
Scalable Graph Algorithms using
Practically Efficient Data Reductions

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Emanuel Lamm

Tag der mündlichen Prüfung: 18. Juli 2022

1. Referent: Prof. Dr. Peter Sanders
Karlsruher Institut für Technologie
Deutschland

2. Referent: Prof. Dr. Jin-Kao Hao
Université d’Angers
Frankreich

To my parents, Franz and Claudia Lamm

Abstract

This dissertation presents both heuristic and exact approaches for the NP-hard opti-
mization problems of finding maximum cardinality and weight independent sets, as well
as finding maximum cardinality cuts. An independent set of a graph is a subset of vertices
such that no pair of vertices in this set is adjacent. A maximum cardinality independent
set is an independent set of maximal cardinality among all possible independent sets. If
one is additionally given a vertex weighting function for this graph, a maximum weight
independent set of this graph is an independent set of maximal weight. Finally, a maximum
cardinality cut in a graph is a bipartition of the vertices such that the number of edges run-
ning across the partitions is maximal. All three of these problems are important for a variety
of real-world applications. For example, maximum or high-quality cardinality and weight
independent sets are used in map labeling [Klu+19; GNN13], modeling protein-protein
interactions [GWA00], or vehicle routing [Don+22]. Examples for the usage of maximum
or large cuts include social network modeling [Har59], statistical physics [Bar82], or VLSI
design [Bar+88; Chi+07].

In this work, we discuss and further the usage of reduction rules for all these problems.
Reduction rules are graph transformations that are able to generally reduce the size of a given
input while also maintaining optimality, i.e., an optimal solution of the reduced instance
can be extended to an optimal solution of the original input. In this dissertation, we also
present inexact reduction rules that remove vertices that are likely to be a part of (or excluded
from) a solution. We show that these types of reduction rules can drastically improve the
performance of heuristic algorithms while still leading to high-quality solutions. Finally,
we present graph transformations that maintain optimality but also temporarily increase
the graph size. Counterintuitively, this can lead to new, easier to reduce structures and
subsequently an overall reduction in size in the long run.

We propose multiple algorithms that incorporate these concepts into a wide spectrum
of techniques. Our work on the maximum cardinality independent set problem includes
an evolutionary algorithm that uses a combination of exact and inexact reduction rules
to gradually shrink the graph size. We also propose an advanced local search algorithm
that improves an existing state-of-the-art algorithm with reduction rules to very quickly
compute high-quality independent sets. Next, we present a portfolio algorithm that won
the PACE Challenge 2019 by using multiple existing approaches for different closely related
problems. We then develop and evaluate multiple advanced branching rules for a state-of-
the-art branch-and-reduce algorithm. For maximum weight independent sets, we present
multiple new reduction rules and graph transformations that we then use in our newly
developed branch-and-reduce algorithm. Finally, for maximum cardinality cuts, we also

v

Abstract

propose new reduction rules that are used to build an efficient preprocessing algorithm to
boost the performance of state-of-the-art approaches, both heuristic and exact.

We evaluated all our algorithms on a large set of instances stemming from multiple
domains and applications for the corresponding problems. In general, our experiments
show that our algorithms are able to significantly increase both the scale and speed at
which instances can be processed in practice (by up to orders of magnitude). Furthermore,
we show that our preprocessing algorithms and reductions can easily be integrated into
other algorithms to improve their performance. Our contributions are either available
as standalone libraries or as part of the libraries KaMIS, WeGotYouCovered (maximum
cardinality and weight independent sets), and DMAX (maximum cardinality cuts).

vi

Deutsche Zusammenfassung

Diese Dissertation behandelt sowohl heuristische als auch exakte Ansätze für die NP-
schweren Optimierungsprobleme des Findens kardinalitätsmaximaler und gewichtsma-
ximaler unabhängiger Mengen, sowie des Findens kardinalitätsmaximaler Schnitte. Eine
unabhängige Menge eines Graphen ist eine Teilmenge der Knoten, sodass kein Paar von
Knoten in dieser Menge zueinander adjazent ist. Eine kardinalitätsmaximale unabhängige
Menge ist eine unabhängige Menge maximaler Kardinalität aus der Menge aller möglichen
unabhängigen Mengen. Besitzt der Graph zusätzlich eine Knotengewichtsfunktion, so ist
eine gewichtsmaximale unabhängige Menge dieses Graphen eine unabhängige Menge mit
maximalem Gewicht. Ein kardinalitätsmaximaler Schnitt in einem Graphen ist eine Bipar-
tition der Knoten, sodass die Anzahl der Kanten, die zwischen den Partitionen verlaufen,
maximal ist. Alle drei Probleme sind für eine Vielfalt von Anwendungen von Bedeutung. Bei-
spielsweise werden unabhängige Mengen mit maximalem oder hochqualitativem Gewicht
für das Beschriften von Karten [Klu+19; GNN13], der Modellierung von Proteininterak-
tionen [GWA00] oder Tourenplanung [Don+22] verwendet. Beispiele für die Verwendung
von maximalen oder großen Schnitten beinhalten die Modellierung von sozialen Netzwer-
ken [Har59], statistische Physik [Bar82] oder VLSI Design [Bar+88; Chi+07].

In dieser Arbeit wird die Verwendung vonReduktionsregeln für diese Probleme diskutiert
und weiterentwickelt. Reduktionsregeln sind Graphtransformationen, die die Größe einer
gegebenen Eingabe im Allgemeinen reduzieren und gleichzeitig die Optimalität beibehal-
ten, d.h., eine optimale Lösung der reduzierten Instanz kann zu einer optimalen Lösung der
ursprünglichen Eingabe erweitert werden. In dieser Dissertation stellen wir auch inexakte
Reduktionsregeln vor, die Knoten entfernen, die wahrscheinlich Teil einer Lösung sind (oder
von ihr ausgeschlossen werden können). Wir zeigen, dass diese Art von Reduktionsregeln
zu drastischen Verbesserungen der Leistung heuristischer Algorithmen führen kann und
trotzdem hochqualitative Lösungen erreicht werden. Zusätzlich stellen wir Graphentrans-
formationen vor, die die Optimalität beibehalten, aber auch vorübergehend die Graphgröße
erhöhen. Dieser kontraintuitive Ansatz kann zu neuen, leichter zu reduzierenden Strukturen
und damit langfristig zu einer Verkleinerung des Graphen führen.

Unsere Arbeit für das Problem des Findens kardinalitätsmaximaler unabhängiger Men-
gen beinhaltet einen evolutionären Algorithmus, der eine Kombination aus exakten und
inexakten Reduktionsregeln verwendet, um schrittweise den Graphen zu verkleinern. Wir
präsentieren zusätzlich einen fortschrittlichen Algorithmus basierend auf lokaler Suche,
der einen bestehenden State-of-the-Art Algorithmus mit Reduktionsregeln verbessert, um
sehr schnell hochqualitative unabhängige Mengen zu berechnen. Als Nächstes stellen wir
einen Portfolio-Algorithmus vor, der die PACE Challenge 2019 gewonnen hat und mehrere

vii

Deutsche Zusammenfassung

bestehende Ansätze für eng verwandte Probleme miteinander kombiniert. Anschließend
entwickeln und evaluieren wir verschiedene fortschrittlichen Verzweigungsregeln für einen
State-of-the-Art Branch-and-Reduce Algorithmus. Für das Problem des Findens gewichts-
maximaler unabhängiger Mengen stellen wir mehrere neue Reduktionsregeln und Graph-
transformationen vor, die wir in unserem neu entwickelten Branch-and-Reduce Algorithmus
verwenden. Schließlich schlagen wir für das Problem des Findens kardinalitätsmaximaler
Schnitte erneut neue Reduktionsregeln vor, die für einen effizienten Vorverarbeitungsal-
gorithmus verwendet werden, um die Leistung von sowohl heuristischen als auch exakten
State-of-the-Art Algorithmen zu steigern.

Wir haben all unsere Algorithmen mit einer großen Anzahl von Instanzen aus ver-
schiedenen Domänen und Anwendungen für die entsprechenden Probleme evaluiert. Im
Allgemeinen zeigen unsere Experimente, dass unsere Algorithmen in der Lage sind, so-
wohl die Größe als auch die Geschwindigkeit, mit der Instanzen in der Praxis verarbeitet
werden können, um bis zu mehreren Größenordnungen zu verbessern. Zusätzlich zeigen
wir, dass unsere Vorverarbeitungsalgorithmus und Reduktionen leicht in andere Algorith-
men integriert werden können, um deren Leistung zu steigern. Unsere Beiträge werden
entweder als eigenständige Bibliotheken oder als Teil der Bibliotheken KaMIS, WeGotYou-
Covered (kardinalitätsmaximale und gewichtsmaximale unabhängige Mengen) und DMAX
(kardinalitätsmaximale Schnitte) zur Verfügung gestellt.

viii

Acknowledgements

The last years leading to this dissertation presented me with a plethora of opportunities that
helped me grow, both academically and personally. Thus, I would like to briefly express my
gratitude to all people directly or indirectly involved in this journey.

First and foremost, I want to give my sincerest thanks to my supervisor Peter Sanders for
letting me be a part of his amazing research group, as well as for providing me with guidance
and the freedom to pursue my research interests. I would also like to thank Jin-Kao Hao for
being a part of my dissertation committee as a reviewer for this dissertation. Thanks go to
Monika Henzinger for inviting me to her research group in Vienna and providing me with
valuable feedback on my work.

I want to give special thanks to Christian Schulz andDarren Strash whowere close colleagues
and friends for the longest part of my academic journey. Without you two, I probably would
not have ventured into academia and arrived at this point.

Furthermore, I would like to thank my co-authors Faisal Abu-Khzam, Michael Axtmann,
Timo Bingmann, Ulrik Brandes, Carsten Dachsbacher, Jakob Dahlum, Damir Ferizovic, Daniel
Funke, Alexander Gellner, Michael Hamann, Demian Hespe, Lorenz Hübschle-Schneider,
Emanuel Jöbstl, Ulrich Meyer, Matthias Mnich, Huyen Chau Nguyen, Alexander Noe, Manuel
Penschuck, Sebastian Schlag, Emanuel Schrade, Matthias Stumpp, Tobias Sturm, Ilya Safro,
Peter Sanders, Christian Schorr, Christian Schulz, Darren Strash, Moritz von Looz, Renato
Werneck, Robert Williger, Bogdan Zaválnij, and Huashuo Zhang.

Thanks goes to my former and current colleagues Yaroslav Akhremtsev, Michael Axtmann,
Tomáš Balyo, Timo Bingmann, Daniel Funke, Simon Gog, Demian Hespe, Tobias Heuer, Lukas
Hübner, Lorenz Hübschle-Schneider, Markus Iser, Florian Kurpicz, Moritz Laupichler, Hans-
Peter Lehmann, Tobias Maier, Matthias Schimek, Sebastian Schlag, Dominik Schreiber, Daniel
Seemaier, Jochen Speck, Tim Niklas Uhl, Marvin Williams, and Sascha Witt for the interesting
and fun discussions that go above and beyond our day to day work. I want to thank Daniel
Funke, Demian Hespe, Florian Kurpicz, Tobias Maier, Matthias Schimek, Dominik Schreiber,
and Daniel Seemaier in particular, for helping me by proofreading this dissertation.

I also want to thank my bright and hard-working students Adrian Feilhauer, Damir Feri-
zovic, Alexander Gellner, Tom George, Christian Schorr, Tim Niklas Uhl, and Robert Williger.

I am forever grateful to my family for their love and support throughout my entire life. Also,
I would like to thank my closest friends Maximilian Brückmann, Nicolas Claveau, Tobias
Engelhardt, Johannes Kirschnick, Kai Klasen, Daniel Kramer, Kevin Lynott, Philip Matthias,
Michael Remmel, Marvin Ruchay, Benedikt Schwende, Philipp Terzenbach, and Philip Winkler.
I know many of you for more than half of my life and thoroughly enjoyed every minute. Finally,
I would like to give thanks to the TMW community for providing me with motivation for my
biggest pastime endeavor over the last two years.

ix

Table of Contents

1 Introduction 1
1.1 Main Contributions . 3

1.1.1 Maximum Cardinality Independent Sets 3
1.1.2 Maximum Weight Independent Sets 5
1.1.3 Maximum Cuts . 6

1.2 Outline . 6

2 Preliminaries 7
2.1 Notation and Definitions . 7

2.1.1 Kernelization and Reductions . 7
2.1.2 Graphs . 8
2.1.3 Problem Definitions . 10

2.2 Algorithmic Components . 13
2.2.1 Local Search . 13
2.2.2 Evolutionary Algorithms . 13
2.2.3 Branch-and-Reduce . 14
2.2.4 Algorithm Portfolios . 15

2.3 Methodology . 16
2.3.1 Algorithm Engineering . 16
2.3.2 Experimental Methodology . 17

3 Maximum Cardinality Independent Sets 25
3.1 Related Work . 27

3.1.1 Exact Approaches . 28
3.1.2 Heuristic Approaches . 29
3.1.3 Maximum Clique and Clique Enumeration 31
3.1.4 Reduction Rules . 33
3.1.5 Branch-and-Reduce . 39
3.1.6 The ARW Algorithm . 41

3.2 Inexact Iterative Reductions . 42
3.2.1 Previous Work on Evolutionary Algorithms 42
3.2.2 Evolutionary Components . 43
3.2.3 Reduction Algorithms . 47
3.2.4 Experimental Evaluation . 48

3.3 On-the-fly Reductions . 56
3.3.1 Techniques for Accelerating Local Search 56

xi

Table of Contents

3.3.2 Experimental Evaluation . 59
3.4 Exact Portfolio Algorithm . 64

3.4.1 Techniques . 65
3.4.2 Putting it all Together . 66
3.4.3 Experimental Evaluation . 67

3.5 Targeted Branching Rules . 73
3.5.1 Previous Work on Branching Strategies 74
3.5.2 Decomposition Branching . 75
3.5.3 Reduction Branching . 77
3.5.4 Experimental Evaluation . 81

3.6 Conclusion and Future Work . 85

4 MaximumWeight Independent Sets 89
4.1 Related Work . 91

4.1.1 Exact Approaches . 91
4.1.2 Heuristic Approaches . 93
4.1.3 Maximum Weight Clique . 94

4.2 Generalized Reduction Rules . 95
4.2.1 Critical Weighted Independent Set Reduction 96
4.2.2 Efficient Branch-and-Reduce . 97
4.2.3 Weighted Reduction Rules . 99
4.2.4 Experimental Evaluation . 106

4.3 Increasing Transformations . 112
4.3.1 Struction . 112
4.3.2 New Weighted Struction Variants 114
4.3.3 Practically Efficient Structions . 117
4.3.4 Experimental Evaluation . 120

4.4 Conclusion and Future Work . 126

5 Maximum Cuts 129
5.1 Related Work . 131

5.1.1 Exact Approaches . 132
5.1.2 Heuristic Approaches . 133

5.2 Practically Efficient Reductions . 133
5.3 Implementation . 137
5.4 Experimental Evaluation . 140

5.4.1 Performance of Individual Rules . 140
5.4.2 Exactly Computing a Maximum Cut 142
5.4.3 Analysis on Large Instances . 143

5.5 Conclusion and Future Work . 146

6 Conclusion 147
6.1 Summary . 147
6.2 Outlook . 148

xii

Table of Contents

Appendix 149
A Instance Details . 149
B Additional Results for Inexact Iterative Reductions 163
C Convergence Plots for Inexact Iterative Reductions 164
D Convergence Plots for On-the-fly Reductions 165
E Detailed Results for Targeted Branching Rules 170
F Kernel Sizes for Generalized Reduction Rules 176
G Detailed Results for Generalized Reduction Rules 178
H Convergence Plots for Generalized Reductions 182
I Branch-and-Reduce for Comparison Increasing Transformations 186
J State-of-the-Art Comparison for Increasing Transformations 190
K Convergence Plots for Increasing Transformations 194
L Reduced Rudy Instances for Maximum Cuts 200

Publications and SupervisedTheses 201

Bibliography 205

xiii

1Chapter 1

Introduction

In this dissertation, we examine the use and benefits of reductions for NP-hard
optimization problems, namely, finding maximum cardinality or weight indepen-
dent sets and maximum cardinality cuts. Using reductions, we improve both the
scale of instances and the speed at which these instances are processed. We thus
cover a wide range of algorithms that make use of various forms of reductions.
This includes both heuristic and exact approaches, ranging from local search to
branch-and-reduce algorithms. Our extensive experimental evaluations indicate
that our algorithms are able to rival and often outperform current state-of-the-art
approaches both in terms of the size of feasible instances and the time required to
compute solutions.
Before examining the individual problems and our algorithms in the following
chapters, we now provide motivation for the relevancy of these problems and the
usage of reductions. We also provide an overview of the main contributions of
this dissertation.

Many of today’s important optimization problems are NP-hard, i.e., the common assumption
is that there exists no polynomial-time algorithm that is able to solve them. However, for
many of these problems, we are able to solve them efficiently in theory (and practice) if
specific problem parameters are small. These types of problems are called fixed-parameter
tractable (FPT). A common example of this type of problem is the minimum vertex cover
problem, which is NP-hard [Kar72]. However, by formulating this problem as a parameter-
ized problem with the size of the vertex cover 𝑘 as an additional parameter, it can be solved
inO(𝑘𝑛 + 1.2738𝑘) time [CKX06].

In the last decade, even though there have been significant advances on the theoretical side
of FPT algorithms, little attention has been placed on their practical applications. However,
in recent years this changed as multiple works have shown the practical efficiency of these
approaches for various graph problems [AI16; Abu+20]. Most notably, the exhaustive
application of reductions in order to compute a reduced instance has been able to show
tremendous results. This allows algorithms to compute solutions for instances orders of
magnitudes larger than previously possible [AI16; Abu+20]. Since then, reductions have
been used for all sorts of problems and in both heuristic and exact approaches. Despite this
success, there are still a lot of instances that remain infeasible, as many of these instances still
have particularly large or “hard” reduced instances. This means that these reduced instances
can not be solved by existing algorithms in a reasonable amount of time.

Achieving smaller reduced instances can be done by new reduction rules. Particular
caution has to be paid to the practically efficient applicability of these reduction rules, as

1

1 Introduction

otherwise, computing a reduced instance itself becomes infeasible in a reasonable amount
of time. Solving “hard” reduced instances can be done by improving other algorithmic
aspects of existing state-of-the-art approaches or developing entirely new ones. Examples
include using evolutionary algorithms [LSS15a] or advanced local searches [Dah+16a] to
compute high-quality solutions in a short amount of time or using alternative branching
rules [HLS21a] for exact branch-and-reduce algorithms. Thorough experimental evaluations
ensure that these algorithms are able to function well on a large spectrum of instances from
various domains and applications.

One of the problems that have received a lot of attention in the context of reductions is the
NP-hard maximum cardinality independent set problem (and its complementary problems
minimum vertex cover and maximum clique) [FGK09; Xia+17; Abu+04; AI16; But+02]. An
independent set is a set of vertices of a graph that are pairwise not adjacent. The maximum
cardinality independent set problem, or in short maximum independent set problem, then
asks for the largest possible independent set (in terms of its cardinality). Additionally, a
maximum independent set is the complement of minimum vertex cover and a maximum
clique in the complement graph. Together with its complementary problems, its spectrum
of applications includes map labeling [Klu+19], route planning [Kie+10], social network
analysis [Put+15], VLSI design [FHL19], or modeling protein-protein interactions [GWA00].
For example, high-quality independent sets are used for the optimization of the stampings
on a wafer to maximize utilization in VLSI design [FHL19]. Another example is the use of
maximum cliques to find maximally complementary sets of donor and acceptor pairs when
modeling protein-protein interactions as a set of potential hydrogen bonds [GWA00].

Due to the success of reductions for the maximum independent set problem, there has
been an increasing interest in achieving the same for the weighted generalization of this
problem [Wan+19; HXC21; Zhe+20; Li+20]. To be more specific, the maximum weight
independent set problem for a graph with a vertex weighting function asks for an indepen-
dent set of the largest possible weight. The weight of an independent set is measured by the
sum of the weights of its vertices. The applications of this problem (and its complementary
problems minimum weight vertex cover and maximum weight clique) extend the spec-
trum of applications for the unweighted case by additional possibilities for computing map
labelings [GNR16; Bar+16] or modeling protein-protein interactions [Mas+10]. Further-
more, entirely new opportunities that leverage weighted independent sets arise from disk
scheduling [CKR11], coding theory [NKÖ97; Bro+90], combinatorial auctions [WH15b],
and vehicle routing [Don+22]. For example, maximum weight independent sets can be used
to maximize the number of non-overlapping labels in label conflict graphs used for map
labeling [GNR16; Bar+16]. Maximum weight cliques can, for example, be used to solve the
winner determination problem emerging in combinatorial auctions [WH15b].

Finally, otherNP-hard problems such asmaximum cuts, vertex coloring, or cluster editing
also benefit from the use of reductions [Fer+20; Abu+20]. The maximum cardinality cut
problem, or in short maximum cut problem, in particular, will be covered in greater detail
in this dissertation. Most notably, the benefits of reductions for practical algorithms have
not been covered as thoroughly for this problem. The goal for the maximum cut problem is
to find a bipartition of the graph such that the number of edges that run across partitions
is maximized. There exist different generalizations of this problem, including weighted

2

1.1 Main Contributions

and signed variants. Applications include social network modeling [Har59], statistical
physics [Bar82], portfolio risk analysis [HLW02], and VLSI design [Bar+88; Chi+07].

1.1 Main Contributions
This dissertation is split into three different parts, each of which covers one of the three
problems motivated in the previous section: maximum independent sets, maximum weight
independent sets, and maximum cuts. Overall, in this dissertation, we present a wide range
of contributions related to the field of practical reductions. These contributions range from
theoretical aspects, such as new reduction rules, to algorithm design and engineering, such
as an improved local search or novel branch-and-reduce algorithms. This dissertation also
presents these ideas in a unified manner that goes beyond the individual publications on
which they are based. In the following, we briefly cover the contributions made to each
problem. Further references and attributions for each publication will be given in the
corresponding chapters and sections.

1.1.1 Maximum Cardinality Independent Sets
For the maximum cardinality independent set problem, we provide both heuristic and
exact algorithms. On the one hand, heuristic algorithms do not necessarily guarantee that a
computed independent set is amaximumone but are often able to compute high-quality ones
in a much shorter time frame than exact approaches. On the other hand, exact approaches
can provide such a guarantee but often take much longer to compute their solution. To
alleviate this, exact algorithms are also able to output inexact solutions that have been
computed. In spite of their differences, both types of algorithms are able to benefit greatly
from the use of reductions. This benefit often comes in the form of improved running times
and a larger scale of instances that become feasible.

Inexact Iterative Reductions. We propose a very natural evolutionary algorithm to com-
pute high-quality independent sets that makes use of reductions in two different ways. For
this purpose, we make use of a large set of reductions proposed by Akiba and Iwata [AI16].
First, we use their reductions to compute a reduced instance that is used as the input for
an existing evolutionary algorithm [LSS15b; LSS15a]. The main idea behind this algorithm
are combine operations that use graph partitioning and local search to exchange large parts
of independent sets while also ensuring that the resulting independent sets are valid. By
operating on the (often smaller) reduced instance, we can boost the performance of this
algorithm. Second, we use the evolutionary algorithm to select vertices that are likely to be
in a large independent set. These vertices are then removed from the graph, which allows
further reductions to be applicable. This process is repeated recursively until the graph is
either completely reduced or a time limit is reached. Our algorithm is able to find indepen-
dent sets up to four orders of magnitude faster than previous exact algorithms. Additionally,
we are able to find high-quality independent sets on much larger graphs than previously
reported in the literature. Finally, similar approaches have since been used in state-of-the-art
heuristic algorithms [CLZ17; AC19].

3

1 Introduction

On-the-fly Reductions. Our evolutionary algorithm allows us to compute high-quality
independent sets at the cost of preprocessing time, e.g., computing a reduced instance and
building the initial solutions. To reduce the time required to compute solutions of similar
quality, we thus aim to improve the scale and speed at which local search algorithms can
do so. To this end, we extend the iterated local search by Andrade et al. [ARW12] by
reduction rules that can be applied very efficiently during the algorithm’s execution. In
particular, we propose two different approaches: (1) using reductions and applying local
search on the reduced instance and (2) applying reductions on-the-fly during the local
search, i.e., we apply reductions when vertices are moved in and out from the solution. To
the best of our knowledge, these are the first practical algorithms for computing high-quality
independent sets that extend local search with reduction rules. We also propose the use of
inexact reductions by removing a small percentage of high-degree vertices, which pose a
bottleneck for local search. Our experiments show that our algorithms are much faster (up
to orders of magnitude) than previous algorithms while also producing solutions that are
very close to the best-known ones. Whereas the first approach boosts the performance of
local search on huge graphs at the cost of preprocessing time, the second approach is able
to do so without significant overhead. Again, similar approaches have since been used in
state-of-the-art heuristic algorithms [CLZ17; AC19].

Exact Portfolio Algorithm. To test the applicability and limits of algorithms that use re-
ductions on a competitive benchmark, we participated in the Parameterized Algorithms and
Computational Experiments (PACE) 2019 Challenge, which focused on the complementary
minimum vertex cover problem. In this dissertation, we present our submitted state-of-the-
art portfolio algorithm that won this competition. Our algorithm uses a portfolio of different
approaches for finding vertex covers, independent sets, and cliques. These include the reduc-
tion rules by Akiba and Iwata [AI16], the iterated local search by Andrade et al. [ARW12],
and the exact maximum clique algorithm by Li et al. [LJM17]. We integrate these approaches
in an algorithm that cleverly uses increasing time intervals and switches between reduced
and unreduced inputs. The particular choices are motivated by multiple important insights
made during the participation in the challenge. Most notably, we observed that there is a
benefit in using unreduced instances over their reduced counterparts. Finally, our algorithm
remains competitive with current state-of-the-art approaches.

Target Branching Rules. Due to the extensive list of reductions available and the results
achieved bymaking use of them, we then turn our attention to improving other (less explored)
aspects of exact algorithms. Therefore, we present multiple novel strategies for selecting
branching vertices for branch-and-bound or branch-and-reduce algorithms. Even though
the branching strategy can have a large impact on the performance of exact algorithms [AI16],
many of them select vertices based on their degree [FGK09; AI16; XN17]. We instead
propose new branching strategies that can be classified as either decomposition-based or
reduction-based: Decomposition-based strategies aim to select vertices that decompose the
graph into multiple connected components, which can be solved independently. Doing so
has been shown to boost the performance of branch-and-reduce [AC19]. For this purpose,
our decomposition-based strategies make use of articulation points, edge cuts, or nested
dissection. Reduction-based strategies select vertices that will lead to the application of

4

1.1 Main Contributions

additional reduction rules and thus shrink the graph size. Our rules target a large set
of reduction rules commonly used in practice. Our experiments show that by using our
strategies, we are often able to find a solution faster than the commonly used degree-based
branching strategy. In particular, our decomposition-based strategies are able to achieve an
average speedup of 2.29 on sparse networks.

1.1.2 MaximumWeight Independent Sets
After presenting multiple successful approaches for unweighted independent sets, we then
turn to algorithms that achieve similar results for the maximum weight independent set
problem. Due to the lack of existing practical works on this problem that make use of
reductions, our primary focus is on constructing algorithms for finding exact solutions.
However, we also show that many of the techniques and preprocessing algorithms we present
can be used to improve heuristic approaches. Again, we incorporate reductions in multiple
ways, boosting the performance and scale of instances that can be handled by both heuristic
and exact algorithms.

GeneralizedReductionRules. Ourfirst contribution is the first practically efficient branch-
and-reduce algorithm for the maximum weight independent set problem. Prior to our work,
there were only a few known reduction rules for the maximum weight independent set
problem [BT07; EHd84]. Additionally, these rules have only been tested on small synthetic
instances. We present a more diverse set of new reduction rules. These reduction rules
include generalizations of existing rules popularized by Akiba and Iwata [AI16] and entirely
new ones. We also propose a set of so-called meta reductions that subsume many existing
reduction rules and can be used as a theoretical framework for proving more concrete
reductions. We incorporate these reduction rules as a reduction procedure in a branch-and-
reduce algorithm that uses similar techniques to the one of Akiba and Iwata [AI16]. To the
best of our knowledge, our algorithm is the first practical branch-and-reduce algorithm for
the maximum weighted independent set problem. Our experimental evaluation shows that
our algorithm and its set of reduction rules is able to handle real-world instances with up
to millions of vertices and edges — a significant improvement to previous approaches that
are only able to handle instances with hundreds of vertices. Furthermore, our algorithm is
able to solve a large set of instances up to two orders of magnitude faster than even the best
previously known heuristic approaches.

Increasing Transformations. Even though our newly proposed reductions are able to
produce very successful results, they are often limited in their applicability, e.g., due to
restrictive weight constraints. Therefore, we examine more general reduction rules that
can be applied more liberally but whose practical impact on large graphs remained largely
untested. To this end, we present a preprocessing algorithm that uses a set of practically
efficient variants of the struction rule by Ebenegger et al. [EHd84]. The struction rule is a
reduction rule that is able to decrease the weight of a maximum weight independent set of a
given graph. However, it may also increase the graph size by introducing additional vertices
and edges. We address this issue by introducing three new struction variants that are capable
of limiting this size increase. We then engineer special cases of these variants that can be

5

1 Introduction

efficiently applied in practice. These include cases that always maintain or reduce the graph
size and can easily be integrated into existing algorithms. We also propose a preprocessing
algorithm that makes use of the full potential of the struction rule by allowing a temporary
increase in the graph size. This temporary increase can actually lead to further reductions
and a smaller graph size in the long run. Our experiments indicate that our algorithm
achieves significantly smaller graphs than previous approaches on all except one instance
tested. Finally, using our preprocessing in combination with existing branch-and-reduce
algorithms allows them to solve instances up to two orders of magnitude faster and also
solve many previously infeasible instances.

1.1.3 Maximum Cuts
Lastly, we want to explore the impact of reductions for problems where they have received
less attention when it comes to practically efficient algorithms. Therefore, we examine the
use of reductions for building preprocessing algorithms for the maximum cardinality cut
problem. Even though multiple works cover the usage of reductions for finding maximum
(cardinality) cuts (and its signed and weighted generalizations) from a theoretical point-
of-view [Cro+13; CJM15; EM18; MSZ18; Pri05; Far+17], to the best of our knowledge,
previous practical state-of-the-art algorithms did not make use of them.

Practically Efficient Reductions. We propose and engineer a reduction algorithm for the
maximum cardinality cut problem that uses a set of new and practically efficient reduction
rules. Our reduction rules can often be applied much more easily (in practice) than existing
rules while also subsuming most of them. In particular, our reductions do not rely on
specific subgraphs such as clique-forests. We incorporate these reduction rules in a reduction
algorithm that transforms a given instance between the unweighted, signed, and weighted
variants of maximum cut to produce small reduced instances. We also reduce the number
of checks for the applicability of reduction rules by using a timestamping mechanism. Our
experimental evaluation indicates that our reduction algorithm can speed up exact state-
of-the-art approaches by up to three orders of magnitude on real-world instances. As a
result, we again increase the set of feasible instances, some of which can now be solved in
less than two seconds. Finally, we can also drastically improve the performance of heuristic
algorithms on large graphs with millions of vertices.

1.2 Outline
The rest of this dissertation is organized as follows. We provide important preliminaries
in Chapter 2. This includes fundamentals and notation for the problems discussed in this
dissertation, an overview of frequently used algorithmic components, and information on
our research and experimental methodology. In Chapter 3, we then discuss our work on
the maximum cardinality independent set problem. This is followed by our work on the
maximum weight independent set problem presented in Chapter 4. Work on the maximum
cardinality cut problem is given in Chapter 5. Finally, we conclude this dissertation in
Chapter 6 with a brief summary and an outlook for future work.

6

2Chapter 2

Preliminaries

We present the fundamentals required for this dissertation. This includes the
notation and definitions for reductions, graphs, and the problems discussed in
detail in later chapters. We then briefly cover important algorithmic components
that are used throughout this dissertation. Finally, we discuss aspects related to our
research and experimental methodology. In particular, we provide an overview
of our research methodology, algorithm engineering, and present reoccurring
elements used in our experimental evaluations, including problem instances, plot
types, and the specific hardware used.

References. This chapter unifies multiple aspects including notation, definitions, and
experimental methodology used by the publications that form the basis of this disser-
tation [Lam+16; Dah+16a; Lam+17; Lam+19; HLS21a; Gel+21; Fer+20]. Large parts
are copied verbatim from these papers or the corresponding technical reports [Lam+15;
Dah+16b; Hes+19; HLS21b; Lam+18; Gel+20; Fer+19].

2.1 Notation and Definitions
We now introduce reductions from a theoretical point-of-view and introduce the required
notation for the following chapters. We also present the graph and problem definitions that
are frequently used throughout this dissertation.

2.1.1 Kernelization and Reductions
We present definitions of kernelization and reductions based on Fomin et al. [Fom+19]. For
this purpose, let Σ be a fixed, finite alphabet. A parameterized problem is a subset 𝐿 ⊆ Σ∗×ℕ.
For an element (𝑥, 𝑘) ∈ Σ∗ ×ℕ of this subset, 𝑘 is called the parameter. A problem is called
fixed-parameter tractable (FPT) if there exists an algorithm that solves the decision problem
(𝑥, 𝑘) ∈ 𝐿 in time that is exponential only in the parameter 𝑘. To be more specific, the
running time of such an algorithm is bounded by 𝑓(𝑘) ⋅ ∣𝑥∣𝑐, where 𝑓(𝑘) is an arbitrary
computable function of 𝑘 (but independent of ∣𝑥∣), and 𝑐 is a constant. We denote the
running time of such an algorithm asO∗(𝑓(𝑘)). An instance (𝑥, 𝑘) is called a yes-instance
if (𝑥, 𝑘) ∈ 𝐿 and a no-instance otherwise.

Kernelization. For a given parameterized problem 𝐿, a kernelization algorithm transforms
any given (𝑥, 𝑘) ∈ 𝐿 into a kernel (𝑥′, 𝑘′) such that

((𝑥, 𝑘) ∈ 𝐿 ⇔ (𝑥′, 𝑘′) ∈ 𝐿) and ∣𝑥′∣, 𝑘′ ≤ ℎ(𝑘) (2.1)

7

2 Preliminaries

where ℎ is an arbitrary computable function and called the size of the kernel. Furthermore,
the algorithm has to run in time polynomial in ∣(𝑥, 𝑘)∣. Finally, if ℎ is polynomial, the kernel
is also called polynomial.

Kernelization is closely related to the concept of FPT algorithms, as we will discuss in the
following. First, we say that a problem 𝐿 admits a kernel of size ℎ if every instance of 𝐿 has a
kernel of size ℎ. If this size is limited by some arbitrary computable function 𝑓, then the
problem is FPT. To see why this is the case, recall that kernelization runs in time polynomial
in ∣(𝑥, 𝑘)∣. Thus, we have an instance whose size is limited by 𝑓 and can be computed in
polynomial time. Afterwards, we can use an exponential time algorithm to decide if the
reduced instance is a yes- or no-instance.

The reverse is also true, i.e., if a parameterized problem 𝐿 is FPT, then it admits a kernel-
ization. To show that this is the case, suppose that 𝐿 is FPT, i.e., there is an algorithm that
decides if (𝑥, 𝑘) ∈ 𝐿 in time 𝑓(𝑘) ⋅ ∣𝑥∣𝑐. First, we cover the case ∣𝑥∣ ≥ 𝑓(𝑘). Then, depending
on the output of the decision algorithm (either yes or no), the kernelization algorithm simply
outputs a constant size yes- or no-instance. Second, when ∣𝑥∣ < 𝑓(𝑘), then it suffices that
the kernelization algorithm outputs 𝑥. Thus, kernelization can be seen as an alternative
definition for FPT. Finally, we note that the term kernel is also often used to describe a
reduced instance that does not necessarily conform to the definition above.

Reductions. Kernelization algorithms are usually composed of reduction rules or reductions
in short. A reduction is an algorithm that transforms an instance (𝑥, 𝑘) of a parameterized
problem 𝐿 into an equivalent instance (𝑥′, 𝑘′) of 𝐿. Here “equivalent” means that

(𝑥, 𝑘) ∈ 𝐿 ⇔ (𝑥′, 𝑘′) ∈ 𝐿 (2.2)

and is also called safeness or soundness of the reductions. One usually assumes that the
reduction runs in time polynomial in ∣𝑥∣ and 𝑘 and that ∣𝑥′∣ < ∣𝑥∣ and 𝑘′ < 𝑘.

In the context of this dissertation, we use reduction rules applied to combinatorial
optimization problems (as opposed to decision problems). For this purpose, let 𝐼 be a set
of instances and 𝑥 ∈ 𝐼 with a set of feasible solutions 𝑓𝑥. An optimal solution for 𝑥 is a
feasible solution 𝑦 ∈ 𝑓𝑥 that minimizes (or maximizes) some cost function. We then define
a reduction rule as an algorithm that transforms a given instance 𝑥 ∈ 𝐼 into an equivalent
instance 𝑥′ ∈ 𝐼. Here “equivalent” means that we can compute the value of the cost function
of an optimal solution of 𝑥 from an optimal solution of 𝑥′. As before, we usually assume that
reductions run in time polynomial in ∣𝑥∣ and that ∣𝑥′∣ < ∣𝑥∣. However, in later chapters, we
introduce reductions that do not follow these assumptions, i.e., they do not run in polynomial
time and might not reduce the instance size but even increase it. To distinguish reductions
that do not reduce the instance size from ones that do, we call them transformations.

2.1.2 Graphs
Let 𝐺 = (𝑉,𝐸) be an undirected graph with vertices 𝑉 = {1,… , 𝑛} and edges 𝐸 ⊆ (𝑉2). The
number of vertices is denoted as 𝑛 = ∣𝑉∣ and the number of edges as 𝑚 = ∣𝐸∣. We assume
that all graphs are simple, i.e., they contain no self-loops {𝑣, 𝑣} and no duplicate edges. In
Chapter 4, we also make use of vertex-weighted graphs𝐺 = (𝑉,𝐸,𝑤) that have an additional

8

2.1 Notation and Definitions

G \ S

S

Figure 2.1: Example of external vertices (blue) and internal vertices (orange) for a
subset of vertices 𝑆 ⊆ 𝑉.

real-valued vertex weighting function 𝑤 ∶ 𝑉→ ℝ+. Furthermore, in Chapter 5, we consider
edge-weighted graphs 𝐺 = (𝑉,𝐸,𝑤) with an additional real-valued edge weighting function
𝑤 ∶ 𝐸 → ℝ+. For a subset 𝑆 of vertices (𝑆 ⊆ 𝑉) or edges (𝑆 ⊆ 𝐸), we use 𝑤(𝑆) = ∑𝑠∈𝑆𝑤(𝑠)
and ∣𝑆∣ to denote the weight and size of 𝑆 respectively.

We say that vertices 𝑣 and 𝑢 are adjacent if {𝑣, 𝑢} ∈ 𝐸. The neighbors of a vertex 𝑣 ∈ 𝑉
are defined as 𝑁(𝑣) = {𝑢 ∶ {𝑣, 𝑢} ∈ 𝐸}. We define the neighborhood of a set of vertices
𝑈 ⊆ 𝑉 as 𝑁(𝑈) = ∪𝑣∈𝑈𝑁(𝑣) ⧵ 𝑈. Analogously, we define the closed neighborhoods
as 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣} and 𝑁[𝑈] = 𝑁(𝑈) ∪ 𝑈. We also use 𝑁2(𝑣) as a shorthand for
𝑁(𝑁(𝑣)) and use𝑁(𝑣) to denote the set of vertices that are not adjacent to 𝑣. The degree
of a vertex 𝑣 ∈ 𝑉 is denoted as 𝑑(𝑣) = ∣𝑁(𝑣)∣. The maximum degree of a graph is denoted as
Δ =max𝑣∈𝑉 𝑑(𝑣).

We say a graph is dense if 𝑚 ∈ Ω(𝑛2). Likewise, a graph is sparse if 𝑚 ≪ 𝑛2, e.g., if
𝑚 ∈ O(𝑛 log𝑛). Finally, we say a graph is scale-free if the fraction of vertices with degree 𝑘
is proportional to 𝑘−𝛾 for some constant 𝛾 > 1.

A graph𝐻 = (𝑉𝐻, 𝐸𝐻) is a subgraph of 𝐺 = (𝑉,𝐸) if 𝑉𝐻 ⊆ 𝑉 and 𝐸𝐻 ⊆ 𝐸. We denote
the set of vertices and edges of a (sub-)graph𝐻 by𝑉(𝐻) = 𝑉𝐻 and 𝐸(𝐻) = 𝐸𝐻 respectively.
For the sizes of these sets we use 𝑛(𝐻) = ∣𝑉(𝐻)∣ and 𝑚(𝐻) = ∣𝐸(𝐻)∣. 𝐻 is an induced
subgraph if 𝐸𝐻 = {{𝑢, 𝑣} ∈ 𝐸 ∶ 𝑢, 𝑣 ∈ 𝑉𝐻}. For a set of vertices 𝑈 ⊆ 𝑉, the subgraph
induced by 𝑈 is denoted as 𝐺[𝑈]. We also use the notation 𝐺 ⧵ 𝑈 to refer to the subgraph
𝐺[𝑉 ⧵ 𝑈]. We define the cut between two sets of vertices 𝑉1, 𝑉2 ⊆ 𝑉 as the set of edges
𝐸(𝑉1, 𝑉2) = {{𝑢, 𝑣} ∈ 𝐸 ∣ 𝑢 ∈ 𝑉1 ∧ 𝑣 ∈ 𝑉2}. Finally, the complement of a graph is defined
as �̄� = (𝑉, �̄�), where �̄� = (𝑉2) ⧵ 𝐸.

The set of external vertices 𝐶ext(𝑆) = {𝑣 ∈ 𝑆 ∣ ∃𝑤 ∈ 𝑉 ⧵ 𝑆 ∧ {𝑣,𝑤} ∈ 𝐸} is the set of
vertices in 𝑆 ⊆ 𝑉 that have some neighbor in 𝐺 outside 𝑆. Similarly, 𝐶int(𝑆) = 𝑆 ⧵ 𝐶ext(𝑆)
defines the set of internal vertices. An example of external and internal vertices is given in
Figure 2.1.

A path 𝑃 of length 𝑙 ∈ ℕ in a graph 𝐺 is defined as a sequence 𝑃 = ⟨𝑣1,… , 𝑣𝑙+1⟩ such
that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for 𝑖 = 1,… , 𝑙. A path with 𝑣1 = 𝑣𝑙+1 is called a cycle. We say that a graph
is connected if for every pair of vertices 𝑣,𝑤 ∈ 𝑉 there exists is a path ⟨𝑣,… ,𝑤⟩ in 𝐺 from
𝑣 to 𝑤. Otherwise, we call the graph unconnected. A connected component of 𝐺 then is an

9

2 Preliminaries

(a) Maximal indepen-
dent set

(b) Maximum indepen-
dent set

10

1

1

11

1

1

(c) Maximum weight in-
dependent set

Figure 2.2: Examples of maximal (a), maximum (b), and maximum weight (c) inde-
pendent sets. The independent set vertices are highlighted in blue.

inclusion-maximal connected subgraph. A graph is called biconnected if it is both connected
and the removal of any single vertex does not make the graph unconnected. A biconnected
component of 𝐺 then is an inclusion-maximal biconnected subgraph. Finally, a bridge in
a connected graph is an edge 𝑒 ∈ 𝐸 such that the removal of 𝑒 disconnects the graph, i.e.,
removing it makes the graph unconnected.

A 𝑘-way partition of a graph is a division of 𝑉 into 𝑘 blocks of vertices 𝑉1,… ,𝑉𝑘 such
that 𝑉1 ∪⋯ ∪ 𝑉𝑘 = 𝑉 and 𝑉𝑖 ∩ 𝑉𝑗 = ∅ for 𝑖 ≠ 𝑗. The balancing constraint demands that
∀𝑖 ∈ {1,… , 𝑘} ∶ ∣𝑉𝑖∣ ≤ (1 + 𝜖) ⌈𝑛/𝑘⌉ for some imbalance parameter 𝜖 ≥ 0. The objective
is to minimize the total cut, i.e., ∑𝑖<𝑗𝑤(𝐸(𝑉𝑖, 𝑉𝑗)). The set of cut edges is also called an
edge separator. The 𝑘-way vertex separator problem asks to find 𝑘 blocks (𝑉1, 𝑉2,… ,𝑉𝑘) and
a separator S ⊂ 𝑉 that partitions 𝑉 such that there are no edges between the blocks, i.e.,
the removal of 𝑆 disconnects the graph. Again, a balancing constraint demands ∣𝑉𝑖∣ ≤
(1 + 𝜖) ⌈𝑛/𝑘⌉. The objective is to minimize the size ∣S ∣ of the separator.

2.1.3 Problem Definitions

Independent Sets. An independent set of a graph is a subset of its vertices I ⊆ 𝑉, such that
all vertices in I are pairwise not adjacent, i.e., ∀𝑢, 𝑣 ∈ I ∶ {𝑢, 𝑣} /∈ 𝐸. An independent set is
maximal if it is not a subset of any larger independent set. Furthermore, an independent
set of the largest possible cardinality is called a maximum (cardinality) independent set. The
maximum independent set problem (MIS) is that of finding such a maximum independent set.
Note that there can be multiple maximum independent sets with the same size. Figure 2.2
shows examples of a maximal and maximum independent set. The size of a maximum
independent set I of a graph 𝐺 is denoted as 𝛼(𝐺) = ∣I ∣ and called its independence number.

We say that an independent set I has maximum weight if there is no independent set
with a larger weight, i.e., there exists no independent set I′ such that 𝑤(I) < 𝑤(I′). The
weight of a maximum independent set of 𝐺 is denoted by 𝛼𝑤(𝐺). The maximum weight
independent set problem (MWIS) is that of finding an independent set of the largest weight
among all possible independent sets. Again, maximum weight independent sets may not be
unique. An example of a maximum weight independent set is given in Figure 2.2.

10

2.1 Notation and Definitions

−

+ +

+

−

+ − +

−−

S V \ S

Figure 2.3:Example of a SignedMaxCut instance. Amaximum cut with value𝛽𝑙(𝐺) = 9
in this graph is given by the vertex sets 𝑆 (blue) and 𝑉 ⧵ 𝑆 (orange).

