASTw PeGaSuS RescueDP

a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000 a/w 10 100 1,000 10,000

40 2.2 1.0 1.6 14.3 40 25.3 6.1 1.3 1.2 40 1.4 1.0 1.2 1.6

80 4.9 1.9 1.1 4.9 80 83.5 21.9 2.5 1.3 80 3.9 1.5 9.0 32.3

120 4.0 1.5 1.0 4.7 120 75.3 21.7 2.6 1.2 120 3.0 1.0 37.1 2,572

160 8.4 2.6 1.1 2.5 160 167.1 44.2 5.0 1.2 160 6.5 1.6 281.3 2.8•105

200 6.1 1.9 1.0 2.1 200 120.3 32.8 5.3 1.2 200 3.2 1.0 117.7 2.0•107 1
1
,0
0
0

δMAE

(b) Vary-𝑤 experiments with 𝜖 = 1.0.

Figure 2: Heat map of the 𝛿MAE results from the vary-𝜖 and vary-𝑤 experiments for a period length of 𝑠 = 80.

are fixed. By contrast, the amplitude 𝑎 is highly decisive for a fixed

period length 𝑠 = 80 (cf. Figure 2). For instance, Sample provides

the lowest MAE for 𝑎 = 10 and 𝜖 = 0.1 while AdaPub is the winner

for 𝑎 = 10, 000 and 𝜖 = 1.0. Summarizing, mechanisms provide a

high utility either for small or for large amplitudes independent of

other parameters such as 𝑠 , 𝜖 , or𝑤 .

5.1.2 (RQ2) Can we recommend a mechanism for specific stream
properties and privacy requirements? Considering Figure 2, either

Sample or Uniform is among the mechanisms with the smallest

MAE for almost every combination of parameters. This is surpris-

ing since baseline mechanisms frequently outperform sophisticated

mechanisms. We investigate this result by analyzing the parameter

settings in which either Uniform or Sample provides the smallest

MAE and outline issues regarding hypersensitive data-adaptive sam-

pling of sophisticated mechanisms. We further investigate whether

the baseline supremacy also holds for real-world streams.

Uniform supremacy. Our results suggest that mechanism Uni-

form is among the best for large amplitudes 𝑎 ≥ 1, 000 and non-

restricting privacy requirements, i.e., large 𝜖 , small𝑤 . In general,

the relevance of restrictiveness decreases for increasing 𝑎. The ex-

pected MAE =
𝑤
𝜖 of Uniform is data-independent. Thus, we gain

little insights on MAE of Uniform in case Uniform is among the

best mechanisms in terms of 𝛿MAE. Instead, we identify that the

invested budget (e.g., for data-adaptive sampling) of sophisticated

mechanisms does not pay off since MAE might exceed
𝑤
𝜖 . More-

over, we expected that AdaPub and PeGaSuS consistently have a

lower error than Uniform when Uniform is among the best. The

reason for this assumption is that they differ from Uniform only in

an additional Filtering-function, i.e., smoothing the perturbation

noise. However, our results do not confirm this expectation since

their filtering requires a fraction of the privacy budget 𝜖 . This in-

vestment only pays off in downtimes between the seasons where

the query results are fairly stable. Within growing or shrinking

phases of a season, the groups usually contain a single timestamp

and the mechanism has less budget for perturbation.

Sample supremacy. Comparing Uniform with Sample reveals

that Sample’s MAE is smaller than Uniforms’ if 𝑞max is small and

the privacy requirements are restrictive. While Uniform’s MAE

is data-independent, Sample is guaranteed to be 𝑤-independent.

Hence, it only depends on theminimum andmaximumquery results

[𝑞min, 𝑞max] and 𝜖 . In our case, the minimum value is 𝑞min = 0.

Thus, the maximum approximation error converges towards 𝑞max.

This worst case occurs if 𝑄 (𝐷𝑡 ) = 0 for all sampled timestamps

and 𝑄 (𝐷𝑡 ) = 𝑎= 𝑞max otherwise. Moreover, the perturbation error

is
1

𝜖 . Thus, the MAE bound is 𝑞max + 1

𝜖 and hence independent of

𝑤 . For instance, Sample’s bound with 𝑎 = 10, 𝑤 = 100, and 𝜖 = 1

is 11 , whereas Uniform’s bound is 100, i.e., 10 times larger. Our

empirical results reveal that we rarely observe Sample’s bound and

the observed MAE is several factors smaller. The rational is that

Sample has a tendency to publish the most frequent query results

very accurately.

Hypersensitive data-adaptive sampling. The small MAEs of Sam-

ple for small amplitudes and restrictive privacy requirements sug-

gest that the perturbation error needs to be minimized via sampling.

The mechanisms BD, BA, DSAT𝑤 , FAST𝑤 , and RescueDP feature

data-adaptive sampling. The idea is compelling: Instead of hop-

ing that the last release approximates the next timestamps well,

the mechanism invests a fraction of the budget 𝜖 to monitor the

stream. In case the mechanism monitors a large enough change,

a new query result is releases. However, our results suggest that

data-adaptive sampling does not consistently outperform sampling

with data-independent rates (as conducted by Sample). Instead, they

are only better than Sample when Uniform is better as well. The

rational is that data-adaptive sampling features a hyper-sensitivity

for small changes in the query result. Specifically, we observe the

following tendencies: In case the growing phase of a new season

starts, the initial small changes of the query result is well reflected.

In addition, the sample timestamp is close to the peak of the first

season. Thereby, a large fraction of the available budget is already

spent in the growing phase. Thus, data-adaptive sampling is more

reluctant in spending budget in the shrinking phase, i.e., large query
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Figure 3: Average error of𝑤-eventmechanisms in vary-𝑤 and
vary-𝜖 experiments for one-dimensional real-world streams.
Baselines marked with ◦.

results are produced in the shrinking phase, incurring a high MAE.

That becomes worse whenever multiple seasons fit into one window

of size𝑤 . This holds for all common window sizes and streams.

5.2 One-dimensional Real-World Streams
Next, we evaluate the results on one-dimensional real-world streams.

Thereby, we have two objectives: First, we are interested whether

the results of real-world streams are consistent with the results

on artificial streams, particularly the observed baseline supremacy.

Second, we aim at understanding the abstract error measures (e.g.,

MAE) in context of the data streams. In a nutshell, our key results

are: the results on real-world streams are consistent with the micro

benchmarks, and common error metrics are not well-suited in the

streaming setting.

5.2.1 Confirmation of micro benchmark results. In Figure 3, we

depict MAE for all mechanisms and one-dimensional real-world

streams. For better visualization, MAE of the baseline mechanisms

Uniform (blue curve) and Sample (red curve) are marked with ◦.
Summarizing, the results of the real-world streams confirm the

observations in the micro benchmarks. Specifically, we analyze two

medium-amplitude streams with 𝑎 < 1, 000 (i.e., Flu Death and Un-

employment) and one large-amplitude stream (i.e., Flu Outpatient)

with a common season maximum of about 2 · 104 (cf. Figure 4). As
expected, Uniform has the best MAE for the large-amplitude stream.

Notably, MAE is significantly smaller than the expected MAE =
𝑤
𝜖 ,

e.g., MAE is almost half as large as expected on the Unemployment

stream due to the large amount of timestamps where𝑄 (𝐷𝑡 ) is close
to 0. The reason is the truncation of the perturbed query result: In

many timestamps where Uniform adds a negative noise, a count

of 0 is published. Interestingly, we observe a slight utility improve-

ment by PeGaSuS towards Uniform for the Unemployment stream.

Sample usually provides the best MAE on the medium-amplitude

streams. Only for non-restrictive privacy requirements, i.e., 𝜖 = 1

and 𝑤 = 40, Uniform and most other mechanism have slightly

better MAE. As in the micro benchmarks, data-adaptive sampling

is not superior to equidistant data-independent sampling. As in

Figure 4: True query result stream of one-dimensional
streams as well as the streams released by the baselines Uni-
form and Sample for 𝜖 = 1.0 and𝑤 = 120.

the micro benchmarks, we observe an anomalous behavior of Res-

cueDP: Increasing the available budget does not improve the utility

for large-amplitude streams; instead, it has the opposite effect.