Complementary Problems. Both the minimum vertex cover problem (MVC) and the
maximum clique problem (MC) are closely related to the maximum independent set problem.
A vertex cover of a graph is a subset of its vertices C ⊆ 𝑉, such that each edge 𝑒 ∈ 𝐸 is adjacent
to at least one vertex in C, i.e., ∀𝑒 = {𝑢, 𝑣} ∈ 𝐸 ∶ 𝑢 ∈ C ∨ 𝑣 ∈ C. The minimum vertex cover
problem asks for a vertex cover of minimum size, i.e., with the minimum number of vertices.
Note that for a vertex cover C, the complement 𝑉 ⧵ C is an independent set [Ski20]. Thus,
the complement of a minimum vertex cover is a maximum independent set and vice versa.

A clique of a graph is a subset of its verticesQ ⊆ 𝑉 such that all vertices inQ are pairwise
adjacent, i.e., ∀𝑢 ≠ 𝑣 ∈ 𝑉 ∶ {𝑢, 𝑣} ∈ 𝐸. The maximum clique problem asks for a clique of
maximum size. A clique Q of a graph 𝐺 is an independent set in the complement graph
̄𝐺 [Ski20]. A maximum clique is a maximum independent set in the complement graph.
Finding maximum independent sets, as well as minimum vertex covers and maximum

cliques, are well-studied NP-hard optimization problems [Kar72; GJ79; Abu+04; Abu+20;
FGK09; Xia+17; WH15a]. Additionally, unless 𝑃 = 𝑁𝑃, there is no polynomial-time
approximation for both the maximum independent set and maximum clique problem that
can provide anO(𝑛1−𝜖) guarantee for any constant 𝜖 > 0 [Zuc07]. Both of these problems
are also𝑊[1]-hard when parameterized by the solution size 𝑘 [DF99]. This means that it is
unlikely that these problems are fixed-parameter tractable in 𝑘. However, it has been shown
that finding minimum vertex covers is fixed-parameter tractable in 𝑘 [DF99].

Theminimum weight vertex cover problem (MWVC) andmaximum weight clique problem
(MWC) can be defined analogously. In particular, a minimum weight vertex cover C is a
vertex cover of the smallest weight, i.e., there is no vertex cover C′ such that 𝑤(C) > 𝑤(C′).
A maximum weight clique is a clique Q of the largest weight, i.e., there exists no clique
Q′ such that 𝑤(Q) < 𝑤(Q′). The complement of a minimum weight vertex cover is a
maximum weight independent set and a maximum weight clique in the complement graph
is a maximum weight independent set.

Maximum Cuts. The maximum cut problem (MaxCut) is to find a vertex set 𝑆 ⊆ 𝑉, such
that the size of the cut ∣𝐸(𝑆,𝑉 ⧵ 𝑆)∣ is maximized. We denote the size of a maximum cut by
𝛽(𝐺) = ∣𝐸(𝑆,𝑉 ⧵ 𝑆)∣.

The weighted maximum cut problem (WeightedMaxCut) is to find a vertex set 𝑆 of a given
graph 𝐺 with an edge weighting function 𝑤 such that 𝑤(𝐸(𝑆,𝑉 ⧵ 𝑆)) is maximized. The
weight of a maximum cut is then given by 𝛽𝑤(𝐺) = 𝑤(𝐸(𝑆,𝑉 ⧵ 𝑆)).

11

2 Preliminaries

C1

C2

C3

C4

Figure 2.4: Example of a clique forest containing two clique trees: 𝑇1 consisting of
𝐶1,𝐶2, and 𝐶3 and 𝑇2 consisting of 𝐶4.

C1

C2

C3

C4

Figure 2.5: Example of a clique-cycle forest containing a single tree.

The signed maximum cut problem (SignedMaxCut) takes as input a graph 𝐺 together
with an edge labeling 𝑙 ∶ 𝐸 → {+,−}. Let 𝐸𝑐𝑙 (𝑆,𝑉 ⧵ 𝑆) = {𝑒 ∈ 𝐸(𝑆,𝑉 ⧵ 𝑆) ∣ 𝑙(𝑒) = 𝑐} be the
set of edges of 𝐸(𝑆,𝑉 ⧵ 𝑆) labeled with 𝑐 ∈ {−,+}. Furthermore, for an induced subgraph
𝐺[𝑆], let 𝐸𝑐(𝐺[𝑆], 𝑙) = {𝑒 ∈ 𝐸 ∣ 𝑙(𝑒) = 𝑐} be the set of edges labeled with 𝑐 ∈ {−,+} in
this subgraph. The goal of SignedMaxCut is to find a subset of vertices 𝑆 ⊆ 𝑉, which
maximizes the signed cut weight 𝛽𝑙(𝐺) = ∣𝐸−𝑙 (𝑆,𝑉⧵𝑆)∣+ ∣𝐸

+(𝐺[𝑆], 𝑙)∪𝐸+(𝐺[𝑉⧵𝑆], 𝑙)∣, i.e.,
the sum of the number of “−”-edges with endpoints in different partitions and the number
of “+”-edges with endpoints in the same partition. An example of a SignedMaxCut instance
with an optimal cut is given in Figure 2.3. For the neighborhood of a vertex, we use the
notation𝑁𝑐𝑙 (𝑣) = {𝑤 ∈ 𝑉 ∣ {𝑣,𝑤} ∈ 𝐸

𝑐(𝑙)} Respectively, for a set of vertices𝑋 ⊂ 𝑉, we use
𝑁𝑐𝑙 (𝑋) = ⋃𝑣∈𝑋𝑁

𝑐
𝑙 (𝑣)⧵𝑋. We call a triangle (𝑢, 𝑣,𝑤 ∈ 𝑉 such that {𝑢, 𝑣},{𝑢,𝑤},{𝑣,𝑤} ∈ 𝐸)

positive if its number of “−”-edges is even. Any MaxCut instance can be transformed into a
SignedMaxCut instance by labeling all edges with “−”. Note that maximum cuts do not have
to be unique.

Closely related to maximum cut problems is the NP-hard quadratic unconstrained binary
optimization problem (QUBO) [GJ79]. Let 𝑄 ∈ ℝ𝑛×𝑛 be symmetric 𝑛 × 𝑛 matrix and
𝑥 ∈ {0, 1}𝑛. The goal of QUBO is to select 𝑥 such that the value 𝑥∗ = 𝑥⊤𝑄𝑥 is minimized. A
reduction from QUBO to WeightedMaxCut is given by Barahona et al. [BJR89].

Miscellaneous. A complete graph is a graph in which each vertex is connected to all other
vertices, i.e., 𝐸 = (𝑉2). We denote a complete graph with 𝑛 vertices as𝐾𝑛. A near-clique of
a graph is a clique that has one of its edges removed. A clique tree is a connected graph

12

2.2 Algorithmic Components

whose biconnected components are cliques and a clique forest is a graph whose connected
components are clique trees. The class of clique-cycle forests is defined as follows. A clique
is a clique-cycle forest and so is a cycle. The disjoint union of two clique-cycle forests is a
clique-cycle forest. In addition, a graph formed from a clique-cycle forest by identifying two
vertices, each from a different component, is also a clique-cycle forest. Examples of a clique
forest and clique-cycle forest are given in Figures 2.4 and 2.5, respectively.

2.2 Algorithmic Components

In the following, we briefly cover the main algorithmic components used throughout this
dissertation. This includes local search, evolutionary algorithms, branch-and-reduce, as well
as algorithm portfolios.

2.2.1 Local Search

Local search is a technique for tackling optimization problems based on moving between
neighboring feasible solutions [MS08]. This is realized by iteratively transforming an initial
solution by some simple local moves, e.g., by replacing a single vertex that is part of the
solution. This is done in such a way that the cost function is gradually improved by each
move. Finally, this process stops if there is no better neighboring solution with respect to the
cost function, i.e., when a local optimum is reached. In general, no guarantee on the quality
of the local optimum is provided by the local search.

There are multiple approaches for escaping local optima, including multistart local search,
simulated annealing [vLA87], or tabu search [Glo89]. In particular, tabu search makes use
of a set of previous solutions to guide the search by prohibiting or penalizing moves that
would result in neighboring solutions of these previous solutions.

Of particular interest for this dissertation is the iterated local searchmetaheuristic [SR18].
Algorithms based on iterated local search start with an initial solution, which is then opti-
mized using local search. They then generate new solutions by switching between applying
a series of moves and local search. The series of moves used here can be augmented with
different techniques for diversification, e.g., randomization or tabu mechanisms. A new
solution is only accepted if it passes an acceptance criterion, e.g., if it is better than the
current best solution. Finally, a stopping criterion is used to terminate the algorithm. A
high-level overview of iterated local search adapted from Stützle and Ruiz [SR18] is given in
Algorithm 2.1.

2.2.2 Evolutionary Algorithms

Inspired by natural selection, evolutionary algorithms are another metaheuristic used for
solving optimization problems in practice [Gol89]. These types of algorithms make use of a
population of solutions (that might be infeasible) called individuals. Additionally, they use a
fitness function that assigns a fitness to each individual, which indicates the quality of the

13

2 Preliminaries

Algorithm 2.1 : High-level overview of iterated local search.
1 𝑆0 ← create initial solution
2 𝑆∗ ← apply local search to 𝑆0
3 while stopping criterion not fulfilled do
4 𝑆𝑡 ← perturb 𝑆∗ // Apply diversification techniques
5 𝑆𝑡′← apply local search to 𝑆𝑡
6 if acceptance criterion fulfilled then
7 𝑆∗ ← 𝑆𝑡′

8 return 𝑆∗

corresponding solution. For example, one can use a population of independent sets and use
the size (and feasibility) of the independent set as its fitness.

New solutions are generated by using two (or more) individuals as parents that are
combined using a crossover or combine operation. This operation usually exchanges whole
parts of the solutions represented by the parents, resulting in two (or more) offspring. Most
often, parents are selected based on their fitness, i.e., higher fitness results in a higher
probability of being selected. In order to maintain or restrict the size of the population,
one can evict individuals from the population when generating offspring or as time passes.
Usually, individuals with low fitness or high similarity to new offspring are evicted. Finally,
evolutionary algorithms use a mutation operation that is randomly applied to offspring in
order to diversify the population, e.g., by using similar diversification techniques applied to
local search algorithms.

In this dissertation, we make use of evolutionary algorithms that can further be classified
as memetic algorithms [CM07]. These types of algorithms combine the benefits of the global
population-based search performed by evolutionary algorithms with the locally optimal
solutions obtained by local search. In particular, individuals of the initial population and all
generated offspring are optimized using local search to improve the convergence behavior
of the underlying evolutionary algorithm. A high-level overview of a memetic algorithm is
given in Algorithm 2.2.

2.2.3 Branch-and-Reduce

Themain approachwe use for finding exact solutions for the optimization problems discussed
in this dissertation is based on branch-and-bound [MS08]. In the following, we discuss
branch-and-bound algorithms for maximization problems, but the same ideas can also be
used for minimization problems. The general idea of branch-and-bound is to exhaustively
explore the set of feasible solutions by recursively dividing it into smaller subsets (branches)
and then backtracking once a branch has been fully explored. For example, this can be
done by including or excluding a vertex 𝑣 from an independent set. The resulting branches
then correspond to the set of independent sets that contain 𝑣 (including branch) or that do
not contain 𝑣 (excluding branch). To select a vertex for branching, algorithms often use

14

2.2 Algorithmic Components

Algorithm 2.2 : High-level overview of a memetic algorithm.
1 𝑃← create initial population
2 𝑃←maximize 𝑃 using local search
3 while stopping criterion not fulfilled do
4 𝐼1, 𝐼2 ← select parents from 𝑃 based on their fitness
5 𝑂1, 𝑂2 ← combine 𝐼1, 𝐼2
6 𝑂∗1 , 𝑂∗2 ←maximize offspring 𝑂1, 𝑂2 using local search
7 𝑂1′, 𝑂2′←mutation on offspring 𝑂∗1 , 𝑂∗2
8 𝑃← insert offspring 𝑂1′, 𝑂2′ and evict individuals
9 return feasible individual with the highest fitness

heuristics, e.g., selecting a random vertex with the highest degree. Furthermore, one or
more bounding procedures are used to place (tight) upper bounds on the values of the cost
function that can be obtained from the set of solutions represented by the current branch.
By doing so, branches can be pruned if the value of the upper bound is smaller than a lower
bound, e.g., the value of the cost function of the best previously found solution or some
precomputed value.

Branch-and-reduce is an extension of branch-and-bound that integrates reduction rules
to further reduce the set of feasible solutions [XN17; AI16]. In particular, these algorithms
use a set of reduction rules that is exhaustively applied before branching. Usually, this is
achieved by applying each reduction rule in some fixed order until it is no longer applicable
and then moving on to the next reduction rule. If this leads to an applicable reduction rule,
the process starts over with the first reduction rule. Applying reductions can be repeated
after each branching step, as branching itself often facilitates the application of additional
reduction rules. We provide a high-level overview of a branch-and-reduce in Algorithm 2.3

2.2.4 Algorithm Portfolios

To win the PACE 2019 Challenge, we used an algorithm portfolio consisting of state-of-
the-art approaches from multiple closely related problems (see Section 3.4). Inspired by
economics, an algorithm portfolio for an optimization problem is a set of algorithms that
usually vary in their associated performance and risk [HLH97]. The performance of an
algorithm in our case describes the time required to compute a solution, whereas the risk
describes the certainty with which a solution can be obtained. For example, an algorithm
might require a long time to compute a solution, thus having a low performance, but given an
appropriate time limit may always find a solution, thus also having a low risk. An algorithm
portfolio then tries to leverage different algorithms in order to cover a (wide) range of
performance and risk tradeoffs. This can be achieved by running the algorithms sequentially
and assigning different time limits to each individual run. For example, one can start with
short runs of algorithms that have both high performance and risk and then gradually
increase the time limits while switching to algorithms that have lower performance and risk.

15

2 Preliminaries

Algorithm 2.3 : High-level overview of a branch-and-reduce algorithm.
1 Solve (𝐼, 𝑐, 𝑘)
2 (𝐼′, 𝑐)← apply set of reduction rules to (𝐼, 𝑐) // Can increase solution cost 𝑐
3 𝑢← compute upper bound for cost of 𝐼′
4 if 𝑐 + 𝑢 < 𝑘 then
5 return 𝑘
6 if 𝐼′ completely reduced then
7 return 𝑐
8 (𝐼1, 𝑐1), (𝐼2, 𝑐2)← branch on (𝐼′, 𝑐)
9 𝑘← Solve(𝐼1,𝑐1,𝑘)

10 𝑘← Solve(𝐼2,𝑐2,𝑘)
11 return 𝑘
12 𝑘← compute initial lower bound for cost // For example using local search
13 𝑐← 0 // Starting solution cost
14 return Solve(𝐼, 0, 𝑘) // Solve instance 𝐼

Alternatively, one can also run the algorithms in parallel if the underlying hardware or other
restrictions allow it.

2.3 Methodology

We now present important concepts for the research and experimental methodology used
throughout this dissertation. In particular, the results presented in this dissertation have
been achieved using algorithm engineering, a research methodology that combines algo-
rithm theory with experimental algorithmics [San09; San10; SW11; SW13]. The following
explanation of algorithm engineering is based on Sanders and Wagner [SW11; SW13] and
Schlag [Sch20a]. For a more thorough explanation, we refer to the original works.

2.3.1 Algorithm Engineering
Traditional algorithmic theory aims to provide universal and provable performance guaran-
tees for algorithms that are most often designed with simple problems and machine models
in mind. Even though this leads to timeless and often highly reliable algorithms, they are
more and more removed from realistic hardware with its own set of idiosyncrasies like
parallelism, pipelining, or memory hierarchies. While hardware, and the applications that
run on it, are rapidly evolving and becoming increasingly complex, algorithm theory devel-
ops more and more intricate algorithms that pose a significant challenge when it comes to
transferring them to practice. Furthermore, algorithm theory uses asymptotic analysis that
ignores constant factors, which prove to be important for real-world applications. This leads
to a growing gap between theory and practice that algorithm engineering aims to close.

16

2.3 Methodology

Analysis Experiments

Design

Implementation

Algorithm Libraries

Performance
Guarantees

Real-World Inputs

Realistic ModelsAlgorithm
Engineering

A
p
p
lication

s

Falsifiable
Hypotheses
Induction

Appl. Engineering

Deduction

Figure 2.6: The cycle of algorithm engineering consisting of design, analysis, imple-
mentation, and experiments. Adapted from Schlag [Sch20a].

The main component of algorithm engineering is a feedback loop of design, analysis, im-
plementation, and experiments given in Figure 2.6. Thus, algorithm engineering is different
from experimental algorithmics, which focuses on the last two steps (implementation and
experiments) of this loop. At the center of the algorithm engineering cycle lie falsifiable
hypotheses that are supported and derived from experimental results through inductive rea-
soning. Each step of the cycle is also closely connected to real-world applications in different
ways. For example, the design and evaluation of algorithms using the algorithm engineering
methodology are based on realistic models for both the problems under consideration and
for the underlying machine hardware. Additionally, the implementations and algorithm
libraries are developed with the integration into applications in mind.

2.3.2 Experimental Methodology
We now present reoccurring elements used throughout the experimental evaluations in this
dissertation. This includes graph instances and families that we use, descriptions of plot
types, as well as the specific hardware used for our experiments.

2.3.2.a) Graph Instances

We give an overview of the instances used throughout this dissertation. Individual attri-
butions for specific instances used during evaluations are provided in the corresponding
sections. Note that our experimental evaluations often do not use all instances presented in

17

2 Preliminaries

the following. This is due to certain instances being either too “easy” or “hard” for certain
algorithms or the particular focus of the work. For example, an instance is too “hard” if none
of the algorithms considered is able to solve it in a reasonable time. A complete overview of
all instances with their corresponding numbers of vertices and edges is given in Appendix A.

Maximum Cardinality Independent Sets. We evaluate the algorithms for the maximum
cardinality independent set problem on a diverse set of graph instances that have been
used in multiple previous works [AI16; ARW12; GLP08]. Broadly, our set of instances
can be divided into the following families: Sparse networks and matrices, road networks,
complements of clique instances, meshes and networks from finite element computations,
and PACE instances. Instances for this problem are readily available [LK14; RA15; Bad+18].

Sparse networks are graphs that, as their name implies, are sparse and, in our case, often
have skewed degree distributions. These graphs can be exploited efficiently by even simple
reduction rules [Str16], making them a good candidate for algorithms that make use of
reductions. Additionally, finding large independent sets on these graphs is an important
part of graph indexing methods [Che+12; FNS16]. For example, one can use independent
sets to build a disk-based index for processing single-source shortest path and distance
queries, which in turn can be used to compute different characteristics such as betweenness
or closeness [Che+12]. Such an index can also be used for other problems that require similar
queries, e.g., route planning. Our set of sparse networks includes social networks, citation
networks, autonomous systems graphs, peer-to-peer networks, collaboration networks,
communication networks, signed networks, Wikipedia networks, and web graphs taken
from the 10th DIMACS Implementation Challenge [Bad+18], the Stanford Large Network
Analysis Project (SNAP) [LK14], and the Network Data Repository [RA15]. Additional
large web graphs are taken from the Laboratory of Web Algorithmics [BV04; Bol+11].
Graphs derived from sparse matrices have been taken from the Florida Sparse Matrix
Collection [DH11]. We also use complements of dense maximum clique instances from
the second DIMACS Implementation Challenge [JT96], which are often denser than the
previously listed graphs and thus harder to reduce.

Road networks are another type of sparse graphs that are planar and often have amore uni-
form degree distribution than the aforementioned sparse networks. Again, these graphs can
be handled well by reductions. Instances of this type are taken from Andrade et al. [ARW12]
and the 9th DIMACS Implementation Challenge [DGJ09]. Additional large road networks
are taken from [Del+09].

Meshes are graphs that have a highly uniform degree distribution and vertices often have
low degrees. Due to their regular structure, they pose a challenge for reductions [Lam+17].
However, large or maximum independent sets on these graphs can be used for the efficient
traversal of mesh edges in computer graphics [San+08]. Instances of this type are taken
from Sander et al. [San+08] and are dual graphs of triangular meshes. Networks from finite
element computations have been taken from Chris Walshaw’s graph partitioning benchmark
archive [SWC04].

Lastly, we make use of the instances from the PACE 2019 Challenge on the minimum
vertex cover problem [DFH19]. This benchmark set consists of a variety of instances,
including additional sparse and road networks, transit graphs, and a large set of SAT-based

18

2.3 Methodology

instances. Furthermore, these instances (numbered 1 to 200) have been categorized and
ordered by hardness using Gurobi [Gur21] with a time limit of six hours. Instances are
categorized into “easy” (≤ 80), “medium” (between 81 and 160), and “hard” (≥ 161). “Easy”,
“medium”, and “hard” instances were solved in the time intervals [1, 300), [300, 1500), and
[1500, 19000) seconds, respectively.

MaximumWeight Independent Sets. In contrast to the unweighted graphs presented
previously, weighted instances for the maximum weight independent set problem are gen-
erally harder to obtain. The instances used in this dissertation can be divided into la-
bel conflict graphs, randomly weighted sparse networks, meshes, and complements of
maximum weight clique instances. Real-world label conflict graphs obtained from Open-
StreetMap [Fou22] (OSM) files of North America and generated according to the method
described by Barth et al. [Bar+16] are one of the few sets of real-world graphs used in
previous works [Cai+18]. To be more specific, these graphs are generated by constructing a
vertex for each map label and assigning them a weight according to the label’s importance.
Edges are inserted between vertices that correspond to overlapping labels. Independent
sets with large weight in these graphs can then be used for map labeling [GNR16; Bar+16].
In particular, computing a maximum weight independent set removes label conflicts and
maximizes the importance of the labels that are displayed.

In addition to the OSM networks, we also use a set of sparse networks from the Stanford
Large Network Dataset Repository [LK14]. However, these instances are unweighted, and
comparable weighted instances are very scarce. Thus, we follow previous works [Cai+18;
LCH17] and assign vertex weights uniformly at random from the fixed size interval [1, 200].

We also consider randomly weighted dual graphs of triangular meshes from Sander et al.
[San+08] and networks derived from simulations using the finite element method taken from
Chris Walshaw’s graph partitioning benchmark archive [SWC04].

Finally, we also tested the use of complements of instances for themaximum weight clique
problem [McC+17]. However, since these instances are denser than many of the sparse
networks that we target, they remain largely irreducible by our techniques.

Maximum Cuts. For evaluating maximum cut algorithms, we use a mix of synthetic
and real-world graphs. Synthetic instances are generated using four different graph models
included in the KaGen graph generator [Fun+19; SS16]. In particular, we used Erdős-
Rényi graphs, random geometric graphs, random hyperbolic graphs, and Barabási-Albert
graphs. These graphs are mainly used to evaluate certain aspects of our algorithm as they
allow us to use controllable densities and degree distributions.

Our set of real-world graphs includes sparse real-world instances from the Network Data
Repository [RA15]. We also include real-world instances from VLSI design and image
segmentation applications taken from Dunning et al. [DGS18].

We also evaluated denser instances taken from the rudy category of the BiqMac Library
[Wie18]. The rudy instances are random graphs with 100 vertices and different edge densities
that are generated using the Rudy graph generator [Rin18]. However, due to their high
density, these graphs are not susceptible to reductions. Note that the BiqMac library also
contains the ising graph category stemming from statistical physics applications. However,

19

2 Preliminaries

10−1 100 101 102 103

Time (s)

0

50

100

150

200

In
st

an
ce

s
so

lv
ed

A
B
C
D

Figure 2.7: Example of a cactus plot comparing the number of solved instances over
time for four algorithms.

in addition to their dense and uniform structure, these graphs also have large edge weights,
making them more suited for finding maximum weight cuts.

2.3.2.b) Plot Types

Throughout this dissertation, we use cactus, convergence, and performance plots, which we
now discuss in more detail.

Cactus Plots. A cactus plot shows the total number of solved instances over a given time
period. More specifically, if an algorithm solves an instance at timestamp 𝑡, we increase the
number of solved instances for this algorithm at time 𝑡 by one. The plot then contains one
line per algorithm that shows the number of instances solved by this algorithm over time.
We only use this type of plot for the evaluation of exact algorithms. Note that a cactus plot
does not provide information about how fast any specific instance is solved across different
algorithms. Thus, it is hard to differentiate between “easy” and “hard” to solve instances.
Nonetheless, it provides an overview of the overall performance of exact algorithms. An
example of this type of plot is provided in Figure 2.7.

This plot shows four algorithms and the number of solved instances with a time limit
of 30minutes. Since all algorithms solve a large set of instances in less than ten seconds, a
logarithmic scale for the𝑥-axis is used to better emphasize the differences. Overall, algorithm
A performs best as it has the largest number of solved instances for almost all time frames.

Convergence Plots. Convergence plots [SS12] show the solution quality over time for a
given instance. More specifically, whenever an algorithm finds a new (and better) solution 𝑆
at time 𝑡, it reports a pair (𝑡, 𝑓(𝑆)), where 𝑓 is a function that quantifies the quality of the
solution. Without loss of generality, we assume that a solution 𝑆1 is better than a solution 𝑆2
if 𝑓(𝑆1) > 𝑓(𝑆2). The plot then contains one line per algorithm that shows the sequence

20

2.3 Methodology

101 102 103 104 105

Time (s)

3.00

3.02

3.04

3.06

So
lu

tio
n

si
ze

×107

A
B
C
D

Figure 2.8: Example of a convergence plot comparing the solution size over time for
four algorithms.

of these pairs. If not mentioned otherwise, convergence plots show event-based geometric
average values (𝑡, G) over multiple runs of the same instance using the same algorithm (with
different random seeds) as described by Sanders and Schulz [SS12]. Let 𝑠 be the random seed
used for a particular run. We merge the different sequences obtained by the multiple runs
into one sequence 𝑇merged containing triples (𝑡, 𝑓(𝑆), 𝑠). This sequence is then sorted by the
timestamps. We then iterate over the sorted sequence 𝑇merged and for each triple (𝑡, 𝑓(𝑆), 𝑠)
we add a tuple (𝑡, max𝑡′≤𝑡 𝑓(𝑆, 𝑡′), 𝑠) to another sequence 𝑇merged

max , where max𝑡′≤𝑡 𝑓(𝑆, 𝑡′) is
the best solution found until time 𝑡. Finally, we maintain a geometric mean G of the solution
quality over all seeds until a timestamp 𝑡. We then iterate over 𝑇merged

max and for each tuple (𝑡,
𝑓(𝑆), 𝑠) first update G and then add (𝑡, G) to the final sequence.

Note that as a result of presenting average values, this type of convergence plot does not
contain information about the best or worst solutions obtained by an algorithm. To get
a clearer picture of the overall performance of specific algorithms, multiple of these plots
are required. Alternatively, one can normalize the sequences and merge multiple instances
together [SS12]. Convergence plots can be used for both heuristic and exact approaches if
they output the current solution quality during execution. An example of this type of plot is
provided in Figure 2.8.

This plot shows four different algorithms and their average solution size for three runs
on an instance with a time limit of five hours. Due to the quick increase in solution size for
algorithms C and D, a logarithmic scale for the 𝑥-axis is used. We can see that algorithm D
reaches a large average solution size very quickly, and then the increase becomes gradually
smaller for larger time frames. In contrast, algorithm B takes a very long time to compute
its first solution but then very quickly reaches an average solution size that is greater than
that of algorithm D.

21

2 Preliminaries

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101102 U
𝜏

A B C D

Figure 2.9: Example of a performance profile comparing the fraction of instances an
algorithm performed best over varying 𝜏 for four algorithms.

Performance Profiles. LetA be the set of all algorithms that we want to compare. Fur-
thermore, let I be a set of instances and 𝑡𝐴(𝐼) the running time of an algorithm 𝐴 ∈ A on
an instance 𝐼 ∈ I . Performance profiles [DM02] show the fraction of instances for which
𝑡𝐴(𝐼) ≤ 𝜏 ⋅min𝐴′∈A 𝑡𝐴′(𝐼) over an increasing 𝜏 ≥ 1. In particular, for 𝜏 = 1, the 𝑦-axis shows
the fraction of instances for which an algorithm performs best. However, note that this frac-
tion is only relative to the best solution, and thus, can not be used to rank algorithms [GS16].
Our plots also contain a value 𝜏timeout (displayed asU) that is used if an algorithm does not
finish computing a solution for an instance within a given time limit. Finally, the 𝑥-axis of
our plots is divided into four segments to attribute for the skewness of the data, similar to
Schlag [Sch20a]. The first (and largest) segment represents small values of 𝜏 ∈ [1, 1.1]. The
second segment then represents values of 𝜏 ∈ [1.1, 2] Both the first and second segments use
a linear scale. The third segment represents values of 𝜏 ∈ [2, 𝜏timeout) and uses the approach
of Tukey’s Ladder of Powers [Tuk57; Tuk77] to fit the data to a normal distribution [McG12]
as used by Schlag [Sch20a]. The fourth and final segment represents 𝜏timeout.

As mentioned before, for 𝜏 = 1, performance profiles present performance in comparison
to the best algorithm and thus it is hard to directly compare specific algorithms. Additionally,
they have the same downside as cactus plots, in that it is hard to distinguish between “easy”
and “hard” instances. Nonetheless, they are valuable for comparing the performance of
algorithms as they are (1) relatively insensitive to changes in results on a few instances and
(2) largely unaffected by small changes in the results over many instances [DM02]. An
example of this type of plot is provided in Figure 2.9.

22

2.3 Methodology

As described above, the 𝑥-axis of this plot is divided into four segments that use different
scales. Since we are mainly interested in small differences in running times, smaller values
of 𝜏 ∈ [1, 1.1] (and to a lesser extent 𝜏 ∈ [1.1, 2]) are given the most space. Furthermore,
these segments use a linear scale as changes are often not too pronounced for very small
values within each segment. Segments containing larger values of 𝜏 > 2 are mainly used to
evaluate the overall fraction of instances for which a solution can be computed. For example,
the first segment containing small values of 𝜏 ≤ 1.1 represents the fraction of instances for
which an algorithm is at most 10% slower than the best one. Here we can see that algorithm
A achieves the same running time as the best algorithm for a little over 60% of the instances
(𝜏 = 1). We can also see that for close to 90% of the instances its running time is at most
10% worse than that of the best algorithm (𝜏 = 1.1). In contrast, algorithm B is only able
to do so for a little over 50% of the instances. Afterwards, we can see that the fraction of
instances that have a running time that is at most 50% worse than the best becomes roughly
equal for all algorithms (𝜏 = 1.5). Finally, changes become very small for values of 𝜏 > 1.5.

2.3.2.c) Hardware

Throughout this dissertation, we use the following three machines for our experiments.
Machine A has two Quad-core Intel Xeon X5355 processors running at 2667 MHz. It has

64 GB of main memory and each socket has 2×4 MB of L2-Cache.
Machine B has four Octa-core Intel Xeon E5-4640 processors running at 2400 MHz. It

has 512 GB main memory and each socket has 8×256 KB L2-Cache and 20 MB of L3-Cache.
Machine C has four sixteen-core Intel Xeon Haswell-EX E7-8867 processors running at

2500 MHz. It has 1 TB of main memory and each socket has 16×256 KB of L2-Cache and
45 MB of L3-Cache.

23

3Chapter 3

MaximumCardinality Independent
Sets

We present practically efficient heuristic and exact approaches for the maximum
cardinality independent set problem that make use of reductions. We begin by
examining an evolutionary algorithm that uses both exact and inexact reductions.
Furthermore, we examine a local search algorithm that applies reductions on-the-
fly when processing vertices. We then move on to exact algorithms and present
a portfolio algorithm that combines state-of-the-art approaches from multiple
related problems. Finally, we propose an exact branch-and-reduce algorithm that
uses advanced branching strategies.

References. This chapter is based on the conference papers [Lam+16] (ALENEX 2016)
published jointly with Peter Sanders, Christian Schulz, Darren Strash, and Renato F.Werneck,
[Dah+16a] (SEA 2016) published jointly with JakobDahlum, Peter Sanders, Christian Schulz,
Darren Strash, and Renato F. Werneck, [Hes+20] (CSC 2020) published jointly with Demian
Hespe, Christian Schulz, and Darren Strash, [HLS21a] (SEA 2021) published jointly with
Demian Hespe and Christian Schorr, the survey paper [Abu+20] published jointly with
Faisal Abu-Khzam, Matthias Mnich, Alexander Noe, Christian Schulz, and Darren Strash,
and the journal paper [Lam+17] (J. Heuristics 23. 4) published jointly with Peter Sanders,
Christian Schulz, Darren Strash, and Renato F. Werneck. Large parts of this chapter were
copied verbatim from these papers or the associated technical reports [Lam+15; Dah+16b;
Hes+19; HLS21b].

We now outline the specific contributions the author of this dissertation made to each of
these publications. For the conference paper [Lam+16] and the journal paper [Lam+17] the
author, together with Christian Schulz and Darren Strash, was one of the main authors of the
paper with editing done by Peter Sanders and Renato F. Werneck. The author made major
contributions to the iterative reduction scheme presented in Section 3.2.3. In particular,
contributions have been made to the vertex selection for the inexact reduction technique,
as well as the additional acceleration techniques. Implementation of these techniques was
done by the author. The reduction rules were implemented by Darren Strash. Evaluations
were done by Christian Schulz. The evolutionary components (Section 3.2.2) are based on a
previous publication [LSS15a] published jointly with Peter Sanders and Christian Schulz.

For the conference paper [Dah+16a] the author, together with Christian Schulz and
Darren Strash, is one of the main authors of the paper with editing done by Peter Sanders
and Renato F. Werneck. The author made major contributions to the on-the-fly application
of exact reduction rules described in Section 3.3.1. Implementation and evaluations were
done by the author. The idea of high-degree cutting (Section 3.3.1.b)) was implemented and

25

3 Maximum Cardinality Independent Sets

evaluated by Jakob Dahlum under the supervision of Christian Schulz and Darren Strash.
The corresponding section is included to be self-contained.

Together with Demian Hespe, the author is one of the main authors of the conference
paper [Hes+20] with editing done by Christian Schulz and Darren Strash. Additionally,
the author made major contributions to the selection of algorithms used in the solver
(Section 3.4.1), as well as the time-slicing approach (Section 3.4.2). In particular, the author
tested multiple algorithms and analyzed graph characteristics that lead to the final solver.
Implementation and evaluations were done in close cooperation with Demian Hespe.

Similarly, for the conference paper [HLS21a] the author, together with Demian Hespe,
is one of the main authors of the paper with editing done by Christian Schorr. The author
made major contributions to the separator based techniques (mainly articulation points
and edge cuts) presented in Section 3.5.2. The ideas for the reduction-based techniques
(Section 3.5.3) were developed in close cooperation with Demian Hespe. Implementation
and evaluations were done by Christian Schorr under the supervision of Demian Hespe and
the author.

Finally, for the survey paper [Abu+20] the author is the main author of the sections
concerned with independent sets, vertex covers, and cliques.

Motivation. Finding a maximum independent set is a well-studied NP-hard problem
[Kar72] with applications in many fields. These include map labeling [Klu+19], route
planning [Kie+10], social network analysis [Put+15], rendering [San+08], modeling protein-
protein interactions [GWA00], information retrieval [BY86] or computer vision [BY86].

For example, consider the fast spread of information to a large audience by users on
social networks, which can have both positive and negative effects. An increasingly alarming
example of the negative effects of this is the spread of misinformation. To enable social
network operators to quickly counteract the spread ofmisinformation, it is beneficial to know
a minimum set of vertices (e.g., users) that are able to cover the entire network [Put+15].
Such a minimum set of vertices corresponds to a minimum vertex cover or a maximum
independent set.

Maximum independent sets can also be used for optimizing the traversal of a mesh in
rendering which can, in turn, be used for different techniques such as motion blur or shadow
volumes [San+08]. This is done by using the dual graph of a triangle mesh, i.e., the graph that
contains a vertex for each triangle and vertices are connected if the corresponding triangles
share an edge. By computing a maximum independent set in this graph, one can select a
minimum number of triangles that cover all edges. The remaining triangles can then be
assigned to ones in the maximum independent set by using bipartite matchings and the full
set of triangles can be ordered to maximize cache reuse.

Many maximum independent set applications (including the two examples explained
above) run on graphs with hundreds of thousands up to millions of vertices and edges.
Processing these graphs using traditional heuristic or exact methods can be slow or even
infeasible in realistic time frames [AI16]. Thus, we examine the use of reduction rules to
improve the performance of these approaches.

Overview. In this chapter, we cover the usage of reduction rules for the maximum inde-
pendent set problem from multiple angles. Therefore, we begin by presenting important

26

3.1 Related Work

related work for the maximum independent set problem and its related problems with a
focus on reductions in Section 3.1. Special attention is put on introducing the reductions
that are frequently mentioned throughout this chapter, as well as presenting the algorithms
by Akiba and Iwata [AI16] and Andrade et al. [ARW12].

The main contributions of this chapter are then presented throughout Sections 3.2–3.5.
We first introduce two heuristic approaches that helped to popularize the usage of reductions
for the maximum independent set problem due to the results they achieved. This includes
an evolutionary algorithm (Section 3.2) that uses graph partitioning to combine multiple
independent sets into new ones. This algorithm recursively applies reductions to shrink the
graph. To make this possible, it exploits the population of the evolutionary algorithm to
remove vertices that are likely to be in a large (or even maximum) independent set.

The second heuristic approach, which we introduce in Section 3.3, tries to bridge the
gap between fast local search algorithms and more costly approaches like the previously
mentioned evolutionary algorithm. The result is an algorithm that is able to output very
high-quality independent sets in a very short amount of time. This is made possible by
applying reduction rules on-the-fly during the execution of a state-of-the-art local search and
the exclusion of high degree vertices that present performance bottlenecks. The techniques
and algorithms presented in this section remain part of the state-of-the-art for the maximum
independent set problem and laid important groundwork for current and future works.

We then turn to exact algorithms and cover the winner of the Parameterized Algorithms
and Computational Experiments (PACE) 2019 Challenge in Section 3.4. This algorithm is a
portfolio of multiple state-of-the-art approaches for the maximum independent set problem
and its related problems. The individual algorithms are used in increasingly larger time
slices to solve easy instances quickly while still being able to solve more instances in the long
run than its competitors. This is motivated by the fact that many instances can be solved by
either reductions alone or by additionally using an exact algorithm on the reduced instance.

Finally, we present a state-of-the-art branch-and-reduce algorithm that uses novel branch-
ing techniques in Section 3.5. These techniques either aim to decompose the graph or
guarantee the application of additional reduction rules. Decomposing the graph is beneficial
since previous works have shown that processing components individually can speed up
algorithms. Guaranteeing the application of additional reduction rules allows us to exclude
additional vertices and thus reduce search depth, speeding up the algorithm. Both of these
techniques are beneficial depending on the structure of the input instance. We then conclude
this chapter with an outlook for interesting open problems and future work in Section 3.6.

Overall, we thus present multiple approaches that investigate important aspects in this
field of research. The algorithms we present allow previously infeasible instances to be solved
efficiently, can handle larger instances than previously possible, and find solutions more
quickly than previous approaches.

3.1 RelatedWork

We now cover related work for MIS with a focus on practically efficient reductions. This also
includes works for the minimum vertex cover problem (MVC), since algorithms for these

27

3 Maximum Cardinality Independent Sets

two problems are easily interchangeable. Algorithms for the maximum clique problem (MC)
and clique enumeration are covered separately, since there is non-negligible overhead when
transforming an MC instance to an MIS instance, i.e., computing the complementary graph.
Nonetheless, MC algorithms provide useful insights that can often be adapted for MIS.

3.1.1 Exact Approaches
In recent years, the gap between theoretically efficient algorithms and their practical ap-
plicability has been significantly reduced. Branch-and-reduce, i.e., branching algorithms
that use a wide variety of reduction rules and only branch when no further reductions
can be applied, has been (1) shown to achieve theoretical running times that are among
the best for both MIS and MVC [FGK09; Xia+17] and (2) is able to solve large real-world
networks in practice [AI16]. In particular, reduction rules and branch-and-reduce have been
used to reduce the running time of the brute forceO(𝑛22𝑛) algorithm to theO(2𝑛/3) time
algorithm of Tarjan and Trojanowski [TT77], and to achieve the current best polynomial
space algorithm with running time ofO∗(1.1996𝑛) by Xiao and Nagamochi [XN17].

Butenko et al. [But+02] were the first to show that simple reductions could be used to
compute a maximum independent set on graphs with several hundred vertices that are
derived from error-correcting codes. Their algorithm works by first applying isolated clique
reductions and then solving the remaining graph with a branch-and-bound algorithm. Later,
Butenko and Trukhanov [BT07] introduced a reduction based on critical sets that can quickly
solve graphs produced by the Sanchis graph generator.

Abu-Khzam et al. [Abu+04] introduced and analyzed the crown reduction rule (and
the usage of reduction rules in this context in practice). Even though the crown rule is
not as powerful as the linear programming (LP)-based rule [NJ75] when considering the
worst-case size of the resulting reduced instance, they experimentally verified that it often
performs as well as the LP-based rule and is significantly faster in many cases. Furthermore,
they show that the LP-based rule is most useful for fairly sparse graphs and should be avoided
for dense graphs as it yields little to no reduction in size.

Later, Akiba and Iwata [AI16] were the first to show the practicality of branch-and-
reduce for MVC (and MIS) compared to other state-of-the-art approaches like branch-
and-bound and branch-and-cut. Their algorithm uses a wide spectrum of reduction rules
that form the foundation of many subsequent works [HSS19; SHG20; HLS21a; Hes+20].
This includes both conceptually simple reduction rules like degree-1 and degree-2 vertex
folding [FGK09], as well as more complicated but practically significant rules like the
unconfined reduction [XN13] and an LP-based rule [IOY14; NJ75]. Many of these reduction
rules work by removing vertices that are part of some MIS. The authors show that their
algorithm has superior performance to existing approaches for a large set of real-world
sparse networks. Since the algorithm by Akiba and Iwata and its corresponding reduction
rules are important for multiple works presented in this chapter, we discuss it in more detail
in Section 3.1.5. A similar approach that uses a quantum annealer to solve instances once
they are small enough was recently presented by Pelofske et al. [PHD19].

Even though Akiba and Iwata [AI16] use a sophisticated set of reduction rules, Strash
[Str16] showed that many of the more complicated rules are not necessary to compute

28

3.1 Related Work

a maximum independent set in many large complex networks. Additionally, the initial
reductions applied to compute a reduced instance often have a bigger impact on performance,
compared to further techniques used for branch-and-reduce algorithms [HSS19; PvdG21].
Recently, Stallmann et al. [SHG20] supported this idea by showing that networks with a small
normalized average degree can be efficiently handled by simple reductions. Additionally,
the authors make use of the so-called degree spread 𝑡/𝑏, where 𝑡 is the degree at the 95th
percentile and 𝑏 at the 5th percentile. Based on these characteristics, the authors devise
thresholds that indicate (1) if reductions should be used at all and (2) if more complex rules
provide a significant benefit. However, there is still a lot of work that needs to be done to
determine which graph characteristics contribute to the success of specific reduction rules,
both in theory and practice.

In order to quickly achieve smaller irreducible graphs than is possible with simple reduc-
tion rules, Hespe et al. [HSS19] provided the first shared-memory reduction algorithm based
on the rules of Akiba and Iwata. For this purpose, they make use of both graph partitioning
and parallel bipartite maximum matchings. The graph partitioning library KaHIP [SS13a] is
used to compute a partition of that graph which allows parallel execution of reduction rules
that only need to check highly localized subgraphs, where bipartite maximum matchings
are used to enable the parallel execution of the LP-based reduction rule. The authors also
present two speedup techniques for reduction algorithms: (1) dependency checking that
prunes applicability checks for certain reductions and (2) reduction tracking that stops their
algorithm once the application of reduction rules only decreases the graph size by a negligi-
ble amount. Extending this work to a distributed memory setting and the development of
efficient distributed reductions still remain open problems.

Plachetta and van der Grinten [PvdG21] note that branch-and-bound algorithms often
perform better on reduced instances than branch-and-reduce algorithms. They mainly
attribute this to the fact that reduction rules often do not help in discarding branches. They
then propose an algorithm that uses a SAT-based approach that is able to discard branches
before reductions are applied. However, their experimental evaluation of the PACE instances
only includes the individual algorithms used by the winning portfolio approach [Hes+20].

3.1.2 Heuristic Approaches
There is a wide range of heuristics and local search algorithms for MVC [Cai+13; Cai15;
Fan+15; Ma+16] and MIS [ARW12; Pul09; WHG12; WH13; JH15; Dah+16a]. These
algorithms typically maintain a single solution and try to improve it by performing vertex
deletions, insertions, and swaps, as well as plateau search. Plateau search only accepts
moves that do not change the cost function, which is commonly achieved through vertex
swaps—replacing a vertex with one of its neighbors. Note that a vertex swap cannot directly
improve the cost function. A very successful approach for the maximum clique problem was
given by Grosso et al. [GLP08]. In addition to using plateau search, it applies diversification
operations and restart rules.

For the MIS problem, Andrade et al. [ARW12] extended the notion of swaps to (𝑗, 𝑘)-
swaps, which remove 𝑗 vertices from the current solution and insert 𝑘 vertices. The authors
present a fast linear-time implementation that, given a maximal solution, can find a (1, 2)-

29

3 Maximum Cardinality Independent Sets

swap or prove that no (1, 2)-swap exists. Due to its importance for several works presented in
this chapter, we discuss this algorithm in greater detail in Section 3.1.6. Not only is the ARW
algorithm highly effective on small-to-medium-sized instances, but an external memory
implementation exists, which allows it to be run on instances that do not fit into memory on
a standard machine [Liu+15]. Most local search methods consider graphs with at most a few
million vertices, which easily fit into memory [Cai15; Fan+15; Ma+16]. Fan et al. [Fan+15]
and Dahlum et al. [Dah+16a] (Section 3.3) further show that combining reductions with
local search significantly decreases the time to reach a solution of reasonably high quality.
Note that ARW uses a form of soft tabu search since relatively old non-solution vertices
are forced into the solution when no improvement is made. Further efficient local search
algorithms use true tabu search [WHG12; WH13; JH15].