5.2.2 Semantics of the Abstract Utility Metric Values. So far, most

studies use MAE and MRE metrics to determine a mechanism’s

utility (cf. Table 3). Considering our results on MAE and MRE,

we observe intrinsic anomalies. For example, the utility of Sample

appears to be almost independent of the privacy requirements. Thus,

we examine the semantics of the abstract error values. To do so,

we consider common applications performed on data streams, e.g.,

forecasting or change detection algorithms. For such applications,

the preservation of the stream properties from Section 4.2 is highly

relevant. However, there is little knowledge about their relation to

MAE and MRE. To this end, we examine the sanitized query results

of Sample and Uniform with respect to seasonality (i.e., period

length and amplitude) and level. Therefore, we ensure that there

is at least one mechanism having a good MAE for every stream

due to the baseline supremacy. Our explanations hold in general

and are based on exemplary sanitized releases and the real-world

streams shown in Figure 4.

Maintaining Seasonal Growing and Shrinking of the Stream. As

revealed by the exemplary results in Figure 4, Sample entirely loses

its seasonality, independent of the observed MAE. This also holds

for streams where Sample performs best. In case the mechanism

does not sample multiple times per season, an entire season is

approximated with a single value for every timestamp. Thus, small

MAE values of Sample suggest that the stream contains a large

amount of similar query results which the mechanism likely hits

upon data-independent sampling. Simply releasing the sanitized

query result at the first timestamp for every subsequent timestamp

yields a similar utility for all streams used in studies so far.

Uniform maintains the seasonality well when amplitudes are

large compared to the noise introduced for sanitation. As the ex-

pected noise is
𝑤
𝜖 , a data administrator only needs to know the

amplitude to decide whether Uniform delivers acceptable utility.

However, this is not reflected by MAE (nor MRE). For instance,

MAE in Figure 4b is smaller than in Figure 4a, despite the seasonal-

ity can be clearly observed in (a) but not in (b). Hence, MAE has no

meaning for maintaining seasonality. However, there is a relation

between MAE and level maintained by Uniform, as we discuss next.
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Table 6: Properties of multi-dimensional streams. The query
result distribution is the distribution of the true query results
over all dimensions of the preprocessed streams, including
optional dimension sampling.

Stream 𝑆 dim Length 𝑝 Query result distribution

𝑞min 𝑞max 90% quantile

StateFlu 51 492 0 11,452 924

TDrive 100 672 0 39,871 1,772

Retail 1,298 374 0 372,306 15,089

TaxiPorto 1,298 672 0 317 2

WorldCup 1,298 1,320 0 16,928 0

Maintaining Level and Amplitude of the Stream. Recap that the

true level of the stream is defined by 𝑞min and the true amplitude

𝑎 = 𝑞max − 𝑞min. The level and amplitude of the sanitized stream

released by Uniform depend on the true level and amplitude. In

case 𝑞min > 𝑤
𝜖 , i.e., the level is higher than the expected noise, the

sanitized stream released by Uniform features the domain [𝑞min −
𝑤
𝜖 , 𝑞max+ 𝑤𝜖 ]. This can be observed in Figure 1c where the measured

MAE of 115.6 fairly equals the expected MAE of
𝑤=120
𝜖=1 = 120. By

contrast, 𝑞min is close to 0 in Figure 1b, i.e., the minimum possible

value of a count query. Thus, truncating count queries lead to an

expected level change of [max(𝑞min − 𝑤
𝜖 , 0), 𝑞max + 𝑤

𝜖 ].
Since Sample has a low perturbation error, it does not enlarge

the domain , i.e., Sample only publishes values within the original

minimum and maximum values. However, the sanitized streams

usually miss the seasonal peaks of the true streams. Large MAE

values, specifically values exceeding Uniform’s MAE, indicate that

the stream contains large amplitudes which is poorly reflected in

Sample’s released stream. Small MAE values, in turn, indicate that

there are no large seasonal changes and Sample approximates small

counts very accurately.

5.3 Multi-dimensional Real-World Streams
We now present the results (cf. Figure 5) of the multi-dimensional

streams in Table 6. We aim to confirm the results obtained on one-

dimensional streams. Moreover, we analyze adaptive dimension

grouping to improve the utility for multi-dimensional streams.