Reductions are also heavily used inmany state-of-the-art heuristic approaches. Inexact re-
ductions, i.e., excluding a subset of vertices that are likely to be part of a high-quality solution
(as introduced by the work covered in Section 3.2), are explored by Gao et al. [Gao+17]. To
select removable vertices they perform multiple runs of a state-of-the-art local search (either
NuMVC [Cai+13] or FastVC [Cai15]). Vertices that are present in all resulting solutions
are then added to the final solution and removed from the graph. Afterwards, a final run
of the local search on the reduced graph is executed, and its solution is combined with the
previously removed vertices.

Fan et al. [Fan+15] propose a local search algorithm for MVC that uses a set of three
simple reduction rules including degree-1 and degree-2 removal for computing an initial
solution. In particular, they alternate between exhaustively applying reduction rules and
greedily selecting a vertex that is added to the solution. Thus, if the greedy selection is never
used, they can guarantee that the computed solution is optimal. After computing an initial
solution they then use a local search that removes vertices with a minimum loss, i.e., the
number of covered edges that become uncovered, and then repeatedly adds the higher gain
endpoint of a random uncovered edge until a new vertex cover is computed. To improve the
performance of their algorithm, they also propose a new partitioning data structure that
lowers the time complexity of multiple heuristics used. Finally, they show their algorithm
outperforms the algorithm FastVC by Cai [Cai15] on a large set of real-world networks.

Chang et al. [CLZ17] also make use of the idea of combining simple reduction rules
that can be applied in (near-)linear time with an inexact reduction rule that removes high
degree vertices. For this purpose, they introduce the reducing-peeling framework that
switches between the two types of reductions. Furthermore, they present a set of degree-2
path reductions that are special cases of the folding reduction. Combining these new rules
with the degree-0, degree-1, dominance, and an LP-based reduction rule, they propose an
efficient preprocessing algorithm that is then combined with the ARW local search. In light
of this work, finding similar (near-)linear time special cases for more complex reduction
rules remains an interesting open problem.

Similar reduction rules are also used in the preprocessing phase of the heuristic ap-
proaches by Cai et al. [CLL17]. In particular, they use degree-0, degree-1, and degree-2
removal in addition to the dominance rule. They split the application of these reductions
into two phases: (1) degree-0, degree-1, and degree-2, and (2) dominance. This is moti-
vated by the fact that even though dominance subsumes the reductions in the first phase

30

3.1 Related Work

its application is more costly. Their preprocessing algorithm is then integrated into two
improved local searches based on NuMVC [Cai+13] and FastVC [Cai15]. They show that
the resulting algorithms are often able to produce higher quality solutions compared to
variants that do not use preprocessing. The same technique has also been successfully
used by Luo et al. [Luo+19] to boost the performance of their algorithm. Finally, Gu and
Guo [GG21] examine the usage of a more general strong folding reduction to further reduce
graph sizes.

Alsahafy and Chang [AC19] proposed an algorithm that combines the reducing-peeling
framework [CLZ17] with the exact clique algorithm MoMC by Li et al. [LJM17]. Their
algorithm splits reduction rules into two sets: ones that can be updated and applied in-
crementally (similar to Hespe et al. [HSS19]), and ones that can not. Additionally, they
continuously compute and maintain the connected components of the graph, which are then
reduced individually. If a reduced component is small enough, it is then transformed into its
complement and solved by MoMC. To ensure that components continue to get smaller, they
use the same inexact reduction rule as Chang et al. [CLZ17] and then continue recursively
on the resulting components. Finally, the authors also present a new exact reduction rule
called the pyramid reduction.

Chen and Hao [CH19] present a local search algorithm that alternates between two
phases called thresholding search and conditional improving. During the thresholding
search phase, their algorithm accepts both improving and non-improving solutions, whereas
during the conditional improving phase only improving solutions are accepted. To be more
specific, their thresholding search phase uses a vertex-based strategy that scans vertices
in random order and applies a set of basic operations consisting of adding, removing, or
swapping vertices. Additionally, they use a tabumechanism to avoid cycling. The conditional
improving phase uses hill-climbing to reach a local optimum and its output is conditionally
accepted as the input of the next search phase based on a random choice. Their experimental
evaluation on a large set of real-world graphs with up to millions of vertices indicates
that their algorithm is able to compete well against the algorithms by Cai [Cai15] and
Fan et al. [Fan+15].

3.1.3 Maximum Clique and Clique Enumeration
The most efficient exact maximum clique algorithms use branch-and-bound search with
advanced vertex reordering strategies and pruning (typically using approximation algo-
rithms for graph coloring [SRJ11; Tom+13] or MaxSAT [LFX13; LQ10]). The long-standing
canonical algorithms for finding a maximum clique are the MCS algorithm by Tomita et al.
[Tom+13] and the bit-parallel algorithms of San Segundo et al. [SRJ11; ST14]. However,
recently Li et al. [LJM17] introduced the MoMC algorithm, which uses incremental MaxSAT
logic to achieve speed-ups of up to 1000 over MCS. Experiments by Batsyn et al. [Bat+14]
show that MCS can be sped up significantly by providing an initial solution found through
local search. However, even with these state-of-the-art algorithms, some graphs with thou-
sands of vertices remain intractable. For example, a difficult graph with 4000 vertices
required 39 wall-clock hours in a highly-parallel MapReduce cluster and was estimated to
require over a year of sequential computation [XGA13]. Recent exact approaches for sparse

31

3 Maximum Cardinality Independent Sets

graphs investigate applying simple reduction rules, using an initial clique given by some
heuristic method [VBB15; SLP16; AC19]. However, these techniques rarely work on dense
graphs, such as the complement graphs that we consider here. A more thorough discussion
of many results in clique finding can be found in the survey of Wu and Hao [WH15a].

Eblen et al. [Ebl+12] present an exact maximum clique algorithm (MCF) that adapts
some of the reduction rules that have already been shown to work well for MVC and MIS. In
particular, their algorithm begins by greedily computing a large cliqueQ which is then used
as a lower bound in order to remove vertices of degree less than ∣Q∣ − 1 [APR98]. Next, they
use an adaptation of the degree-0 reduction rule previously used in MVC algorithms, as well
as a rule based on heuristic colorings [TK09] to remove additional vertices. The authors
also investigated the use of other reduction rules including an adaptation of the degree-1
reduction rule used in MVC algorithms. Finally, they compared applying reduction rules
as a preprocessing method for a branch-and-bound algorithm against running them in
a branch-and-reduce algorithm. Their experiments indicate that the branch-and-reduce
approach performs better on graphs stemming from real-world genome data.

Eblen et al. [Ebl+12] then used the previousMCF algorithm to develop several approaches
for the maximum clique enumeration (MCE) problem based on the algorithm by Bron and
Kerbosch [BK73]. In particular, they develop two reduction rules based on MCF: First, they
propose a reduction rule that uses MCF to compute a maximum clique cover and removes
vertices not adjacent to this cover. Second, they propose a data-driven preprocessing rule that
computes so-called essential vertices, i.e., vertices that are present in every maximum clique.
Vertices that are not adjacent to these vertices are subsequently removed from the graphs.
Their experiments indicate that this rule works particularly well on large transcriptomic
graphs, that often have a small set of essential vertices. However, performance degrades for
networks that do not have a small set of essential vertices, e.g., for uniform random graphs.

Verma et al. [VBB15] propose another type of reduction rule based on 𝑘-communities.
For this purpose, a 𝑘-community subgraph is defined as a subgraph 𝐺′ = (𝑉′, 𝐸′) where
each edge {𝑢, 𝑣} ∈ 𝐸′ connects vertices that have at least 𝑘 common neighbors in 𝐺′. A
subset of vertices 𝑉′ ⊆ 𝑉 is called a 𝑘-community if there is a 𝑘-community subgraph with
vertex set 𝑉′ in 𝐺. Note, that a clique of size 𝑘 is a (𝑘 − 𝑡)-community for any 𝑡 ∈ {2,… , 𝑘}.
They then derive a reduction rule which computes a lower bound on the clique size based
on maximum (𝑘 − 2)-communities and removes vertices with a smaller degree. They then
combine this reduction rule with the 𝑘-core based approach of Abello et al. [APR98] and
show that the resulting algorithm works well for handling large low-density graphs.

Chang et al. [AC19; Cha20] note that even though a lot of real-world networks are usually
sparse, MC has been more extensively studied for dense instances. Thus, the authors propose
a branch-and-reduce algorithm that leverages the existing work on MC for dense instances
by transforming a sparse instance of MC to instances of 𝑘-clique finding (KCF) over dense
subgraphs. For this purpose, they iteratively compute small and dense subgraphs (so-called
ego networks) that are then handled by an exact KCF algorithm. In order to reduce the
size of the subgraphs that are handled by this algorithm, their approach uses a combination
of well-known upper bounds and lightweight reduction rules. In particular, they use five
reduction rules for KCF, most of which are targeted toward removing vertices of high degree.
The authors also present a heuristic algorithm for MC, as well as a two-stage approach

32

3.1 Related Work

for MCE that makes use of their exact algorithm to compute the size of the largest clique.
Furthermore, they show that the reduction rules used for MC can also be adapted for MCE.

Finally, there is a wide range of heuristics and local search algorithms for the maximum
clique problem [BP01; HMU04; GLC04; KHN05; Pul06; GLP08]. A very successful approach
has been presented by Grosso et al. [GLP08]. In addition to plateau search, it applies various
diversification operations and restart rules.

3.1.4 Reduction Rules
We now present the reduction rules used in this chapter, roughly in order of increasing
complexity. In particular, we cover the isolated clique reduction by Butenko et al. [But+02],
the vertex fold reduction by Chen et al. [CKJ01], the dominance reduction by Fomin et al.
[FGK09], the twin, alternative, funnel, desk, and unconfined reductions by Xiao and Nag-
amochi [XN13], the linear programming reduction byNemhauser and Trotter [NJ75], as well
as the packing reductions by Akiba and Iwata [AI16]. We limit ourselves to the definitions
of these rules and refer the reader to the respective papers for their proofs.

Isolated Clique Reduction. We first cover the isolated clique reduction. Butenko et al.
[But+02] have shown that this reduction is highly effective on small-sized instances with up
to 500 vertices derived from error correcting codes. However, it also works well on large
sparse instances [Str16]. The basic idea of this reduction is to find a cliqueQ that contains a
vertex 𝑣, such that 𝑑(𝑣) = ∣Q∣−1. Such a vertex is called isolated or simplicial. These vertices
(and their neighbors) can be removed from the graph since there is always a maximum
independent set that contains them. An example application of this reduction rule is given
in Figure 3.1.

Theorem 3.1 (Isolated Clique Reduction)
Let 𝐺 = (𝑉,𝐸) be an undirected graph and Q ⊆ 𝑉 a clique containing a vertex 𝑣 ∈ Q,
such that 𝑑(𝑣) = ∣Q∣ − 1. Let 𝐺′ be the graph obtained by removing 𝑁[𝑣] from 𝐺. Then
𝛼(𝐺) = 𝛼(𝐺′) + 1. For a maximum independent set I′ of 𝐺′, I = I′ ∪ {𝑣} is a maximum
independent set of 𝐺.

Important special cases of this reduction are detecting cliques of size one, two, and three.
These reductions are also often referred to as degree-0, degree-1, and degree-2 removal,
respectively. Finding such cliques can be done efficiently in practice even for sparse graph
representations. In particular, for cliques of size one and two it suffices to look for vertices
of degree zero or one, respectively. For cliques of size three, one can store the neighbors of a
vertex in increasing order and perform a single binary search to determine if the neighbors
of a vertex 𝑣 are adjacent. However, if the input does not contain sorted neighborhoods,
sorting itself can be costly. Finally, if the neighbors of a vertex are not adjacent, one can
instead perform the now following reduction.

Vertex Fold Reduction. Next, we cover the vertex fold reduction by Chen et al. [CKJ01].
This reduction looks for vertices 𝑣 with degree two, whose neighbors 𝑢,𝑤 are not adjacent.
In this case, there is always a maximum independent set that either contains 𝑣 or both 𝑢

33

3 Maximum Cardinality Independent Sets

G \N [v] G \N [v]

v v

Figure 3.1: Example application of the isolated clique reduction to vertex 𝑣 (orange).
The neighborhood𝑁[𝑣] can be removed from the graph. The vertex 𝑣 is added to the
independent set (and𝑁(𝑣) is excluded).

G \N [v] G \N [v]

v

u w
v′

Figure 3.2: Example application of the vertex fold reduction to vertex 𝑣 (orange).
Vertices 𝑣, 𝑢 and 𝑤 are contracted to the new vertex 𝑣′.

and 𝑤. However, determining which of the two cases is correct can not be determined right
away. Chen et al. [CKJ01] solve this by first contracting the three vertices 𝑣, 𝑢, and 𝑤 and
computing a maximum independent set for the resulting graph. A contraction is performed
by removing the three vertices 𝑣, 𝑢, and 𝑤 and their incident edges from the graph and
inserting a new vertex 𝑣′ whose neighborhood is the union of the neighborhoods of 𝑢 and
𝑤. An example application of this reduction rule is given in Figure 3.2.

Theorem 3.2 (Vertex Fold Reduction)
Let 𝐺 = (𝑉,𝐸) be an undirected graph and 𝑣 ∈ 𝑉 a vertex with 𝑁(𝑣) = {𝑢,𝑤}, such that
{𝑢,𝑤} /∈ 𝐸. Let 𝐺′ = (𝑉′, 𝐸′) be the graph resulting from contracting 𝑢, 𝑣, and 𝑤 to a single
vertex 𝑣′, i.e., 𝑉′ = (𝑉 ⧵ {𝑢, 𝑣,𝑤}) ∪ {𝑣′} and 𝐸′ = {{𝑥, 𝑦} ∈ 𝐸 ∣ 𝑥, 𝑦 ∈ 𝑉′} ∪ {{𝑣′, 𝑥} ∣ 𝑥 ∈
(𝑁(𝑢) ∪𝑁(𝑤)) ⧵ {𝑣}}. Then 𝛼(𝐺) = 𝛼(𝐺′) + 1 and for a maximum independent set I′ of
𝐺′, if 𝑣′ ∈ I′, then I = (I′ ⧵ {𝑣′}) ∪ {𝑢,𝑤} is a maximum independent set of 𝐺. Otherwise,
if 𝑣′ /∈ I , then I = I′ ∪ {𝑣} is a maximum independent set of 𝐺.

Dominance Reduction. The dominance reduction by Fomin et al. [FGK09] requires two
vertices 𝑣,𝑤, such that𝑁[𝑤] ⊆ 𝑁[𝑣]. In this case, we say that 𝑣 dominates 𝑤. Dominating
vertices can be removed from the graph since there is always a maximum independent

34

3.1 Related Work

G \N [v] G \N [v]

wwv v

Figure 3.3: Example application of the dominance reduction to vertex 𝑣 and𝑤 (orange).
Vertex 𝑣 can be removed from the graph and excluded from the independent set since
it dominates vertex 𝑤.

set that does not include them. An example application of this reduction rule is given in
Figure 3.3.

Theorem 3.3 (Dominance Reduction)
Let 𝐺 = (𝑉,𝐸) be an undirected graph and 𝑣,𝑤 ∈ 𝑉 vertices, such that𝑁[𝑤] ⊆ 𝑁[𝑣]. Let
𝐺′ be the graph resulting from removing 𝑣 and its incident edges. Then 𝛼(𝐺) = 𝛼(𝐺′) and a
maximum independent set I′ of 𝐺′ is also a maximum independent set of 𝐺.

TwinReduction. The twin reduction byXiao andNagamochi [XN13] is an extension of the
vertex fold reduction [CKJ01] and a special case of the crown reduction byChor et al. [CFJ04].
This reduction looks for two nonadjacent vertices 𝑢, 𝑣 ∈ 𝑉 of degree three, such that𝑁(𝑢) =
𝑁(𝑣). Depending on the induced subgraph 𝐺[𝑁(𝑢)], the twin reduction is divided into
two cases: (1) If 𝐺[𝑁(𝑢)] contains at least one edge, then there is always a maximum
independent set that contains both 𝑢 and 𝑣. Thus,𝑁[𝑢] and𝑁[𝑣] can be removed from 𝐺.
(2) If 𝐺[𝑁(𝑢)] has no edges, replace𝑁[𝑢] ∪𝑁[𝑣] with a new vertex 𝑣′ that is connected to
𝑁(𝑁(𝑢)) ⧵ {𝑢, 𝑣}. Similar to the vertex fold reduction, depending on the inclusion of 𝑣′ in
a maximum independent set of the resulting graph 𝐺′, either𝑁(𝑢) or {𝑢, 𝑣} are included
in the maximum independent set of 𝐺. An example application of cases (1) and (2) is given
in Figure 3.4 and Figure 3.5.

Theorem 3.4 (Twin Reduction)
Let𝐺 = (𝑉,𝐸) be an undirected graph and 𝑢, 𝑣 ∈ 𝑉 nonadjacent vertices with 𝑑(𝑢) = 𝑑(𝑣) = 3
and𝑁(𝑢) =𝑁(𝑣). If 𝐺[𝑁(𝑢)] contains at least one edge, then let 𝐺′ = (𝑉′, 𝐸′) be the graph
resulting from removing 𝑁[𝑢] and 𝑁[𝑣], i.e., 𝑉′ = 𝑉 ⧵ (𝑁[𝑢] ∪ 𝑁[𝑣]) and 𝐸′ = 𝐸 ∩ (𝑉′2).
Then 𝛼(𝐺) = 𝛼(𝐺) + 2 and for a maximum independent set I′ of 𝐺′, I = I′ ∪ {𝑢, 𝑣} is a
maximum independent set of 𝐺.

Otherwise, if 𝐺[𝑁(𝑢)] has no edges, then let 𝐺′ = (𝑉′, 𝐸′) be the graph resulting from
contracting 𝑁[𝑢] ∪ 𝑁[𝑣] to a single vertex 𝑣′, i.e., 𝑉′ = (𝑉 ⧵ (𝑁[𝑢] ∪ 𝑁[𝑣])) ∪ {𝑣′} and
𝐸′ = {{𝑥, 𝑦} ∈ 𝐸 ∣ 𝑥, 𝑦 ∈ 𝑉′}∪{{𝑣′, 𝑥} ∣ 𝑥 ∈ 𝑁(𝑁(𝑢))⧵{𝑢, 𝑣}}Then 𝛼(𝐺) = 𝛼(𝐺′)+2 for

35

3 Maximum Cardinality Independent Sets

G \ (N [u] ∪N [v])

u v u v

G \ (N [u] ∪N [v])

Figure 3.4: Example application of the first case of the twin reduction to vertex 𝑢 and 𝑣
(orange). 𝑁[𝑢] ∩𝑁[𝑣] can be removed from the graph and both 𝑢 and 𝑣 can be added
to the independent set.

u v

v′

G \ (N [u] ∪N [v]) G \ (N [u] ∪N [v])

Figure 3.5: Example application of the second case of the twin reduction to vertex 𝑢
and 𝑣 (orange). 𝑁[𝑢] ∩𝑁[𝑣] is contracted to a single vertex 𝑣′.

a maximum independent set I′ of 𝐺′, if 𝑣′ ∈ I′, then I = (I′ ⧵ {𝑣′}) ∪𝑁(𝑢) is a maximum
independent set of 𝐺. If 𝑣′ /∈ I′, then I = I′ ∪ {𝑢, 𝑣} is a maximum independent set of 𝐺.

Alternative Reduction. Two subsets of vertices 𝐴,𝐵 ⊆ 𝑉 are called alternatives, if ∣𝐴∣ =
∣𝐵∣ ≥ 1 and there exists a maximum independent set I such that I ∩ (𝐴∪𝐵) is either 𝐴 or 𝐵.
Xiao and Nagamochi [XN13] proposed the alternative reduction that removes alternatives
in combination with parts of their neighborhoods from the graph. In particular, a reduced
graph 𝐺′ is obtained by removing 𝐴∪ 𝐵 and 𝐶 =𝑁(𝐴) ∩𝑁(𝐵) from 𝐺 and inserting edges
from each 𝑎 ∈ 𝑁(𝐴) ⧵ 𝐶 to each 𝑏 ∈ 𝑁(𝐵) ⧵ 𝐶. Then, if (𝑁(𝐴) ⧵ 𝑁[𝐵]) ∩ I′ is empty, we
add 𝐴 to I′ to obtain a maximum independent set of 𝐺. Otherwise, we add 𝐵 to I′. It holds
that 𝛼(𝐺) = 𝛼(𝐺′) + ∣𝐴∣.

Theorem 3.5 (Alternative Reduction)
Let 𝐺 = (𝑉,𝐸) be an undirected graph and 𝐴,𝐵 ⊆ 𝑉 alternatives. Let 𝐺′ = (𝑉′, 𝐸′) be the
graph resulting from removing𝐴∪𝐵 and𝐶 =𝑁(𝐴)∩𝑁(𝐵) from𝐺, i.e.,𝑉′ = 𝑉⧵(𝐴∪𝐵∪𝐶)
and 𝐸′ = (𝐸∩ (𝑉′2))∪ {{𝑢, 𝑣} ∣ 𝑢 ∈ 𝑁(𝐴) ⧵ 𝐶, 𝑣 ∈ 𝑁(𝐵) ⧵ 𝐶}. Then 𝛼(𝐺) = 𝛼(𝐺′)+ ∣𝐴∣ and
for a maximum independent set I′ of 𝐺′, if (𝑁(𝐴) ⧵ 𝑁[𝐵]) ∩ I′ = ∅, then I = I′ ∪ 𝐴 is a

36

3.1 Related Work

maximum independent set of 𝐺. Otherwise, if (𝑁(𝐴) ⧵ 𝑁[𝐵]) ∩ I′ ≠ ∅, then I = I′ ∪ 𝐵 is a
maximum independent set of 𝐺.

An important property of this reduction is that it might add new edges between existing
vertices. This increases the density of the graph which might not be beneficial.

Funnel and Desk Reduction. We now cover two special cases of the alternative reduction
called the funnel and desk reductions [XN13]. First, vertices 𝑢, 𝑣 ∈ 𝑉 are called funnels if
𝐺[𝑁(𝑣) ⧵ {𝑢}] is a complete graph, i.e., if𝑁(𝑣) ⧵ {𝑢} is a clique. If this is the case, then {𝑢}
and {𝑣} are alternatives.

Second, for vertices 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑉 we define the chordless 4-cycle 𝑎1𝑏1𝑎2𝑏2 as a path
⟨𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎1⟩ such that the vertices are not connected by edges other than the ones
contained in the path. Now, let 𝑎1𝑏1𝑎2𝑏2 be a chordless 4-cycle where each vertex has at least
degree three. Such a cycle is called a desk if 𝐴 = {𝑎1, 𝑎2} and 𝐵 = {𝑏1, 𝑏2} have no common
neighbor, i.e.,𝑁(𝐴)∩𝑁(𝐵) = ∅, and they have at most two neighbors outside the cycle, i.e.,
∣𝑁(𝐴) ⧵ 𝐵∣ ≤ 2 and ∣𝑁(𝐵) ⧵ 𝐴∣ ≤ 2. If 𝑎1𝑏1𝑎2𝑏2 is a desk, then 𝐴 and 𝐵 (as defined above)
are alternatives.

Linear Programming Reduction. Nemhauser and Trotter [NJ75] proposed a linear pro-
gramming (LP) based reduction rule using the following LP relaxation:

minimize ∑
𝑣∈𝑉
𝑥𝑣 such that (3.1)

𝑥𝑢 + 𝑥𝑣 ≥ 1 for {𝑢, 𝑣} ∈ 𝐸, (3.2)
𝑥𝑣 ≥ 0 for 𝑣 ∈ 𝑉. (3.3)

Nemhauser and Trotter [NJ75] showed that this LP relaxation (1) has an optimal half-
integral solution, i.e., each variable is either 0, 1/2, or 1, and (2) if a variable takes an integer
value (0 or 1) then there always exists an optimal integer solution where the variable has
the same value. Finally, they showed that a half-integral solution can be computed using a
maximum bipartite matching for the graph 𝐺′ = (𝐿𝑉 ∪ 𝑅𝑉, 𝐸′) with

𝐿𝑉 = {𝑙𝑣 ∣ 𝑣 ∈ 𝑉}, (3.4)
𝑅𝑉 = {𝑟𝑣 ∣ 𝑣 ∈ 𝑉}, (3.5)
𝐸′ = {{𝑙𝑢, 𝑟𝑣} ∣ {𝑢, 𝑣} ∈ 𝐸}. (3.6)

To compute a minimum vertex cover C′ of 𝐺′, Akiba and Iwata [AI16] then use the
Hopcroft-Karp algorithm [HK73]. The resulting half-integral solution to the LP relaxation
then is

𝑥∗𝑣 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if 𝑙𝑣, 𝑟𝑣 /∈ C′
1 if 𝑙𝑣, 𝑟𝑣 ∈ C′
1
2 otherwise.

(3.7)

Afterwards, vertices with a value of 1 can be added to the maximum independent set of
𝐺 and are therefore removed along with their neighbors. Iwata et al. [IOY14] present an
improved version of this approach that computes a solution to the LP relaxation whose
half-integral part is minimal. By using this approach, the authors note that this reduction
rule subsumes the crown reduction rule by Abu-Khzam et al. [Abu+04].

37

3 Maximum Cardinality Independent Sets

UnconfinedReduction. Theunconfined reduction byXiao andNagamochi [XN13; XN17]
is a generalization of the dominance reduction [FGK09] and satellite reduction by Kneis
et al. [KLR09]. A vertex is called unconfined if Algorithm 3.1 returns true.

Algorithm 3.1 : Algorithm for finding unconfined vertices [XN13; XN17].
Data : 𝐺 = (𝑉,𝐸), 𝑣 ∈ 𝑉
Result : True if 𝑣 is unconfined, False otherwise

1 𝑆← {𝑣}
2 while True do
3 𝑢← 𝑢 ∈ 𝑁(𝑆) such that ∣𝑁(𝑢) ∩ 𝑆∣ = 1 and ∣𝑁(𝑢) ⧵ 𝑁[𝑆]∣ is minimized
4 if 𝑢 = None then
5 return False
6 if𝑁(𝑢) ⧵ 𝑁[𝑆] = ∅ then
7 return True
8 if ∣𝑁(𝑢) ⧵ 𝑁[𝑆]∣ = 1 then
9 𝑆← 𝑆 ∪ (𝑁(𝑢) ⧵ 𝑁[𝑆])

10 else
11 return False

Unconfined vertices are removable, i.e., they can be removed from 𝐺 without affecting
the independence number, since there always is a maximum independent set that does not
include them. Thus, if 𝐺′ is the graph resulting from removing an unconfined vertex 𝑣 from
𝐺, then 𝛼(𝐺) = 𝛼(𝐺′). Finally, Hespe et al. [HSS19] note that the implementation of Akiba
and Iwata also targets the so-called diamond reduction which is not explicitly mentioned in
the original work [AI16].

Packing Reduction. The packing reduction by Akiba and Iwata [AI16] is based on the
packing branching used in the branch-and-reduce algorithm by the same authors. This
branching strategy creates so-called packing constraints that are updated incrementally. In
particular, assume that 𝑣 ∈ 𝑉 is the vertex that is branched on. In the branch that includes 𝑣
in the solution (including branch), one can determine whether a maximum independent set
containing 𝑣 exists. Otherwise, in the branch that excludes 𝑣 from the solution (excluding
branch), one can be sure that there is no maximum independent set that contains 𝑣. Based
on this observation, constraints for the remaining vertices can be derived. For example, if
no maximum independent set includes 𝑣 then at least two of 𝑣’s neighbors have to be in a
maximum independent set. Otherwise, one could exchange the neighbor of 𝑣 that is part of
the maximum independent set with 𝑣 and obtain a maximum independent set of the same
size. Thus, if 𝑥𝑢 is a binary variable that indicates if 𝑢 ∈ 𝑉 is part of the current solution
computed by the branch-and-bound algorithm, it holds that ∑𝑢∈𝑁(𝑣) 𝑥𝑢 ≥ 2.

If 𝐶 ⊆ 𝑉 is a set of candidate vertices, constraints of the form∑𝑣∈𝐶 𝑥𝑣 ≥ 𝑘 can be utilized
in the following two reductions. (1) If 𝑘 is equal to ∣𝐶∣, all vertices from 𝐶 have to be

38

3.1 Related Work

included in the current solution. Thus, if there exists an edge between the vertices in 𝐶, no
valid solution exists and the corresponding branch can be pruned. (2) If there is a vertex
𝑣 ∈ 𝑉 such that ∣𝐶∣ − ∣𝑁(𝑣) ∩ 𝐶∣ < 𝑘, then 𝑣 has to be excluded from the current solution.
Furthermore, if 𝑘 > ∣𝐶∣, the constraint can not be fulfilled and the corresponding branch
can be pruned.

3.1.5 Branch-and-Reduce

Wenowpresent the branch-and-reduce algorithmbyAkiba and Iwata [AI16] in greater detail.
This algorithm (and its set of reduction rules) serves as a main building block for multiple
approaches presented in this chapter. High-level pseudocode is given in Algorithm 3.2.

Algorithm 3.2 : Branch-and-reduce algorithm by Akiba and Iwata [AI16].
Data : 𝐺 = (𝑉,𝐸), packing constraints 𝑃, current solution size 𝑐, lower bound 𝑘
Result : Size of maximum independent set for 𝐺

1 Solve (𝐺,𝑃, 𝑐, 𝑘)
2 (𝐺,𝑃, 𝑐)← Reduce(𝐺,𝑃, 𝑐)
3 if Unsatisfied(𝑃) then
4 return 𝑘
5 if 𝑐 +UpperBound(𝐺) < 𝑘 then
6 return 𝑘
7 if 𝐺 is empty then
8 return 𝑐
9 if 𝐺 is not connected then
10 forall (𝐺𝑖, 𝑃𝑖) ∈ Components(𝐺,𝑃) do
11 𝑐← 𝑐 + Solve(𝐺𝑖, 𝑃𝑖, 0, 𝑘 − 𝑐)
12 returnmax(𝑘, 𝑐)
13 (𝐺1, 𝑃1, 𝑐1), (𝐺2, 𝑃2, 𝑐2)← Branch(𝐺,𝑃, 𝑐)
14 𝑘← Solve(𝐺1, 𝑃1, 𝑐1, 𝑘) // Excluding branch
15 𝑘← Solve(𝐺2, 𝑃2, 𝑐2, 𝑘) // Including branch
16 return 𝑘

As outlined in Section 2.2.3, themain idea of branch-and-reduce algorithms is to alternate
between reductions and branching. In particular, their algorithm begins by exhaustively
applying a set of reduction rules in a predefined order. For each reduction rule 𝑟1,… , 𝑟𝑗
the algorithm iterates over all vertices and tries to apply each rule 𝑟𝑖. If this leads to the
successful application of a reduction rule 𝑟𝑖, the algorithm loops back to the first reduction
rule 𝑟1. If this process terminates, and no further reduction rule can be applied to a vertex, a
reduced instance has been computed. The full order of reduction rules is as follows: degree-1,
dominance, unconfined, linear programming, packing, vertex fold, twin, funnel, desk.

39

3 Maximum Cardinality Independent Sets

G \ (N [v] ∪ {u})

v u

Figure 3.6: Example of a branching vertex 𝑣 (orange) and a corresponding mirror
vertex 𝑢 (green). When excluding 𝑣 from the solution, 𝑢 can also be excluded.

Once the reduced instance has been computed, the algorithm continues by determining
if the packing constraints (see Section 3.1.4) can be satisfied. Furthermore, it checks if the
upper bound for the current branch is at least the size of the best solution so far. If this is not
the case, the current branch can be pruned. Akiba and Iwata [AI16] implemented multiple
upper bounds using clique covers, LP relaxation, and cycle covers. In their algorithm, they
use the minimum of these as their final upper bound. If none of the above conditions prune
the branch and the remaining graph is empty, the best solution can be updated. Otherwise, if
the graph is not empty but contains multiple connected components, each of these is solved
independently which speeds up the computation [AC19].

Finally, if there is only one component, a branching rule is applied resulting in two
branches that can be solved recursively. For their branching rule, Akiba and Iwata [AI16]
use the same strategy that is used in the algorithm by Fomin et al. [FGK09]. In particular, a
vertex of maximum degree is selected. Tie-breaking is implemented by choosing the vertex
𝑣 ∈ 𝑉 that minimizes the number of edges among its neighbors 𝑁(𝑣). The authors also
compared this strategy to random and minimum degree selection. However, maximum
degree branching performed significantly better in their experiments. The algorithm then
performs recursion on the excluding and including branch (in this order). When branch-
ing, the algorithm also detects so-called mirrors and satellites. This allows them to avoid
branching on certain vertices.

Amirror of a vertex 𝑣 ∈ 𝑉 is a vertex 𝑢 ∈ 𝑁2(𝑣) such that𝑁(𝑣) ⧵𝑁(𝑢) is a clique (that is
possibly empty). If𝑀(𝑣) is the set of mirrors of 𝑣, then, when excluding 𝑣 from the solution
during branching, one can also remove𝑀(𝑣)without it impacting the independence number.
In particular, 𝛼(𝐺) = max{𝛼(𝐺 ⧵ {𝑣} ∪𝑀(𝑣)), 1 + 𝛼(𝐺 ⧵𝑁[𝑣])} [KLR09]. This prevents
branching on mirrors individually and decreases the size of the remaining graph (and thus
the depth of the search tree). An example of a mirror is shown in Figure 3.6.

According to Kneis et al. [KLR09] mirror branching only works well for cases where
either𝑁2(𝑣) is large or𝑁2(𝑣) is small but contains some mirrors. To alleviate this, they
propose satellite branching. A satellite of a vertex 𝑣 is a vertex 𝑢 ∈ 𝑁2(𝑣) such that there
exists a vertex 𝑤 ∈ 𝑁(𝑣) and𝑁(𝑤) ⧵ 𝑁[𝑣] = {𝑢} [KLR09]. Let 𝑆(𝑣) be the set of satellites
of 𝑣 and 𝑆[𝑣] = 𝑆(𝑣) ∪ 𝑣. Then, when including 𝑣 into the solution during branching, one
can also add 𝑆(𝑣) to the solution (and remove 𝑆[𝑣] from the graph). To be more specific,

40

3.1 Related Work

G \ (N [v] ∪ {u})

v u

w

Figure 3.7: Example of a branching vertex 𝑣 (orange) and a corresponding satellite
vertex 𝑢 (green). When including 𝑣 into the solution, 𝑢 can also be included.

𝛼(𝐺) = max{𝛼(𝐺 ⧵ {𝑣}), 𝛼(𝐺 ⧵ 𝑁[𝑆[𝑣]]) + ∣𝑆(𝑣)∣ + 1} [KLR09]. This allows eliminating
the satellites of a vertex from branching, again reducing the graph size and therefore search
depth. An example of a satellite is shown in Figure 3.7. Finally, Akiba and Iwata [AI16]
note that they do not explicitly use satellite branching since it is subsumed by the packing
branching presented in Section 3.1.4.

3.1.6 The ARWAlgorithm
We now review the algorithm by Andrade et al. [ARW12] (ARW) in more detail. Their
algorithm follows the iterated local search metaheuristic as described in Section 2.2.1. We
use this algorithm in several sections of this chapter. Asmentioned in Section 3.1.2, the ARW
local search extends the notion of vertex swaps to (𝑗, 𝑘)-swaps, which remove 𝑗 vertices
from the current solution and insert 𝑘 vertices instead. The authors present a linear-time
implementation that, given a maximal solution, can find a (1, 2)-swap or prove that no
(1, 2)-swap exists.

One iteration of the ARW algorithm consists of a perturbation and a local search step.
During the local search step the algorithm iterates over all vertices of the graph and looks
for a potential (1, 2)-swap. By using a data structure that allows insertion and removal
operations on vertices in time proportional to their degree, this procedure can find a valid
(1, 2)-swap inO(𝑚) time, if it exists.

The perturbation step, used for diversification, forces vertices into the solution and
removes neighboring vertices as necessary. In most cases a single vertex is forced into the
solution; with a small probability, the number of forced vertices 𝑓 is set to a higher value (𝑓
is set to 𝑖 + 1 with probability 1/2𝑖). Vertices to be forced into a solution are picked from a
set of random candidates, with priority given to those that have been outside the solution
for the longest time.

An even faster incremental version of the algorithm (which we use in this chapter)
maintains a list of candidates, which are vertices that may be involved in (1, 2)-swaps. It
ensures a vertex is not examined twice unless there is some change in its neighborhood.
An external memory version of this algorithm by Liu et al. [Liu+15] runs on graphs that
do not fit into memory on a standard machine. The ARW algorithm is efficient in practice,

41

3 Maximum Cardinality Independent Sets

finding maximum independent sets of optimal size orders of magnitude faster than exact
algorithms on many benchmark graphs. However, it can not verify that these independent
sets are optimal.

3.2 Inexact Iterative Reductions
Finding a maximum independent set in practice is commonly done using either branch-and-
bound [Tom+13; SRJ11; ST14] or branch-and-reduce algorithms [AI16] and will be covered
in greater detail in Sections 3.4 and 3.5. However, these algorithms often struggle to obtain
solutions for huge sparse graphs with tens of millions of vertices or more. Furthermore,
even the quality of existing heuristic-based solutions tends to degrade for massive inputs
such as web graphs and road networks. Therefore, novel techniques are necessary to find
high-quality independent sets for these graphs. For this purpose, we present a very natural
evolutionary framework for the computation of large maximal independent sets. The core
innovations of the evolutionary algorithm are new combine operations based on graph
partitioning and local search algorithms. More precisely, we employ the state-of-the-art
graph partitioner KaHIP [SS13a] to derive operations that enable us to quickly exchange
whole blocks of given individuals. The newly computed offspring are then improved using a
local search algorithm. In contrast to previous evolutionary algorithms [BK94; BZ03], each
computed offspring is valid. Hence, we only allow valid solutions in our population and are
able to use the cardinality of the independent set as a fitness function for individuals.

Additionally, we incorporate the advanced reduction rules used by Akiba and Iwata
[AI16], which are known to be effective in exact algorithms. Our final algorithm may be
viewed as performing two functions simultaneously: (1) reduction rules are used to boost
the performance of the evolutionary algorithm and (2) the evolutionary algorithm opens
up the opportunity for further reductions by selecting vertices that are likely to be in large
independent sets. In short, we apply reduction rules to form a reduced instance, compute
vertices to insert into the final solution, and remove their neighborhood (including the
vertices themselves) from the graph so that further reductions can be applied. This process
is repeated recursively. We show that this technique finds large independent sets much faster
than previous local search algorithms, is competitive with state-of-the-art exact algorithms
for smaller graphs, and allows us to compute large independent sets on huge sparse graphs,
with billions of edges.

Organization. We begin this section by introducing important related work on evolu-
tionary algorithms for MIS in Section 3.2.1. We then cover the core components of our
evolutionary algorithm in Section 3.2.2, including the computation of initial solutions, as well
as the combine and mutation operations. We explain how we use reductions in Section 3.2.3
and conclude with an experimental evaluation in Section 3.2.4.

3.2.1 Previous Work on Evolutionary Algorithms
We now discuss previous work on evolutionary algorithms for MIS. Both Bäck and Khuri
[BK94] and Borisovsky and Zavolovskaya [BZ03] use fairly similar approaches. They encode

42

3.2 Inexact Iterative Reductions

solutions as bitstrings such that the value at position 𝑖 equals one if and only if vertex 𝑖 is in
the current solution. In both cases, a classic two-point crossover is used which randomly
selects two crossover points 𝑝1, 𝑝2. Then all bits in between these positions are exchanged
between both input individuals. Note that this likely results in invalid solutions even if both
parents are valid solutions. To guide the search towards valid solutions a penalty approach
is used. A major drawback of the work by Bäck and Khuri [BK94] is that the authors only
test their algorithm on synthetic instances. Moreover, in both cases, experiments are only
performed on very small instances—large instances are not considered.

Mehrabi et al. [MMM09] also use the same bitstring encoding and present a combine and
repair operation using greedy heuristics. Their combine operation gathers the independent
set vertices of two parents and sorts them by increasing degree. They then repeatedly select
the lowest degree vertex from this combined set and add it to a single offspring if it does
not contain any neighboring vertex. Mutation is performed by randomly flipping one bit in
the bitstring of the offspring. Since this can result in infeasible solutions they use a repair
operation that repeatedly selects the highest degree vertex and removes it from the solution
until it becomes feasible. Again, their algorithm is only evaluated on a small set of graphs
with up to 512 vertices.

3.2.2 Evolutionary Components

We now present our basic evolutionary algorithm, which we call EvoMIS. We begin by
outlining the general structure of our evolutionary algorithm and then explain how we build
the initial population. Finally, we present our new combine operations and how we handle
mutation in our algorithm.

3.2.2.a) General Structure

As in previous work [BK94; BZ03] we use bitstrings as a natural way to represent individu-
als/solutions in our population. More precisely, an independent set I is represented as an
array 𝑠 = {0, 1}𝑛 where 𝑠[𝑣] = 1 if and only if 𝑣 ∈ I . The general structure of our evolutionary
algorithm is very simple. We start with the creation of a population of individuals (in our
case independent sets in the graph) and evolve the population into different populations
over several rounds until a stopping criterion is reached.

In each round, our evolutionary algorithm uses a selection rule that is based on the
fitness of the individuals (in our case the size of the independent set) of the population to
select good individuals and combine them to obtain improved offspring. In contrast to
previous work [BK94; BZ03], our combine and mutation operations always create valid
independent sets. Hence, we use the size of the independent set as a fitness function, i.e.,
there is no need to use a penalty function to ensure that the final individuals generated by us
are independent sets. As we will see later, when an offspring is generated it is possible that it
is a non-maximal independent set. Thus, we apply one iteration of ARW local search without
the perturbation step to ensure that each offspring is locally maximal and additionally apply
a mutation operation. We use mutation operations since it is of major importance to keep

43

3 Maximum Cardinality Independent Sets

the diversity in the population high [Bäc96]. That is, the individuals should not become too
similar, otherwise, the algorithm will converge prematurely.

We then use an eviction rule to select a member of the population and replace it with
the new offspring. In general, one has to take into consideration both the fitness of an
individual and the difference between individuals in the population [Bäc96]. We evict
the solution that is most similar to the newly computed offspring among those individuals
of the population that have a smaller or equal objective than the offspring itself. Once
an individual has been accepted into the population, we further refine it using additional
iterations of the ARWalgorithm. The general structure of our evolutionary algorithm follows
the memetic algorithm outline presented in Section 2.2.2. additional, we use a steady-state
approach [Jon06] which generates only one offspring per generation.

3.2.2.b) Initial Solutions

We use two different approaches to create initial solutions. Each time we create an individual
for the population, we pick one of the approaches uniformly at random. The first and most
simplistic approach is to start from an empty independent set and add vertices at random
until no further vertices can be added. To ensure that adding a vertex results in a valid
independent set, we first check that the vertex has no neighbors that are already in the
independent set. This method adds a decent amount of diversity during the construction
phase, which over an extended period of time can lead to high-quality solutions.

Second, we use a greedy approach similar to Andrade et al. [ARW12]. Starting from
an empty solution, we add the vertex with the least residual degree, which is the number
of neighbors in the residual graph. After a vertex is added to the solution, we remove all
its neighbors from the graph and update the residual degree of their neighbors. We repeat
the procedure until the residual graph is empty. The implementation uses a simple bucket
priority queue that groups vertices into buckets based on their residual degree. This allows
us to pick a random vertex whenever multiple vertices share the same residual degree, thus
creating diversity.

3.2.2.c) Combine Operations

To produce new offspring we perform different kinds of combine operations which are all
based on graph partitioning. The main idea of our operations is to use a partition of the
graph to exchange whole blocks of solution vertices. In general, our combination operations
may generate new independent sets that are not maximal. We then perform a maximization
step that adds as many vertices as possible. Afterwards, we apply a single iteration of the
ARW local search algorithm to ensure that our solution is locally maximal. Depending on
the type of operation, we use a vertex separator or an edge separator of the graph that has
been computed by the graph partitioning framework KaHIP [SS13a]. As a side note, small
edge or vertex separators are vital for our combine operations to work well. Otherwise, large
separators in the combine operations yield offspring that are far from being maximal. Hence,
the maximization step performs lots of vertex insertions and the computed offspring might
have lower quality. This is supported by experiments presented in Section 3.2.4.a).

44

3.2 Inexact Iterative Reductions

The first and second operations need precisely two input solutions while our third opera-
tion is a multi-point combine operation—it can take multiple input solutions. In the first
case, we use a simple tournament selection rule [MG95] to determine the inputs (i.e., 𝐼1 is
the fittest out of 𝑘 random individuals 𝑟1,… , 𝑟𝑘 from the population). The same is done to
select 𝐼2. Note that, since our algorithms are randomized, performing the same combine
operation twice on the same parents can yield different offspring.

Vertex Separator Combination. In its simplest form, the operation starts by computing a
vertex separator S of the input graph, such that 𝑉 is separated into sets 𝑉 = 𝑉1 ∪ 𝑉2 ∪ S .
We then use S as a crossover point for our operation. The operation generates two offspring,
𝑂1 = (𝑉1 ∩ 𝐼1) ∪ (𝑉2 ∩ 𝐼2) and 𝑂2 = (𝑉1 ∩ 𝐼2) ∪ (𝑉2 ∩ 𝐼1). In other words, we exchange
whole parts of independent sets from the blocks 𝑉1 and 𝑉2 of the vertex separator. Note
that the exchange can be implemented in time linear in the number of vertices. Recall
that the definition of a vertex separator implies that no edges are running between 𝑉1 and
𝑉2. Hence, the computed offspring are independent sets, but may not be maximal since
separator vertices have been ignored and potentially some of them can be added to the
solution. We maximize these offspring by using the greedy independent set algorithm from
Section 3.2.2.b). The operation finishes with one iteration of the ARW algorithm to ensure
that we reached a local optimum and to add some diversification. An example illustrating
the combine operation is shown in Figure 3.8.