The key idea of adaptive dimension grouping is to find a group𝑔 of

dimensions that have a similar query result, i.e., that are correlated.

This can be exploited in two ways: First, the sampling decision is

performed per group in BD. Then, groups with frequently changing

query results are sampled more frequently than groups with stable

query results. Second, the grouping is exploited in the perturbation

function for AdaPub and RescueDP. Specifically, the mechanism

perturbs the sum of the query results over all dimensions in group 𝑔

and then assigns each dimension the average of the perturbed sum.

This reduces the expected perturbation error from
1

𝜖𝑡
to

1

𝜖𝑡 · |𝑔 | [27].
Hence, with increasing dimensionality the perturbation error is

highly reduced.

Figure 5: Average error for vary-𝑤 and vary-𝜖 experiments
on multi-dimensional streams. Baselines marked with ◦.

Recap that we observe a baseline supremacy for one-dimensional

streams. The amplitude and privacy requirements are decisive fac-

tors between Uniform and Sample as well as hypersensitive data-

adaptive sampling. Generally, Figure 5 and Table 6 confirm both

observations for multi-dimensional streams.

As expected, Uniform is among the best mechanisms for State-

Flu, TDrive, and Retail with amplitudes > 10, 000. Only for small 𝜖-

values on stream StateFlu, a couple of other mechanism outperform

Uniform. Sample is among the best mechanisms on the WorldCup

and TaxiPorto stream. However, AdaPub also provides low errors

and outperforms Sample for certain 𝜖-values. This is interesting

since AdaPub has low errors for one-dimensional streams iff Uni-

form is among the best mechanisms. This suggests that WorldCup

and TaxiPorto significantly differ from the other streams. Table 6

reveals that both streams are sparse. Specifically, the query result

is very small or even zero for most timestamps and dimensions.

We further observe nearly constant errors for AdaPub in seven

experiments and for RescueDP in one experiment. The rationale

is that the number of groups converges to one over time, i.e., the

mechanism releases the same query result for all dimensions. The

perturbation error is low if all dimensions are in one group, i.e., the

mean error is only slightly influenced by𝑤 and 𝜖 .

The mean error of BD for these two streams is remarkable: In

the micro benchmark and on one-dimensional streams, BD is never

among the best mechanisms. However, BD is among the best mech-

anisms for WorldCup and TaxiPorto. Unfortunately, our results do

not show whether this phenomenon is related to grouping.
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6 TAKEAWAYS
The primary outcome of our experimental study are takeaways that

are relevant for practitioners as well as researchers.

6.1 Takeaways for Practitioners
Our takeaway for practitioners forms a catalog of three recommen-

dations that aim at understanding and controlling the expected

utility of 𝑤-event DP mechanisms. It targets at data owners and

administrators who are not experts in differently privacy but have

a sophisticated background knowledge in data analysis.

Data Owners: MeaningfulWindow Size. The data owner is respon-

sible for selecting the privacy requirements 𝜖 and𝑤 . By definition of

𝑤-event differential privacy, the window size𝑤 refers to the length

of the longest event-sequence the mechanism aims to protect with

privacy budget 𝜖 . The selection of𝑤 is clearly use-case dependent.

However, our literature study suggests that there is a tendency

for investigating unnaturally large values of𝑤 which causes large

perturbation noise. For seasonal data, the length of a season 𝑠 may

serve as a natural upper bound for𝑤 . Our recommendation for data

owners is to specify the event-sequence as the maximum length of

trajectory in the location monitoring use case.

Data Administrators: Meaningful Utility Metrics. Data admin-

istrators are responsible for selecting a mechanism. Our results

suggest that abstract error metrics (e.g., MAE or MRE) hardly allow

conclusions on whether a mechanism is able to conduct frequent

analysis tasks on streams, e.g., forecasting or anomaly detection.

Thus, we recommend to select mechanisms that provide high utility

with respect to an application specific metric or to investigate the

semantics of abstract errors (e.g., MAE) w.r.t. the application.

Data Administrators: Consider the Selection of Baselines. Our

study indicates that the Uniform or Uniform-Sample hybrid mecha-

nism is competitive with regards to data utility and expected error.