Edge Separator Combination. This operation computes offspring by using complemen-
tary vertex covers. It starts by computing a bipartition 𝑉 = 𝑉1 ∪ 𝑉2 of the graph. Let C𝑖 be
the vertex cover 𝑉/I𝑖. We define two temporary vertex cover offspring similar to before:
𝐷1 = (C1 ∩ 𝑉1) ∪ (C2 ∩ 𝑉2) and 𝐷2 = (C1 ∩ 𝑉2) ∪ (C2 ∩ 𝑉1). However, it is possible that
an offspring created this way contains some non-covered edges. These edges can only be a
subset of the cut edges of the partition. We want to add as few vertices as possible to our
solution to fix this. Hence, we add a minimum vertex cover of the bipartite graph induced
by the non-covered cut edges to our vertex cover offspring. The minimum vertex cover in a
bipartite graph can be computed using the Hopcroft-Karp algorithm [HK73]. Afterwards,
we transform the vertex cover back to an independent set and follow our general approach
by applying ARW local search to reach a local optimum.

Multi-way Combination. Our last two operations are multi-point crossover operations
that extend the previous two operations. Both of them divide the graph into 𝑘 blocks.
Depending on the type of operation, a vertex or edge separator is used. We start with the
description of the vertex separator approach where 𝑉 = 𝑉1 ∪… ∪𝑉𝑘 ∪ S . The operation
selects a number of parents. We then calculate the score for every possible parent, block pair
(𝐼𝑖, 𝑉𝑗), which is ∣𝐼𝑖 ∩ 𝑉𝑗∣—the number of the parent’s solution vertices in the given block.
We select the parent with the highest score for each of the blocks to compute the offspring.
As before, we use a maximization step to make the solution maximal and afterwards apply
ARW local search to ensure that our solution is a local optimum.

If we use an edge separator for the combination, we start with a 𝑘-way partition of the
vertices 𝑉 = 𝑉1 ∪…∪𝑉𝑘. This approach also computes scores for each pair of parent and
block. This time the score of a pair is defined as the number of the vertex cover vertices of

45

3 Maximum Cardinality Independent Sets

V1 S V2 V1 S V2

V1 S V2 V1 S V2

Figure 3.8: An example combine operation using a vertex separator 𝑉 = 𝑉1 ∪ 𝑉2 ∪ S .
On top two input independent sets, 𝐼1 and 𝐼2, are shown. Bottom left: a possible
offspring that uses the independent set of 𝐼1 in block 𝑉1 and the independent set of 𝐼2
in block 𝑉2. Bottom right: the improved offspring after ARW local search has been
applied to improve the given solution and to add vertices from the separator to the
independent set.

the complement of an independent set inside the given block. We select the parent with
the lowest score for each of the blocks to compute the offspring. As in the simple vertex
cover combine operation, it is possible that some cut edges are not covered. We use the
simple greedy vertex cover algorithm to fix the offspring since the graph induced by the
non-covered cut edges is not bipartite anymore. We then once again complement our vertex
cover to get our final offspring.

3.2.2.d) Mutation Operations

After we performed a combine operation, we apply amutation operation to introduce further
diversification. Previous work [BK94; BZ03] uses bit-flipping for mutation, i.e., every bit in
the representation of a solution has a certain probability of being flipped. We can not use
this approach since our population only allows valid solutions. Instead, we perform forced
insertions of new vertices into the solution and remove adjacent solution vertices if necessary
similar to the perturbation routine of the ARW algorithm. Afterwards, we perform ARW
local search to improve the perturbed solution.

3.2.2.e) Miscellaneous

Instead of computing a new partition for every combine operation, we hold a pool of parti-
tions and separators that is computed once at the beginning of the algorithm’s execution. A
combine operation then picks a random partition or vertex separator from this precomputed
pool. If the combine operations have been unsuccessful for a number of iterations, we

46

3.2 Inexact Iterative Reductions

compute a fresh set of partitions. In our experiments, we used 200 unsuccessful combine
operations as a threshold. We have to ensure that the partitions created for the combine
operations are sufficiently different over multiple runs. However, although KaHIP is a
randomized algorithm, small cuts in a graph may be similar due to the graph’s inherent
structure. To avoid similar cuts and increase the diversification of the partitions and vertex
separators, we additionally give KaHIP a random imbalance 𝜖 ∈rnd [0.05, 0.75] to solve the
partitioning problem.

In addition to our previously presented combine operations, we also tried a combine oper-
ation based on set intersection. This operation computes an offspring by keeping the vertices
that are in both inputs which is by definition an independent set. Note that this is similar to
the combine operation proposed by Mehrabi et al. [MMM09]. However, our experiments
with the operation did not yield good results, thus we omit further investigations.

3.2.3 Reduction Algorithms
We now describe how we employ the reduction rules used by the algorithm of Akiba and
Iwata [AI16]. Furthermore, we present how we use inexact reductions based on intermediate
solutions to open up additional reduction space. Finally, we present an acceleration technique
for our separator-based combine operations.

Faster Evolutionary Computation of Independent Sets. Our algorithm begins by apply-
ing the reduction rules by Akiba and Iwata to compute a reduced instanceK. We then apply
the evolutionary algorithm onK, thus boosting its performance due to the smaller size of
the reduced instance. We stop the evolutionary algorithm after 𝜇 unsuccessful combine
operations and choose an individual (independent set) I with the highest fitness in the
population. This corresponds to an intermediate solution to the input problem, whose size
we can compute based on some simple bookkeeping, i.e., without actually reconstructing
the full solution in 𝐺. Instead of stopping the algorithm, we use I to further reduce the
graph (as we next show) and repeat the process of applying exact reduction rules and using
the evolutionary algorithm on the further reduced graphK′ recursively.

Our inexact reduction technique enables new reductions by selecting a subset U of the
independent set vertices in the individual I which has the highest fitness. These vertices
and their neighbors are then removed from the reduced instance. Based on the intuition
that high-degree vertices in I are unlikely to be in a large solution (consider for example
the optimal independent set on a star graph), we choose 𝜆 vertices from I with the smallest
degree as subset U . Using a modified quick selection routine this can be done in linear
time. Ties are broken randomly. It is easy to see that it is likely that some exact reduction
techniques become applicable again. Another view on the inexact reduction is that we use
the evolutionary algorithm to find vertices that are likely to be in a large independent set.
The overall process is repeated until the reduced instance is empty (or a time limit is reached).
We present pseudocode in Algorithm 3.3.

Additional Acceleration. We now propose a technique to accelerate separator-based
combine operations, which are the centerpiece of the evolutionary portion of our algorithm.
Recall that after performing a combine operation, we first use a greedy algorithm on the

47

3 Maximum Cardinality Independent Sets

Algorithm 3.3 : High-level overview of ReduMIS.
Data : 𝐺 = (𝑉,𝐸), solution size offset 𝛾 (initially zero)
Result : Best solution I

1 if 𝑛 = 0 then return
2 else

// Apply exact reductions and intermediate solution
3 (K, 𝜃)← applyExactReductions(𝐺) // Exact reductions, solution size offset 𝜃
4 I ← EvoMIS (K) // Intermediate independent set
5 if ∣I ∣ + 𝛾 + 𝜃 > ∣I ∣ then update I
6

// Apply inexact reductions
7 select U ⊆ I s.t. ∣U ∣ = 𝜆, ∀𝑢 ∈ U , 𝑣 ∈ I/U ∶ 𝑑𝐾(𝑢) ≤ 𝑑𝐾(𝑣) // Fixed vertices
8 U = U ∪𝑁(U) // Augment U with its neighbors
9 K′ ← K[𝑉𝐾/U] // Inexact reduced instance

10

// Recurse on inexact reduced instance
11 ReduMIS (K′, 𝛾 + 𝜃 + ∣U ∣) // Recursive call with updated offsets
12 return I

separator to maximize the offspring and then employ ARW local search to ensure that the
output individual is locally optimal with respect to (1,2)-swaps. However, the ARW local
search algorithm uses all independent set vertices for initialization. Since large subsets of
the created individual are already locally maximal (due to the nature of combine operations,
which takes as input locally maximal individuals), it is sufficient to initialize ARW local
search with the independent set vertices in the separator (added by the greedy algorithm)
and the solution vertices adjacent to the separator.

3.2.4 Experimental Evaluation

Methodology. We have implemented the algorithm described above using C++ and com-
piled all code using g++ version 4.6.3 with full optimizations turned on (-O3 flag). Our
implementation includes the reduction routines, local search, and the evolutionary algorithm.
We used the fastsocial configuration of the KaHIP v0.6 graph partitioning package [SS13a] to
obtain graph partitions and vertex separators necessary for the combine operations of the evo-
lutionary algorithm. We mainly compare our algorithms against the ARW algorithm (since
it has a relatively clear advantage in the experiments performed by Andrade et al. [ARW12])
and the exact algorithm by Akiba and Iwata [AI16]. For the exact algorithm by Akiba and
Iwata [AI16], we use the same implementation as the authors, which we compile and run
sequentially with Java 1.8.0_40. For the exact algorithm, we mark the running time with
“-” when the instance could not be solved within ten hours or could not be solved due to
stack overflow. Unless otherwise mentioned, we perform five independent runs of each

48

3.2 Inexact Iterative Reductions

algorithm with different random seeds, where each algorithm is run sequentially with a
ten-hour wall-clock time limit to compute its best solution.

We use two of the machines described in Section 2.3.2.c). In particular, Machine A is
used for the experiments in Section 3.2.4.a) and in Section 3.2.4.b). Experiments for the
ARW algorithm, the exact algorithm, and the original EvoMIS algorithm were also run on
Machine A. Additionally, we use Machine B in Section 3.2.4.b) to solve the largest instances.

We present two kinds of data: (1) the solution size statistics aggregated over the five
runs, including maximum and average values, and (2) convergence plots as described in
Section 2.3.2.b). Our set of instances includes a subset of the social networks, meshes,
graphs from finite element computations, sparse matrices, and large web graphs presented in
Section 2.3.2.a). A full overview of the instances used is given in Appendix A. In particular,
we conduct our experiments on all instances used by Lamm et al. [LSS15a] and extend it
by additional large instances with up to billions of edges including web graphs and road
networks. Finally, we also evaluate the three hardest instances that were solved by Akiba
and Iwata [AI16].

Algorithm Configuration. After an extensive evaluation of the parameters, we fixed
the population size to 250, the partition pool size to 30, the number of ARW iterations
to 15000, and the number of blocks for the multi-way combine operations to 64. In each
iteration, one of our four combine operations is picked uniformly at random. We fixed the
convergence parameter 𝜇 to 1000 and the inexact reduction parameter 𝜆 to 0.1⋅∣I ∣. However,
our experiments indicate that our algorithm is not too sensitive about the precise choice of
the parameters. We mark instances that have been used for the parameter tuning with a *.

3.2.4.a) Evaluation of EvoMIS

We now shortly summarize the main results of experiments concerning EvoMIS. We present
detailed data in Tables 3.1–3.4. In 50 out of the 67 instances, we either improve or reproduce
the maximum result computed by the ARW algorithm. However, EvoMIS only computes a
maximum solution that is strictly larger than the maximum solution computed by the ARW
algorithm in 21 cases. In 17 cases the maximum result of the ARW algorithm is larger than
the maximum result of our algorithm. Thus, there is no clear advantage for either algorithm
on the instances we have tested. Remarkably, when looking at the graphs obtained from the
Florida Sparse Matrix collection, the ARW algorithm only outperforms our algorithm on
one instance.

The mesh family that we use in this section was also used in the original paper [ARW12]
that introduced theARWalgorithm. We like to stress thatmost of themaximum results of the
ARW algorithm are strictly larger than the maximum values originally reported by [ARW12]
(including the maximum values presented there of the algorithm by Grosso et al. [GLP08]).
Except for four instances the same holds for EvoMIS. On these four instances, EvoMIS
is worse than the original maximum value of the ARW algorithm. On the mesh family,
in eight out of 14 cases our algorithm computes the best result ever reported in previous
literature. On road networks and the largest graphs from the mesh family, as well as the
Walshaw family, the ARW algorithm outperforms EvoMIS. Even with more time (i.e., a

49

3 Maximum Cardinality Independent Sets

Table 3.1: Results for social networks. Bold values represent the largest independent
set size found by any algorithm tested.

Graph ReduMIS EvoMIS ARW

Name 𝑛 Opt. Avg. Max. Avg. Max. Avg. Max.

enron 69 244 62 811 62 811 62 811 62 811 62 811 62 811 62 811
loc-Gowalla 196 591 112 369 112 369 112 369 112 369 112 369 112 369 112 369
citation 268 495 150 380 150 380 150 380 150 380 150 380 150 380 150 380
cnr-2000* 325 557 - 230 036 230 036 229 981 229 991 229 955 229 966
google 356 648 174 072 174 072 174 072 174 072 174 072 174 072 174 072
coPapers 434 102 47 996 47 996 47 996 47 996 47 996 47 996 47 996
skitter 554 930 - 328 626 328 626 328 519 328 520 328 609 328 619
amazon-2008 735 323 - 309 794 309 794 309 774 309 778 309 792 309 793
in-2004 1 382 908 896 762 896 762 896 762 896 581 896 585 896 477 896 562

Table 3.2: Results for road networks. Bold values represent the largest independent set
size found by any algorithm tested.

Graph ReduMIS EvoMIS ARW

Name 𝑛 Opt. Avg. Max. Avg. Max. Avg. Max.

ny* 264 346 - 131 502 131 502 131 384 131 395 131 481 131 485
bay 321 270 166 384 166 384 166 384 166 329 166 345 166 368 166 375
col 435 666 225 784 225 784 225 784 225 714 225 721 225 764 225 768
fla 1 070 376 549 637 549 637 549 637 549 093 549 106 549 581 549 587

whole day of computation), ARW still outperforms EvoMIS. Thus, one can not assume that
the evolutionary algorithm will always outperform the iterated local search when given a
larger time limit.

We also implemented the algorithmpresented by Bäck andKhuri [BK94]. Their algorithm
uses a two-point crossover as a combine operation, as well as a bit-flip approach or mutation.
Solutions created by the combine and mutation operations can be invalid. Hence, a penalty
approach is used to deal with invalid solution candidates. In the original paper, the algorithm
is only tested on small synthetic or random instances (≤ 200 vertices). We tested the
algorithm on the four smallest graphs from the mesh family and gave it ten hours to compute
a solution. However, the best valid solution created during the course of the algorithm never
exceeded the size of the best solution after the initial population has been created. This
is due to the fact that the two-point crossover and the mutation operations found valid
solutions very rarely and the average solution quality of the population degrades over time.
On average, the final solution quality of the algorithm is at least 20% worse than the final
result of EvoMIS. Due to the low solution quality we observed, we did not perform additional
experiments with this algorithm.

50

3.2 Inexact Iterative Reductions

Table 3.3: Results for mesh type graphs. Bold values represent the largest independent
set size found by any algorithm tested.

Graph ReduMIS EvoMIS ARW

Name 𝑛 Opt. Avg. Max. Avg. Max. Avg. Max.

beethoven 4 419 - 2 004 2 004 2 004 2 004 2 004 2 004
cow 5 036 - 2 346 2 346 2 346 2 346 2 346 2 346
venus 5 672 - 2 684 2 684 2 684 2 684 2 684 2 684
fandisk 8 634 - 4 074 4 075 4 075 4 075 4 073 4 074
blob 16 068 - 7 250 7 250 7 249 7 250 7 249 7 250
gargoyle 20 000 - 8 852 8 852 8 853 8 854 8 852 8 853
face 22 871 - 10 217 10 218 10 218 10 218 10 217 10 217
feline 41 262 - 18 853 18 854 18 853 18 854 18 847 18 848
gameguy 42 623 - 20 726 20 727 20 726 20 727 20 670 20 690
bunny* 68 790 - 32 346 32 348 32 337 32 343 32 293 32 300
dragon 150 000 - 66 438 66 449 66 373 66 383 66 503 66 505
turtle 267 534 - 122 417 122 437 122 378 122 391 122 506 122 584
dragonsub 600 000 - 281 561 281 637 281 403 281 436 282 006 282 066
ecat 684 496 - 322 363 322 419 322 285 322 357 322 362 322 529
buddha 1 087 716 - 480 072 480 104 478 879 478 936 480 942 480 969

Table 3.4: Results for Walshaw benchmark graphs. Bold values represent the largest
independent set size found by any algorithm tested.

Graph ReduMIS EvoMIS ARW

Name 𝑛 Opt. Avg. Max. Avg. Max. Avg. Max.

crack 10 240 4 603 4 603 4 603 4 603 4 603 4 603 4 603
vibrobox 12 328 - 1 852 1 852 1 852 1 852 1 850 1 851
4elt 15 606 - 4 943 4 944 4 944 4 944 4 942 4 944
cs4 22 499 - 9 167 9 168 9 172 9 177 9 173 9 174
bcsstk30 28 924 1 783 1 783 1 783 1 783 1 783 1 783 1 783
bcsstk31 35 588 3 488 3 488 3 488 3 488 3 488 3 487 3 487
fe_pwt 36 519 - 9 309 9 309 9 309 9 310 9 310 9 310
brack2 62 631 21 418 21 418 21 418 21 417 21 417 21 416 21 416
fe_tooth 78 136 27 793 27 793 27 793 27 793 27 793 27 792 27 792
fe_rotor 99 617 - 22 010 22 016 22 022 22 026 21 974 22 030
598a* 110 971 - 21 814 21 819 21 826 21 829 21 891 21 894
fe_ocean 143 437 - 71 706 71 716 71 390 71 576 71 492 71 655
wave 156 317 - 37 054 37 060 37 057 37 063 37 023 37 040
auto 448 695 - 83 873 83 891 83 935 83 969 84 462 84 478

51

3 Maximum Cardinality Independent Sets

TheRole of Graph Partitioning. To estimate the influence of good partitioning in this
context, we performed an experiment in which partitions of the graph have been obtained
by simple breadth-first searches. More precisely, we obtain a two-way partition of the graph
using a breadth-first search starting from a random vertex. The search is stopped as soon
as a specified number of vertices has been touched. Every vertex touched by the search is
added to the first block, and every vertex not touched by the search is added to the second
block. In our experiments, these low-quality partitions lead to significantly worse results
than using a high-quality graph partitioner.

3.2.4.b) Boosting Algorithm Performance—ReduMIS

In this section, we compare the solution quality and performance of our reduction-based
algorithm (ReduMIS) with EvoMIS, local search (ARW), and the exact algorithm by Akiba
and Iwata [AI16]. Again, we present detailed data for ReduMIS, EvoMIS, and ARW in
Tables 3.1–3.4. Results for the comparison of ReduMIS and the exact algorithm are given in
Table 3.5. We briefly summarize the main results of our experiments.

First, ReduMIS always improves or preserves solution quality on all tested social or road
networks. On four social networks (cnr-2000, skitter, amazon-2008, and in-2004) and all
road networks, we compute a solution strictly larger than EvoMIS and ARW. Furthermore,
for those social and road networks where we know the exact maximum independent set
size, ReduMIS finds an optimal solution.

On mesh-like networks, ReduMIS computes solutions that are sometimes better and
sometimes worse than our previous formulation of the evolutionary algorithm; however,
ARWperforms significantly better than both algorithms on large meshes (See Table 3.3). The
same pattern can also be seen for theWalshaw benchmarks, many of which are finite-element
meshes. As shown in Table 3.4, all algorithms give similar results on most instances, though
ReduMIS outperforms ARW on the fe_ocean instance, and ARW significantly outperforms
ReduMIS and EvoMIS on the auto instance. On graphs from the Florida Sparse Matrix
collection, all algorithms give similar results. Therefore, we exclude them from our analysis
and refer the reader to Appendix B.

The convergence plots in Figure 3.9 show that the running time of the evolutionary
algorithm is reduced when using reductions, especially on the road and social networks.
Once the first irreducible graph is computed, ReduMIS quickly outperforms ARW and
EvoMIS. For additional convergence plots, we refer to Appendix C.

Next, we compare ReduMIS to the exact algorithm by Akiba and Iwata [AI16]. Table 3.5
lists instances that the exact algorithm can solve and compares its running time with the
time it takes ReduMIS to reach a (maximum) independent set of the same size. Note that
it is possible that the exact algorithm finds an exact solution before it is able to verify its
correctness, which is only done at the end of their algorithm’s execution. In general, the
exact algorithm performs as expected: it either quickly solves an instance (typically in a
few seconds) or it cannot solve the instance within the ten-hour limit. Our experiments
indicate that the success of the exact algorithm is tied to the size of the reduced instance. For
most instances, if the reduced instance is too large the algorithm does not finish within the
ten-hour time limit. Since the exact reduction rules work well for social networks and road

52

3.2 Inexact Iterative Reductions

10−1 100 101 102 103 104

120000

125000

130000

So
lu

tio
n

si
ze

ny

10−1 100 101 102 103 104

19000

20000

gameguy

10−1 100 101 102 103 104

Time (s)

220000

225000

230000

So
lu

tio
n

si
ze

cnr-2000

10−1 100 101 102 103 104

Time (s)

50000

60000

70000

fe ocean

ARW EvoMIS ReduMIS

Figure 3.9: Convergence plots for ny (top left), gameguy (top right), cnr-2000 (bottom
left) and fe_ocean (bottom right).

networks, the algorithm can solve many of these instances. However, the exact algorithm
cannot solve any mesh graphs and fails to solve many other instances, since reductions do
not produce a small reduced graph on these instances.

Even though our algorithm is not optimized for speed1, the running time of our algorithm
is still competitive on most instances. However, on some instances, our algorithm outper-
forms the exact algorithm by far. The largest speed-up is obtained on bcsstk30, where our
algorithm is about four orders of magnitude faster. Conversely, there are several instances
for which ReduMIS needs much more time; for example, Oregon-1 is solved 364 times faster
by the exact algorithm. In addition to comparing against the benchmark instances, we also
ran our algorithm on the hardest instances computed exactly in the paper by Akiba and
Iwata [AI16]: as-Skitter-big, web-Stanford, and libimseti. In all cases, ReduMIS computes
the optimal result on these instances as well. ReduMIS is a factor of 147 and 2 faster than

1For example, our evolutionary algorithm builds all the partitions needed for the combine operations when the
algorithm starts.

53

3 Maximum Cardinality Independent Sets

Table 3.5: Running times for ReduMIS and the exact algorithm on the graphs that
the exact algorithm could solve. The running time 𝑡ReduMIS is the average time when
ReduMIS finds the optimal solution. Instancesmarkedwith a † are the hardest instances
solved exactly in [AI16]. Running times in bold are those where ReduMIS found the
exact solution faster than the exact algorithm.

Graph Opt. 𝑡ReduMIS 𝑡exact

a5esindl 30 004 0.07 0.07
as-Skitter-big† 1 170 580 1 262.46 2 838.030
bay 166 384 14.32 2.33
bcsstk30 1 783 2.71 31 152.16
bcsstk31 3 488 3.11 2.20
blockqp1 20 011 46.33 3.89
brack2 21 418 9.43 792.48
c-57 19 997 6.70 0.03
c-67 31 257 1.02 0.03
c-68 36 546 0.45 0.05
ca-HepPh 4 994 0.50 0.07
case9 7 224 3.23 0.54
cbuckle 1 097 3.83 1.34
citation 150 380 0.52 0.49
col 225 784 27.93 7 140.28
coPapers 47 996 3.21 1.45
crack 4 603 0.05 0.06
crankseg_2 1 735 1.86 2.63
cyl6 600 0.86 0.29
dixmaanl 20 000 12.27 13.62
Dubcova1 4 096 0.07 0.05
enron 62 811 3.08 0.06
fe_tooth 27 793 0.20 0.439
fla 549 637 20.10 22.50
in-2004 896 762 7.82 5.08
loc-Gowalla 112 369 0.79 0.33
libimseti† 127 294 28 375.4 1 729.05
olafu 735 3.84 1.44
Oregon-1 9 512 2.55 0.01
raefsky4 1 055 0.86 0.33
rajat07 4 971 0.02 0.05
skirt 2 383 0.14 0.14
TSOPF_FS_b300_c2 28 338 139.25 32.83
web-Google 174 072 2.95 0.83
web-Stanford† 163 390 316.15 46 450.11

the exact algorithm on web-Stanford and as-Skitter-big, respectively. However, we need a

54

3.2 Inexact Iterative Reductions

Table 3.6: Results on huge instances. Value 𝑛(K) denotes the number of nodes of the
first exact reduced graph and 𝑛(K′′) denotes the average number of nodes of the first
inexact reduced graph. Column ℓ presents the average recursion depth in which the
best solution was found and 𝑡avg denotes the average time when the solution was found.
Entries marked with a * indicate that ARW could not solve the instance.

Graph 𝑛 𝑚 𝑛(K) 𝑛(K′′) Avg. Max ℓ 𝑡avg MaxARW

europe ≈18.0M ≈22.2M 11 879 826 9 267 810 9 267 811 1.4 2m 9 249 040
USA-road ≈23.9M ≈28.8M 169 808 8 926 12 428 075 12 428 086 2.0 38m 12 426 262
eu-2005 ≈862K ≈16.1M 68 667 55 848 452 352 452 353 1.4 26m 451 813
uk-2002 ≈19M ≈261M 241 517 182 213 11 951 998 11 952 006 4.6 213m *
it-2004 ≈41M ≈1.0G 1 602 560 1 263 539 25 620 513 25 620 651 1.4 26.1h *
sk-2005 ≈51M ≈1.8G 3 200 806 2 510 923 30 686 210 30 686 446 1.4 27.3h *
uk-2007 ≈106M ≈3.3G 3 514 783 - 67 285 232 67 285 438 1.0 30.4h *

factor of 16 more time to find an optimal solution for libimseti. Our investigations revealed
that libimseti has many high degree vertices, and therefore our inexact reductions (which
force low degree vertices into the solution) are not as effective on this graph.

Additional Experiments. We now run our ReduMIS algorithm on the largest instances of
our benchmark collection: road networks (europe, USA-road) and web graphs (eu-2005, uk-
2002, it-2004, sk-2005, and uk-2007). For these experiments, we reduced the convergence
parameter 𝜇 to 250 in order to speed up computation. On the three largest graphs it-2004,
sk-2005 and uk-2007, we set the time limit of our algorithm to 24 hours after the first exact
irreducible graph has been computed by the reduction routine. Table 3.6 gives detailed
results of the algorithm including the size of the first exact irreducible graph. We note that
the first (exactly) reduced graph is much smaller than the input graph: the reduction rules
shrink the graph size by at least an order of magnitude. The largest reduction can be seen on
the europe graph, for which the first reduced graph is more than three orders of magnitude
smaller than the original graph. However, most of the reduced instances are still too large to
be solved by the exact algorithm. As expected, applying our inexact reduction technique (i.e.,
fixing vertices into the solution and applying exact reductions afterwards) further reduces
the size of the input graph. On road networks, inexact reductions reduce the graph size
again by an order of magnitude. Moreover, the best solution found by our algorithm is not
found on the first exact reduced graphK, but in deeper recursion levels. In other words, the
best solution found by our algorithm is found on an inexact reduced graph. We run ARW
on the original instances as well, giving it as much time as our algorithm consumed to find
its best solution. It could not handle the largest instances and computes smaller independent
sets on the other instances. In the next section, we present variants of the ARW local search
that use reduction rules to alleviate this.

55

3 Maximum Cardinality Independent Sets

3.3 On-the-fly Reductions

As already discussed in the previous section, exact algorithms for MIS and its related prob-
lems can take exponential time to find solutions, making massive graphs infeasible to solve
in practice. Instead, heuristic algorithms such as local search are used to efficiently compute
high-quality independent sets. For many practical instances, some local search algorithms
even quickly find exact solutions [ARW12; GLP08]. While approaches like EvoMIS and
ReduMIS described in Section 3.2 are able to compute very high-quality solutions, they still
require significant time to compute them. Thus, we now present an advanced local search
algorithm that quickly computes large independent sets by combining iterated local search
with reduction rules that reduce the size of the search space without losing solution quality.
We do so by either (1) computing a reduced instance and then applying local search on the
reduced graph or (2) applying reduction rules on-the-fly during the local search, i.e., testing
if reductions can be applied while vertices are swapped in and out of the solution. By doing
so we significantly boost the performance of the local search algorithm, especially on huge
sparse networks where reduction can be applied with great success. In addition to exact
reduction techniques, we also apply inexact reductions that remove high-degree vertices
from the graph. In particular, we show that cutting a small percentage of high-degree ver-
tices from the graph minimizes performance bottlenecks of local search while maintaining
high solution quality. Experiments indicate that our algorithm can outperform previous
state-of-the-art algorithms both in terms of speed and quality.

Organization. The rest of this section is organized as follows. We describe the core com-
ponents of our algorithm in Section 3.3.1. Here, we exemplify exact reduction techniques as
well as our inexact cutting procedures. Then we present experiments to evaluate our algo-
rithm in Section 3.3.2. Our experimental evaluation indicates that the reduction techniques
indeed boost the performance of the ARW local search, especially on huge sparse networks
that are hard to handle for the original algorithm (as seen in the previous Section).

3.3.1 Techniques for Accelerating Local Search

First, we note thatwhile local search techniques such asARWperformwell on huge uniformly
sparse mesh-like graphs, they perform poorly on complex networks, which are typically
scale-free. We first discuss why local search performs poorly on huge complex networks,
then introduce the techniques we use to address these shortcomings.

The first performance issue is related to vertex selection for perturbation. Many vertices
are guaranteed to be in somemaximum independent set. These include, for example, vertices
with degree one. However, ARW treats such vertices like any other. During a perturbation
step, these vertices may be forced out of the current solution, causing extra searches that
may not improve the solution.

The second issue is that high-degree vertices may slow down ARW significantly. Most
internal operations of ARW (including (1,2)-swaps) require traversing the adjacency lists
of multiple vertices, which takes time proportional to their degree. High-degree vertices
are only scanned if they have at most one solution neighbor (or belong to the solution

56

3.3 On-the-fly Reductions

themselves). However, this can often be the case if high-degree vertices are interconnected
as is the case in complex networks.

A third issue is caused by the particular implementation of the ARW algorithm. When
performing a (1,2)-swap involving the insertion of a vertex 𝑣, the original ARW implemen-
tation (as tested by Andrade et al. [ARW12]) picks a pair of neighbors 𝑢,𝑤 of 𝑣 at random
among all valid ones. Although this technically violates theO(𝑚) worst-case bound (which
requires the first such pair to be taken), the effect is minimal on small-degree networks. On
large complex networks, this can become a significant bottleneck.

To deal with the third issue, we simply modified the ARW code to limit the number of
valid pairs considered to a small constant (100). Addressing the first two issues requires
more involved techniques, i.e., reductions and high-degree vertex cutting, as we discuss next.

3.3.1.a) Exact Reductions

First, we investigate the use of reduction rules. Recall that computing a reduced instance
is achieved by the repeated application of reductions to the input graph 𝐺 until it cannot
be reduced further, producing an instanceK. Even simple reduction rules can significantly
reduce the graph size [Str16]. Indeed, in some cases, K may be empty—giving an exact
solution without requiring any additional steps. We note that this is the case for many of the
graphs used in the experiments by Akiba and Iwata [AI16]. Furthermore, any solution ofK
can be extended to a solution of the input.

The size of the reduced instance depends entirely on the structure of the input graph. In
many cases, the reduced instance can still be too large, making it intractable to find an exact
maximum independent set in practice (see Sect. 3.3.2). In this case “too large” can mean a
few thousand vertices. However, for many graphs, the reduced instance is still significantly
smaller than the input graph, and even though it is intractable for exact algorithms, local
search algorithms such as ARW have been shown to find a maximum independent set
quickly on small benchmark graphs. Therefore, it stands to reason that ARW would perform
better on the reduced instances.

3.3.1.b) Inexact Reductions: Cutting High-Degree Vertices

To further boost local search, we investigate removing (cutting) high-degree vertices outright.
This is a natural strategy: intuitively, vertices with very high degrees are unlikely to be in a
large independent set (consider a maximum independent set of graphs with few high-degree
vertices, such as a star graph or scale-free networks). In particular, many reduction rules
show that low-degree vertices are guaranteed to be in some maximum independent sets,
and applying these reductions results in a small reduced instance (see Section 3.2), where
high-degree vertices are left behind. This is especially true for huge complex networks
considered here, which generally have few high-degree vertices.

Besides intuition, there is much additional evidence to support this strategy. In particular,
the natural greedy algorithm that repeatedly selects low-degree vertices to construct an
independent set is typically within 1%–10% of the maximum independent set size for sparse

57

3 Maximum Cardinality Independent Sets

graphs [ARW12]. Moreover, several successful algorithms make choices that favor low-
degree vertices. ReduMIS (see Section 3.2) forces low-degree vertices into an independent
set in a multi-level algorithm, giving high-quality independent sets as a result. Exact branch-
and-bound algorithms also order vertices so that vertices of high-degree are excluded first
during search. In particular, optimal and near-optimal independent sets are typically found
after high-degree vertices have been evaluated and excluded from search; however, it is
then much slower to find the remaining solutions, since only low-degree vertices remain
in the search. This behavior can be observed in the experiments of Batsyn et al. [Bat+14],
where better initial solutions from local search significantly speed up exact search because
non-promising parts of the search space can be cut.

We consider two strategies for removing high-degree vertices from the graph. When
we cut by absolute degree, we remove the vertices with a degree higher than a threshold. In
relative degree cutting, we iteratively remove the highest-degree vertices and their incident
edges from the graph. This approach mirrors the greedy algorithm that repeatedly selects
the smallest-degree vertices in the graph to be in an independent set until the graph is empty.
We stop when a fixed fraction of all vertices is removed. This better ensures that vertices that
are part of a cluster of high-degree vertices are not removed, since some of these vertices
can be part of a large independent set.

3.3.1.c) PuttingThings Together

We use reductions and cutting in two ways. First, we explore the standard technique of
producing a reduced instance in advance and then run ARW on the reduced instance.
Second, we investigate applying reductions on-the-fly as ARW runs.

Preprocessing. Our first algorithm (KerMIS) uses exact reductions in combination with
relative degree cutting. It uses the full set of reductions from Akiba and Iwata [AI16], as
described in Sect. 3.3.1. Note that we do not include isolated clique removal, as it was not
included in their reductions. After computing a reduced instance, we then cut 1% of the
highest-degree vertices using relative degree cutting, breaking ties randomly. We then run
ARW on the resulting graph.

On-the-fly. Our second approach (OnlineMIS) applies a set of simple reductions on-the-
fly. For this algorithm, we only use isolated clique removal (for degrees zero, one, and two),
since it does not require the graph to be modified—we can just mark isolated vertices and
their neighbors as removed during local search. In more detail, we first perform a quick
single pass when computing the initial solution for ARW. We force isolated vertices into the
initial solution and mark them and their neighbors as being removed. Note that this does
not result in a fully reduced instance, as this pass may create more isolated vertices which are
not (necessarily) found by this method. We further mark the top 1% of high-degree vertices
as removed during this pass. As local search continues, whenever we check if a vertex can
be inserted into the solution, we check if it is isolated and update the solution and graph
similar to the single pass. Thus, OnlineMIS reduces the graph on-the-fly as local search
proceeds. This is beneficial as one can quickly remove vertices that are part of an optimal
solution while also outputting temporary solutions much faster compared to computing a

58

3.3 On-the-fly Reductions

reduced graph in advance. Note that as local search continues this can result in a graph that
can not be reduced further. However, there might also be additional structures that could be
removed but are not found, since we only target vertices that are taken into account during
local search.

3.3.2 Experimental Evaluation
Methodology. We implemented our algorithms (OnlineMIS and KerMIS), including the
reduction techniques, using C++ and compiled all code using g++ version 4.6.3 with full
optimizations turned on (-O3 flag). We further compiled the original implementations of
ARW and ReduMIS using the same settings. For ReduMIS, we use the same parameters as
in Section 3.2.4 (convergence parameter 𝜇 = 1000000, reduction parameter 𝜆 = 0.1 ⋅ ∣I ∣ and
cutting percentage 𝜂 = 0.1 ⋅ ∣K∣). For all instances, we perform three independent runs of
each algorithm with different random seeds. For small instances, we run each algorithm
sequentially with a five-hour wall-clock time limit to compute its best solution. For huge
graphs with tens of millions of vertices and at least one billion edges, we use a time limit
of ten hours. Each run was performed on Machine B presented in Section 2.3.2.c). We
consider a set of sparse networks, road networks, and meshes taken from the full set of
instances described in Section 2.3.2.a). To be more specific, we picked a sample of large
sparse networks, road networks, and meshes from Lamm et al. [Lam+17] presented in the
previous section. This sample includes the largest web graphs and the three hardest instances
from Akiba and Iwata [AI16]. We then extended this set of instances with additional huge
web graphs with billions of edges which are the particular focus of this work.

3.3.2.a) Accelerated Solutions

We now illustrate the speed improvement over existing heuristic algorithms. First, we
measure the speedup of OnlineMIS over other high-quality heuristic search algorithms.
In Table 3.7, we report the maximum speedup of OnlineMIS over the state-of-the-art
competitors. We compute the maximum speedup for an instance as follows. For each
solution size 𝑖, we compute the speedup 𝑠𝑖𝐴𝑙𝑔 = 𝑡

𝑖
𝐴𝑙𝑔/𝑡
𝑖
𝑂𝑛𝑙𝑖𝑛𝑒𝑀𝐼𝑆 of OnlineMIS over algorithm

Alg for that solution size. We then report the maximum speedup 𝑠max
𝐴𝑙𝑔 = max𝑖 𝑠𝑖𝐴𝑙𝑔 for the

instance. Later, we also examine the speedup for finding high-quality solutions that are close
to the best solution, i.e., within 99.5% of the best solution.

As can be seen in Table 3.7, OnlineMIS always has a maximum speedup greater than one
over every other algorithm. We first note that OnlineMIS is significantly faster than ReduMIS
and KerMIS. There are 14 instances where OnlineMIS achieves a maximum speedup of over
100 over ReduMIS. KerMIS performs only slightly better than ReduMIS, with OnlineMIS
achieving similar speedups on twelve instances. On meshes, KerMIS fares especially poor.
On these instances OnlineMIS always finds a better solution than KerMIS (instances marked
with *). On the bunny and feline instances, OnlineMIS achieves a maximum speedup of
more than 10000 over KerMIS. Furthermore, on the venus mesh graph, KerMIS never
matches the quality of a single solution from OnlineMIS. ARW is the closest competitor, and
OnlineMIS only has two maximum speedups greater than 100. However, on eight instances,

59

3 Maximum Cardinality Independent Sets

Table 3.7: For each graph instance, we give the number of vertices 𝑛 and the number
of edges 𝑚. We further provide the maximum speedup for OnlineMIS over other
heuristic search algorithms. For each solution size 𝑖, we compute the speedup 𝑠𝑖𝐴𝑙𝑔 =
𝑡𝑖𝐴𝑙𝑔/𝑡

𝑖
𝑂𝑛𝑙𝑖𝑛𝑒𝑀𝐼𝑆 of OnlineMIS over algorithm Alg for that solution size. We then report

the maximum speedup 𝑠max
𝐴𝑙𝑔 = max𝑖 𝑠𝑖𝐴𝑙𝑔 for the instance. When an algorithm never

matches the final solution quality of OnlineMIS, we give the highest non-infinite
speedup and mark it with a “*”. A “∞” indicates that all speedups are infinite.

Graph Maximum Speedup of OnlineMIS
Name 𝑛 𝑚 𝑠max

𝐴𝑅𝑊 𝑠max
𝐾𝑒𝑟𝑀𝐼𝑆 𝑠max

𝑅𝑒𝑑𝑢𝑀𝐼𝑆

Huge instances

it-2004 41 291 594 1 027 474 947 4.51 221.26 266.30
sk-2005 50 636 154 1 810 063 330 356.87* 201.68 302.64
uk-2007 105 896 555 1 154 392 916 11.63* 108.13 122.50

Social networks and web graphs

amazon-2008 735 323 3 523 472 43.39* 13.75 50.75
as-Skitter-big 1 696 415 11 095 298 355.06* 2.68 7.62
dewiki-2013 1 532 354 33 093 029 36.22* 632.94 1 726.28
enwiki-2013 4 206 785 91 939 728 51.01* 146.58 244.64
eu-2005 862 664 22 217 686 5.52 62.37 217.39
hollywood-2011 2 180 759 114 492 816 4.35 5.51 11.24
libimseti 220 970 17 233 144 15.16* 218.30 1 118.65
ljournal-2008 5 363 260 49 514 271 2.51 3.00 5.33
orkut 3 072 441 117 185 082 1.82* 478.94* 8 751.62*
web-Stanford 281 903 1 992 636 50.70* 29.53 59.31
webbase-2001 118 142 155 854 809 761 3.48 33.54 36.18
wikilinks 25 890 800 543 159 884 3.88 11.54 11.89
youtube 1 134 890 543 159 884 6.83 1.83 7.29

Road networks

europe 18 029 721 22 217 686 5.57 12.79 14.20
USA-road 23 947 347 28 854 312 7.17 24.41 27.84

Meshes

buddha 1 087 716 1 631 574 1.16 154.04* 976.10*
bunny 68 790 103 017 3.26 16 616.83* 526.14
dragon 150 000 225 000 2.22* 567.39* 692.60*
feline 41 262 61 893 2.00* 13 377.42* 315.48
gameguy 42 623 63 850 3.23 98.82* 102.03
venus 5 672 8 508 1.17 ∞ 157.78*

60

3.3 On-the-fly Reductions

102 103 104

3.00

3.02

3.04

3.06

So
lu

tio
n

si
ze

×107 sk-2005

100 101 102

856500

857000

857500

858000
youtube

101 102 103 104

Time (s)

1.20

1.22

1.24

So
lu

tio
n

si
ze

×107 USA-road

10−1 100 101 102 103 104

Time (s)

0

10000

20000

30000

bunny

ReduMIS KerMIS ARW OnlineMIS

Figure 3.10: Convergence plots for sk-2005 (top left), youtube (top right), USA-road
(bottom left) and bunny (bottom right).

OnlineMIS achieves a maximum speedup over ten, and on eleven instances ARW fails to
match the final solution quality of OnlineMIS.

Figure 3.10 shows several representative convergence plots which illustrate the early
solution quality of OnlineMIS compared to ARW, the closest competitor. For additional
convergence plots, we refer to Appendix D. These convergence plots show average values
over all three runs. On the non-mesh instances, OnlineMIS takes an early lead over ARW,
though solution quality converges over time. Lastly, we examine the convergence plot for
the bunny mesh graph. Reductions and high-degree cutting are not effective on meshes.
Thus, ARW and OnlineMIS have similar initial solution sizes.

3.3.2.b) Time to High-Quality Solutions

We now look at the time it takes an algorithm to find a high-quality solution. We first
determine the largest independent set found by any of the four algorithms, which represent

61

3 Maximum Cardinality Independent Sets

Table 3.8: For each algorithm, we give the average time 𝑡𝑎𝑣𝑔 to reach 99.5% of the best
solution found by any algorithm. The fastest such time for each instance is marked in
bold. We also give the size of the largest solution found by any algorithm and list the
algorithms (abbreviated by first letter) that found this largest solution in the time limit.
A “-” indicates that the algorithm did not find a solution of sufficient quality.

Graph OnlineMIS ARW KerMIS ReduMIS Best IS Best IS
Name 𝑡avg 𝑡avg 𝑡avg 𝑡avg Size Algorithms

Huge instances:

it-2004 86.01 327.35 7 892.04 9 448.18 25 620 285 R
sk-2005 152.12 - 10 854.46 16 316.59 30 686 766 K
uk-2007 403.36 3 789.74 23 022.26 26 081.36 67 282 659 K

Social networks and web graphs

amazon-2008 0.76 1.26 5.81 15.23 309 794 K, R
as-Skitter-big 1.26 2.70 2.82 8.00 1 170 580 K, R
dewiki-2013 4.10 7.88 898.77 2 589.32 697 923 K
enwiki-2013 10.49 19.26 856.01 1 428.71 2 178 457 K
eu-2005 1.32 3.11 29.01 95.65 452 353 R
hollywood-2011 1.28 1.46 7.06 14.38 523 402 O, A, K, R
libimseti 0.44 0.45 50.21 257.29 127 293 R
ljournal-2008 3.79 8.30 10.20 18.14 2 970 937 K, R
orkut 42.19 49.18 2 024.36 - 839 086 K
web-Stanford 1.58 8.19 3.57 7.12 163 390 R
webbase-2001 144.51 343.86 2 920.14 3 150.05 80 009 826 R
wikilinks 34.40 85.54 348.63 358.98 19 418 724 R
youtube 0.26 0.81 0.48 1.90 857 945 A, K, R

Road networks

europe 28.22 75.67 91.21 101.21 9 267 811 R
USA-road 44.21 112.67 259.33 295.70 12 428 105 R

Meshes

buddha 26.23 26.72 119.05 1 699.19 480 853 A
bunny 3.21 9.22 - 70.40 32 349 R
dragon 3.32 4.90 5.18 97.88 66 502 A
feline 1.24 1.27 - 39.18 18 853 R
gameguy 15.13 10.60 60.77 12.22 20 727 R
venus 0.32 0.36 - 6.52 2 684 O, A, R

the best-known solutions [Lam+17], and compute how long it takes each algorithm to find
an independent set within 99.5% of this size. The results are shown in Table 3.8. With a
single exception, OnlineMIS is the fastest algorithm to be within 99.5% of the target solution.

62

3.3 On-the-fly Reductions

Table 3.9: For each algorithm, we include average solution size and average time 𝑡𝑎𝑣𝑔
to reach it within a time limit (5 hours for normal graphs, 10 hours for huge graphs).
Solutions in italics indicate that OnlineMIS computes a larger solution than ARW and
bold marks the largest overall solution. A “-” in our indicates that the algorithm did
not find a solution in the time limit.