Specifically, we recommend to use Uniform if an expected error of

𝑤
𝜖 is sufficient and query results are required for each timestamp,

e.g., because one targets at instant change detection. If an instant

change detection is not needed, time can be traded to minimize

the perturbation error using a Uniform-Sample hybrid mechanism.

This mechanism samples every 𝑥 th timestamp; thus, releasing more

accurate query results at sampling timestamps than Uniform, i.e.,

the perturbation error at sampling timestamps is reduced from
𝑤
𝜖

to
𝑤
𝜖 ·𝑘 . In combination with selecting a meaningful value for𝑤 , this

mechanism may provide sufficient utility for many applications.

6.2 Takeaways for Researchers
Our takeaway for researcher primarily targets the function design

of the 𝑤-event mechanism framework. We discuss the functions

according to their order in Algorithm 1.

inSamplingPoint-Function. Currently, in case the mechanism

does not sample, the current query result is approximated with

the last sanitized query result. This works well for timestamps

between the seasons when the counts remain stable. However, it

yields high errors in a growing or shrinking phase of a stream.

Consequently, we propose to investigate mechanisms that consider

the seasonal nature of streams upon approximation. For example,

mechanisms could invest time and budget to learn a model of the

stream (e.g., using machine learning in a differential private way)

when starting to release a new stream,. The model can be used for

sampling decisions as well as predictions on whether the stream

is currently in a growing or shrinking phase. If the change in the

stream is not large enough to provoke sampling, the mechanism

can correctly approximate based on the latest trend. Note that this

is orthogonal to filtering based on time-grouping since the filter is

only applied at sampled timestamps.

BudgetAllocation-Function. We observe that mechanisms allo-

cate budget optimistically, trying to accurately reflect small changes

in the stream, e.g., mechanism BD allocates half of its remaining

budget per sampled timestamp. However, our results indicate that

this yields low utility when the stream contains large amplitudes.

Homogeneously distributing the budget over sampling timestamps

usually provides in the best utility. Thus, mechanisms may limit

the number of sampling timestamps in the current window.

Perturbation-Function. Our recommendation regarding per-

turbation refers to mechanisms using dimension grouping. We

frequently observe that the dimensions gather into few or even

a single group and hence uncorrelated dimensions are grouped

together. We recommend to compute the grouping not only on

sanitized query results and consider techniques to ungroup uncor-

related dimensions. Additionally, we propose to question whether

researchers should focus on dimension-grouping in future work.

The rationale is that dimension-grouping violates privacy in case

that the correlation of the dimension query results is spurious. Oth-

erwise, correlated dimensions result from an event that the data

owner intends to hide. This may effect multiple rows in a database

𝐷𝑡 and not only a single one as presumed in the original definition

of differential privacy [11]. The extension of differential privacy

with group-differential privacy [12] which states that the increase

of Δ𝑄 entirely nullifies the benefit of dimension grouping.

Filtering-Function. Our results suggests that grouping over

timestamps with a grouping function that requires budget does

not yield a utility improvement. Consequently, we suggest to con-

duct research on filtering functions that do not require budget.

Finally, in case a researcher proposes a novel mechanism, we

strongly recommend conducting an empirical evaluation based on

the principles introduced in Section 3. We argue that this is the only

way to ensure the comparability of future studies. Most urgently,

we recommend to include both baseline mechanisms.

7 CONCLUSIONS
We addressed the challenge of comparable empirical studies on

𝑤-event differential privacy mechanisms for streams. Based on a

comprehensive literature study, we identified common elements of

existing studies and formulated requirements for each element to

ensure comparability. We introduced a benchmark that meets all

requirements and allows for comparable studies. Using our bench-

mark, we performed the largest empirical study on 𝑤-event dif-

ferential privacy mechanisms so far. Our study revealed valuable

insights on existing mechanisms, e.g., a baseline supremacy. Further,

we gave advise on mechanism selection and presented promising
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research directions in that field. In future work, we aim at a mi-

cro benchmark for multi-dimensional query streams. Additionally,

we investigate on queries having sensitivity Δ𝑄 > 1, e.g., Sum

queries. We hypothesize that the different functions from the 𝑤-

event mechanism framework are affected heterogeneously by the

sensitivity.
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