Graph OnlineMIS ARW KerMIS ReduMIS
Name Avg. 𝑡avg Avg. 𝑡avg Avg. 𝑡avg Avg. 𝑡avg

Huge instances:

it-2004 25 610 697 35 324 25 612 993 33 407 25 619 988 35 751 25 620 246 35 645
sk-2005 30 680 869 34 480 30 373 880 11 387 30 686 684 34 923 30 684 867 35 837
uk-2007 67 265 560 35 982 67 101 065 8 702 67 282 347 35 663 67 278 359 35 782

Social networks and web graphs

amazon-2008 309 792 6 154 309 791 12 195 309 793 818 309 794 153
as-Skitter-big 1 170 560 7 163 1 170 548 14 017 1 170 580 4 1 170 580 9
dewiki-2013 697 789 17 481 697 669 16 030 697 921 14 070 697 798 17 283
enwiki-2013 2 178 255 13 612 2 177 965 17 336 2 178 436 17 408 2 178 327 17 697
eu-2005 452 296 11 995 452 311 22 968 452 342 5 512 452 353 2 332
hollywood-2011 523 402 33 523 402 101 523 402 9 523 402 17
libimseti 127 288 8 250 127 284 9 308 127 292 102 127 292 16 747
ljournal-2008 2 970 236 428 2 970 887 16 571 2 970 937 36 2 970 937 41
orkut 839 073 17 764 839 001 17 933 839 004 19 765 806 244 34 197
web-Stanford 163 384 5 938 163 382 10 924 163 388 35 163 390 12
webbase-2001 79 998 332 35 240 80 002 845 35 922 80 009 041 30 960 80 009 820 31 954
wikilinks 19 404 530 21 069 19 416 213 34 085 19 418 693 23 133 19 418 724 854
youtube 857 914 < 1 857 945 93 857 945 < 1 857 945 2

Road networks

europe 9 267 573 15 622 9 267 587 28 450 9 267 804 27 039 9 267 809 115
USA-road 12 426 557 10 490 12 426 582 31 583 12 427 819 32 490 12 428 099 4 799

Meshes

buddha 480 795 17 895 480 808 17 906 480 592 16 695 479 905 17 782
bunny 32 283 13 258 32 287 13 486 32 110 14 185 32 344 1 309
dragon 66 501 15 203 66 496 14 775 66 386 16 577 66 447 3 456
feline 18 846 15 193 18 844 10 547 18 732 15 055 18 851 706
gameguy 20 662 6 868 20 674 12 119 20 655 7 467 20 727 191
venus 2 684 507 2 684 528 2 664 9 2 683 74

In fact, OnlineMIS finds such a solution at least twice as fast as ARW on 14 instances, and
it is almost ten times faster on the largest instance, uk-2007. OnlineMIS is also orders of
magnitude faster than ReduMIS (by a factor of at least 100 in seven cases). We also see

63

3 Maximum Cardinality Independent Sets

that KerMIS is faster than ReduMIS in 19 cases but much slower than OnlineMIS for all
instances. It eventually finds the largest independent set (among all algorithms) for ten
instances. This shows that the complete set of reductions is not always necessary, especially
when the goal is to get a high-quality solution quickly. It also justifies our choice of cutting:
the solution quality of KerMIS rivals (and sometimes even improves) that of ReduMIS.

3.3.2.c) Overall Solution Quality

Next, we show that OnlineMIS has high solution quality when given enough time for
searching (5 hours for normal graphs, 10 hours for huge graphs). Although continuous
improvement in quality is not the goal of OnlineMIS, in 11 instances OnlineMIS finds a
larger independent set than ARW, and in four instances OnlineMIS finds the largest solution
within the time limit. As seen in Table 3.9, OnlineMIS also finds a solution within 0.1% of
the best solution found by any algorithm for all graphs. However, in general, OnlineMIS
finds lower-quality solutions than ReduMIS, which might be caused by cutting high-degree
vertices. Nonetheless, as this shows, the solution quality remains high even when cutting
1% of the vertices.

We further test KerMIS, which first fully reduces the graph using the advanced reductions
from ReduMIS, removes 1% of the highest-degree vertices, and then runs ARW on the
remaining graph. On eight instances, KerMIS finds a better solution thanReduMIS.However,
reductions and cutting take a long time (over three hours for sk-2005, ten hours for uk-2007),
and therefore KerMIS is much slower to get to a high-quality solution than OnlineMIS. Thus,
our experiments show that the complete set of reductions is not always necessary, especially
when the goal is to get a high-quality solution quickly. This also further justifies our choice
of cutting, as the solution quality of KerMIS remains high. On the other hand, as-Skitter-big,
ljournal-2008, and youtube are solved quickly with advanced reduction rules.

3.4 Exact Portfolio Algorithm

The techniques presented in the previous sections of this chapter are important contributions
to heuristic algorithms that are able to find high-quality solutions on massive instances.
In particular, the recursive removal of vertices that are likely to be in an independent set
(inexact reductions) and simple but fast reductions in combination with local search have
since been used in other successful state-of-the-art approaches [CLZ17; Zhe+20].

In the remaining sections of this chapter, we now focus on improving exact algorithms
for finding maximum independent sets with the goal of developing algorithms that can rival
the performance of heuristic approaches.

First, we present the algorithm that won the Parameterized Algorithms and Computa-
tional Experiments (PACE) 2019 Challenge, which focused on the vertex cover problem. In
particular, we deployed a portfolio of algorithms using techniques from the literature on all
three previously mentioned problems (MIS, MVC, and MC, see Section 3.1). These include
reduction rules and branch-and-reduce for the minimum vertex cover problem [AI16],
iterated local search for the maximum independent set problem [ARW12], and an exact

64

3.4 Exact Portfolio Algorithm

state-of-the-art branch-and-bound maximum clique algorithm [LJM17]. As mentioned in
Section 2.1.3, finding a minimum vertex cover is complementary to finding a maximum
independent set, i.e., for a maximum independent set I ⊆ 𝑉, 𝑉 ⧵ I is a minimum vertex
cover and vice versa. Thus, all previously mentioned techniques can be applied to MVC in a
straightforward way. In addition to describing our techniques and algorithm in detail, we
analyze the results of our extensive experiments on the data sets provided by the challenge.
Not only do our experiments illustrate the power of the techniques spanning the literature,
they also offer several new insights not yet seen before. In particular, reductions followed by
branch-and-bound can outperform branch-and-reduce algorithms; seeding branch-and-
reduce by an initial solution from a local search can significantly boost its performance; and,
somewhat surprisingly, reductions are sometimes counterproductive: branch-and-bound
algorithms can perform significantly worse on the reduced instance than on the original
input graph.

Organization. We begin this section by outlining each of the techniques we use in our
portfolio algorithm in Section 3.4.1. We then describe how we actually combine these tech-
niques in our algorithm in Section 3.4.2. Lastly, in Section 3.4.3, we perform an experimental
evaluation to show the impact of the individual components of our portfolio on the final
number of instances solved.

3.4.1 Techniques

We now describe the techniques we use in our algorithm in detail. First, we use the branch-
and-reduce algorithm of Akiba and Iwata [AI16]. Their algorithm exhaustively applies
the full suite of reduction rules presented in Section 3.1.4 before branching and includes a
number of advanced branching rules and lower bounds to prune the search (see Section 3.1.5).
We also evaluated other sets of reduction rules, i.e., the ones used by Strash [Str16] and the
weighted reductions presented in Section 4.2. However, they did not provide a significant
advantage over the ones used by Akiba and Iwata [AI16] and were therefore not included.

Experiments by Strash [Str16] show that the full power of branch-and-reduce is only
needed very rarely in real-world instances; reductions followed by a standard branch-and-
bound algorithm is sufficient for many real-world instances. Furthermore, branch-and-
reduce does not work well on many synthetic benchmark instances, where reduction rules
are ineffective [AI16] and instead add significant overhead to branch-and-bound. We use a
state-of-the-art branch-and-boundmaximum clique algorithm (MoMC) by Li et al. [LJM17],
which uses incremental MaxSAT reasoning to prune the search, and a combination of static
and dynamic vertex ordering to select the vertex for branching. We run the clique algorithm
on the complement graph, which results in a maximum independent set from which we
then derive a minimum vertex cover. In preliminary experiments, we found that a reduced
instance can sometimes be harder for the algorithm than the original input; therefore, we
run the algorithm on the reduced instance and the original graph.

Finally, Batsyn et al. [Bat+14] showed that if the branch-and-bound search is primed
with a high-quality solution from local search, then instances can be solved up to thousands
of times faster. We use the iterated local search algorithm by Andrade et al. [ARW12] to

65

3 Maximum Cardinality Independent Sets

prime the branch-and-reduce algorithm with a high-quality initial solution. To the best
of our knowledge, this has not been tried before. We implemented the algorithm to find a
high-quality solution on the reduced instance. Calling local search on the reduced instance
has been shown to produce a high-quality solution much faster than without applying
reductions [CLZ17; Dah+16a].

3.4.2 Putting it all Together

Our algorithm first runs a preprocessing phase, followed by four phases of either branch-
and-bound or branch-and-reduce.

Phase 1. (Preprocessing) Our algorithm starts by computing a reduced instance of the graph
using the reductions by Akiba and Iwata [AI16]. From there, we use iterated local
search to produce a high-quality solution 𝐼init on the (hopefully smaller) reduced
instance.

Phase 2. (Branch-and-Reduce, short) We prime a branch-and-reduce algorithm with the
initial solution 𝐼init and run it with a short time limit.

Phase 3. (Branch-and-Bound, short) If Phase 2 is unsuccessful, we run theMoMC [LJM17]
clique algorithm on the complement of the reduced instance, also using a short time
limit2. Sometimes reductions can make the problem harder for MoMC. Therefore, if
the first call is unsuccessful, we also run MoMC on the complement of the original
(unreduced) input with the same short time limit.

Phase 4. (Branch-and-Reduce, long) If we have still not found a solution, we run branch-
and-reduce on the reduced graph using the initial solution 𝐼init and a longer time limit.
We opt for this second phase because, while most graphs amenable to reductions are
solved very quickly with branch-and-reduce (less than a second), experiments by
Akiba and Iwata [AI16] showed that other slower instances either finish in at most a
few minutes or take significantly longer—more than the time limit allotted for the
challenge. This second phase of branch-and-reduce aims to catch any instances that
still benefit from the use of reductions.

Phase 5. (Branch-and-Bound, remaining time) If all previous phases were unsuccessful, we
run MoMC on the original (unreduced) input graph until the end of the time limit.
This last phase is meant to capture only the hardest-to-compute instances.

The algorithm time limits (discussed in Section 3.4.3) and ordering were carefully chosen
so that the overall algorithm outputs solutions of the “easy” instances quickly, while still
being able to solve hard instances.

2Note that repeatedly checking the time can slow down a highly optimized branch-and-bound algorithm
considerably; we therefore simulate time checking by using a limit on the number of branches.

66

3.4 Exact Portfolio Algorithm

3.4.3 Experimental Evaluation
We now look at the impact of the algorithmic components on the number of instances solved.
Here, we focus on the public instances of the PACE 2019 Challenge, Vertex Cover Track A,
obtained from the PACE Challenge website3 (see Section 2.3.2.a)). However, we also provide
the results for the private instances 4. In particular, we summarize the results comparing
against the second and third best competing algorithms on the private instances during
the challenge. In total, the PACE Challenge contained 200 instances. Note that the public
instances used during the challenge are all odd-numbered, and the private instances are
even-numbered.

Methodology. All of our experiments were run onMachine C described in Section 2.3.2.c).
All algorithms were implemented in C++ and compiled with g++ version 6.3.0 using opti-
mization flag -O3. Our source code is publicly available at GitHub5. Each algorithm was
run sequentially with a time limit of 30 minutes—the time allotted to solve a single data set
in the PACE 2019 Challenge. Even though we provide running times, our primary focus
is on the total number of instances solved. We do this because the challenge gave a better
score for solving more instances faster [DFH19].

Algorithm Configuration. We now explain the algorithm configuration we use in our
experimental setup. In the following, MoMC runs the clique algorithm by Li et al. [LJM17]
on the complement of the input graph; RMoMC applies reductions to the input graph
exhaustively and then runs MoMC on the complement of the resulting reduced instance;
LSBnR applies reductions exhaustively, then runs local search to obtain a high-quality
solution on the reduced instance which is used as an initial bound in the branch-and-reduce
algorithm that is run on the reduced instance; BnR applies reductions and then runs the
branch-and-reduce algorithm on the reduced instance (no local search is used to improve
an initial bound); FullA is the full algorithm as described in the previous section, using a
short time limit of one second and a long time limit of thirty seconds.

3.4.3.a) Evaluation

Tables 3.10 and 3.11 give an overview of the public instances that each algorithm solved,
including the reduced graph size and the minimum vertex cover size for those instances
solved by any of the four algorithms. Overall, MoMC can solve 30 out of the 100 instances.
Applying reductions first enables RMoMC to solve 68 instances. However, curiously, there
are two instances (instances 131 and 157) that MoMC solves but that RMoMC can not solve.
In these cases, reductions reduced the number of vertices but increased the number of edges.
This is due to the alternative reduction, which in some cases can create more edges than
initially present. This is why we choose to also run MoMC on the unreduced input graph in
FullA (in order to solve those instances as well).

LSBnR solves 55 of the 100 instances. Priming the branch-and-reduce algorithm with an
initial solution computed by local search has a significant impact: LSBnR solves 13 more
3https://pacechallenge.org/files/pace2019-vc-exact-public-v2.tar.bz2
4https://doi.org/10.5281/zenodo.3354609
5https://github.com/KarlsruheMIS/pace-2019

67

https://pacechallenge.org/files/pace2019-vc-exact-public-v2.tar.bz2
https://doi.org/10.5281/zenodo.3354609
https://github.com/KarlsruheMIS/pace-2019

3 Maximum Cardinality Independent Sets

10−2 10−1 100 101 102 103

Time (s)

0

50

100

150

200

In
st

an
ce

s
so

lv
ed

MoMC
RMoMC

LSBnR
BnR

FullA

Figure 3.11:Number of instances solved over time by each algorithm over all instances.
At each time step 𝑡, we count each instance solved by the algorithm in at most 𝑡 seconds.

instances than BnR, which solve 42 instances. In particular, using local search to find an
initial bound helps to solve large instances in which the initial reduction step does not
reduce the graph fully. Surprisingly, RMoMC solves 26 instances that BnR does not (and
even LSBnR is only able to solve one of these instances). To the best of our knowledge,
this is the first time that reductions followed by branch-and-bound is shown to outperform
branch-and-reduce significantly. Our full algorithm FullA solves 82 of the 100 instances and,
as expected, dominates each of the other configurations. This can be further seen from the
plot in Figure 3.11, which shows how many instances each algorithm solves over time (this
includes all 100 public and 100 private instances of the challenge). Note that LSBnR and
RMoMC solve more instances in narrow time gaps due to FullA’s setup cost and running
multiple algorithms. However, FullA quickly makes up for this and overtakes all algorithms
at approximately eight seconds.

In addition to the 100 public instances, the PACE 2019 Challenge tests all submissions
on 100 private instances. Tables 3.12 and 3.13 give detailed per instances results on those
instances. The results are similar to the results on the public instances. On the private
instances, MoMC can solve 35 out of the 100 instances, RMoMC solves 62, LSBnR solves 58,
and BnR solves 35 instances. We note that our choice of using MoMC as our branch-and-
bound algorithm is significant on these instances. Eight instances solved exclusively by our
algorithm are solved in Phase 5, where MoMC is run until the end of the challenge time
limit. Overall, our full algorithm FullA solved 87 of the 100 instances, which is ten more

68

3.4 Exact Portfolio Algorithm

Table 3.10: Detailed per instance results for public instances. The columns 𝑛 and𝑚
refer to the number of vertices and edges of the input graph, 𝑛′ and 𝑚′ refer to the
number of vertices and edges of the reduced graph after reductions have been applied
exhaustively, and ∣C∣ refers to the size of the minimum vertex cover of the input graph.
We list running times for when an algorithm successfully solved the given instance
and “-” when it reached the time limit. The fastest running times for each instance are
highlighted in bold

Graph 𝑛 𝑚 𝑛′ 𝑚′ MoMC RMoMC LSBnR BnR FullA ∣C∣
001 6 160 40 207 0 0 - 1.97 0.55 0.42 0.54 2 586
003 60 541 74 220 0 0 - 1.97 0.55 0.44 0.54 12 190
005 200 819 192 800 1.67 1.96 2.89 3.18 1.60 129
007 8 794 10 130 0 0 - 1.96 0.54 0.44 0.53 4 397
009 38 452 174 645 0 0 - 1.96 0.54 0.43 0.53 21 348
011 9 877 25 973 0 0 - 1.96 0.53 0.45 0.52 4 981
013 45 307 55 440 0 0 - 1.96 0.54 0.45 0.52 8 610
015 53 610 65 952 0 0 - 1.96 0.54 0.45 0.52 10 670
017 23 541 51 747 0 0 - 1.96 0.53 0.44 0.51 12 082
019 200 884 194 862 2.02 1.97 4.64 4.71 1.64 130
021 24 765 30 242 0 0 - 1.97 0.53 0.44 0.52 5 110
023 27 717 133 665 0 0 - 1.96 0.53 0.44 0.53 16 013
025 23 194 28 221 0 0 - 1.96 0.53 0.44 0.53 4 899
027 65 866 81 245 0 0 - 1.96 0.53 0.45 0.56 13 431
029 13 431 21 999 0 0 - 1.97 0.55 0.45 0.56 6 622
031 200 813 198 818 3.00 1.97 87.86 109.45 2.81 136
033 4 410 6 885 138 471 - 1.97 1.19 1.24 1.58 2 725
035 200 884 189 859 1.88 1.97 11.70 11.77 1.76 133
037 198 824 194 810 1.99 1.98 15.58 15.56 1.85 131
039 6 795 10 620 219 753 - 1.98 120.20 127.38 1.75 4 200
041 200 1 040 200 1 023 2.53 1.99 68.26 71.68 2.36 139
043 200 841 198 844 4.68 2.02 237.80 259.31 5.57 139
045 200 1 044 200 1 020 2.28 2.00 37.17 37.79 2.10 137
047 200 1 120 198 1 080 3.06 2.03 83.60 86.87 2.75 140
049 200 957 198 930 2.73 2.00 26.57 26.64 2.15 136
051 200 1 135 200 1 098 2.73 2.01 81.99 83.70 2.24 140
053 200 1 062 200 1 026 2.60 2.03 85.97 88.97 2.41 139
055 200 958 194 938 1.86 2.03 10.37 10.54 1.82 134
057 200 1 200 197 1 139 2.81 2.04 97.06 98.49 2.34 142
059 200 988 193 954 2.47 2.04 20.18 20.30 2.02 137
061 200 952 198 914 3.25 2.04 30.18 32.98 2.49 135
063 200 1 040 200 1 011 3.26 2.05 94.50 102.56 2.77 138
065 200 1 037 200 1 011 2.39 2.06 54.23 54.50 2.13 138
067 200 1 201 200 1 174 3.12 2.07 166.63 179.52 2.91 143
069 200 1 120 196 1 077 2.73 2.07 61.64 64.11 2.32 140
071 200 984 200 952 2.29 2.09 50.94 54.09 2.20 136
073 200 1 107 200 1 078 2.51 2.09 62.07 63.60 2.44 139
075 26 300 41 500 500 3 000 - - 0.39 - 0.39 16 300
077 200 988 193 954 2.69 2.10 20.16 20.25 2.10 137
079 26 300 41 500 500 3 000 - - 0.38 - 0.38 16 300
081 199 1 124 197 1 087 3.30 2.10 189.03 202.95 3.05 141
083 200 1 215 198 1 182 5.25 2.39 239.39 264.19 6.60 144
085 11 470 17 408 3 539 25 955 - - - - -
087 13 590 21 240 441 1 512 - 2.13 - - 3.52 8 400
089 57 316 77 978 16 834 54 847 - - - - -
091 200 1 196 200 1 163 5.91 3.84 293.03 332.93 39.45 145
093 200 1 207 200 1 162 4.46 2.11 141.75 154.99 5.65 143
095 15 783 24 663 510 1 746 - 2.54 - - 4.23 9 755
097 18 096 28 281 579 1 995 - 7.43 - - 6.63 11 185
099 26 300 41 500 500 3 000 - - 0.34 - 0.32 16 300

69

3 Maximum Cardinality Independent Sets

Table 3.11: Detailed per instance results for public instances. The columns 𝑛 and𝑚
refer to the number of vertices and edges of the input graph, 𝑛′ and 𝑚′ refer to the
number of vertices and edges of the reduced graph after reductions have been applied
exhaustively, and ∣C∣ refers to the size of the minimum vertex cover of the input graph.
We list running times for when an algorithm successfully solved the given instance
and “-” when it reached the time limit. The fastest running times for each instance are
highlighted in bold

Graph 𝑛 𝑚 𝑛′ 𝑚′ MoMC RMoMC LSBnR BnR FullA ∣C∣
101 26 300 41 500 500 3 000 - - 0.45 - 0.34 16 300
103 15 783 24 663 513 1 752 - 3.66 - - 4.62 9 755
105 26 300 41 500 500 3 000 - - 0.42 - 0.47 16 300
107 13 590 21 240 435 1 500 - 2.44 - - 3.37 8 400
109 66 992 90 970 20 336 66 350 - - - - -
111 450 17 831 450 17 831 2.53 0.99 - - 2.71 420
113 26 300 41 500 500 3 000 - - 0.52 - 0.47 16 300
115 18 096 28 281 573 1 986 - 4.78 - - 5.40 11 185
117 18 096 28 281 582 2 007 - 5.12 - - 5.39 11 185
119 18 096 28 281 588 2 016 - 4.77 - - 5.33 11 185
121 18 096 28 281 579 1 998 - 4.95 - - 5.05 11 185
123 26 300 41 500 500 3 000 - - 0.45 - 0.48 16 300
125 26 300 41 500 500 3 000 - - 0.41 - 0.45 16 300
127 18 096 28 281 582 2 001 - 4.97 - - 5.06 11 185
129 15 783 24 663 507 1 752 - 3.81 - - 4.89 9 755
131 2 980 5 360 2 179 6 951 382.52 - - - 399.52 1 920
133 15 783 24 663 507 1 746 - 3.49 - - 4.02 9 755
135 26 300 41 500 500 3 000 - - 0.48 - 0.49 16 300
137 26 300 41 500 500 3 000 - - 0.46 - 0.50 16 300
139 18 096 28 281 579 1 995 - 4.84 - - 6.11 11 185
141 18 096 28 281 576 1 995 - 5.27 - - 5.84 11 185
143 18 096 28 281 582 2 001 - 4.87 - - 6.19 11 185
145 18 096 28 281 576 1 989 - 4.83 - - 5.13 11 185
147 18 096 28 281 567 1 974 - 4.46 - - 5.11 11 185
149 26 300 41 500 500 3 000 - - 0.45 - 0.43 16 300
151 15 783 24 663 501 1 728 - 4.09 - - 4.95 9 755
153 29 076 45 570 2 124 16 266 - - - - -
155 26 300 41 500 500 3 000 - - 0.43 - 0.40 16 300
157 2 980 5 360 2 169 6 898 388.56 - - - 434.79 1 920
159 18 096 28 281 582 2 004 - 5.73 - - 5.83 11 185
161 138 141 227 241 41 926 202 869 - - - - -
163 18 096 28 281 582 2 004 - 5.06 - - 5.54 11 185
165 18 096 28 281 576 1 995 - 5.09 - - 5.45 11 185
167 15 783 24 663 510 1 746 - 3.80 - - 4.56 9 755
169 4 768 8 576 3 458 11 014 - - - - -
171 18 096 28 281 576 1 989 - 4.99 - - 5.45 11 185
173 56 860 77 264 17 090 55 568 - - - - -
175 3 523 6 446 2 723 8 570 - - - - -
177 5 066 9 112 3 704 11 797 - - - - -
179 15 783 24 663 504 1 740 - 3.21 - - 4.39 9 755
181 18 096 28 281 573 1 989 - 4.46 0.19 - 0.20 11 185
183 72 420 118 362 30 340 133 872 - - - - -
185 3 523 6 446 2 723 8 568 - - - - -
187 4 227 7 734 3 264 10 286 - - - - -
189 7 400 13 600 5 802 18 212 - - - - -
191 4 579 8 378 3 539 11 137 - - - - -
193 7 030 12 920 5 510 17 294 - - - - -
195 1 150 81 068 1 150 81 068 - - - - -
197 1 534 127 011 1 534 127 011 - - - - -
199 1 534 126 163 1 534 126 163 - - - - -

70

3.4 Exact Portfolio Algorithm

Table 3.12:Detailed per instance results for private instances. The columns 𝑛 and𝑚
refer to the number of vertices and edges of the input graph, 𝑛′ and 𝑚′ refer to the
number of vertices and edges of the reduced graph after reductions have been applied
exhaustively, and ∣C∣ refers to the size of the minimum vertex cover of the input graph.
We list running times for when an algorithm successfully solved the given instance
and “-” when it reached the time limit. The fastest running times for each instance are
highlighted in bold.

Graph 𝑛 𝑚 𝑛′ 𝑚′ MoMC RMoMC LSBnR BnR FullA ∣C∣
002 51 795 63 334 0 0 - 1.97 0.55 0.44 0.54 10 605
004 8 114 26 013 0 0 - 1.96 0.55 0.44 0.54 2 574
006 200 751 188 716 1.64 1.96 1.16 1.16 1.57 126
008 7 537 72 833 0 0 - 1.96 0.54 0.44 0.53 3 345
010 199 774 189 756 2.04 1.96 3.25 3.27 1.63 127
012 53 444 68 044 0 0 - 1.96 0.54 0.45 0.52 10 918
014 25 123 31 552 0 0 - 1.96 0.54 0.45 0.52 5 111
016 153 802 153 802 - - - - -
018 49 212 63 601 0 0 - 1.96 0.53 0.44 0.51 10 201
020 57 287 71 155 0 0 - 1.97 0.53 0.44 0.52 11 648
022 12 589 33 129 0 0 - 1.97 0.53 0.44 0.52 6 749
024 7 620 47 293 0 0 - 1.96 0.53 0.44 0.53 4 364
026 6 140 36 767 0 0 - 1.96 0.53 0.44 0.53 2 506
028 54 991 67 000 0 0 - 1.97 0.55 0.45 0.56 11 211
030 62 853 79 557 0 0 - 1.97 0.55 0.46 0.56 13 338
032 1 490 2 680 1 081 3 426 41.09 - - - 106.28 960
034 1 490 2 680 1 090 3 467 39.08 1 577.43 - - 119.60 960
036 26 300 41 500 500 3 000 - 1.98 0.53 2.65 0.55 16 300
038 786 14 024 460 6 623 23.88 2.29 18.45 18.12 4.11 605
040 210 625 210 625 190.43 179.29 - - 210.26 145
042 200 974 200 952 2.10 1.99 53.16 55.35 2.10 136
044 200 1 186 200 1 147 3.05 1.99 126.19 136.99 2.76 142
046 200 812 200 812 3.06 2.02 150.57 161.63 2.70 137
048 200 1 052 198 1 022 2.57 2.03 37.59 37.72 2.10 138
050 200 1 048 200 1 025 3.43 2.01 70.89 72.05 2.95 140
052 200 1 019 198 1 000 2.76 2.02 32.27 33.00 2.32 138
054 200 985 198 951 2.76 2.03 46.67 47.86 2.36 137
056 200 1 117 200 1 089 3.11 2.03 127.38 142.38 2.63 141
058 200 1 202 200 1 171 3.21 2.04 68.81 70.31 2.71 142
060 200 1 147 200 1 118 2.75 2.04 110.27 117.51 2.35 141
062 199 1 164 199 1 128 3.19 2.05 87.30 97.72 2.75 141
064 200 1 071 198 1 040 2.46 2.05 43.76 43.94 2.12 138
066 200 884 198 875 2.58 2.07 12.14 12.14 2.27 134
068 200 983 198 961 1.94 2.07 13.08 12.98 1.92 135
070 200 887 198 856 2.22 2.07 17.32 17.59 2.04 133
072 200 1 204 198 1 176 2.47 2.09 62.51 69.43 1.98 140
074 200 820 194 785 2.55 2.10 10.65 10.62 2.02 132
076 26 300 41 500 500 3 000 - 2.10 0.39 - 0.39 16 300
078 11 349 17 739 357 1 245 - 2.11 - - 2.60 7 015
080 26 300 41 500 500 3 000 - - 0.38 - 0.40 16 300
082 200 978 196 956 3.50 2.09 84.63 93.88 3.02 138
084 13 590 21 240 435 1 503 - 2.08 - - 3.26 8 400
086 26 300 41 500 500 3 000 - 2.07 0.34 - 0.38 16 300
088 26 300 41 500 500 3 000 - 2.06 0.34 - 0.37 16 300
090 11 349 17 739 357 1 245 - 2.05 - - 2.39 7 015
092 450 17 794 450 17 794 2.20 2.04 - - 2.70 420
094 5 960 10 720 4 217 13 456 - - - - -
096 26 300 41 500 500 3 000 - - 0.29 - 0.37 16 300
098 26 300 41 500 500 3 000 - - 0.33 - 0.51 16 300
100 26 300 41 500 500 3 000 - 1.42 0.41 22.52 0.51 16 300

71

3 Maximum Cardinality Independent Sets

Table 3.13:Detailed per instance results for private instances. The columns 𝑛 and𝑚
refer to the number of vertices and edges of the input graph, 𝑛′ and 𝑚′ refer to the
number of vertices and edges of the reduced graph after reductions have been applied
exhaustively, and ∣C∣ refers to the size of the minimum vertex cover of the input graph.
We list running times for when an algorithm successfully solved the given instance
and “-” when it reached the time limit. The fastest running times for each instance are
highlighted in bold

Graph 𝑛 𝑚 𝑛′ 𝑚′ MoMC RMoMC LSBnR BnR FullA ∣C∣
102 26 300 41 500 500 3 000 - - 0.45 - 0.38 16 300
104 26 300 41 500 500 3 000 - - 0.35 - 0.46 16 300
106 2 980 5 360 2 136 6 809 389.26 - - - 424.79 1 920
108 26 300 41 500 500 3 000 - - 0.25 - 0.50 16 300
110 98 128 161 357 29 168 140 392 - - - - -
112 18 096 28 281 576 1 992 - 5.27 - - 5.61 11 185
114 15 783 24 663 504 1 740 - 3.73 - - 4.09 9 755
116 26 300 41 500 500 3 000 - - 0.51 - 0.31 16 300
118 26 300 41 500 500 3 000 - - 0.40 - 0.45 16 300
120 70 144 116 378 6 029 38 285 - - - - -
122 26 300 41 500 500 3 000 - - 0.44 - 0.49 16 300
124 26 300 41 500 500 3 000 - - 0.48 - 0.50 16 300
126 18 096 28 281 582 2 001 - 5.23 - - 5.79 11 185
128 26 300 41 500 500 3 000 - - - - -
130 26 300 41 500 500 3 000 - - 0.47 - 0.49 16 300
132 15 783 24 663 513 1 755 - 3.70 - - 4.24 9 755
134 26 300 41 500 500 3 000 - - 0.40 - 0.48 16 300
136 18 096 28 281 585 2 007 - 5.03 - - 5.49 11 185
138 18 096 28 281 576 1 992 - 5.42 - - 5.57 11 185
140 26 300 41 500 500 3 000 - - 0.44 - 0.48 16 300
142 2 980 5 360 2 180 6 946 366.96 - - - 399.39 1 920
144 26 300 41 500 500 3 000 - - 0.45 - 0.46 16 300
146 26 300 41 500 500 3 000 - - 0.45 - 0.44 16 300
148 26 300 41 500 500 3 000 - - 0.44 - 0.46 16 300
150 26 300 41 500 500 3 000 - - 0.43 - 0.42 16 300
152 13 590 21 240 438 1 506 - 2.27 0.32 - 0.38 8 400
154 15 783 24 663 504 1 737 - 3.51 - - 4.23 9 755
156 450 17 809 450 17 809 2.56 1.13 - - 2.65 420
158 15 783 24 663 507 1 746 - 3.73 - - 4.65 9 755
160 18 096 28 281 576 1 989 - 4.96 - - 5.33 11 185
162 50 635 83 075 13 066 63 758 - - - - -
164 29 296 46 040 1 210 8 666 - - - - -
166 3 278 5 896 2 400 7 643 584.89 - - - -
168 2 980 5 360 2 180 6 943 369.18 - - - 413.56 1 920
170 15 783 24 663 507 1 746 - 3.04 - - 4.10 9 755
172 4 025 7 435 3 158 9 863 - - - - -
174 2 980 5 360 2 180 6 955 355.88 - - - 393.39 1 920
176 15 783 24 663 501 1 734 - 3.36 - - 4.19 9 755
178 18 096 28 281 573 1 995 - 5.39 - - 5.41 11 185
180 15 783 24 663 501 1 731 - 3.87 - - 4.75 9 755
182 26 300 41 500 500 3 000 - - 0.27 - 0.26 16 300
184 6 290 11 560 4 904 15 397 - - - - -
186 26 300 41 500 500 3 000 - - 0.26 - 0.26 16 300
188 6 660 12 240 5 220 16 375 - - - - -
190 3 875 7 090 2 997 9 424 - - - - -
192 2 980 5 360 2 180 6 941 378.92 - - - 415.68 1 920
194 1 150 80 851 1 150 80 851 314.14 309.04 - - 534.28 1 100
196 1 534 126 082 1 534 126 082 - - - - -
198 1 150 80 072 1 150 80 072 705.24 699.15 - - 930.91 1 100
200 1 150 80 258 1 150 80 258 23.39 19.79 - - 20.49 1 100

72

3.5 Targeted Branching Rules

instances than the second-place submission (peaty [PT19], solving 77), and eleven more
than the third-place submission (bogdan [Zav19]), solving 76). Our algorithm dominates
these other approaches: except for one graph, our algorithm solves all instances that peaty
and bogdan can solve combined.

We briefly describe these two algorithms. The peaty algorithmuses reductions to compute
a reduced graph of the input followed by an unpublished maximum weight clique solver
on the complement of each of the connected components of the reduced graph to assemble
a solution. The clique solver is similar to MaxCLQ by Li and Quan [LQ10] but is more
general. Local search is used to obtain an initial solution. On the other hand, bogdan
implemented a small suite of simple reductions (including vertex folding, isolated clique
removal, and degree-1 removal) together with a recent maximum clique solver by Szabó
and Zavalnij [SZ18].

By examining both the public and private instances, we see that a large part of the instances
(instances below 100) can be solved by either RMoMC, LSBnR, or BnR. MoMC has problems
solving some of those instances. Most “harder” instances (instances above 100) are solved
by either RMoMC or LSBnR with very little overlap between both algorithms. As noted
previously, some of the harder instances can only be solved by using MoMC. Our algorithm
FullA combines all approaches so that we solve all instances that are solved by the individual
algorithms. Finally, we like to note that our algorithm is able to solve many instances in less
than ten seconds and solves many instances significantly faster than the time intervals used
for classifying those instances with Gurobi [Gur21] (see Section 2.3.2.a)).

3.5 Targeted Branching Rules

As already presentedmultiple times throughout this chapter, reductions can have a large prac-
tical impact. Both heuristic and exact approaches benefit greatly from the use of reductions.
However, most previous research aimed at improving the performance of branch-and-reduce
algorithms so far has been focused on either proposing more practically efficient special
cases of already existing rules [CLZ17; Dah+16a] or maintaining dependencies between
reduction rules to reduce unnecessary checks [AC19; HSS19]. Nonetheless, improving
other aspects of branch-and-reduce has been shown to benefit its performance [PvdG21].
In particular, the branching strategy has been shown to have a significant impact on the
running time [AI16]. Up to now, the most frequently used branching strategy employed
in many state-of-the-art algorithms selects branching vertices solely based on their degree.
Other factors, such as the actual reduction rules used during the algorithm’s execution, are
rarely taken into account. However, recently there have been some attempts to incorporate
such branching strategies for other problems, such as finding a maximum 𝑘-plex [Gao+18].

In this section, we propose and examine several novel strategies for selecting branching
vertices. These strategies follow two main approaches motivated by existing research. First,
branching on vertices that decompose the graph into several connected components that
can be solved independently. Solving components individually has been shown to improve
the performance of branch-and-reduce in practice significantly, especially when the size of
the largest component is small [AC19]. Second, branching on vertices whose removal leads

73

3 Maximum Cardinality Independent Sets

to reduction rules becoming applicable again. In turn, this leads to a smaller reduced graph
and thus improved performance. For each approach, we present several concrete strategies
that vary in their complexity. Finally, we evaluate their performance by comparing them
to the aforementioned default strategy used in the state-of-the-art algorithm by Akiba and
Iwata [AI16]. For this purpose, we use of a broad spectrum of instances from different graph
classes and applications. Our experiments indicate that our strategies are able to find an
optimal solution faster than the default strategy on a large set of instances. In particular,
our reduction-based packing rule is able to outperform the default strategy on 65% of all
instances. Furthermore, our decomposition-based strategies achieve a speedup of 1.22 (over
the default strategy) over all instances.

Organization. We begin this section by introducing important previous work on branch-
ing rules in exact algorithms for MIS and its complementary problems in Section 3.5.1.
We then present our novel branching strategies based on decomposition and reductions in
Section 3.5.2 and Section 3.5.3. Finally, Section 3.5.4 covers our experimental evaluation
and highlights the impact of different branching strategies on state-of-the-art algorithms.

3.5.1 Previous Work on Branching Strategies

The most commonly used branching strategy for MIS and MVC is to select a vertex of
maximum degree. Fomin et al. [FGK09] show that using a vertex of maximum degree that
also minimizes the number of edges between its neighbors is optimal with respect to their
complexity measure. The algorithm by Akiba and Iwata [AI16], which we augment with
our new branching rules, also uses this strategy. Akiba and Iwata also compare this strategy
against branching on a vertex of minimum degree or a random vertex. They show that both
of these perform significantly worse than branching on a maximum degree vertex (also see
Section 3.1.5).

Xiao and Nagamochi [XN17] also use this strategy in most cases. For dense subgraphs,
however, they use an edge branching strategy: They branch on an edge {𝑢, 𝑣} where
∣𝑁(𝑢) ∩ 𝑁(𝑣)∣ is sufficiently large (depending on the maximum degree of the graph)
by excluding both 𝑢 and 𝑣 in one branch and applying the alternative reduction (see Sec-
tion 3.5.3.b)) to {𝑢} and {𝑣} in the other branch.

Bourgeois et al. [Bou+12] use maximum degree branching as long as there are vertices of
degree of at least five. Otherwise, they utilize specialized algorithms to solve subinstances
with an average degree of three or four. Those algorithms perform a rather complex case
analysis to find a suitable branching vertex. The analysis is based on exploiting structures
that contain 3- or 4-cycles. Branching on specific vertices in such structures often enables
additional reduction rules to be applied.

Chen et al. [CKX10] use the notion of good pairs that are advantageous for branching.
They choose these good pairs by a set of rules which are omitted here. They combine these
with so-called tuples of a set of vertices and the number of vertices from this set that must
be included in a maximum independent set. This information can be used when branching
on a vertex contained in that set to remove additional vertices from the graph. Akiba and

74

3.5 Targeted Branching Rules

Iwata [AI16] use the same concept in their packing rule. Chen et al. combine good pairs,
tuples, and high degree vertices for their branching strategy.

Most algorithms for MC (e.g., [ST14; Tom+13]) compute a greedy coloring that assigns a
minimum integer (coloring number) to each vertex. They then branch on vertices with the
highest high coloring numbers. More sophisticated MC algorithms use MaxSAT encodings
to prune the set of branching vertices [LFX13; LJM17; LQ10]. Li et al. [LJX15] combine
greedy coloring and MaxSAT reasoning to further reduce the number of branching vertices.

Another approach for MC is using the degeneracy order 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑛 where 𝑣𝑖 is a
vertex of the smallest degree in 𝐺 ⧵ {𝑣1,…𝑣𝑖−1}. Carraghan and Pardalos [CP90] present
an algorithm that branches on vertices in descending degeneracy order. Li et al. [LFX13]
introduce another vertex ordering using iterative maximum independent set computations
(which might be easier than MC on some graphs) and breaking ties according to the degen-
eracy order.

3.5.2 Decomposition Branching
Our first approach to improve the default branching strategy found in many state-of-the-art
algorithms (including that of Akiba and Iwata [AI16]) is to decompose the graph into several
connected components. Subsequently, processing these components individually has been
shown to improve the performance of branch-and-reduce in practice [AC19]. The algorithm
by Akiba and Iwata also makes use of this. To this end, we now present three strategies with
varying computational complexity: articulation points, edge cuts, and nested dissections.

3.5.2.a) Articulation Points

First, we are concerned with finding single vertices that are able to decompose a graph into at
least two connected components. Such points are called articulation points (or cut vertices).
Articulation points can be computed in linear time O(𝑛 +𝑚) using a simple depth-first
search (DFS) algorithm (see Hopcroft and Tarjan [HT73] for a detailed description). In
particular, a vertex 𝑣 is an articulation point if it is either the root of the DFS tree and has
at least two children or any non-root vertex that has a child 𝑢, such that no vertex in the
subtree rooted at 𝑢 has a back edge to one of the ancestors of 𝑣.

For our first branching strategy, we maintain a set of articulation points 𝐴 ⊆ 𝑉. When
selecting a branching vertex, we first discard all invalid vertices from 𝐴, i.e., vertices that
were removed from the graph by a preceding reduction step. If this results in 𝐴 becoming
empty, a new set of articulation points is computed on the current graph in linear time.
If no articulation points exist, we select a vertex based on the default branching strategy.
Otherwise, if 𝐴 contains at least one vertex, an arbitrary one from 𝐴 is chosen as the
branching vertex. Figure 3.12 illustrates branching on an articulation point.

Even though this strategy introduces only a small (linear) overhead, articulation points
can be rare depending on the type of graph. This results in the default branching strategy
being selected rather frequently. Our preliminary experiments also indicate that articulation
points are rarely found at higher depth. However, due to their low overhead, we can justify
searching for them whenever 𝐴 becomes empty.

75

3 Maximum Cardinality Independent Sets

branch

Figure 3.12: Branching on an articulation point (circled vertex) decomposes the graph
into two connected components (gray boxes) that can be solved independently. Only
the branch where the vertex is excluded from the independent set is shown.

3.5.2.b) Edge Cuts

To alleviate the restrictive nature of articulation points, we now propose a more flexible
branching strategy based on (minimal) edge cuts. In general, we want to find small vertex
separators, i.e., a set of vertices whose removal disconnects the graph. We do so by making
use of vertex separators derived from minimum edge cuts.

As described in Section 2.1.2, a cut between two sets of vertices 𝑆 and 𝑇 = 𝑉 ⧵ 𝑆 is a set
of edges 𝐸(𝑆,𝑇) = {{𝑢, 𝑣} ∈ 𝐸 ∣ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇}. A cut is a minimum cut if it has minimal
cardinality among all possible cuts of a graph. In practice, finding minimum cuts often yields
trivial cuts with either 𝑆 or 𝑇 only consisting of a single vertex with the minimum degree.
Thus, we are interested in finding 𝑠-𝑡-cuts, i.e., cuts where 𝑆 and 𝑇 contain specific vertices
𝑠, 𝑡 ∈ 𝑉. Finding these cuts can be done efficiently in practice, e.g., using a preflow push
algorithm [GT88]. However, selecting the vertices 𝑠 and 𝑡 to ensure reasonably balanced
cuts can be tricky. Natural choices include random vertices and vertices that are far apart in
terms of their shortest path distance. However, our preliminary experiments indicate that
selecting random vertices of maximum degree for 𝑠 and 𝑡 seems to produce the best results.
Finally, to derive a vertex separator from a cut, one can compute an MVC on the bipartite
graph induced by the cut, e.g., using the Hopcroft-Karp algorithm [HK73]. This separator
can then be used to select branching vertices. In particular, we continuously branch on
vertices from the separator.

Overall, our second strategy works similarly to the first one: We maintain a set of possible
branching vertices that were selected by computing a minimum 𝑠-𝑡-cut and turning it into a
vertex separator. Vertices that were removed by reduction are discarded from this set, and
once it is empty, a new cut computation is started. However, in contrast to the first strategy,
finding a set of suitable branching vertices is much more likely.

In order to avoid separators that contain too many vertices and thus would require too
many branching steps to disconnect the graph, we only keep those that do not exceed a
certain size and balance threshold. The specific values for these thresholds are presented in
Section 3.5.4. Finally, if no suitable separator is found, we use the default branching strategy.
In this case, we do not try to find a new separator for a fixed number of branching steps, as
finding one is both unlikely and costly.

76

3.5 Targeted Branching Rules

3.5.2.c) Nested Dissection

Both of our previous strategies dynamicallymaintain a set of branching vertices. Even though
this comes with the advantage that most of the computed vertices remain viable candidates
for some branching steps, it introduces a noticeable overhead. To alleviate this, our last
strategy uses a static ordering of possible branching vertices computed once at the beginning
of the algorithm. For this purpose, we make use of a nested dissection ordering [Geo73].

A nested dissection ordering of the vertices of a graph 𝐺 is obtained by recursively
computing balanced bipartitions (𝐴,𝐵) and a vertex separator S that separates 𝐴 and 𝐵.
The actual ordering is then given by concatenating the orderings of 𝐴 and 𝐵 followed by
the vertices of S . Thus, if we select branching vertices based on the reverse of a nested
dissection ordering, we continuously branch on vertices that disconnect the graph into
balanced partitions. We compute such an ordering once after the initial reduction phase.

There are two main optimizations that we use when considering the nested dissection
ordering. First, we limit the number of recursive calls during the nested dissection com-
putation. We do so because we noticed that vertices at the end of the ordering seldom
lead to a decomposition of the graph. This is due to the graph structure being changed by
reductions, which can lead to separators becoming invalid. Furthermore, similar to the
edge-cut-based strategy, we limit the size of separators considered during branching using a
threshold. Again, this is done to ensure that we do not require too many branching steps to
decompose the graph. The specific value for this size threshold is given in Section 3.5.4. If
any separator in the nested dissection exceeds this threshold, we use the default strategy.

3.5.3 Reduction Branching

Our second main approach to selecting good branching vertices is to choose a vertex whose
removal will enable the application of new reduction rules. During every reduction step, we
find a list of candidate vertices to branch on. The following sections will demonstrate how
we identify such branching candidate vertices with little computational overhead in practice.
For ease of reading, we briefly repeat the relevant reduction rules introduced in Section 3.1.4.
Out of the candidates found, we then select a vertex of maximum degree. If the degree of all
candidate vertices lies below a threshold (defined in Section 3.5.4) or no candidate vertices
were found, we fall back to branching on a vertex of maximum degree. The rationale here
is that a vertex of large degree changes the graph’s structure more than a vertex of small
degree, even if that vertex is guaranteed to enable the application of a reduction rule. Also,
our current strategies (except the packing-based rule in Section 3.5.3.d)) only allow the
application of the targeted reduction rule in the excluding branch. However, in the including
branch, all neighbors are removed from the graph as well since they already have an adjacent
vertex in the solution. Thus, in both branches, multiple vertices are removed.

We also performed preliminary experiments with storing the candidate vertices in a
priority queue without resetting after every branch. However, changes were too frequent for
this approach to be faster because of the high amount of priority queue operations.

77

3 Maximum Cardinality Independent Sets

branch twin

a b a b

Figure 3.13: Vertices 𝑎 and 𝑏 are almost twins. After branching on the circled vertex
they become twins (in the excluding branch) and can be reduced.

3.5.3.a) Almost Twins

The first reduction we target is the twin reduction by Xiao and Nagamochi [XN13].

Definition 3.6 (Twins)
In a graph 𝐺 = (𝑉,𝐸) two vertices 𝑢 and 𝑣 are called twins if 𝑁(𝑢) = 𝑁(𝑣) and 𝑑(𝑢) =
𝑑(𝑣) = 3.

Theorem 3.7 (Twin Reduction)
In a graph 𝐺 = (𝑉,𝐸) let vertices 𝑢 and 𝑣 be twins. If there is an edge among 𝑁(𝑢), there
is always a maximum independent set that includes {𝑢, 𝑣} and therefore excludes 𝑁(𝑢).
Otherwise, let 𝐺′ = (𝑉′, 𝐸′) be the graph with 𝑉′ = (𝑉 ⧵𝑁[{𝑢, 𝑣}]) ∪ {𝑤} where 𝑤 ∉ 𝑉 and
𝐸′ = (𝐸 ∩ (𝑉′2)) ∪ {{𝑤,𝑥} ∣ 𝑥 ∈ 𝑁

2(𝑢)}} and let I′ be a maximum independent set in 𝐺′.

Then, I =
⎧⎪⎪
⎨
⎪⎪⎩

I′ ∪ {𝑢, 𝑣} , if 𝑤 ∉ I′
(I′ ⧵ {𝑤}) ∪𝑁(𝑢) , else

is a maximum independent set in 𝐺.

We now define almost twins as follows:

Definition 3.8 (Almost Twins)
In a graph 𝐺 = (𝑉,𝐸) two non-adjacent vertices 𝑢 and 𝑣 are called almost twins if 𝑑(𝑢) = 4,
𝑑(𝑣) = 3 and𝑁(𝑣) ⊆ 𝑁(𝑢) (i.e.,𝑁(𝑢) =𝑁(𝑣) ∪ {𝑤}).

Clearly, after removing 𝑤, 𝑢 and 𝑣 are twins, so we can apply the twin reduction. Finding
almost twins can be done while searching for twins: The original algorithm checks for each
vertex 𝑣 of degree three whether there is a vertex 𝑢 ∈ 𝑁2(𝑣)with 𝑑(𝑢) = 3 and𝑁(𝑢) =𝑁(𝑣).
We augment this algorithm by simultaneously also searching for 𝑢 ∈ 𝑁2(𝑣) with 𝑑(𝑢) = 4
and𝑁(𝑣) ⊆ 𝑁(𝑢). This induces about the same computational cost for degree-4 vertices
in𝑁2(𝑣) as for degree-3 vertices. While there might be instances where this causes high
overhead, we expect the practical slowdown to be small. Figure 3.13 illustrates branching
for almost twins.

3.5.3.b) Almost Funnels

Next, we consider the funnel reduction which is a special case of the alternative reduction
by Xiao and Nagamochi [XN13].

78

3.5 Targeted Branching Rules

Definition 3.9 (Alternative Sets)
In a graph 𝐺 = (𝑉,𝐸) two non-empty, disjoint subsets 𝐴,𝐵 ⊆ 𝑉 are alternatives if ∣𝐴∣ = ∣𝐵∣
and there is a maximum independent set I in 𝐺 such that I ∩ (𝐴 ∪ 𝐵) is either 𝐴 or 𝐵.

Theorem 3.10 (Alternative Reduction)
In a graph 𝐺 = (𝑉,𝐸) let 𝐴 and 𝐵 be alternative sets. Let 𝐺′ = (𝑉′, 𝐸′) the graph with
𝑉′ = 𝑉 ⧵ (𝐴 ∪ 𝐵 ∪ (𝑁(𝐴) ∩ 𝑁(𝐵))) and 𝐸′ = {{𝑢, 𝑣} ∈ 𝐸 ∣ 𝑢, 𝑣 ∈ 𝑉′} ∪ {{𝑢, 𝑣} ∣ 𝑢 ∈
𝑁(𝐴) ⧵ 𝑁[𝐵], 𝑣 ∈ 𝑁(𝐵) ⧵ 𝑁[𝐴]} and let I′ be a maximum independent set in 𝐺′. Then,

I =

⎧⎪⎪
⎨
⎪⎪⎩

I′ ∪ 𝐴 , if (𝑁(𝐴) ⧵ 𝑁[𝐵]) ∩ I′ = ∅
I′ ∪ 𝐵 , else

is a maximum independent set in 𝐺.

Note that the alternative reduction adds new edges between existing vertices of the graph,
which might not be beneficial in every case. To counteract this, the algorithm by Akiba and
Iwata [AI16] only uses special cases, one of which is the funnel reduction.

Definition 3.11 (Funnel)
In a graph𝐺 = (𝑉,𝐸) two adjacent vertices 𝑢 and 𝑣 are called funnels if𝐺𝑁(𝑣)⧵{𝑢} is a complete
graph, i.e., if𝑁(𝑣) ⧵ {𝑢} is a clique.

Theorem 3.12 (Funnel Reduction)
In a graph 𝐺 = (𝑉,𝐸) let 𝑢 and 𝑣 be funnels. Then, {𝑢} and {𝑣} are alternative sets.

Again, we define a structure that allows us to apply the funnel reduction after the removal
of a single vertex:

Definition 3.13 (Almost Funnel)
In a graph 𝐺 = (𝑉,𝐸) two adjacent vertices 𝑢 and 𝑣 are called almost funnels if 𝑢 and 𝑣 are
not funnels and there is a vertex 𝑤 such that𝑁(𝑣) ⧵ {𝑢,𝑤} induces a clique.

By removing𝑤, 𝑢 and 𝑣 become funnels. The original funnel algorithm checks whether 𝑢
and 𝑣 are funnels by iterating over the vertices in𝑁(𝑣) ⧵ {𝑢} and checking whether they are
adjacent to all previous vertices. Once a vertex is found that is not adjacent to all previous
vertices, the algorithm concludes that 𝑢 and 𝑣 are not funnels and terminates. We augment
this algorithm by not immediately terminating it in this case. Instead, we consider the
following two cases: (1) The current vertex 𝑤 is not adjacent to at least two of the previous
vertices. In this case, we can check whether𝑁(𝑣) ⧵{𝑢,𝑤} induces a clique. (2)𝑤 is adjacent
to all but one previous vertex 𝑤′. In this case, both 𝑤 and 𝑤′might be candidate branching
vertices. Thus, we check whether𝑁(𝑣) ⧵{𝑢,𝑤} or𝑁(𝑣) ⧵{𝑢,𝑤′} induce a clique. This adds
up to two additional clique checks (of slightly smaller size) performed in addition to the one
clique check in the original algorithm.

3.5.3.c) Almost Unconfined

The core idea of the unconfined reduction by Xiao and Nagamochi [XN13; XN17] is to
detect vertices not required for a maximum independent set. These vertices can therefore

79

3 Maximum Cardinality Independent Sets

be removed from the graph. To find these vertices, an algorithm is used to contradict the
assumption that every maximum independent set contains the vertex.

Definition 3.14 (Child, Parent)
In a graph𝐺 = (𝑉,𝐸)with an independent setI , a vertex 𝑣 is called a child ofI if ∣𝑁(𝑣)∩I ∣ = 1
and the unique neighbor of 𝑣 in I is called the parent of 𝑣.

Algorithm 3.4 shows the algorithm used by Akiba and Iwata [AI16] to detect so-called
unconfined vertices.

Algorithm 3.4 : Algorithm for finding unconfined vertices [XN13; XN17].
Data : 𝐺 = (𝑉,𝐸), 𝑣 ∈ 𝑉
Result : True if 𝑣 is unconfined, False otherwise

1 𝑆← {𝑣}
2 while True do
3 𝑢← 𝑢 ∈ 𝑁(𝑆) such that ∣𝑁(𝑢) ∩ 𝑆∣ = 1 and ∣𝑁(𝑢) ⧵ 𝑁[𝑆]∣ is minimized
4 if 𝑢 = None then
5 return False
6 if𝑁(𝑢) ⧵ 𝑁[𝑆] = ∅ then
7 return True
8 if ∣𝑁(𝑢) ⧵ 𝑁[𝑆]∣ = 1 then
9 𝑆← 𝑆 ∪ (𝑁(𝑢) ⧵ 𝑁[𝑆])

10 else
11 return False

Theorem 3.15 (Unconfined Reduction)
In a graph 𝐺 = (𝑉,𝐸), if Algorithm 3.4 returns true for an unconfined vertex 𝑣, there is always
a maximum independent set that does not contain 𝑣.

Again, we define a vertex to be almost unconfined:

Definition 3.16 (Almost Unconfined)
In a graph 𝐺 = (𝑉,𝐸) a vertex 𝑣 is called almost unconfined if 𝑣 is not unconfined but there is
a vertex 𝑤 such that 𝑣 is unconfined in 𝐺 ⧵ {𝑤}.

Here, we only present an augmentation that detects some almost unconfined vertices.
In particular, if at any point during the algorithm’s execution there is only one extending
child, i.e., a child 𝑢 of 𝑆 with𝑁(𝑢) ⧵ 𝑁[𝑆] = {𝑤}, then removal of 𝑤makes 𝑣 unconfined.
During Algorithm 3.4, we collect all these vertices 𝑤 and add them to the set of candidate
branching vertices if the algorithm cannot already remove 𝑣. This only adds the overhead of
temporarily storing the potential candidates and adding them to the actual candidate list if
𝑣 is not removed.

80

3.5 Targeted Branching Rules

3.5.3.d) Almost Packing

The core idea behind the packing rule by Akiba and Iwata [AI16] is that when the excluding
branch of a vertex 𝑣 is selected, one can assume that no maximum independent set contains
𝑣. Otherwise, if there is a maximum independent set that contains 𝑣, the algorithm finds it
in the including branch of 𝑣. Based on the assumption that no maximum independent set
includes a vertex 𝑣, constraints for the remaining vertices can be derived. For example, a
maximum independent set that does not contain 𝑣 has to include at least two neighbors of
𝑣. The corresponding constraint is ∑𝑢∈𝑁(𝑣) 𝑥𝑢 ≥ 2, where 𝑥𝑢 is a binary variable indicating
whether a vertex is included in the current solution. Otherwise, we find a solution of the
same size in the branch including 𝑣. The algorithm creates such constraints when branching
or reducing and updates them accordingly during the reductions and branching steps. When
a vertex 𝑣 is eliminated from the graph, 𝑥𝑣 gets removed from all constraints. If 𝑣 is included
in the current solution, the corresponding right sides are also decreased by one.

A constraint ∑𝑣∈𝑆⊂𝑉 𝑥𝑣 ≥ 𝑘 can be utilized in two reductions. First, if 𝑘 is equal to the
number of variables ∣𝑆∣, all vertices from 𝑆 have to be included in the current solution. If
there are edges between vertices from 𝑆, then no valid solution can include all vertices from
𝑆, so the branch is pruned. Second, if there is a vertex 𝑣 such that ∣𝑆∣− ∣𝑁(𝑣)∩ 𝑆∣ < 𝑘, then 𝑣
has to be excluded from the current solution. If 𝑘 > ∣𝑆∣, the constraint can not be fulfilled
and the current branch is pruned.

In our branching strategy, we target both reductions. If there is a constraint∑𝑣∈𝑆⊂𝑉 𝑥𝑣 ≥ 𝑘,
where ∣𝑆∣ = 𝑘 + 1, excluding any vertex of 𝑆 from the solution or including a vertex of 𝑆 that
has one neighbor in 𝑆 enables the first reduction. Thus, we consider all vertices in 𝑆 for
branching. Note that including a vertex from 𝑆 that has more than one neighbor in 𝑆makes
the constraint unfulfillable and the branch is pruned.

If there is a constraint ∑𝑣∈𝑆⊂𝑉 𝑥𝑣 ≥ 𝑘 and a vertex 𝑣, such that 𝑘 = ∣𝑆∣ − ∣𝑁(𝑣) ∩ 𝑆∣,
excluding any vertex of 𝑆 ⧵ 𝑁(𝑣) from the solution or including a vertex of 𝑆 ⧵ 𝑁(𝑣) that
has at least one neighbor in 𝑆 ⧵ 𝑁(𝑣) enables the second reduction. Thus, we consider all
vertices in 𝑆 ⧵ 𝑁(𝑣) for branching.

In contrast to our previous reduction-based branching rules, packing reductions can also
be applied in the including branch in many cases. Detecting these branching candidates can
be done with small constant overhead while performing the packing reduction.

3.5.4 Experimental Evaluation
In this section, we present the results of our experimental evaluation. The tables and figures
presented show aggregated results. For detailed results of all instances, see Appendix E.

Methodology. We augment a C++adaptation of the algorithm by Akiba and Iwata [AI16]
with our branching strategies and compile it with g++ version 9.3.0 using full optimizations
(-O3). Our code is publicly available on GitHub6. We execute all our experiments on
Machine B described in Section 2.3.2.c). All numbers reported are arithmetic means of
three runs with a timeout of ten hours. Instances include the “easy” instances used for

6https://github.com/Hespian/CutBranching

81

https://github.com/Hespian/CutBranching

3 Maximum Cardinality Independent Sets

the PACE Challenge, complements of maximum clique instances, and sparse networks
taken from the set of instances described in Section 2.3.2.a). Detailed instance information
can be found in Appendix A. Our original set of instances contained the first 80 PACE
instances, 53 DIMACS instances, and 34 sparse networks. In particular, this set contained
all corresponding instances used by Akiba and Iwata [AI16] and additional sparse networks.
From the final set of instances, we excluded all instances that (1) required no branches,
(2) on which all techniques had a running time of less than 0.1 seconds, or (3) on which
no technique was able to find a solution within ten hours. The remaining set of instances
comprises 48 PACE instances, 37 DIMACS instances, and 16 sparse networks.

Algorithm Configuration. We use a C++ adaptation of the implementation by Akiba
and Iwata [AI16] in its default configuration as a basis for our algorithm. Preliminary
experiments on a subset of our instances were used to find suitable values for the parameters
of our techniques. In particular, we used the geometric mean over all instances of the
speedup over the default branching strategy as a basis for the following decisions. For the
technique based on edge cuts, we only use cuts that contain at most 25 vertices and where the
smaller side of the cut contains at least ten percent of the remaining vertices. If no suitable
separator is found, we skip ten branching steps. For computing nested dissections, we use
InertialFlowCutter [Got+19] with the KaFFPa [SS13b] backend. The KaFFPa partitioner
is configured to use the strong preset with a fixed seed of 42. For branching, we use three
levels of nested dissections with a minimum balance of at least 40% of the vertices in the
smaller part of each dissection. Furthermore, we only use the nested dissection if separators
contain at most 50 vertices. For the reduction-based branching rules, we fall back to the
default branching strategy if all candidates have a degree of less than Δ − 𝑘. In the case of
twin-, funnel- and unconfined-reduction-based branching strategies, we choose 𝑘 as 2. For
the packing-reduction-based branching rule, 𝑘 is set to 5, and for the combined branching
rule, 𝑘 is set to 4.

3.5.4.a) Decomposition Branching

Figure 3.14 shows performance profiles (see Section 2.3.2.b)) of the running time and
number of branches of our decomposition-based branching strategies: Let T be the set of all
techniques we want to compare, 𝐼 the set of instances and 𝑡𝑇(𝐼) the running time/number
of branches of technique 𝑇 ∈ T on instance 𝐼 ∈ 𝐼. The 𝑦-axis shows for each technique 𝑇 the
fraction of instances for which 𝑡𝑇(𝐼) ≤ 𝜏 ⋅min𝑇′∈T 𝑡𝑇′(𝐼), where 𝜏 is shown on the 𝑥-axis.

The running time plot in Figure 3.14 shows that for most instances, the default strategy
of branching on a vertex of maximum degree outperforms our decomposition-based ap-
proaches. However, for instances that have suitable candidates for decomposition, such as
sparse networks, significant speedups compared to the default strategy can be observed. To
be more specific, by assigning a time of ten hours (our timeout threshold) for unfinished
instances, we achieve a total speedup7 of 2.15 to 2.29 over maximum degree branching
on sparse networks (see Table 3.14 and Appendix E). In particular, there is one instance

7calculated by dividing the running times to solve all instances for two algorithms, excluding instances unsolved
by both algorithms

82

3.5 Targeted Branching Rules

all instances - running time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 103 U
𝜏

all instances - number of branches

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
𝜏

maximum degree
articulation points

edge cuts
nested dissection

Figure 3.14: Performance profiles for decomposition-based branching strategies

(web-Stanford) that causes a timeout with the default strategy but can be solved in eight
(articulation points) to 43 (nested dissections) seconds using a decomposition-based ap-
proach. Table 3.14 shows that our technique using edge cuts seems to be the most beneficial,
achieving an overall speedup of 22% over maximum degree. Finally, Figure 3.14 shows that
most running times are only slightly slower than the default strategy, with a few instances
showing a speedup. This is mainly because the number of branches required to solve the
instances does not change in most cases, and most of the running time difference is caused
by the overhead from searching for branching vertices.

83

3 Maximum Cardinality Independent Sets

Table 3.14: Speedup of decomposition-based techniques over maximum degree branch-
ing.

Technique PACE DIMACS Sparse net. All Instances

articulation points 0.99 0.99 2.17 1.20
edge cuts 1.00 0.99 2.29 1.22
nested dissections 1.00 0.99 2.15 1.21

Table 3.15: Speedup of reduction-based techniques over maximum degree branching.

Technique PACE DIMACS Sparse net. All Instances

Twin 1.00 1.00 0.97 0.99
Funnel 1.14 0.99 0.98 1.02
Unconfined 0.79 1.00 0.86 0.92
Packing 1.34 1.04 1.31 1.16
Combined 1.14 1.03 1.30 1.12

3.5.4.b) Reduction Branching

Figure 3.15 shows the performance profiles for our reduction-based branching strategies.
We see that targeting the packing reduction results in the fastest time for the most number
of instances. In fact, targeting the packing reduction performs better than maximum degree
branching on all but 3 PACE instances, achieving a speedup of 34% (see Table 3.15 and
Appendix E) on these instances. On the DIMACS instances, performance is closer to that of
maximum degree with an overall speedup of 4%. On sparse networks, packing is only faster
thanmaximumdegree branching on 6 out of 16 instances but still achieves an overall speedup
of 31% due to being considerably faster on some longer running instances. The performance
of our packing-based technique might be explained by its property of enabling a reduction
in both the including and the excluding branch. In contrast, our other reduction-based
techniques only allow a reduction in the excluding branch.

Our funnel-based technique is faster than maximum degree branching for all but 4 of
the PACE instances, resulting in a speedup of 14% on these instances but only a 2% speedup
over all instances due to slightly slower running times on the other instance classes. We also
show results for a strategy that targets all reduction rules described in Section 3.5.3 (called
combined). Even though this approach leads to the second-lowest number of branches for
most instances, the time required to identify candidate vertices for all reduction rules causes
too big of an overhead to be competitive. In fact, preliminary experiments showed that the
number of branches is still small for a technique that only combines twin-, funnel-, and
unconfined-based branching. Optimizing the algorithms to identify candidate vertices more
quickly could make this combined strategy competitive.

84

3.6 Conclusion and Future Work

all instances - running time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
𝜏

all instances - number of branches

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101102 U
𝜏

maximum degree
combined

twin
funnel

unconfined
packing

Figure 3.15: Performance profiles for reduction-based branching strategies

3.6 Conclusion and FutureWork

In this chapter, we presented multiple algorithms that make use of practically efficient
reduction techniques to find high-quality maximal or maximum independent sets. These
algorithms scale to graphs with billions of edges and are able to solve many previously
infeasible instances.

Heuristic Approaches. We first presented multiple heuristic approaches, including a very
natural evolutionary algorithm and combinations of local search with reductions. Our

85

3 Maximum Cardinality Independent Sets

evolutionary algorithm uses novel combine operations that are based on graph partitioning
and local search. In contrast to previous evolutionary algorithms for the problem, our
operations are able to guarantee that the created offspring are valid. After computing a
reduced instance, we use a preliminary solution of the evolutionary algorithm to further
reduce the graph size by identifying and removing vertices likely to be in large independent
sets. This further opens the reduction space (i.e., more exact reduction routines can be
applied) so that we can proceed recursively. This speeds up computations drastically and
preserves or even improves final solution quality. Similar inexact reduction procedures as
the one introduced here are an important component of other state-of-the-art heuristic
algorithms [CLZ17; Gao+17].

Our advanced local search approaches alsomake use of both exact and inexact reductions.
To be more specific, we have shown that applying reductions on-the-fly during local search
quickly leads to high-quality independent sets. Additionally, by reducing with advanced
reduction rules, we can also improve local search for high-quality independent sets in the long
run—rivaling the current best heuristic algorithms for complex networks. Finally, cutting
a small percentage of high-degree vertices has little impact on the quality of independent
sets found during local search. However, this inexact reduction can drastically improve
performance by removing bottlenecks of the local search.

Overall, our approaches scale to instances that were previously infeasible and introduce
techniques that can easily be applied to other problems. Additional reductions can easily be
added to our algorithms and thus provide an interesting possibility for future improvement.
Using more advanced reduction rules that still run in (near-)linear time has also been shown
to be very efficient in practice [CLZ17]. Thus, exploring the usage of new reductions and
efficient special cases of existing ones also provide interesting opportunities. Determining
which reductions offer the best balance between solution quality and speed is an important
topic that has recently gained more attention [Str16; SHG20].

More concrete future work includes a coarse-grained parallelization of our algorithms that
could be combined with the parallel reduction routine of Hespe et al. [HSS19]. Furthermore,
solving connected components separately and in parallel could also boost the performance
of our algorithms further [AC19]. Lastly, it may also be interesting to use an exact algorithm
when the reduced graph size falls below a certain threshold.

Exact Approaches. We presented two approaches that aim to close the gap between exact
and heuristic algorithms in terms of speed and the number of feasible instances. First,
we examined our winning solver of the PACE 2019 Challenge, Vertex Cover Track. Our
algorithm uses a portfolio of techniques, including an aggressive reduction strategy with
a large set of known reduction rules, local search, branch-and-reduce, and a branch-and-
bound algorithm. Of particular interest is that several of our techniques were not from the
literature on the vertex cover problem: they were originally published to solve the maximum
independent set and maximum clique problems. Moreover, the two closest competitors
in the challenge also applied reductions and a clique solver. Our results emphasize that
reductions are an important tool to boost the performance of branch-and-bound and that
local search is highly effective in increasing the performance of branch-and-reduce.

86

3.6 Conclusion and Future Work

We then presented several novel branching strategies for the maximum independent
set problem with the aim of further improving the performance of branch-and-reduce
algorithms. Our strategies either follow a decomposition-based or reduction-rule-based ap-
proach. The decomposition-based strategies try to find vertices that are likely to decompose
the graph into two or more connected components. Even though these strategies often come
with a non-negligible overhead, they work well for graphs with a suitable structure, such as
social networks. For instances that still favor the default branching strategy of branching
on the vertex of the highest degree, our reduction-rule-based strategies provide a smaller
but more consistent speedup. These rules aim to facilitate the application of reduction rules,
leading to smaller graphs that can be solved more quickly.

Again, our exact algorithms scale to large instances and are able to provide better per-
formance on a broad set of instances compared to other state-of-the-art approaches. Our
portfolio algorithm can easily be extended by newly developed approaches, and our branch-
ing strategies are likely adaptable for additional reduction rules. Thus, integrating those in
our algorithms provides an opportunity to improve their performance. Our PACE solver
shows that approaches for the complementary problems are also beneficial in increasing the
number of feasible instances. However, deciding which algorithm (or problem) to pick for a
specific instances still remains an open question. Additionally, we have seen that sometimes
an unreduced instance is actually easier to solve than a reduced one. The questions of
whether reductions are always beneficial and what constitutes a “hard” reduced instance
also remain open questions.

To further improve the performance of our branching strategies, we are actively inves-
tigating which particular strategy to use for a given instance. For this purpose, we are
examining multiple graph characteristics and using machine learning approaches to evaluate
which characteristics are suitable indicators for selecting a branching strategy. We are also
implementing a more sophisticated and incremental way of tracking when a vertex becomes
a potential branching vertex for our reduction-based strategies.

87

4Chapter 4

MaximumWeight Independent Sets

We propose new and practically efficient reduction rules and transformations.
These rules are used to build reduction procedures and exact approaches for the
maximumweight independent set problem. We begin by proposing generalizations
of popular reduction rules for the unweighted case and integrate them into a
branch-and-reduce algorithm. We also propose so-called meta reductions that
serve as an underlying theoretical framework. We thenmove on to transformations
that are able to increase the graph size temporarily. This counterintuitive approach
is integrated into a reduction procedure that can find the smallest graphs currently
possible. In turn, it can boost the performance of existing algorithms drastically.

References. This chapter is based on the conference papers [Lam+19] (ALENEX 2019)
published jointly with Christian Schulz, Darren Strash, Robert Williger, and Huashuo
Zhang, [Gel+21] (ALENEX 2021) published jointly with Alexander Gellner, Christian
Schulz, Darren Strash, and Bogdán Zaválnij, and the survey paper [Abu+20] published
jointly with Faisal Abu-Khzam, Matthias Mnich, Alexander Noe, Christian Schulz, and
Darren Strash. Large parts of this chapter were copied verbatim from these papers or the
corresponding technical reports [Lam+18; Gel+20].

We now outline the specific contributions the author of this dissertation made to each of
these publications. For the conference paper [Lam+19], the author, together with Christian
Schulz and Darren Strash, is one of the main authors of the paper with editing done by
Robert Williger. The author made major contributions to multiple of the practically efficient
weighted reduction rules presented in Section 4.2.3. Note that the meta reduction rules
(neighbor removal and neighborhood folding) are due to Darren Strash and Huashuo Zhang.
In order to be self-contained, we include these rules. However, for the corresponding proofs,
we refer to Lamm et al. [Lam+19]. Furthermore, the author made major contributions to
the engineering aspects of the branch-and-reduce algorithms presented in Section 4.2.2.
Implementation and evaluations were done by Robert Williger under the supervision of
Christian Schulz, Darren Strash, and the author.

The conference paper [Gel+21] was written by the author of this dissertation with editing
done by Alexander Gellner, Christian Schulz, Darren Strash, and Bogdán Zaválnij. The three
struction variants proposed in this work (Section 4.3.1) are due to Bogdán Zaválnij, and
we refer to Gellner et al. [Gel+21] for their corresponding proofs. The author made major
contributions to multiple of the practically efficient struction variants (Section 4.3.2) and
their incorporating algorithms (Section 4.3.3). This includes both the non-increasing and
cyclic blow-up algorithm. Implementation and evaluations were done by Alexander Gellner
under the supervision of Christian Schulz, Darren Strash, Bogdán Zaválnij, and the author.

89

4 Maximum Weight Independent Sets

Finally, for the survey paper [Abu+20], the author is the main author of the sections
concerned with weighted independent sets, vertex covers, and cliques.

Motivation. Themaximumweight independent set problem is anNP-hard problem [GJ79]
that has attracted much attention in the combinatorial optimization community due to its
difficulty and importance in many fields. In particular, it is used in areas such as map
labeling [GNR16; Bar+16], vehicle routing [Don+22], coding theory [NKÖ97; Bro+90],
combinatorial auctions [WH15b], alignment of biological networks [AKK11], workload
scheduling for energy-efficient scheduling of disks [CKR11], computer vision [ML12], and
protein structure prediction [Mas+10].

As a concrete example, weighted independent sets are vital in labeling strategies for
maps [GNR16; Bar+16], where the objective is to maximize the importance of visible non-
overlapping labels on a map. To be more specific, one is given a set of objects that have labels
associated with them, e.g., geographic places, points of interest, or search requests [Bar+16].
Labels are weighted by their importance, e.g., a city’s population or area, and are represented
by a geometric shape (usually a rectangle). Two labels have a conflict if their geometric
shapes intersect. To maximize the importance of non-overlapping labels, this problem can
be reduced to a label conflict graph, i.e., the graph whose vertices are labels (weighted by
their importance) and two vertices are connected if their labels overlap.

Maximum weight independent sets are also used for solving long-haul vehicle routing
problems [Don+22; Don+21]. Given a set of routes consisting of a driver, a set of loads
assigned to the driver, and a weight, the goal is to find a feasible subset of routes with
maximum weight. A subset of routes is feasible if no two routes in it share a driver or a load.
Again, this problem can be modeled as a conflict graph whose vertices are routes with their
associated weight. Additionally, two vertices are connected if their corresponding routes
share a route or a load. A maximum weight independent set in this graph then corresponds
to a feasible subset of routes with maximum weight.

Instances used for these applications often contain hundreds of thousands up to millions
of vertices and edges. As for the unweighted case, solving MWIS on these graphs using
existing exact methods can be slow or infeasible in realistic time frames.

Overview. In this chapter, we take a look at how the results for the maximum cardinality
independent set problem presented in the previous chapter can be extended and applied
to its weighted counterpart. To this end, we begin by presenting relevant related work for
the maximum weight independent set problem and its related problems with a focus on
reductions in Section 4.1.

The two main contributions of this chapter are then presented in Sections 4.2 and 4.3.
We begin by covering the first practically efficient branch-and-reduce algorithm for the
maximum weight independent set problem. This algorithm uses novel reductions that
contain both weighted generalizations of the rules popularized by Akiba and Iwata [AI16]
and entirely new ones. We also include so-called meta reductions that serve as a theoretical
framework for many of these rules. The resulting algorithm is able to solve a large number of
instances up to two orders of magnitude faster than even existing heuristic algorithms. We
also show that for instances that still remain infeasible, combining our reduction procedure
with local search produces higher-quality solutions than local search alone.

90

4.1 Related Work

The second approach we introduce in this chapter uses first of its kind, practically efficient
variants of the struction rule by Ebenegger et al. [EHd84]. In contrast to existing approaches,
the resulting algorithm leverages the full potential of the struction by temporarily allowing
for the graph to increase in size. This increase in size may lead to smaller reduced graphs in
the long run, as our experimental evaluation shows. We integrate this algorithm into the
previously mentioned branch-and-reduce algorithm. Our experiments show that the small
graphs produced by our algorithm enable many previously infeasible instances to be solved
exactly. Additionally, we are able to solve instances up to orders of magnitude faster than
previous algorithms. We then conclude this chapter with an outlook on interesting open
problems and future work in Section 4.4.

Overall, this chapter covers important contributions for both heuristic and exact al-
gorithms for the maximum weight independent set problem. Our algorithms drastically
increase the scale and speed at which instances can be solved in practice. Additionally, they
help heuristic algorithms to produce higher-quality solutions than previously possible.

4.1 RelatedWork
Due to the significant practical results achieved for the unweighted case presented in the
previous chapter, there has been an increasing interest in generalizing reduction techniques
for the maximum weight independent set (MWIS) and minimum weight vertex cover
(MWVC) problems. In this section, we cover relevant related work, including both heuristic
and exact approaches forMWIS andMWVC.As before, themaximumweight clique problem
(MWC) will be treated separately due to the overhead required to transform between MWC
and MWIS, i.e., computing complementary graphs.

4.1.1 Exact Approaches
Much research has been devoted to improving exact branch-and-bound algorithms for
MWIS and its complementary problems. These improvements include different pruning
methods and sophisticated branching schemes [Öst02; BY86; Bab94; WH06].

Warren and Hicks [WH06] proposed three combinatorial branch-and-bound algorithms
that are able to solve DIMACS and weighted random graphs quickly. These algorithms use
weighted clique covers to generate upper bounds that reduce the search space via pruning.
Furthermore, they all use a branching schemeproposed byBalas andYu [BY86]. In particular,
their first algorithm is an extension and improvement of a method by Babel [Bab94]. Their
second one uses a modified version of the algorithm by Balas and Yu that uses clique covers
that borrow structural features from the ones by Babel [Bab94]. Finally, their third approach
is a hybrid of both previous algorithms. Overall, their algorithms are able to solve instances
with hundreds of vertices quickly.

Butenko and Trukhanov [BT07] proposed a reduction rule for MWIS called the critical
weighted independent set reduction. A critical weighted set is a subset of vertices such that
the difference between its weight and the weight of its neighboring vertices is maximal for
all such sets. They can be found in polynomial time via minimum cuts. The authors then

91

4 Maximum Weight Independent Sets

show that every critical weighted independent set is part of a maximum weight independent
set. We will cover this reduction rule in greater detail in Section 4.2.1.

As noted by Larson [Lar07], it is possible that the initial critical set found by Butenko and
Trukhanov might be empty in the unweighted case. To prevent this case, Larson [Lar07]
proposed an algorithm that finds a maximum (unweighted) critical independent set. His
algorithm accumulates vertices that are in some critical set and removes their neighborhoods.
Additionally, he provides a method to check if a given vertex is part of some critical set. Later
Iwata [IOY14] has shown how to remove a large collection of vertices from a maximum
matching all at once; however, it is not known if these reductions are equivalent.

Wang et al. [Wan+19] also make use of reduction rules for vertices with a degree of at
most two as a preprocessing step for a branch-and-bound algorithm. Additionally, they
evaluate different degree-based heuristics for selecting branching vertices and use pruning
based on the best solution found so far.

The first practically efficient branch-and-reduce algorithm for MWIS that is able to solve
large real-world instances was proposed by Lamm et al. [Lam+19] and is covered by the work
detailed in Section 4.2. They develop a comprehensive set of practically efficient reduction
rules. This includes generalizations of previous weighted and unweighted reduction rules, as
well as two so-called meta reductions that serve as a general framework for the other rules.

Based on the work by Lamm et al. [Lam+19], Xiao et al. [Xia+21] propose additional
generalized reduction rules. These include two reduction rules based on heavy sets. An
independent set I is called a heavy set if for any independent set I′ in the induced subgraph
𝐺[𝑁(I)] it holds that𝑤(𝑁(I′)∪I) ≥ 𝑤(I′) [Xia+21]. They also provide weighted general-
izations of unconfined vertices and alternative sets (see Section 3.1.4). Finally, they introduce
two reduction rules based on simultaneous sets. A simultaneous set is a vertex set such that
all vertices in this set are either in a maximum weight independent set or not [Xia+21]. They
then combine these rules with existing ones into an efficient preprocessing procedure that is
used as part of a branch-and-reduce algorithm. Their experimental evaluation indicates that
they are able to reduce both running time and reduced graph sizes significantly compared
to the algorithm by Lamm et al. [Lam+19] on both SNAP and OSM instances.

Huang et al. [HXC21] also introduce a set of weighted reduction rules based on previous
works [Lam+19; Xia+21]. They use these rules in combination with a variety of branching
strategies in a branch-and-reduce algorithm and analyze its running complexity using the
measure-and-conquer technique [FGK09]. By doing so, they show that MWIS on graphs
with average degree 𝑥 can be solved inO∗(1.14430.624𝑥−0.872)𝑛).

Zheng et al. [Zhe+20] propose a heuristic and exact approach that both make use of
reduction rules for vertices of degree at most two. Their exact approach is a branch-and-
reduce algorithm that applies these reduction rules recursively. However, the authors do
not provide any details on the bounds used for pruning or branching strategies used in
the algorithm. Their heuristic approach is inspired by the reducing-peeling framework of
Chang et al. [CLZ17]. Thus, it exhaustively applies their reduction rules and subsequently
removes high-degree vertices to extend the space of possible reductions.

Gellner et al. [Gel+21] proposed new practically efficient variants of the struction rule by
Ebenegger et al. [EHd84]. Their algorithm is able to produce the smallest-known reduced

92

4.1 Related Work

graphs, solves more instances than previous exact approaches, and has a running time that is
comparable to heuristic algorithms. It will be covered in the work presented in Section 4.3.

Finally, there are exact procedures that are either based on other extensions of branch-
and-bound, e.g., [Reb+11; War+05; War03] or on the reformulation into other NP-hard
problems, for which a variety of algorithms already exist. For instance, Xu et al. [XKK16]
recently developed an algorithm called SBMS, which calculates an optimal solution for a
given MWVC instance by solving a series of SAT instances.

4.1.2 Heuristic Approaches
For the unweighted case, the iterated local search algorithm by Andrade et al. [ARW12]
(Section 3.1.6) is one of the most successful approaches in practice. Their algorithm was
improved significantly by applying (2,1)- and (𝑘,1)-swaps as perturbation steps [JH15],
omitting high-degree vertices [Dah+16a], and using reduction rules [Dah+16a; Lam+17].

Several local search algorithms have been proposed for themaximumweight independent
set problem [Pul09; LCH17; NPS18; Cai+18; Li+20]. Local search approaches are often
able to obtain high-quality solutions on medium to large instances that are not solvable
using exact algorithms. We now cover some of the most recent state-of-the-art local search
algorithms in greater detail.

The hybrid iterated local search (HILS) by Nogueira et al. [NPS18] adapts the ARW
algorithm for weighted graphs. In addition to weighted (1, 2)-swaps, it also uses (𝜔, 1)-
swaps that add one vertex 𝑣 into the current solution and exclude its 𝜔 neighbors. These
two types of neighborhoods are explored separately using variable neighborhood descent
(VND). Additionally, they introduce a dynamic perturbation mechanism that regulates
intensification and diversification. In practice, their algorithm finds all known optimal
solutions on well-known benchmark instances within milliseconds and outperforms other
state-of-the-art local searches.

Cai et al. [Cai+18] proposed a heuristic algorithm for MWVC that is able to derive high-
quality solutions for a variety of large real-world instances. Their algorithm is based on a local
search algorithm by Li et al. [LCH17] and uses iterative removal and maximization of a valid
vertex cover. Vertices are removed and inserted using two scoring functions: a gain function
and a loss function. In particular, the baseline algorithm removes two vertices in each
iteration. The first vertex is chosen using the minimal loss value; the second one is selected
by the best from multiple selection heuristic [Cai15]. They then introduce two dynamic
approaches for selecting between different scoring functions for the gain and loss values.
To be more precise, their first approach selects between two different scoring functions by
counting the number of non-improving steps. Their second approach dynamically adjusts
the number of vertices removed in a single iteration based on their total degree.

Recently, Li et al. [Li+20] used a set of four reduction rules during the initial construction
phase of a local search algorithm. In particular, they use weighted reduction rules that
are able to remove degree-1 and degree-2 vertices. They then use these reduction rules
exhaustively at the beginning of their algorithm to obtain an improved initial solution. They
also adapt the configuration checking approach [CSS11] to MWVC, which is used to reduce
cycling, i.e., returning to a solution that has been visited recently. Finally, they develop a

93

4 Maximum Weight Independent Sets

technique called self-adaptive-vertex-removing, which dynamically adjusts the number of
removed vertices per iteration. Their local search algorithm called NuMWVC is able to
compute high-quality solutions on a large variety of instances. This includes many instances
commonly used for the unweighted case, which have been given vertex weights drawn from
a uniform distribution.

In order to overcome the shortcomings of both heuristic and exact approaches, new
algorithms that combine reduction rules with local search were proposed recently [Dah+16a;
Lam+16]. A very successful approach using this approach is the reducing-peeling framework
proposed by Chang et al. [CLZ17], which is based on the techniques proposed by Lamm et al.
[Lam+16]. Their algorithm works by computing a reduced graph using practically efficient
reduction rules in linear and near-linear time. Additionally, they provide an extension of
their reduction rules that is able to compute good initial solutions for the reduced instance.
In particular, they greedily select vertices that are unlikely to be in a large independent set,
thereby opening up the reduction space again. Thus, they are able to significantly improve
the performance of the ARW local search algorithm that is applied to the reduced graph.

Gu et al. [Gu+21] propose a framework for computing near-maximum weight indepen-
dent sets based on reducing-peeling. To this end, they introduce two types of practically
efficient reductions: low-degree reductions and high-degree reductions. Low-degree reduc-
tions aim to efficiently select vertices that are contained in a maximum weight independent
set and remove vertices with degree one and two. High-degree reductions aim to further
reduce the graph by eliminating vertices with degree greater than two and can be applied
by computing common neighbors for the two endpoints of every edge. Furthermore, the
authors evaluate three different tie-breaking mechanisms that are used for eliminating ver-
tices when no further reductions can be applied. Their experimental evaluation on 23 sparse
instances indicates that their algorithm is able to compute high-quality solutions orders of
magnitude faster than previous approaches.

Finally, Dong et al. [Don+22] recently presented a new local search algorithm that uses a
wide range of simple and efficient local search operations. Their algorithm is an iterative local
search based on the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuris-
tic [FR89; FR95; RR14]. They also introduce a new variant of path relinking [LM99; RR14]
and a new alternating augmenting path local search that allows them to escape local optima
and improve the performance of their algorithm. Their experimental evaluation compares
their algorithm against the hybrid iterated local search HILS by Nogueria et al. [NPS18]
on a large set of instances stemming from vehicle routing and map labeling, as well as ran-
domly weighted computer, social, and road networks. For the map labeling and randomly
weighted instances, they further use the reduction algorithm by Lamm et al. [Lam+19] and
run their algorithm on the resulting reduced graphs. They show that their algorithm is able
to outperform HILS on large vehicle routing instances while also being competitive on the
remaining instances.

4.1.3 MaximumWeight Clique
As for the maximum cardinality clique problem (MC), there exist multiple works on efficient
branch-and-bound algorithms for its weighted counterpart MWC [Öst01; Öst02; Kum08;

94

4.2 Generalized Reduction Rules

Shi+17; JLM17; Li+18], many of which aim to improve upper bounds that are used for
pruning unnecessary branches. Due to its success for MC, MaxSat reasoning has also been
used inmultipleMWC approaches [Fan+14; LQ10; Jia+18]. The two-stageMaxSat reasoning
approach by Jiang et al. [Jia+18], in particular, has been shown to be very efficient on a
large set of real-world graphs, including DIMACS instances [JT96], instances taken from
the Network Data Repository [RA15], as well as instances taken from different application
domains of MWC.

There also is a wide range of heuristics and local search algorithms available for the
maximum clique problem [CL16; WH13; WHG12; WCY16; ZHG17; Fan+17; Wan+20;
Cai+21]. Many of the best performing of these algorithms also make use of reduction
rules [CL16; Wan+20; Cai+21]. Thus, we now discuss these approaches in greater detail.

Cai et al. [CL16; Cai+21] give a heuristic algorithm that interleaves between clique finding
and reductions and is also able to verify that a computed solution is exact. In particular,
their algorithm uses a novel construct-and-cut method for clique finding. In each iteration
of this method, the solution is extended by a vertex selected using a new benefit estimation
function and a dynamic variant of the best from multiple selection heuristic [Cai15]. Once
a new best solution is found, their algorithm then tries to apply reductions and reduce the
graph size. If this results in the graph becoming empty, the resulting solution is optimal.
To be more specific, they use three reduction rules that are able to remove a vertex 𝑣 by
computing three different upper bounds on the weight of any clique containing 𝑣. Their
algorithm finds better solutions than the state-of-the-art on large sparse graphs while also
often requiring significantly less time. Furthermore, it is able to verify the optimality of
these solutions for about half of these graphs tested. We briefly note that their algorithm
and reductions are targeted at sparse graphs, and therefore their reductions would likely
work well for MWIS on dense graphs—but not on the sparse graphs we mainly consider in
this dissertation. To the best of our knowledge, their algorithm is the first practical MWC
algorithm using reductions.

The previously mentioned reduction rules of Cai et al. [CL16; Cai+21] are also used in
the work of Wang et al. [Wan+20]. In particular, they propose a local search algorithm
that uses a new variant of configuration checking called strong configuration checking and
a perturbation heuristic called walk perturbation. They also propose a second algorithm
tailored for large graphs that improves the previous algorithm by incorporating the best
from multiple selection heuristic [Cai15] and a modified version of the aforementioned
reduction rules by Cai and Lin [CL16]. The resulting algorithms perform significantly better
than previous heuristic algorithms and are able to compute optimal solutions for a large set
of instances.

4.2 Generalized Reduction Rules

As seen in Section 3.1.5, branch-and-reduce is a powerful technique for the maximum
independent set problem. However, significantly fewer approaches have been proposed
and evaluated for its weighted counterpart. This is in part due to a lack of known effective
reductions. In particular, while the maximum independent set problem has many known

95

4 Maximum Weight Independent Sets

reductions, we are only aware of a few practical reductions for the maximum weight in-
dependent set problem that existed prior to our work. These include the weighted critical
independent set reduction by Butenko and Trukhanov [BT07] and the struction by Ebeneg-
ger et al. [EHd84]. Both of these have only been tested on small synthetic instances and not
on large instances, which are the focus of this work.

There is only one other reduction-like procedure of which we are aware, although it is nei-
ther called so directly nor is it explicitly implemented as a reduction. Nogueria et al. [NPS18]
introduced the notion of a (𝜔, 1)-swap in their local search algorithm, which swaps a vertex
into a solution if its neighbors in the current solution have a smaller total weight. This
swap is not guaranteed to select a vertex that is part of a maximum weight independent set;
however, we show how to transform it into a reduction that does.

In this section, we develop a full suite of new reductions for MWIS and provide extensive
experiments to show their effectiveness in practice on real-world graphs of up to millions of
vertices and edges. While existing exact algorithms are only able to solve graphs with hun-
dreds of vertices, our experiments show that our approach is able to exactly solve real-world
label conflict graphs with thousands of vertices and other larger networks with synthetically
generated vertex weights—all of which are infeasible for state-of-the-art algorithms. Further,
our branch-and-reduce algorithm is able to solve many instances up to two orders of magni-
tude faster than existing local search algorithms—solving the majority of instances within
15 minutes. For those instances remaining infeasible, we show that combining reductions
with local search produces higher-quality solutions than local search alone.

Finally, we develop newmeta reductions, which are general rules that subsume traditional
reductions. We show that weighted variants of popular unweighted reductions can be
explained by two general (and intuitive) rules—which use maximum weight independent set
search as a subroutine. This yields a simple theoretical framework covering many reductions.

Organization. The rest of the section is organized as follows. We first present the critical
weighted independent set reduction in Section 4.2.1. We then describe the overall structure
of our branch-and-reduce algorithm in Section 4.2.2. The full set of reductions for the maxi-
mum weight independent set problem that are employed by us is described in Section 4.2.3.
An extensive experimental evaluation of our method is presented in Section 4.2.4.

4.2.1 Critical Weighted Independent Set Reduction

A subset 𝑈𝑐 ⊆ 𝑉 is called a critical set if ∣𝑈𝑐∣ − ∣𝑁(𝑈𝑐)∣ = max{∣𝑈∣ − ∣𝑁(𝑈)∣ ∶ 𝑈 ⊆ 𝑉}.
Likewise, an independent set I𝑐 ⊆ 𝑉 is called a critical independent set if ∣I𝑐∣ − ∣𝑁(I𝑐)∣ =
max{∣I ∣ − ∣𝑁(I)∣ ∶ I is an independent set of 𝐺}. Butenko and Trukhanov [BT07] show
that any critical independent set is a subset of a maximum independent set. They then
continue to develop a reduction that uses critical independent sets which can be computed
in polynomial time. In particular, they start by finding a critical set in𝐺 by using a reduction
to the maximum matching problem in a bipartite graph [Age94] . In turn, this problem can
then be solved in O(𝑛

√
𝑚) time using the Hopcroft-Karp algorithm [HK73]. They then

obtain a critical independent set by setting I𝑐 = 𝑈𝑐 ⧵ 𝑁(𝑈𝑐). Finally, they can remove I𝑐
and𝑁(I𝑐) from 𝐺.

96

4.2 Generalized Reduction Rules

We now briefly describe the critical weighted independent set reduction, which is one of
the few reductions that has appeared in the literature for the maximum weight independent
set problem. Similar to the unweighted case, a subset 𝑈𝑐 ⊆ 𝑉 is called a critical weighted
set if 𝑤(𝑈𝑐) − 𝑤(𝑁(𝑈𝑐)) = max{𝑤(𝑈) − 𝑤(𝑁(𝑈)) ∶ 𝑈 ⊆ 𝑉}. A weighted independent
set I𝑐 ⊆ 𝑉 is called a critical weighted independent set (CWIS) if 𝑤(I𝑐) − 𝑤(𝑁(I𝑐)) =
max{𝑤(I) − 𝑤(𝑁(I)) ∶ I is an independent set of 𝐺}. Butenko and Trukhanov [BT07]
show that any CWIS is a subset of a maximum weight independent set. Additionally, they
propose a weighted critical set reduction which works similar to its unweighted counterpart.
However, instead of computing a maximummatching in a bipartite graph, a critical weighted
set is obtained by solving the selection problem [Age94]. The selection problem [Bal70;
Rhy70] consists of a finite set of points 𝑆, a cost 𝑐𝑠 > 0 for each 𝑠 ∈ 𝑆, a finite set Σ of subsets
𝜎 of points from 𝑆, and a profit 𝑝𝜎 for each 𝜎 ∈ Σ. A selection is a set of subsets from Σ
together with the set of points from 𝑆 contained in the subsets. The goal of the selection
problem then is to choose a selection that maximizes the sum of the profits minus the sum
of the costs of the points. This problem is equivalent to finding a minimum cut in a bipartite
graph [Bal70; Rhy70].

Theorem 4.1 (CWIS Reduction)
Let 𝑈 ⊆ 𝑉 be a critical weighted independent set of 𝐺. Then 𝑈 is in some maximum weight
independent set of 𝐺. We set 𝐺′ = 𝐺 ⧵𝑁[𝑈] and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) +𝑤(𝑈).

For a proof of correctness, see the paper by Butenko and Trukhanov [BT07].

4.2.2 Efficient Branch-and-Reduce
After covering the necessary preliminaries, we now describe our branch-and-reduce algo-
rithm in full detail. This includes the pruning and branching techniques that we use, as well
as other algorithm details. An overview of our algorithm can be found in Algorithm 4.1. To
keep the description simple, the pseudocode describes the algorithm such that it outputs
the weight of a maximum weight independent set in the graph. However, our algorithm is
implemented to actually output the maximum weight independent set. We now describe a
high-level overview of our algorithm before covering the individual parts in greater detail
later. Overall, our algorithm follows the steps used by Akiba and Iwata [AI16] (Section 3.1.5).

Throughout the algorithm, we maintain the current solution weight and the best solution
weight. Our algorithm applies a set of reduction rules before branching on a vertex. We
describe these reductions in the following section. Initially, we run a local search algorithm
on the reduced graph to compute a lower bound on the solution weight, which later helps to
prune the search space. We then prune the search by excluding unnecessary parts of the
branch-and-bound tree to be explored. If the graph is not connected, we separately solve
each connected component. If the graph is connected, we branch into two cases by applying
a branching rule. If our algorithm does not finish within a certain time limit, we use the
best solution and improve it using a greedy approach. More precisely, our algorithm sorts
the vertices in decreasing order of their weight and adds vertices in that order if feasible. We
give a detailed description of the subroutines below.

97

4 Maximum Weight Independent Sets

Algorithm 4.1 : Branch-and-reduce algorithm for MWIS.
Data : 𝐺 = (𝑉,𝐸), current solution weight 𝑐, best solution weightW
Result : best solution weightW

1 Solve 𝐺, 𝑐,W
2 (𝐺, 𝑐)← Reduce(𝐺, 𝑐)
3 ifW = 0 then
4 W ← 𝑐 +ARW(𝐺)
5 if 𝑐 + UpperBound(𝐺) ≤W then
6 returnW
7 if 𝐺 is empty then
8 returnmax{W , 𝑐}
9 if 𝐺 is not connected then
10 forall 𝐺𝑖 ∈ Components(𝐺) do
11 𝑐 ← 𝑐 + Solve(𝐺𝑖, 0, 0)
12 returnmax(W , 𝑐)
13 (𝐺1, 𝑐1), (𝐺2, 𝑐2)← Branch(𝐺, 𝑐)
14 W ← Solve(𝐺1, 𝑐1,W) // Run 1st case, update current best solution
15 W ← Solve(𝐺2, 𝑐2,W) // Use updatedW to shrink the search space
16 returnW

Incremental Reductions. We start by running all reductions that are described in the
following section. Following the lead of previous works [Str16; CLZ17; HSS19], we apply
our reductions incrementally. For each reduction rule, we check if it is applicable to any
vertex of the graph. After the checks for the current reduction are completed, we continue
with the next reduction if the current reduction has not changed the graph. If the graph
has been changed, we go back to the first reduction rule and repeat. Most of the reductions
we introduce in the following section are local: if a vertex changes, then we do not need to
check the entire graph to apply the reduction again; we only need to consider the vertices
whose neighborhood has changed since the reduction was last applied. The critical weighted
independent set reduction defined above is the only global reduction we use; it always
considers all vertices in the graph.

For each of the local reductions, there is a queue of changed vertices associated to the
rule. Every time a vertex or its neighborhood is changed, it is added to the queues of all
reductions. When a reduction is applied, only the vertices in its associated queue have to be
checked for applicability. After the checks are finished for a particular reduction, its queue
is cleared. Initially, the queues of all reductions are filled with every vertex in the graph.

Pruning. Exact branch-and-bound algorithms for MWIS often use weighted clique covers
to compute an upper bound for the optimal solution [WH06]. A weighted clique cover of
𝐺 is a collection of (possibly overlapping) cliquesQ1,… ,Q𝑘 ⊆ 𝑉, with associated weights

98

4.2 Generalized Reduction Rules

𝑊1,… ,𝑊𝑘 such that Q1 ∪Q2 ∪ ⋯ ∪Q𝑘 = 𝑉, and for every vertex 𝑣 ∈ 𝑉, ∑𝑖 ∶ 𝑣∈Q𝑖𝑊𝑖 ≥
𝑤(𝑣), i.e., each vertex is covered by a set of cliques whose total weight is larger than the
weight of the vertex. The weight of a clique cover is defined as ∑𝑘𝑖=1𝑊𝑖 and provides an
upper bound on 𝛼𝑤(𝐺). This holds because the intersection of a clique and any independent
set of 𝐺 is either a single vertex or empty. The objective then is to find a clique cover
of small weight. This can be done using an algorithm similar to the coloring method of
Brelaz [Bré79]. However, this method can become computationally expensive since its
running time is dependent on the maximum weight of the graph [WH06]. Thus, we use
a faster method to compute a weighted clique cover similar to the one used in Akiba and
Iwata [AI16]. In particular, we begin by sorting the vertices in descending order of their
weight (ties are broken by selecting the vertex with higher degree). Next, we initiate an
empty set of cliques𝑄. We then iterate over the sorted vertices and search for the clique with
the maximum weight to which it can be added. If there are no candidates for insertion, we
insert a new single vertex clique to 𝑄 and assign it the weight of the vertex. Afterwards, the
vertex is marked as processed, and we continue with the next one. Computing a weighted
clique cover using this algorithm has a linear running time independent of the maximum
weight. Thus, we are able to obtain a bound much faster. However, this algorithm produces
a higher weight clique cover than the method of Brelaz [Bré79; AI16].

In addition to computing an upper bound, we also add an additional lower bound using a
heuristic approach. To be more specific, we run a modified version of the ARW local search
by Andrade et al. [ARW12], which is able to handle vertex weights, for a fixed fraction of
our total running time. This lower bound is computed once after we apply our reductions
initially and then again when splitting the graph into connected components.

Connected Components. Solving the maximum weight independent set problem for a
graph 𝐺 is equal to solving the problem for all 𝑐 connected components 𝐺1,… ,𝐺𝑐 of 𝐺
and then combining the solution sets I1,… ,I𝑐 to form a solution I for 𝐺: I = ⋃𝑐𝑖=1 I𝑖.
We leverage this property by checking the connectivity of 𝐺 after each completed round of
reduction applications. If the graph disconnects due to branching or reductions, we then
apply our branch-and-reduce algorithm recursively to each of the connected components
and combine their solutions afterwards. This technique can reduce the size of the branch-
and-bound tree significantly on some instances.

Branching. Our algorithm has to pick a branching order for the remaining vertices in the
graph. Initially, vertices are sorted in non-decreasing order by degree, with ties broken by
weight. Throughout the algorithm, the next vertex to be chosen is the highest vertex in the
ordering. Similar to Akiba and Iwata [AI16], we first process the excluding branch and then
the including branch. This way, we quickly eliminate the largest neighborhoods and make
the problem “simpler”.

4.2.3 Weighted Reduction Rules
Wenowdevelop a comprehensive set of reduction rules for themaximumweight independent
set problem. We first introduce two meta reductions, which we then use to instantiate many
efficient reductions similar to already-known unweighted reductions.

99

4 Maximum Weight Independent Sets

w(v) ≥ αw(G[N(v) \N [u])) + w(u)

G \ (N [v] ∪N [u])

N(v) \N [u]

v

G \ (N [v] ∪N [u])

u uv

Figure 4.1: Example application of neighbor removal to a vertex 𝑣 (orange). The vertex
𝑢 (blue) can be removed from the graph and excluded from the independent set.

v

w(v) ≥ w(N(v))−minu∈N(v)w(u)

G \N [v]

w(v) ≤ w(N(v))

N(v) u v′
w(v′) = w(N(v))− w(v)

G \N [v]

Figure 4.2: Example application neighborhood folding to a vertex 𝑣 (orange). The
neighborhood𝑁[𝑣] is contracted to a new vertex 𝑣′.

4.2.3.a) Meta Reductions

There are two operations that are commonly used in reductions: vertex removal and vertex
folding. In the following reductions, we show general ways to detect when these operations
can be applied in the neighborhood of a vertex.

Neighbor Removal. In our first meta reduction, we show how to determine if a neighbor
can be outright removed from the graph. We call this reduction the neighbor removal
reduction. (See Figure 4.1.)

Theorem 4.2 (Neighbor Removal Reduction)
Let 𝑣 ∈ 𝑉. For any 𝑢 ∈ 𝑁(𝑣), if 𝛼𝑤(𝐺[𝑁(𝑣) ⧵ 𝑁[𝑢]]) + 𝑤(𝑢) ≤ 𝑤(𝑣), then 𝑢 can be
removed from 𝐺, as there is some maximum weight independent set of 𝐺 that excludes 𝑢, and
𝛼𝑤(𝐺) = 𝛼𝑤(𝐺 ⧵ {𝑢}).

Neighborhood Folding. For our second meta reduction, we show a general condition for
folding a vertex with its neighborhood. We first briefly describe the intuition behind the

100

4.2 Generalized Reduction Rules

reduction. Consider 𝑣 and its neighborhood𝑁(𝑣). If𝑁(𝑣) has a unique independent set
I𝑁(𝑣) with aweight larger than𝑤(𝑣), thenwe only need to consider two types of independent
sets: independent sets that contain 𝑣 or ones that contain I𝑁(𝑣). Any other independent
set in 𝑁(𝑣) can be swapped for 𝑣 and achieve a higher overall weight. By folding 𝑣 with
I𝑁(𝑣), we can solve the remaining graph and then decide which of the two options will give
a maximum weight independent set of the graph. (See Figure 4.2.)

Theorem 4.3 (Neighborhood Folding Reduction)
Let 𝑣 ∈ 𝑉 and suppose that𝑁(𝑣) is independent, i.e., the vertices in𝑁(𝑣) are not adjacent.
If 𝑤(𝑁(𝑣)) ≥ 𝑤(𝑣), but 𝑤(𝑁(𝑣)) − min𝑢∈𝑁(𝑣){𝑤(𝑢)} ≤ 𝑤(𝑣), then fold 𝑣 and 𝑁(𝑣)
into a new vertex 𝑣′ with weight 𝑤(𝑣′) = 𝑤(𝑁(𝑣)) − 𝑤(𝑣). Let I′ be a maximum weight
independent set of 𝐺′, then we construct a maximum weight independent set I of 𝐺 as follows:
If 𝑣′ ∈ I′ then I = (I′ ⧵ {𝑣′}) ∪𝑁(𝑣). Otherwise, if 𝑣 ∈ I′ then I = I′ ∪ {𝑣}. Furthermore,
𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) +𝑤(𝑣).

However, these reductions require solving MWIS on the neighborhood of a vertex and,
therefore, may be as expensive as computing a maximum weight independent set on the
input graph. We now show how special cases of our meta reductions can be used to build
practically efficient reductions.

4.2.3.b) Practically Efficient Reductions

Neighborhood Removal. In their HILS local search algorithm, Nogueria et al. [NPS18]
introduced the notion of a (𝜔, 1)-swap, which swaps a vertex 𝑣 into a solution if its neighbors
in the current solution I have weight 𝑤(𝑁(𝑣) ∩ I) < 𝑤(𝑣). This can be transformed into
what we call the neighborhood removal reduction.

Theorem 4.4 (Neighorhood Removal Reduction)
For any 𝑣 ∈ 𝑉, if 𝑤(𝑣) ≥ 𝑤(𝑁(𝑣)) then 𝑣 is in some maximum weight independent set of 𝐺.
Let 𝐺′ = 𝐺 ⧵𝑁[𝑣] and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) +𝑤(𝑣).

Proof. Since 𝑤(𝑁(𝑣)) ≤ 𝑤(𝑣), ∀𝑢 ∈ 𝑁(𝑣) we have that

𝛼𝑤(𝐺[𝑁(𝑣) ∩𝑁(𝑢)]) +𝑤(𝑢) ≤ 𝑤(𝑁(𝑣)) ≤ 𝑤(𝑣).

Then we can remove all 𝑢 ∈ 𝑁(𝑣) and are left with 𝑣 in its own component. Calling
this graph 𝐺′, we have that 𝑣 is in some maximum weight independent set and 𝛼𝑤(𝐺) =
𝛼𝑤(𝐺′) +𝑤(𝑣). ◻

For the remaining reductions, we assume that the neighborhood removal reduction has
already been applied. Thus, ∀𝑣 ∈ 𝑉, 𝑤(𝑣) < 𝑤(𝑁(𝑣)).

Weighted Isolated Clique. Similar to the (unweighted) isolated clique reduction, we now
argue that an isolated vertex is in some maximum weight independent set—if it has the
highest weight in its clique (see Figure 4.3).

101

4 Maximum Weight Independent Sets

v

w(v) ≥ maxu∈N(v) w(u)

G \N [v]

N(v)

v

G \N [v]

Figure 4.3: Example application of the weighted isolated clique reduction to vertex
𝑣 (orange). The neighborhood𝑁[𝑣] can be removed from the graph. The vertex 𝑣 is
added to the independent set (and𝑁(𝑣) is excluded).

Theorem 4.5 (Weighted Isolated Clique Reduction)
Let 𝑣 ∈ 𝑉 be isolated and 𝑤(𝑣) ≥ max𝑢∈𝑁(𝑣)𝑤(𝑢). Then 𝑣 is in some maximum weight
independent set of 𝐺. Let 𝐺′ = 𝐺 ⧵𝑁[𝑣] and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) +𝑤(𝑣).

Proof. Since𝑁(𝑣) is a clique, ∀𝑢 ∈ 𝑁(𝑣) we have that

𝛼𝑤(𝐺[𝑁(𝑣) ∩𝑁(𝑢)]) ≤ 𝛼𝑤(𝑁(𝑣)) = max
𝑢∈𝑁(𝑣)

{𝑤(𝑢)} ≤ 𝑤(𝑣).

As was done for neighborhood removal, remove all 𝑢 ∈ 𝑁(𝑣) producing 𝐺′ and 𝛼𝑤(𝐺) =
𝛼𝑤(𝐺′) +𝑤(𝑣). ◻

Isolated Weight Transfer. Given its weight restriction, the weighted isolated clique re-
moval reduction may be ineffective. Therefore, we introduce a reduction that supports more
liberal vertex removal. An example application of this reduction rule is given in Figure 4.4.

Theorem 4.6 (IsolatedWeight Transfer)
Let 𝑣 ∈ 𝑉 be isolated and suppose that the set of isolated vertices 𝑆(𝑣) ⊆ 𝑁(𝑣) is such that
∀𝑢 ∈ 𝑆(𝑣), 𝑤(𝑣) ≥ 𝑤(𝑢). We

(i) remove all 𝑢 ∈ 𝑁(𝑣)with𝑤(𝑢) ≤ 𝑤(𝑣); the remaining neighbors are denoted by𝑁′(𝑣),

(ii) remove 𝑣 and ∀𝑥 ∈ 𝑁′(𝑣), set its new weight to 𝑤′(𝑥) = 𝑤(𝑥) −𝑤(𝑣) and
let the resulting graph be denoted by 𝐺′. Then 𝛼𝑤(𝐺) = 𝑤(𝑣) + 𝛼𝑤(𝐺′) and a maximum
weight independent set I of 𝐺 can be constructed from a maximum weight independent set I′
of 𝐺′ as follows: if I′ ∩ 𝑁′(𝑣) = ∅ then I = I′ ∪ {𝑣}. Otherwise, I = I′.

Proof. For (i), note that it is safe to remove all 𝑢 ∈ 𝑁(𝑣) with 𝑤(𝑢) ≤ 𝑤(𝑣) since these
vertices meet the criteria for the neighbor removal reduction. All vertices 𝑥 ∈ 𝑁′(𝑣) that
remain have weight 𝑤(𝑥) > 𝑤(𝑣) and are not isolated.

Case 1 (I′ ∩ 𝑁′(𝑣) = ∅): Let I′ be a maximum weight independent set of 𝐺′, we show
that if I′∩𝑁′(𝑣) = ∅ then I = I′∪{𝑣}. To prove this, we show that𝑤(𝑣)+𝛼𝑤(𝐺⧵𝑁[𝑣]) ≥
𝛼𝑤(𝐺 ⧵ {𝑣}).

102

4.2 Generalized Reduction Rules

v

∀u ∈ N(v) : w(v) ≥ w(u)

G \N [v]

(isolated)

G \N [v]

∀u ∈ N(v) : w(v) < w(u) (non-isolated)

N(v)

∀u ∈ N ′(v) : w(u) := w(u)− w(v)
v

N ′(v)

Figure 4.4: Example application of isolated weight transfer on vertex 𝑣 (orange). The
vertex 𝑣 and its isolated neighbor can be removed from the graph. The vertex 𝑣 is added
to the independent set (and its isolated neighbor is excluded).

Let 𝑥 ∈ 𝑁′(𝑣). Since 𝑥 ∉ I′, it follows that

𝑤(𝑣) + 𝛼𝑤(𝐺′) = 𝑤(𝑣) + 𝛼𝑤(𝐺′[𝑉′ ⧵ 𝑁′(𝑣)])
= 𝑤(𝑣) + 𝛼𝑤(𝐺 ⧵𝑁[𝑣])

and

𝑤(𝑣) + 𝛼𝑤(𝐺′) ≥ 𝑤(𝑣) +𝑤′(𝑥) + 𝛼𝑤(𝐺′[𝑉′ ⧵ 𝑁[𝑥]])
= 𝑤(𝑣) +𝑤(𝑥) −𝑤(𝑣) + 𝛼𝑤(𝐺′[𝑉′ ⧵ 𝑁[𝑥]])
= 𝑤(𝑥) + 𝛼𝑤(𝐺 ⧵𝑁[𝑥]).

Thus, for any 𝑥 ∈ 𝑁′(𝑣), it holds that

𝑤(𝑣) + 𝛼𝑤(𝐺′) = 𝑤(𝑣) + 𝛼𝑤(𝐺 ⧵𝑁[𝑣])
≥ 𝑤(𝑥) + 𝛼𝑤(𝐺 ⧵𝑁[𝑥])

and, therefore, the heaviest independent set containing 𝑣 is at least the weight of the heaviest
independent containing any neighbor of 𝑣. Concluding, we have that

𝑤(𝑣) + 𝛼𝑤(𝐺 ⧵𝑁[𝑣]) ≥ 𝛼𝑤(𝐺 ⧵ {𝑣})

and therefore I = I′ ∪ {𝑣} is a maximum weight independent set of 𝐺.
Case 2 (I′ ∩ 𝑁′(𝑣) ≠ ∅): Let I′ be a maximum weight independent set of 𝐺′, we prove

that if I′ ∩ 𝑁′(𝑣) ≠ ∅ then I = I′. To show this, let {𝑥} = I′ ∩ 𝑁′(𝑣). Define 𝐺′′ as
the graph resulting from increasing the weight of 𝑁′(𝑣) by 𝑤(𝑣), i.e., ∀ 𝑢 ∈ 𝑁′(𝑣) we
set 𝑤′′(𝑢) = 𝑤′(𝑢) + 𝑤(𝑣) = 𝑤(𝑢). We first show that I′′ = I′ is a maximum weight
independent set of 𝐺′. Therefore, assume that I∗ is a maximum weight independent set

103

4 Maximum Weight Independent Sets

v

w(v) ≥ max{w(u), w(x)}

G \ {u, v, x} G \ {u, v, x}

u x

w(v) ≤ w(u) + w(v)

v′
w(v′) = w(u) + w(x)− w(v)

Figure 4.5: Example application of the weighted vertex fold reduction to vertex 𝑣
(orange). Vertices 𝑣, 𝑢, and 𝑤 are contracted to the new vertex 𝑣′.

of 𝐺′′ with 𝑤(I∗) > 𝑤(I′) that does not contain 𝑥. However, then I∗ is also a better
maximum weight independent set on 𝐺′ which contradicts our initial assumption. Finally,
we have that 𝑤(I′′) = 𝑤(I′) +𝑤(𝑣), since exactly one vertex in𝑁′(𝑣) is in I′.

Next, we define 𝐺′′′ as the graph resulting from adding back 𝑣 to 𝐺′′and show that
I′′′ = I′′ is a maximum weight independent set of 𝐺′′′. For this purpose, we assume that
I∗ is a maximum weight independent set of 𝐺′′′ with 𝑤(I∗) > 𝑤(I′′′). Then, 𝑣 ∈ I∗ since
we only added this vertex to 𝐺′′. Likewise, 𝑥 /∈ I∗ since its a neighbor of 𝑣.

Since 𝑤(I∗) > 𝑤(I′′′), we have that:

𝑤(I∗ ⧵ {𝑣}) = 𝑤(I∗) −𝑤(𝑣)
> 𝑤(I′′) −𝑤(𝑣)
= 𝑤(I′) +𝑤(𝑣) −𝑤(𝑣)
= 𝑤(I′).

However, since I∗⧵{𝑣} does neither include 𝑣 nor any neighbor of 𝑣 it is also an independent
set of𝐺′ that is larger thanI′. This contradicts our initial assumption and thusI′′′ = I′′ = I′.
Furthermore, since 𝐺′′′ = 𝐺, we have that I′′′ = I = I′. ◻

Weighted Vertex Fold. Similar to the unweighted vertex fold reduction, we show that we
can fold vertices with two non-adjacent neighbors—however, not all weight configurations
permit this. An example application of this reduction rule is given in Figure 4.5.

Theorem 4.7 (Weighted Vertex Fold Reduction)
Let 𝑣 ∈ 𝑉 have 𝑑(𝑣) = 2, such that 𝑣’s neighbors 𝑢, 𝑥 are not adjacent. If𝑤(𝑣) < 𝑤(𝑢)+𝑤(𝑥)
but𝑤(𝑣) ≥ max{𝑤(𝑢), 𝑤(𝑥)}, then we fold 𝑣, 𝑢, 𝑥 into vertex 𝑣′with weight𝑤(𝑣′) = 𝑤(𝑢)+
𝑤(𝑥)−𝑤(𝑣) forming a new graph 𝐺′. Then 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′)+𝑤(𝑣). Let I′ be a maximum
weight independent set of 𝐺′. If 𝑣′ ∈ I′, then I = (I′ ⧵ {𝑣′}) ∪ {𝑢, 𝑥} is a maximum weight
independent set of 𝐺. Otherwise, I = I′ ∪ {𝑣} is a maximum weight independent set of 𝐺.

Proof. Apply neighborhood folding to 𝑣. ◻

104

4.2 Generalized Reduction Rules

v

G \ {u, v, p, q, r}

p r

u

q

G \ {u, v, p, q, r}

p r
q

{u, v}
w({u, v}) = w(u) + w(v)

Figure 4.6: Illustrating the proof of the weighted twin reduction. The reduction is
applied to vertices 𝑢 and 𝑣 (orange) which are contracted to vertex {𝑢, 𝑣}.

Weighted Twin. The twin reduction, as described by Akiba and Iwata [AI16], works for
twins with three common neighbors. We describe our variant in the same terms but note
that the reduction supports an arbitrary number of common neighbors.

Theorem 4.8 (Weighted Twin Reduction)
Let vertices 𝑢 and 𝑣 have neighborhoods𝑁(𝑢) = 𝑁(𝑣) = {𝑝, 𝑞, 𝑟} such that 𝑝, 𝑞, and 𝑟 are
not adjacent. We have two cases:

(i) If 𝑤({𝑢, 𝑣}) ≥ 𝑤({𝑝, 𝑞, 𝑟}), then 𝑢 and 𝑣 are in some maximum weight independent
set of 𝐺. Let 𝐺′ = 𝐺 ⧵𝑁[{𝑢, 𝑣}].

(ii) If𝑤({𝑢, 𝑣}) < 𝑤({𝑝, 𝑞, 𝑟}), but𝑤({𝑢, 𝑣}) > 𝑤({𝑝, 𝑞, 𝑟})−min𝑥∈{𝑝,𝑞,𝑟}𝑤(𝑥), thenwe
can fold 𝑢, 𝑣, 𝑝, 𝑞, 𝑟 into a new vertex 𝑣′ with weight 𝑤(𝑣′) = 𝑤({𝑝, 𝑞, 𝑟}) −𝑤({𝑢, 𝑣})
and call this graph 𝐺′. Let I′ be a maximum weight independent set of 𝐺′. Then
we construct a maximum weight independent set I of 𝐺 as follows: if 𝑣′ ∈ I′ then
I = (I′ ⧵ {𝑣′}) ∪ {𝑝, 𝑞, 𝑟}, if 𝑣′ ∉ I′ then I = I′ ∪ {𝑢, 𝑣}.

Furthermore, 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) +𝑤({𝑢, 𝑣}).

Proof. Just as in the unweighted case, either 𝑢 and 𝑣 are simultaneously in a maximum
weight independent set or some subset of 𝑝, 𝑞, 𝑟 is. First, fold 𝑢 and 𝑣 into a new vertex
{𝑢, 𝑣} with weight 𝑤({𝑢, 𝑣}). To show (i), apply the neighborhood removal reduction to
vertex {𝑢, 𝑣}. For (ii), since𝑁({𝑢, 𝑣}) is independent, we apply the neighborhood folding
reduction to {𝑢, 𝑣}, giving the claimed result (see Figure 4.6).

Weighted Dominance. Lastly, we give a weighted variant of the dominance reduction (see
Figure 4.7 for an example application of this rule).

Theorem 4.9 (Weighted Dominance Reduction)
Let 𝑢, 𝑣 ∈ 𝑉 be vertices such that𝑁[𝑢] ⊇ 𝑁[𝑣] (i.e., 𝑢 dominates 𝑣). If 𝑤(𝑢) ≤ 𝑤(𝑣), there is
a maximumweight independent set in𝐺 that excludes 𝑢 and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺⧵{𝑢}). Therefore,
𝑢 can be removed from the graph.

105

4 Maximum Weight Independent Sets

G \N [u]

v

G \N [u]

u

w(u) ≤ w(v)

v

N [u]

N [v]

N [u] ⊇ N [v]

u

Figure 4.7: Example application of the weighted dominance reduction to vertex 𝑢
(orange) and 𝑣 (blue). Vertex 𝑢 can be removed and excluded from the independent
set since it is dominated by vertex 𝑣.

Proof. We show by a cut-and-paste argument that there is a maximum weight independent
set of 𝐺 excluding 𝑢. Let I be a maximum weight independent set of 𝐺. If 𝑢 is not in I ,
then we are done. Otherwise, suppose 𝑢 ∈ I . Then it must be the case that 𝑤(𝑣) = 𝑤(𝑢).
Otherwise, I′ = (I ⧵ {𝑢}) ∪ {𝑣} is an independent set with a weight larger than I . Thus, I′
is a maximum weight independent set of 𝐺 excluding 𝑢, and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺 ⧵ {𝑢}). ◻

4.2.4 Experimental Evaluation

We now compare the performance of our branch-and-reduce algorithm to existing state-of-
the-art algorithms on large real-world graphs. We also examine how our reduction rules
can drastically improve the quality of existing heuristic approaches.

Methodology. All of our experiments were run on Machine B described in Section 2.3.2.c).
All algorithms were implemented in C++ and compiled with g++ version 4.8.4 using opti-
mization flag -O3. Each algorithm was run sequentially for a total of 1000 seconds1. We
present two kinds of data: (1) the best solution found by each algorithm and the time (in
seconds) required to obtain it and (2) convergence plots (see Section 2.3.2.b)). The experi-
ments for heuristic algorithms were performed with five different random seeds. Our set
of instances includes a large set of real-world label conflict graphs and randomly weighted
sparse networks also used by Akiba and Iwata [AI16]. Vertex weights are drawn uniformly
at random from the interval [1, 200]. Basic properties of our benchmark instances can be
found in Appendix A. We also present the reduced instance sizes in Appendix F. For the label
conflict graphs, we use the same instances used in the experiments by Cai et al. [Cai+18].
We omit instances with less than 1000 vertices, as these are easy to solve, and our focus is on
large-scale networks.

1Results with more than 1000 seconds are due to initial reductions taking longer than the time limit.

106

4.2 Generalized Reduction Rules

Algorithms Compared. We use two different variants of our branch-and-reduce algo-
rithm. The first variant, called BnRfull, uses our full set of reductions each time we branch.
The second variant, called BnRdense, omits the more costly reductions and also terminates
the execution of the remaining reductions faster than BnRfull. In particular, this configura-
tion completely omits the weighted critical set reductions from both the initialization and
recursion. Additionally, we also omit the weighted clique reduction from the first reduction
call and use a faster version that only considers triangles during recursion. Finally, we do not
use generalized neighborhood folding during recursion. This configuration finds solutions
more quickly on dense graphs.

We also include the state-of-the-art heuristics HILS by Nogueria et al. [NPS18] and both
versions of DynWVC by Cai et al. [Cai+18]. We do not include any exact algorithms besides
our own (e.g., [BT07; WH06]) as their codes are not available. Also, note that these exact
algorithms are either not tested in the weighted case [BT07] or the largest instances reported
consist of a few hundred vertices [WH06].

To further evaluate the impact of reductions on existing algorithms, we also propose
combinations of the heuristic approaches with reductions (Red +HILS and Red +DynWVC).
We do so by first computing a reduced graph using our (full) set of reductions and then
running the existing algorithms on the resulting graph.

4.2.4.a) Comparison with State-of-the-Art

A representative sample of our experimental results for the OSM and SNAP networks is
presented in Table 4.1. For a full overview of all instances, we refer to Table 27 (OSM) and
Table 28 (SNAP), respectively. For each instance, we list the best solution computed by
each algorithm 𝑤Alg and the time in seconds required to find it 𝑡Alg. For each data set, we
highlight the best solution found across all algorithms in bold. Additionally, if any version
of our algorithm is able to find an exact solution, the corresponding row is highlighted in
gray. Each table also includes the aggregated number of instances (including ones that are
not part of the sample) our algorithm is able to solve. For those instances that were solved
by us, we also include the number of instances on which the heuristic algorithms computed
a solution of the same weight. Finally, recall that our algorithm computes a solution on
unsolved instances once the time limit is reached by additionally running a greedy algorithm
as post-processing.

Examining the OSM graphs, BnR is able to solve 15 out of the 34 instances we tested.
However, HILS is also able to compute a solution with the same weight on all of these
instance. Furthermore, HILS obtains a higher or similar quality solution than both versions
of DynWVC and BnR for all remaining unsolved instances. Overall, HILS is able to find the
best solution on all OSM instances that we tested. Additionally, on most of these instances, it
does so significantly faster than all of its competitors. Note that neither HILS nor DynWVC
provides any optimality guarantees (in contrast to BnR).

Looking at both versions of DynWVC, we see that DynWVC1 performs better than
DynWVC2, which is also reported by Cai et al. [Cai+18]. Comparing both variants of
our branch-and-reduce algorithm, we see that they are able to solve the same instances.

107

4 Maximum Weight Independent Sets

Table 4.1: Best solution found by each algorithm and the time (in seconds) required to
compute it. The global best solution is highlighted in bold. Rows are highlighted in
gray if BnR is able to find an exact solution.

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max

OSM instances DynWVC1 HILS BnRdense

alabama-AM3 464.02 185 527 0.73 185 744 15.79 185 707
florida-AM2 1.14 230 595 0.04 230 595 0.03 230 595
georgia-AM3 0.88 222 652 0.05 222 652 4.88 214 918
kansas-AM3 46.87 87 976 0.84 87 976 11.35 87 925
maryland-AM3 1.34 45 496 0.02 45 496 3.34 45 496
massachusetts-AM3 435.31 145 863 2.73 145 866 12.87 145 617
utah-AM3 136.15 98 802 0.08 98 847 64.04 98 847
vermont-AM3 119.63 63 234 0.95 63 302 95.81 55 584

Solved instances 44.12% (15/34)
Optimal weight 60.00% (9/15) 100.00% (15/15)

SNAP instances DynWVC2 HILS BnRfull

as-skitter 576.93 123 105 765 998.75 122 539 706 746.93 123 904 741
ca-AstroPh 108.35 796 535 46.76 796 556 0.03 796 556
email-EuAll 179.26 25 330 331 501.09 25 330 331 0.19 25 330 331
p2p-Gnutella08 0.19 435 893 0.25 435 893 0.01 435 893
roadNet-TX 1 000.78 77 525 099 1 697.13 76 366 577 33.49 78 606 965
soc-LiveJournal1 1 001.23 277 824 322 12 437.50 280 559 036 270.96 283 948 671
web-Google 683.63 56 190 870 994.58 55 954 155 3.16 56 313 384
wiki-Talk 991.31 235 874 419 996.02 235 852 509 3.36 235 875 181

Solved instances 80.65% (25/31)
Optimal weight 28.00% (7/25) 68.00% (17/25)

Nonetheless, BnRdense is able to compute better solutions on roughly half of the remaining
instances. Additionally, it almost always requires significantly less time compared to BnRfull.

For the SNAP networks, we see that BnR solves 25 of the 31 instances we tested 2. Most
notable, on seven of these instances where either HILS or DynWVC1 also finds a solution
with optimal weight, it does so up to two orders of magnitude faster. This difference in
performance compared to the OSM networks can be explained by the significantly lower
graph density and less uniform degree distribution of the SNAP networks. These structural
differences seem to allow our reduction rules to be applicable more often, resulting in a
significantly smaller reduced instance (as seen in Appendix F). This is similar to the behavior
of unweighted branch-and-reduce [AI16]. Therefore, except for a single instance, our
algorithm is able to find the best solution on all graphs tested.

2Using a longer time limit of 48 hours we are able to solve 27 our of 31 instances.

108

4.2 Generalized Reduction Rules

Table 4.2: Best solution found by each algorithm and the time (in seconds) required to
compute it. 𝑠base = 𝑡base/𝑡modified denotes the speedup between the modified and base
versions of each local search. The global best solution is highlighted in bold. Rows are
highlighted in gray if BnR is able to find an exact solution.

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑠base 𝑡max 𝑤max

OSM instances DynWVC1 Red+DynWVC1 BnRdense

alabama-AM3 464.02 185 527 370.80 185 727 1.25 15.79 185 707
florida-AM2 1.14 230 595 0.03 230 595 44.19 0.03 230 595
georgia-AM3 0.88 222 652 2.64 222 652 0.33 4.88 214 918
kansas-AM3 46.87 87 976 13.59 87 976 3.45 11.35 87 925
maryland-AM3 1.34 45 496 2.07 45 496 0.65 3.34 45 496
massachusetts-AM3 435.31 145 863 10.68 145 866 40.75 12.87 145 617
utah-AM3 136.15 98 802 168.07 98 847 0.81 64.04 98 847
vermont-AM3 119.63 63 234 62.85 63 280 1.90 95.81 55 584

Solved instances 44.12% (15/34)
Optimal weight 60.00% (9/15) 93.33% (14/15)

SNAP instances DynWVC2 Red+DynWVC2 BnRdense

as-skitter 576.93 123 105 765 85.60 123 995 808 6.74 746.93 123 904 741
ca-AstroPh 108.35 796 535 0.02 796 556 4 962.17 0.03 796 556
email-EuAll 179.26 25 330 331 0.12 25 330 331 1 548.08 0.19 25 330 331
p2p-Gnutella08 0.19 435 893 0.00 435 893 46.98 0.01 435 893
roadNet-TX 1 000.78 77 525 099 771.05 78 601 813 1.30 33.49 78 606 965
soc-LiveJournal1 1 001.23 277 824 322 996.68 283 973 997 1.00 270.96 283 948 671
web-Google 683.63 56 190 870 3.30 56 313 349 207.26 3.16 56 313 384
wiki-Talk 991.31 235 874 419 2.30 235 875 181 430.22 3.36 235 875 181

Solved instances 80.65% (25/31)
Optimal weight 28.00% (7/25) 84.00% (21/25)

Comparing the heuristic approaches, both versions of DynWVC perform better than
HILS on most instances, with DynWVC2 often finding better solutions than DynWVC1.
Nonetheless, HILS finds higher weight solutions than DynWVC1 and DynWVC2.

4.2.4.b) The Power of Weighted Reductions

We now examine the effect of using reductions to improve existing heuristic algorithms. For
this purpose, we compare the combined approaches Red + HILS and Red + DynWVC with
their base versions and our branch-and-reduce algorithm. Our sample of results for the OSM
and SNAP networks are given in Tables 4.2 and 4.3, which show the results for DynWVC
and HILS, respectively. In addition to the data used in our state-of-the-art comparison,
we now also report speedups between the modified and base versions of each local search.

109

4 Maximum Weight Independent Sets

Table 4.3: Best solution found by each algorithm and the time (in seconds) required to
compute it. 𝑠base = 𝑡base/𝑡modified denotes the speedup between the modified and base
versions of each local search. The global best solution is highlighted in bold. Rows are
highlighted in gray if BnR is able to find an exact solution.

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑠base 𝑡max 𝑤max

OSM instances HILS Red + HILS BnRdense

alabama-AM3 0.73 185 744 4.05 185 744 0.18 15.79 185 707
florida-AM2 0.04 230 595 0.03 230 595 1.75 0.03 230 595
georgia-AM3 0.05 222 652 2.43 222 652 0.02 4.88 214 918
kansas-AM3 0.84 87 976 2.06 87 976 0.41 11.35 87 925
maryland-AM3 0.02 45 496 2.07 45 496 0.01 3.34 45 496
massachusetts-AM3 2.73 145 866 2.92 145 866 0.93 12.87 145 617
utah-AM3 0.08 98 847 2.10 98 847 0.04 64.04 98 847
vermont-AM3 0.95 63 302 2.95 63 312 0.32 95.81 55 584

Solved instances 44.12% (15/34)
Optimal weight 100.00% (15/15) 100.00% (15/15)

SNAP instances HILS Red + HILS BnRdense

as-skitter 998.75 122 539 706 845.70 123 996 322 1.18 746.93 123 904 741
ca-AstroPh 46.76 796 556 0.02 796 556 2 142.48 0.03 796 556
email-EuAll 501.09 25 330 331 0.12 25 330 331 4 327.82 0.19 25 330 331
p2p-Gnutella08 0.25 435 893 0.00 435 893 63.80 0.01 435 893
roadNet-TX 1 697.13 76 366 577 946.32 78 602 984 1.79 33.49 78 606 965
soc-LiveJournal1 12 437.50 280 559 036 761.51 283 975 036 16.33 270.96 283 948 671
web-Google 994.58 55 954 155 3.01 56 313 384 330.28 3.16 56 313 384
wiki-Talk 996.02 235 852 509 2.30 235 875 181 432.26 3.36 235 875 181

Solved instances 80.65% (25/31)
Optimal weight 68.00% (17/25) 88.00% (22/25)

Additionally, we give the percentage of instances solved by BnR and the percentage of
solutions with optimal weight found by the heuristic algorithms compared to BnR. For a
full overview of all instances, we refer to Appendix G.

When looking at the speedups for the SNAP graphs, we can see that using reductions
allows local search to find optimal solutions orders of magnitude faster. Additionally, they
are now able to find an optimal solution more often than without reductions. In particular,
DynWVC2 achieves an increase of 56% of optimal solutions when using reductions. Overall,
we achieve a speedup of up to three orders of magnitude for the SNAP instances. Thus,
the additional costs for computing the reduced graph can be neglected for these instances.
However, for the OSM instances, our reduction rules are less applicable, and computing the
reduced graph comes at a significant cost compared to the unmodified local searches.

110

4.2 Generalized Reduction Rules

10−1 100 101 102 103

85000

86000

87000

88000

So
lu

tio
n

si
ze

kansas-AM3

10−2 10−1 100 101 102 103

80000

90000

100000
utah-AM3

101 102 103

Time (s)

7.2

7.4

7.6

7.8

So
lu

tio
n

si
ze

×107 roadNet-TX

102 103 104

Time (s)

2.750

2.775

2.800

2.825

×108 soc-LiveJournal1

BnRfull

BnRdense

DynWVC1
Red + DynWVC1

DynWVC2
Red + DynWVC2
HILS
Red + HILS

Figure 4.8: Solution quality over time for two OSM instances (top) and two SNAP
instances (bottom).

To further examine the influence of using reductions, Figure 4.8 shows the solution
quality over time for all algorithms and four instances. For additional convergence plots, we
refer to Appendix H. For the OSM instances, we can see that initially DynWVC and HILS
are able to find good quality solutions much faster compared to their combined approaches.
However, once the reduced graph has been computed, regular DynWVC and HILS are
quickly outperformed by the hybrid algorithms.

A more drastic change can be seen for the SNAP instances. Instances where both Dyn-
WVC and HILS examine poor performance, Red + DynWVC and Red + HILS now rival
our branch-and-reduce algorithm and give near-optimal solutions in less time. Thus, using

111

4 Maximum Weight Independent Sets

reductions for instances that are too large for traditional heuristic approaches allows for
a drastic improvement.

4.3 Increasing Transformations
As seen in the previous section, reduction rules are often able to calculate very small ir-
reducible graphs on a wide number of (weighted) instances. Thus, branch-and-reduce
algorithms are able to solve many instances up to two orders of magnitude faster than exist-
ing local search algorithms. However, these algorithms still fail to compute reduced graphs
that are small enough on some instances [Lam+19]. This is mainly due to the specialized
nature of these reduction rules that search for very specific subgraphs that can be removed.

In this chapter, we introduce new generalized reduction and transformation rules to
address this issue. Unlike previous narrowly-defined reduction rules, we engineer trans-
formation rules that can also increase the size of the input. Surprisingly, this can simplify
the problem and open up the reduction space to yield even smaller irreducible graphs later
throughout the algorithm’s execution [Ale+03].

More precisely, we engineer practically efficient variants of the stability number reduction
rule (called struction). To the best of our knowledge, these are the first practical implemen-
tations of the weighted struction rule that are able to handle a large variety of real-world in-
stances. Our algorithm exploits the full potential of the struction rule by also allowing the
application of structions that may increase the number of vertices. These new rules are
integrated into the state-of-the-art branch-and-reduce algorithm by Lamm et al. [Lam+19]
presented in the previous section – with and without the property that a transformation rule
can increase the size of the input. Extensive experiments indicate that our algorithm calcu-
lates significantly smaller irreducible graphs than current state-of-the-art approaches, and
preprocessing with our transformations enables branch-and-reduce to solve many instances
that were previously infeasible to solve to optimality.

Organization. We begin this section with an overview of the work related to the struction
by Ebenegger et al. [EHd84] in Section 4.3.1. Our practically efficient struction variants
are introduced in Section 4.3.2. Section 4.3.3 then shows how these variants can be used
to build an efficient preprocessing algorithm that can be integrated into state-of-the-art
branch-and-reduce algorithms. Finally, we close this section with an extensive experimental
evaluation in Section 4.3.4.

4.3.1 Struction
Originally the struction (STability number RedUCTION) was introduced by Ebenegger
et al. [EHd84] and was later improved by Alexe et al. [Ale+03]. This method is a graph
transformation for unweighted graphs that can be applied to an arbitrary vertex and reduces
the stability number by exactly one. Thus, by successive application of the struction, the
independence number of a graph can be determined. To be more specific, when applying
a struction to a vertex, the vertex and its neighborhood are removed from the graph, and
the independence number of the graph is reduced by one. However, new vertices and edges

112

4.3 Increasing Transformations

1

2

0

5

34

3

(a) Original Graph

1, 2 2, 4

1, 31, 4

5

(b) After first struction

1, 31, 4

(c) After second struc-
tion

Figure 4.9: Example application of unweighted structions to reduce a graph. The first
struction is applied to vertex “0”, resulting in the removal of its closed neighborhood
and the insertion of vertices “1,2”, “1,3”, “1,4”, and “2,4”. The second and third struction
are applied to “5” and “1,4”, removing their closed neighborhoods and creating no
vertices. Vertices included in the solution when undoing the structions are highlighted
in gray.

might be inserted, leading to a potential increase in the graph size. An example application
of the unweighted struction is given in Figure 4.9. Ebenegger et al. also show that there is an
equivalence between finding a maximum weight independent set and maximizing a pseudo
Boolean function, i.e., a real-valued function with Boolean variables, which allows deriving
the struction as a special case. Finally, the authors present a generalization of the struction
to weighted graphs, which will be discussed later.

On this basis, theoretical algorithms with polynomial time complexity for special graph
classes have been developed [HMdW85a; HMdW85b; Ale+03]. These algorithms use a set
of additional reduction rules and a careful selection of vertices on which the struction can
be applied.

Hoke and Troyon [HT94] developed another form of the weighted struction, using
the same equivalence found by Ebenegger et al. [EHd84]. In particular, they derive the
revised weighted struction. However, this type of struction can only be applied to claw-free
graphs, i.e., graphs without an induced three-leaf star. This transformation also removes a
vertex 𝑣 and its neighborhood but is able to create fewer new vertices since these are only
created for pairs of non-adjacent neighbors whose combined weight is greater than the
weight of 𝑣.

As far as we are aware, prior to this work, only a few experiments with struction variants
existed and were limited to only small instances: Ebenegger et al. [EHd84] and Alexe et al.
[Ale+03] evaluated the struction only on small graphs with less than a hundred vertices for
the unweighted case. Furthermore, for the weighted case, none of the previously proposed
struction variants has been evaluated so far [EHd84; HT94; Ale+03].

113

4 Maximum Weight Independent Sets

OriginalWeighted Struction. We now present the original weighted struction introduced
by Ebenegger et al. [EHd84], on which we base our struction variants. In general, we apply
a struction to a center vertex 𝑣 and denote its neighborhood by𝑁(𝑣) = {1, 2, ..., 𝑝}. All
variants we use remove 𝑣 from the graph 𝐺, producing a new graph 𝐺′, and reduce the
weighted independence number of the graph𝐺 by its weight, i.e., 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣).

For ease of presentation, we first introduce a method called layering. Layering describes
the partitioning of a given set𝑀 that contains vertices 𝑣𝑥,𝑦, that are indexed by two parame-
ters 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌. The sets𝑋,𝑌 either contain vertices or vertex sets. For 𝑘 ∈ 𝑋, a layer
𝐿𝑘 contains all vertices having 𝑘 as the first parameter, i.e., 𝐿𝑘 = {𝑣𝑥,𝑦 ∈ 𝑀 ∶ 𝑥 = 𝑘}.
Conversely, the layer of a vertex 𝑣𝑥,𝑦 is 𝐿(𝑣𝑥,𝑦) = 𝑘 = 𝑥.

In order to apply the original struction by Ebenegger et al. [EHd84], the center vertex 𝑣
must haveminimumweight among its closed neighborhood. The struction is then applied by
removing 𝑣 and creating new vertices for each pair 𝑖, 𝑗 of non-adjacent vertices in𝑁(𝑣). To
guarantee that we can obtain a maximum weight independent set I of 𝐺 using a maximum
weight independent set I′ of 𝐺′ with 𝑤(I) = 𝑤(I′) + 𝑤(𝑣), we also insert edges between
the new and original vertices. We now provide a formal definition of the original struction.

Theorem 4.10 (Original Struction)
Let 𝑣 ∈ 𝑉 be a vertex with minimum weight 𝑤(𝑣) among its closed neighborhood. Transform
the graph as follows:

• Remove 𝑣, lower weight of each neighbor by 𝑤(𝑣).

• For each pair of non-adjacent neighbors 𝑥 < 𝑦, create a new vertex 𝑣𝑥,𝑦 with weight
𝑤(𝑣𝑥,𝑦) ∶= 𝑤(𝑣).

• Insert edges between 𝑣𝑞,𝑥, 𝑣𝑟,𝑦 if either 𝑥 and 𝑦 are adjacent or they belong to different
layers, i.e., 𝑞 ≠ 𝑟.

• Each vertex 𝑣𝑥,𝑦 is also connected to vertex 𝑤 ∈ 𝑉 ⧵ {𝑣} adjacent to either 𝑥 or 𝑦.

For a maximum weight independent set I′ of 𝐺′, we obtain a maximum weight indepen-
dent set I of𝐺 as follows: If I′ ∩ 𝑁(𝑣) = ∅ applies, we have I = I′ ∪ {𝑣}. Otherwise, we
remove the new vertices, i.e., I = I′ ∩ 𝑉. Furthermore, we have 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣).
A proof that the original struction is a valid reduction can be found in the paper by Ebeneg-
ger et al. [EHd84]. An example application of the original struction is given in Figure 4.10 (b),
where the center vertex is “0”, 𝐿1 = {“1,2”, “1,3”, “1,4”} and 𝐿2 = {“2,4”}.

4.3.2 NewWeighted Struction Variants
We now introduce three new struction variants: First, we deal with the fact that using the
original weighted struction, a maximum weight independent set in the transformed graph
might consist of more vertices than in the original graph. We do so by using different
weight assignments for the new vertices and inserting additional edges. Second, we present
a generalization of the revised weighted struction that can be applied to vertices of general
graphs without the need to fulfill specific weight constraints. However, this variant creates

114

4.3 Increasing Transformations

1 4

2

5

3

0

(a) Original Graph

5

2 3

1 4

1, 4 1, 3

2, 4 1, 2

(b) Original Struction

5

2 3

1 4

1, 4 1, 3

2, 3 1, 2

(c) Modified Struction

Figure 4.10: Example application of the original struction and modified struction on
vertex 𝑣 = 0. Vertices representing the same independent set in the different graphs are
highlighted in gray.

new vertices for independent sets in the neighborhood of a vertex 𝑣 whose weight is greater
than 𝑤(𝑣). Finally, we alleviate this issue by creating new vertices only for a specific subset
of these independent sets in the third variant.

Modified Weighted Struction. One caveat of the original struction is that the number
of vertices that are part of a maximum weight independent set in the transformed graph
is generally larger than in the original graph. The modified struction tries to alleviate this
issue by ensuring that the number of vertices of a maximum weight independent set stays
the same in both graphs. This is done by using a different weight assignment and insert-
ing additional edges. In particular, the newly created vertex for each pair of non-adjacent
neighbors 𝑥, 𝑦 ∈ 𝑁(𝑣) with 𝑥 < 𝑦 is now assigned weight 𝑤(𝑣𝑥,𝑦) = 𝑤(𝑦) (instead
of 𝑤(𝑣)). Furthermore, in addition to the edges created in the original struction, each
neighbor 𝑘 ∈ 𝑁(𝑣) is connected to each vertex 𝑣𝑥,𝑦 belonging to a different layer than 𝑘.
Finally,𝑁(𝑣) is extended to a clique by adding edges between vertices 𝑥, 𝑦 ∈ 𝑁(𝑣). For
a maximum weight independent set I′ of 𝐺′, we now obtain a maximum weight inde-
pendent set I of 𝐺 as follows: If I′ ∩ 𝑁(𝑣) = ∅ applies, we have I = I′ ∪ {𝑣}.
Otherwise, we obtain I by replacing each new vertex 𝑣𝑥,𝑦 ∈ I′ with the original ver-
tex 𝑣𝑦, i.e., I = (I′ ∩ 𝑉) ∪ {𝑣𝑦 ∣ 𝑣𝑥,𝑦 ∈ I′ ⧵ 𝑉}. As for the original struction, we
have 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣). An example application of the modified struction is given
in Figure 4.10 (c), where the center vertex is “0”, 𝐿1 = {“1,2”, “1,3”, “1,4”} and 𝐿2 = {“2,4”}.

Lemma 4.11 (ModifiedWeighted Struction, Independence Number)
After using the modified weighted struction, the equality 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣) holds.

ExtendedWeighted Struction. The extended struction removes the weight restriction for
the vertex 𝑣 in the former variants. Unlike the previous two structions, this variant considers
independent sets of arbitrary size in the neighborhood𝑁(𝑣). In fact, we create new vertices
for each independent set in 𝐺[𝑁(𝑣)] if its weight is greater than 𝑣. Note that this can result
in up toO(2𝑑(𝑣)) new vertices.

115

4 Maximum Weight Independent Sets

4 3

0

1

6

5 2

(a) Original Graph

1

2

1, 4

6

2, 4

2, 5

2, 4, 5

(b) Extended Struction

;41

1

2

;42

;52

6

(c) Extended Reduced
Struction

Figure 4.11: Application of extended struction and extended reduced struction on
center vertex 𝑣 = 0. Vertices representing the same independent set in the differ-
ent graphs are highlighted in gray. We assume some weight constraints in the orig-
inal graph for the construction in (b) and (c): 𝑤(1) > 𝑤(0), 𝑤(2) > 𝑤(0), and
𝑤(3) + 𝑤(4) + 𝑤(5) ≤ 𝑤(0).

Theorem 4.12 (ExtendedWeighted Struction)
Let 𝑣 ∈ 𝑉 be an arbitrary vertex and C the set of all independent sets 𝑐 in 𝐺[𝑁(𝑣)] with
𝑤(𝑐) > 𝑤(𝑣). We derive the transformed graph 𝐺′ as follows: First, remove 𝑣 together with
its neighborhood and create a new vertex 𝑣𝑐 with weight 𝑤(𝑣𝑐) = 𝑤(𝑐) − 𝑤(𝑣) for each
independent set 𝑐 ∈ C. Each vertex 𝑣𝑐 is then connected to each non-neighbor 𝑤 ∈ 𝑁(𝑣)
adjacent to at least one vertex in 𝑐. Finally, the vertices 𝑣𝑐 are connected with each other,
forming a clique. For a maximum weight independent set I′ of 𝐺′ we obtain a maximum
weight independent set I of 𝐺 as follows: If I′ ⧵ 𝑉 = {𝑣𝑐} replace 𝑣𝑐 with the vertices of
the corresponding independent set 𝑐, i.e., I = (I′ ∩ 𝑉) ∪ 𝑐. Otherwise, I = I′ ∪ {𝑣}.
Furthermore, we have 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣).

An example application of the extended struction can be found in Figure 4.11 (b), where
the center vertex is “0”, and the set of independent sets (i.e., the set of new vertices) is
𝐶 = {“1”, “1,4”, “2”, “2,4”, “2,4,5”, “2,5”}.

Lemma 4.13 (ExtendedWeighted Struction, Independence Number)
After using the extended weighted struction, 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣) holds.

Extended ReducedWeighted Struction. The extended reduced struction is a variant of
the extended struction, which can potentially reduce the number of newly created vertices.
For this purpose, only independent sets with weight “just” greater than 𝑤(𝑣) are considered.
Let C be the set of all independent sets in 𝐺[𝑁(𝑣)]. We define a subset of independent
sets 𝐶 ⊆ C as follows. For an arbitrary but fixed ordering of the vertices, 𝐶 consists of
independent sets of weight greater than 𝑤(𝑣) that have no prefix set (according to the
ordering) with weight greater than 𝑤(𝑣). That is, 𝐶 = {𝑐 ∈ C ∣ 𝑤(𝑐) −𝑤(𝑀(𝑐)) ≤ 𝑤(𝑣)}
where𝑀(𝑐) is the vertex of𝑁(𝑣) of the highest index in the ordering.

116

4.3 Increasing Transformations

We then use the same construction as for the extended struction but only create new
vertices for the set 𝐶. The resulting set of vertices is denoted by 𝑉𝐶. However, since this
construction might not be valid anymore, we also add additional vertices that are connected
to each other by using layering. To bemore specific, for each pair of an independent set 𝑐 ∈ 𝐶
and a vertex 𝑦 ∈ 𝑁(𝑣), we create a vertex 𝑣𝑐,𝑦 with weight 𝑤(𝑣𝑐,𝑦) = 𝑤(𝑦), if 𝑐 can be
extended by 𝑦, i.e., 𝑦 is not adjacent to any vertex 𝑣′ ∈ 𝑐. We denote this set of vertices
𝑣𝑐,𝑦 by 𝑉𝐸. We then insert edges between two vertices 𝑣𝑐,𝑦, 𝑣𝑐′,𝑦′ if they either belong to
different layers or 𝑦 and 𝑦′ have been adjacent. Moreover, each vertex 𝑣𝑐,𝑦 is connected
to each non-neighbor 𝑤 ∈ 𝑁(𝑣) if 𝑤 has been connected to either 𝑦 or a vertex 𝑥 ∈ 𝑐.
Finally, we connect each vertex 𝑣𝑐 to each vertex 𝑣𝑐′,𝑦 belonging to a different layer than 𝑐.
For a maximum weight independent set I′ of𝐺′, we obtain a maximum weight independent
set I of 𝐺 as follows: If I′ ∩ 𝑉𝐶 = ∅ applies, we set I = I′ ∪ {𝑣}. Otherwise, there
is a single vertex 𝑣𝑐 ∈ I′ ∩ 𝑉𝐶 that we replace with the vertices of its independent set 𝑐.
Moreover, we replace each vertex 𝑣𝑐,𝑦 ∈ I′ ∩ 𝑉𝐸 with the vertex 𝑣𝑦. Altogether we have
I = (I′ ∩ 𝑉) ∪ 𝑐 ∪ {𝑣𝑦 ∣ 𝑣𝑐,𝑦 ∈ I′ ∩ 𝑉𝐸} and 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣). An example
application of the extended struction can be found in Figure 4.11 (c), where “0” is the center
vertex, 𝑉𝐶 = {“1”, “2”}, 𝐿1 = {“1;4”} and 𝐿2 = {“2;4”, “2;5”}.

Lemma 4.14 (Extended ReducedWeighted Struction, Independence Number)
After using the extended reduced weighted struction, 𝛼𝑤(𝐺) = 𝛼𝑤(𝐺′) + 𝑤(𝑣) holds.

4.3.3 Practically Efficient Structions

We now propose our two novel preprocessing algorithms for MWIS based on the struction
variants presented in the previous section. Additionally, we present how we integrate the
different structions into the algorithm of Lamm et al. [Lam+19] presented in Section 4.2,
both as a preprocessing step and as a reduce step during the algorithm’s execution, to
compute exact solutions more quickly. This takes an initial step towards a generalized
branch-and-transform framework.

Since the different forms of theweighted struction donot necessarily reduce the number of
vertices, we divide them (and the existing reduction rules) into three different classes that are
used throughout this section. For decreasing transformations (reductions), the transformed
graph𝐺′ has fewer vertices than the original graph𝐺. Note that all reduction rules presented
in Section 4.2.3 belong to this class. We also derive special cases of the structions which
belong to this type. Transformations where the number of vertices in the original graph
stays the same but that reduce the size and weight of MWIS in the transformed graph are
called plateau transformations. While plateau transformations cannot reduce the size of the
graph, they can potentially produce new subgraphs, which can then be reduced by other
(decreasing) transformations. Finally, increasing transformations are transformations whose
resulting graph has more vertices than the original graph. Similar to plateau transformations,
the idea is to reduce the resulting graph by further reduction rules and transformations.
However, since increasing structions can lead to a larger transformed graph, it is difficult to
integrate them into algorithms that only apply non-increasing transformations.

117

4 Maximum Weight Independent Sets

4.3.3.a) Non-Increasing Reduction Algorithm

In this section, we show how to obtain decreasing and plateau transformations from the
four different forms of structions presented in Section 4.3.1. Based on these, an incremental
preprocessing algorithm is proposed.

In general, when applying any formof struction, the number of vertices of the transformed
graph 𝐺′ depends on the number of removed and newly created vertices. However, it is
difficult to estimate the number of resulting vertices in advance since it varies depending on
the number of possible independent sets present in the neighborhood of the center vertex.
Thus, when applying a struction variant, we generally keep track of the number of vertices
that will be created. If this number exceeds a given maximum value 𝑛𝑚𝑎𝑥, we discard the
corresponding struction to ensure that not too many vertices are created.

We begin by taking a closer look at the structurally similar original weighted struction
and modified weighted struction. These variants reduce the number of vertices by at most
one since they only remove the center vertex 𝑣. Therefore, decreasing or plateau structions
can be obtained by setting 𝑛𝑚𝑎𝑥 = 0 or 𝑛𝑚𝑎𝑥 = 1. However, note that this type of decreasing
struction is already covered by the isolated weight transfer presented in Section 4.2.3.

Looking at the two remaining struction variants, we see that they not only remove the
center vertex 𝑣 but also its neighborhood𝑁(𝑣). Thus, the size of the graph can be reduced
by up to 𝑑(𝑣) + 1 vertices. Decreasing or plateau structions can be obtained by using the
corresponding struction variant with 𝑛𝑚𝑎𝑥 = 𝑑(𝑣) or 𝑛𝑚𝑎𝑥 = 𝑑(𝑣) + 1.

The resulting rules can then easily be integrated into the reduction algorithm of the
previous branch-and-reduce algorithm. However, since all struction variants are very general
reduction rules, they tend to be expensive in terms of running time. Therefore, we apply
them after the faster localized reduction rules but before the even more expensive critical set
reduction. To be more specific, we use the following reduction rule order: neighborhood
removal, vertex fold, isolated clique, dominance, twin, isolatedweight transfer, neighborhood
folding, decreasing struction, plateau struction, and critical weighted independent set.

4.3.3.b) Cyclic Blow-Up Algorithm

Next, we extend the previous (non-increasing) algorithm to also make use of increasing
structions. The main idea is to alternate between computing an irreducible graph using the
previous algorithm and then applying increasing structions while ensuring that the graph
size does not increase too much. The reasoning for this is that even though the graph size
might increase, this can generate new and potentially reducible subgraphs, thus leading to
an overall decrease in the graph size.

In the following, we say that a graphK is better than a graphK′ if it has fewer vertices.
However, our algorithm can easily be adapted to match other quality criteria. Pseudocode
for our algorithm is given in Algorithm 4.2.

Our algorithm maintains two graphsK andK⋆. K⋆ is the best graph found so far, i.e.,
the graph with the least number of vertices. K is the current graph, which we try to reduce
to get a better graphK⋆. Both graphs,K andK⋆ are initialized with the graph obtained by
applying the non-increasing reduction algorithm of the previous section. The algorithm

118

4.3 Increasing Transformations

Algorithm 4.2 : Cyclic blow-up algorithm.
Data : 𝐺 = (𝑉,𝐸), unsuccessful iteration threshold𝑋 ∈ [1,∞), maximum blowup
𝛼 ∈ [1,∞)

Result : smallest reduced graphK⋆

1 CyclicBlowUp (𝐺,𝑋, 𝛼)
2 K← Reduce(𝐺)
3 K⋆ ← K
4 count← 0
5 while 𝑛(K) ≤ 𝛼 ⋅ 𝑛(K⋆) and count < 𝑋 do
6 K′ ← BlowUp(K)
7 ifK′ = K then
8 returnK⋆

9 K′′ ← Reduce(K′)
10 K← Accept(K′′,K)
11 if 𝑛(K) < 𝑛(K⋆) then
12 K⋆ ← K
13 else
14 count← count+1

15 returnK⋆

then alternates between two phases, a blow-up phase and a reduction phase. During the
blow-up phase, a set of increasing structions is applied toK, resulting in a new graphK′. K′
is then reduced using the non-increasing algorithm, resulting in a graphK′′. Next, we have
to decide whether to use K′′ orK for the next iteration. Note that it can be advantageous to
accept a graphK′′ even if it has more vertices thanK to avoid local minima. Nonetheless,
we decided only to keepK′′ if it has fewer vertices thanK, as this strategy provided better
results during preliminary experiments. Finally, since we might not completely reduce the
graph, we use a termination criterion, which will be discussed later.

Blow-Up Phase. The starting point of the blow-up phase is an irreducible graph, where no
more reductions (including decreasing structions) can be applied. Next, we select a vertex
𝑣 from a candidate set 𝐶. This candidate set consists of all vertices in the current graph
which have not been explicitly excluded from selection during the algorithm’s computation.
Vertex selection is a crucial part of our algorithm. Depending on the selected vertex, the
struction might create a large number of new vertices and the size of the transformed graph
can increase drastically. Thus, we will discuss possible selection strategies later.

Next, we apply a struction to the selected vertex 𝑣. As for our previous algorithm, we
keep track of the number of newly created and deleted vertices during this step. In particular,
if the struction would result in more than 𝑛𝑚𝑎𝑥 vertices, it is aborted. In this case, the
vertex 𝑣 is excluded from the candidate set. The vertex 𝑣 will become viable again as soon

119

4 Maximum Weight Independent Sets

as the corresponding struction would create a different transformed graph, i.e., when its
neighborhood𝑁(𝑣) changed.

After having applied a struction, we then proceed with the subsequent reduction phase.
It might also be possible to apply more than one struction during a blow-up phase. However,
one has to be careful not to let the size of the graph grow too large.

Vertex Selection Strategies. The goal of the vertex selection procedure is to find an increas-
ing struction that results in a new graph, which can then be reduced to an overall smaller
graph. In general, it is very difficult to estimate in advance to what extent the transformed
graph can be reduced without actually performing the reduction phase. Therefore, most
of the following strategies aim to increase the size of the graph by only a few vertices. The
number of newly created vertices is determined by the number of independent sets in the
neighborhood of 𝑣 having a total weight greater than the weight of 𝑣. In general, determin-
ing this number is NP-hard [PV06] and thus often infeasible to compute in practice. In
contrast, a much simpler selection strategy would be to choose vertices uniformly at random.
However, this can lead to structions that significantly increase the graph size.

Thus, in order to limit the size increase of a struction, we decided to use an approximation
of the exact number of independent sets in the neighborhood of 𝑣. In particular, we only
consider independent sets up to a size of two. This results in a lower bound 𝐿 for the number
of independent sets [PV06], which can be computed inO(Δ2) time. Since the lower bound
𝐿 can be far smaller than the actual number of newly created vertices, we use an additional
tightness check: This check is passed if less than 𝐿′ = ⌈ 𝛽 ⋅ 𝐿 ⌉ new vertices with 𝛽 ∈ (1,∞)
are created by the corresponding struction. Our strategy then works as follows: We select a
vertex 𝑣 with a minimal increase and perform the tightness check. If it fails, we know that
at least 𝐿′ new vertices are created by the corresponding struction. Therefore, 𝐿′ forms a
tighter bound for the number of new vertices, and we reinsert 𝑣 to 𝐶 using the bound 𝐿′.
We then repeat this process until we find a vertex that passes the tightness check. Overall,
this allows us to discard structions that create a large number of vertices earlier than if we
directly computed the exact number of independent sets in the neighborhood of a vertex 𝑣.

Termination Criteria. In general, the size ofK can decrease very slowly or even exhibit
oscillatory behavior. This can cause the algorithm to take a long time to improve K⋆ or
even not improve it at all. For this purpose, one needs an appropriate termination criterion.
First, we want to avoid that the size of the current graph K distances too much from that
of the best graphK⋆. Therefore, we abort the algorithm as soon as the size of the current
graph exceeds the size of the best graph by a factor 𝛼 ∈ [1,∞), that is if 𝑛(K) > 𝛼 ⋅ 𝑛(K⋆).
Additionally, we also count the number of unsuccessful iterations, i.e., iterations in which
the new graph has been rejected. Our second criterion aborts the algorithm if this value
exceeds some constant𝑋 ∈ [1,∞).

4.3.4 Experimental Evaluation
We now evaluate the impact and performance of our preprocessing algorithms. First, we
compare the performance of our algorithms with the two configurations used for the branch-
and-reduce algorithm presented in Section 4.2. For this purpose, we examine the sizes of

120

4.3 Increasing Transformations

the reduced graphs, the number of instances solved, as well as the time required to do so.
Second, we perform a broader comparison with other state-of-the-art algorithms, including
heuristic approaches. We do so to highlight the performance our exact approaches are able
to achieve even when compared to heuristics that are unable to prove the optimality of their
computed solutions.

Methodology. We ran all the experiments on Machine B described in Section 2.3.2.c). All
algorithmswere implemented inC++ and compiledwith g++ version 7.5.0 using optimization
flag -O3. All algorithms were executed sequentially with a time limit of 1000 seconds. The
experiments for heuristic algorithms were performed with five different random seeds.
We present maximum values and cactus plots as described in Section 2.3.2.b). Our set of
instances includes all previously introduced real-world label conflict graphs and randomly
weighted sparse networks (see Section 4.2.4). Additionally, we extend this set of benchmark
instances by also considering themesh, finite element, andmaximumweight clique instances
presented in Section 2.3.2.a). We do so to get a clearer picture of the applicability of weighted
reductions to different graph classes. Note that the complements of the maximum weight
clique instances are only somewhat sparse—and most are irreducible by our techniques.
This behavior has already been observed by Akiba and Iwata [AI16] on similar instances.
Therefore, we will omit these instances from our experiments. An overview of all instances
considered is given in Appendix A. Finally, in addition to the cactus plots presented in this
section, we also present convergence plots in Appendix K.

Algorithm Configuration. For our evaluation, we use both the non-increasing algorithm
and the cyclic blow-up algorithm. In particular, we use two different configurations of
the cyclic blow-up algorithm: The first configuration, called 𝐶strong, aims to achieve small
reduced graphs. For this purpose, we set the number of unsuccessful blow-up phases to
𝑋 = 64, the number of vertices that a struction is allowed to create to 𝑛𝑚𝑎𝑥 = 2048, and the
maximum struction degree (the degree up to which we can apply structions) 𝑑𝑚𝑎𝑥 = 512. In
our preliminary experiments, this configuration was always able to compute the smallest
reduced graphs. The second configuration, called 𝐶fast, aims to achieve a good tradeoff
between the reduced graph size and the time required to compute an exact solution. Thus
we set 𝑋 = 25, 𝑛𝑚𝑎𝑥 = 512 and 𝑑𝑚𝑎𝑥 = 64. Finally, all our algorithms use 𝛽 = 2 for the
tightness-check during vertex selection, as well as the extended weighted struction, as this
struction variant achieved the best performance during preliminary experiments.

To measure the impact of our preprocessing methods on existing approaches, we add
each configuration to the branch-and-reduce algorithm. This results in three algorithms,
which we call Cyclic-Fast, Cyclic-Strong, and NonIncreasing in the following. Note that each
algorithm uses the corresponding configuration only for its initial preprocessing, whereas
subsequent graph reductions only use decreasing transformations. Finally, we have replaced
the ARW local search used in the original algorithm to compute lower bounds with the
hybrid iterated local search (HILS) of Nogueira et al. [NPS18]. This resulted in slightly better
runtime during preliminary experiments but had no impact on the number of instances that
were solved.

We begin by comparing our three algorithms with the two configurations, called BnRfull
and BnRdense, of the branch-and-reduce algorithm presented in Section 4.2. Our comparison

121

4 Maximum Weight Independent Sets

is divided into two parts: First, we consider the sizes of the irreducible graphs after the initial
reduction phase. Second, we compare the number of solved instances and the time required
to solve them. A complete overview of the reduced graph sizes and running times for each
algorithm is given in Appendix I. As for the previous section, tables present a representative
sample of our experimental results. For a full overview of all instances, we refer to Table 27
(OSM) and Table 28 (SNAP), respectively. For each instance, we list the best solution
computed by each algorithm 𝑤Alg and the time in seconds required to find it 𝑡Alg. For each
data set, we highlight the best solution found across all algorithms in bold. Each table also
includes aggregated values for the full set of instances (including ones that are not part of
the sample). In particular, for the tables related to the irreducible graph sizes, we present
the number of completely reduced instances. For the tables related to the number of solved
instances, we present the total number of solved instances. Additionally, for those instances
that are solvable by an exact algorithm, we also present the number of instances on which
the heuristic algorithm was able to compute a solution of the same weight.

Table 4.4 shows the sizes of the irreducible graphs after the initial reduction phase. Note
that we omit BnRdense as it always calculates equally sized or larger graphs than BnRfull.

4.3.4.a) Comparison with Branch-and-Reduce

First, we note that except for fe_ocean, Cyclic-Strong always produces the smallest reduced
graphs. For this particular instance, the usage of the struction limits the efficiency of
the critical set reduction, resulting in a larger reduced graph. Furthermore, the greatest
improvement can be found on the mesh instances, which are all completely reduced using
Cyclic-Strong. In comparison, BnRfull is not able to obtain an empty graph on a single of
these instances and ends up with reduced graphs consisting of up to thousands of vertices.
Overall, Cyclic-Strong is able to achieve an empty reduced graph on 60 of the 87 instances
tested – an additional 48 instances compared to the 22 empty graphs computed by BnRfull.

If we compare the reduced graphs of Cyclic-Strong and Cyclic-Fast, we see that they
always have the same size on the mesh instances. However, the size of the reduced instances
computed by Cyclic-Fast on the other instance families is up to a few thousand vertices
larger. On the OSM instances, for example, Cyclic-Fast calculates a reduced graph that has
the same size as the one computed by Cyclic-Strong on only 16 out of 34 instances, with the
largest difference being 2216 vertices.

Next, we examine the number of solved instances and the time required to solve them.
For this purpose, Figure 4.12 shows cactus plots for the number of solved instances over time.
First, we can see that Cyclic-Strong was able to solve the most instances overall (68 out of 87
instances). To be more specific, Cyclic-Strong was able to solve an additional 11 instances
compared to BnRfull and BnRdense. Of these newly solved instances, six are from the OSM
family, three from the SNAP family, and one additional instance from the FE family.

Comparing the time that our algorithms require to solve the instances with BnRfull and
BnRdense, we can see improvements on almost all instances. Our Cyclic-Fast algorithm is
able to find solutions up to an order of magnitude faster than BnRfull and BnRdense on five
mesh instances, 13 OSM instances, and three SNAP instances. On the two OSM instances
pennsylvania-AM3 and utah-AM3 and the SNAP instance roadNet-CA, we are up to two

122

4.3 Increasing Transformations

Table 4.4: Smallest irreducible graph found by each algorithm (in number of vertices
𝑛(K) of reduced graph K) and the time (in seconds) required to compute it. The
smallest irreducible graph for each instance is highlighted in bold. Rows are highlighted
in gray if one of our algorithms is able to obtain an empty graph.

Graph 𝑛(K) 𝑡𝑟 𝑛(K) 𝑡𝑟 𝑛(K) 𝑡𝑟 𝑛(K) 𝑡𝑟 𝑛(K) 𝑡𝑟

OSM instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

alabama-AM2 173 0.06 173 0.07 0 0.01 0 0.01 0 0.01
district-of-columbia-AM2 6 360 11.86 6 360 14.39 5 606 0.85 1 855 2.51 1 484 84.91
florida-AM3 1 069 31.52 1 069 35.20 814 0.13 661 0.44 267 42.26
georgia-AM3 861 8.99 861 10.14 796 0.08 587 0.69 425 12.84
greenland-AM3 3 942 3.81 3 942 24.77 3 953 3.94 3 339 10.27 3 339 54.44
new-hampshire-AM3 247 4.99 247 5.69 164 0.02 0 0.07 0 0.09
rhode-island-AM2 1 103 0.55 1 103 0.68 845 0.17 0 0.53 0 4.57
utah-AM3 568 8.21 568 8.97 396 0.03 0 0.09 0 0.40

Empty graphs 0.0% (0/34) 0.0% (0/34) 11.8% (4/34) 41.2% (14/34) 50.0% (17/34)

SNAP instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

as-skitter 26 584 25.82 8 585 36.69 3 426 4.75 2 782 5.50 2 343 6.80
ca-AstroPh 0 0.02 0 0.02 0 0.02 0 0.03 0 0.03
email-EuAll 0 0.08 0 0.09 0 0.06 0 0.09 0 0.07
p2p-Gnutella06 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01
roadNet-PA 133 814 2.43 35 442 7.73 300 1.05 0 1.19 0 1.14
soc-LiveJournal1 60 041 236.88 29 508 213.74 4 319 22.27 3 530 24.13 1 314 37.77
web-Google 2 810 1.57 1 254 2.42 361 1.75 46 1.88 46 7.97
wiki-Vote 477 0.03 0 0.02 0 0.02 0 0.02 0 0.02

Empty graphs 58.1% (18/31) 67.7% (21/31) 67.7% (21/31) 80.6% (25/31) 80.6% (25/31)

mesh instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

buddha 380 315 5.56 107 265 26.19 86 1.83 0 1.87 0 1.91
dragon 51 885 0.89 12 893 1.34 0 0.18 0 0.19 0 0.21
ecat 239 787 4.07 26 270 10.09 274 2.12 0 2.12 0 2.14

Empty graphs 0.0% (0/15) 0.0% (0/15) 66.7% (10/15) 100.0% (15/15) 100.0% (15/15)

FE instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

fe_ocean 141 283 1.05 0 5.94 138 338 8.90 138 134 9.61 138 049 10.78
fe_sphere 15 269 0.21 15 269 1.47 2 961 0.34 147 0.62 0 0.75

Empty graphs 0.0% (0/7) 14.3% (1/7) 0.0% (0/7) 28.6% (2/7) 42.9% (3/7)

orders of magnitude faster. We attribute this increase in performance to the much smaller
reduced graph size, as often a smaller graph size tends to result in finding a solution faster.
Additionally, the generalized neighborhood folding reduction that is used in BnRfull and
BnRdense tends to increase the running time. Thus, we decided to omit this reduction rule
from our algorithm.

123

4 Maximum Weight Independent Sets

10−310−210−1 100 101 102 103

0

5

10

15

In
st

an
ce

s
so

lv
ed

mesh

10−310−210−1 100 101 102 103

0

5

10

15

20

OSM

10−310−210−1 100 101 102 103

Time (s)

0

1

2

3

In
st

an
ce

s
so

lv
ed

FE

10−310−210−1 100 101 102 103

Time (s)

0

10

20

SNAP

Cyclic-Fast
Cyclic-Strong

Non-Increasing
B & Rdense

B & Rfull

Figure 4.12: Cactus plots for the different instance families and evaluated algorithms.

4.3.4.b) Comparison with Heuristic Approaches

In the following, we provide a comparison of our algorithms with heuristic state-of-the-
art approaches. For this purpose, we also include the two local searches DynWVC and
HILS and the two branch-and-reduce algorithms BnRfull and BnRdense. For DynWVC, we
use both configurations DynWVC1 and DynWVC2 described by Cai et al. [Cai+18]. For
all algorithms, we compare both the best achievable weighted independent set and their
convergence behavior regarding solution quality. An overview of the maximum weight and
the minimum time required to obtain it is given in Table 4.5. Furthermore, for each exact
algorithm, the number of solved instances is shown, whereas for heuristic algorithms, the
number of instances on which they are also able to find a solution with optimal weight is
given. However, note that the heuristic algorithms tested are not able to verify the optimality
of the solution they computed. For the individual instance families, we list either DynWVC1
or DynWVC2, depending on which of the two configurations provides better performance.

124

4.3 Increasing Transformations

Table 4.5: Best solution found by each algorithm and the time (in seconds) required to
compute it. The global best solution is highlighted in bold. Rows are highlighted in
gray if one of our exact algorithms is able to solve the corresponding instances.

Graph 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥

OSM instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong

alabama-AM2 0.24 174 269 0.03 174 309 0.01 174 309 0.01 174 309
district-of-columbia-AM2 915.18 208 977 400.69 209 132 4.21 209 132 84.21 209 131
florida-AM3 862.04 237 120 3.98 237 333 1.57 237 333 40.97 237 333
georgia-AM3 1.31 222 652 0.04 222 652 0.98 222 652 12.97 222 652
greenland-AM3 640.46 14 010 1.18 14 011 10.95 14 011 58.24 14 008
new-hampshire-AM3 1.63 116 060 0.03 116 060 0.05 116 060 0.08 116 060
rhode-island-AM2 13.90 184 576 0.24 184 596 0.41 184 596 4.37 184 596
utah-AM3 136.90 98 847 0.07 98 847 0.09 98 847 0.27 98 847

Solved instances 61.8% (21/34) 64.7% (22/34)
Optimal weight 68.2% (15/22) 100.0% (22/22)

SNAP instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong

as-skitter 383.97 123 273 938 999.32 122 658 804 346.69 124 137 148 354.71 124 137 365
ca-AstroPh 125.05 797 480 13.47 797 510 0.02 797 510 0.02 797 510
email-EuAll 132.62 25 286 322 338.14 25 286 322 0.07 25 286 322 0.07 25 286 322
p2p-Gnutella06 186.97 548 611 1.29 548 612 0.01 548 612 0.01 548 612
roadNet-PA 469.18 60 990 177 999.94 60 037 011 0.96 61 731 589 1.04 61 731 589
soc-LiveJournal1 999.99 279 231 875 1 000.00 255 079 926 51.33 284 036 222 44.19 284 036 239
web-Google 324.65 56 206 250 995.92 56 008 278 1.72 56 326 504 6.44 56 326 504
wiki-Vote 0.32 500 079 10.34 500 079 0.02 500 079 0.02 500 079

Solved instances 90.3% (28/31) 90.3% (28/31)
Optimal weight 28.6% (8/28) 57.1% (16/28)

mesh instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong

buddha 797.35 56 757 052 999.94 55 490 134 1.75 57 555 880 1.77 57 555 880
dragon 981.51 7 944 042 996.01 7 940 422 0.21 7 956 530 0.22 7 956 530
ecat 542.87 36 129 804 999.91 35 512 644 2.19 36 650 298 2.29 36 650 298

Solved instances 100.0% (15/15) 100.0% (15/15)
Optimal weight 0.0% (0/15) 0.0% (0/15)

FE instances DynWVC1 HILS Cyclic-Fast Cyclic-Strong

fe_ocean 983.53 7 222 521 999.57 7 069 279 18.85 6 591 832 19.04 6 591 537
fe_sphere 875.87 616 978 843.67 616 528 0.63 617 816 0.67 617 816

Solved instances 42.9% (3/7) 42.9% (3/7)
Optimal weight 0.0% (0/3) 0.0% (0/3)

Finally, we omit BnRfull, BnRdense, and NonIncreasing, as these are outperformed by either
Cyclic-Fast or Cyclic-Strong, as presented in the previous section. A complete overview of
the solution sizes and running times for each algorithm is given in Appendix J.

Considering the OSM family, we see that our algorithms are able to compute an optimal
solution on 22 of the 34 instances tested. However, HILS was also able to calculate a solution
of optimal size on all these instances. Considering the OSM family, we can see that HILS
calculates optimal solutions on all 22 of the 34 instances that can be solved by our algorithm

125

4 Maximum Weight Independent Sets

Cyclic-Strong. In contrast, DynWVC is only able to do so on 15 of the 22 instances. On ten
of the remaining 12 instances which our algorithms are not able to solve, HILS is able to
calculate the best solution. Finally, when comparing the time required to compute the best
solution, we find that HILS generally performs better than the other algorithms.

For the SNAP instances, we have already seen that Cyclic-Fast and Cyclic-Strong can
solve 28 of the 31 instances optimally. In contrast, HILS can only calculate optimal solutions
on 16 of these 28 instances. Additionally, DynWVC is able to obtain optimal solutions on
eight of the solved instances. For the three unsolved instances, Cyclic-Strong computes the
best solution on as-skitter and soc-LiveJournal1, while DynWVC1 obtains it on soc-pokec-
relationships. In terms of running time, we see that both DynWVC and HILS are often
orders of magnitude slower than our algorithms in achieving their optimal solution.

On the mesh instances, we can observe a similar pattern as for the SNAP instances. Our
algorithms Cyclic-Fast and Cyclic-Strong are able to solve all instances optimally and always
need less than three seconds to obtain them. On the other hand, none of the evaluated local
searches is able to compute an optimal solution on a single instance and are slower than our
algorithms by orders of magnitude.

Finally, on the FE family, neither DynWVC nor HILS is able to obtain a solution of equal
weight on any of the three instances solved by our algorithms. However, considering the
unsolved instances, our algorithms are only able to compute the best solution on the instance
fe_body. On all remaining instances, one of the two DynWVC configurations calculates the
best solution.

4.4 Conclusion and FutureWork

In this chapter, we presented novel approaches and reduction rules to find optimal maximum
weight independent sets. Our approaches are able to scale to significantly larger graphs than
previously feasible for (exact) state-of-the-art algorithms. Our new reductions can also be
integrated into existing approaches to drastically improve their performance.

To be more specific, we presented the first practically efficient branch-and-reduce algo-
rithm for the maximum weight independent set problem. The core of this algorithm is a full
suite of novel reduction rules. This suite includes generalizations of commonly used reduc-
tion rules for the unweighted problem and reduction rules that have no clear unweighted
counterpart. We also presented meta reductions that can be used as a theoretical framework
for many of these rules. Our reduction rules are then integrated into a branch-and-reduce
algorithm optimized for the maximum weight independent set problem. We performed
extensive experiments to show the effectiveness of the resulting algorithm in practice on
real-world graphs of up tomillions of vertices and edges. Our experimental evaluation shows
that our algorithm can solve many large real-world instances very quickly. Additionally, our
experiments show a highly positive effect on existing local search algorithms when they are
paired with our reductions.

Next, we presented multiple algorithms that make use of novel transformations based on
the struction method. In general, the struction method can be classified as a transformation
that reduces the independence number of a graph. One caveat of the struction method

126

4.4 Conclusion and Future Work

is that it does not guarantee that the size of the graph reduces. We thus introduced three
different types of structions that aim to reduce the number of newly constructed vertices. In
addition, we derived special cases of these struction, e.g., by limiting the number of new
vertices, that are efficient in practice. We also derived versions that can easily be integrated
into existing approaches by making sure that no new vertices are created. Our experimental
evaluation indicates that our techniques outperform existing algorithms on a wide variety of
instances. In particular, except for a single instance, our algorithms produce the smallest
known reduced graphs and, when performed with branch-and-reduce, solve more instances
than existing exact algorithms—even solving instances faster than heuristic approaches.

Overall, as for our unweighted approaches presented in Chapter 3, our approaches scale
to significantly larger instances than previously feasible. Additionally, we increased the
number of instances that can be solved exactly in a reasonable amount of time— often
even rivaling the performance of heuristic algorithms. Finally, our algorithms can easily be
extended by additional reduction rules, branching strategies, or upper and lower bounds.

As for the unweighted case, it still remains an important open problem which reductions
provide an optimal balance between speed and quality for a given instance. Integrating
inexact reductions to improve the performance of heuristic approaches might also be a
promising opportunity for future work. Due to the results achieved by using increasing
transformations, it would be of particular interest to develop increasing transformations that
are efficient enough to be used throughout the recursion of the branch-and-reduce algorithm.
This could result in a more general branch-and-transform framework. Evaluating reductions
that are similar to the struction, like the conic reduction [Loz00] or clique reduction [LP09],
might also yield beneficial results. Finally, it would be interesting to see if the reduction
rules for the weighted case can be optimized for the usage on unweighted instances and
provide a significant benefit.

127

5Chapter 5

MaximumCuts

We engineer a new suite of efficient reduction rules for the NP-hard problem of
finding maximum cardinality cuts of a graph. Previous works mainly focused on
theoretically efficient reduction algorithms. However, the practical efficiency of
these algorithms remains an unexplored problem. We thus propose a set of practi-
cally efficient reduction rules and demonstrate their significant impact for solving
highly challenging benchmark instances. Additionally, we note that our reduction
rules subsume most of the previously published rules. Our experiments indicate
that the performance of current state-of-the-art approaches can be improved by
up to multiple orders of magnitude when using our reduction rules.

References. This chapter is based on the conference paper [Fer+20] (ALENEX 2020) pub-
lished jointly with Damir Ferizovic, Demian Hespe, Matthias Mnich, Christian Schulz, and
Darren Strash. Together with Demian Hespe, the author of this dissertation is one of the
main authors of the paper, with editing done by Damir Ferizovic, Matthias Mnich, Chris-
tian Schulz, and Darren Strash. The author made smaller contributions to the reductions
presented in Section 5.2, which were mainly developed by Damir Ferizovic and Demian
Hespe. In order to be self-contained, we include all rules and refer to Ferizovic et al. [Fer+20]
for their corresponding proofs. Furthermore, the author made major contributions to the
engineering aspects of the algorithm (Section 5.3). Implementation was done by Damir Fer-
izovic. Evaluations were done by Damir Ferizovic and the author of this dissertation. Large
parts of this section were copied verbatim from the paper or the technical report [Fer+19].

Motivation. The maximum cardinality cut problem (MaxCut) is to partition the vertex set
of a given graph𝐺 = (𝑉,𝐸) into two sets 𝑆 ⊆ 𝑉 and𝑉⧵𝑆 so as to maximize the total number
of edges between those two sets. Such a partition is called a maximum cut. Computing a
maximum cut of a graph is a well-known NP-hard problem [GJS74] in the area of computer
science. While signed and weighted variants are often considered throughout the litera-
ture [Bar82; Bar96; Bar+88; Chi+07; dSHK13; Har59; HLW02], the unweighted case still has
lots of potential for improvement, and solving it quickly is of importance to all variants. Max-
Cut variants have many applications including social network modeling [Har59], statistical
physics [Bar82], portfolio risk analysis [HLW02], VLSI design [Bar+88; Chi+07], network
design [Bar96], and image segmentation [dSHK13]. Instances used for these applications
can contain tens of thousands of vertices and edges.

For example, maximum weight cuts can be used in image segmentation to separate
regions with similar average colors [dSHK13; DGS18]. For this purpose, an image is divided
into regions with similar colors. Each of these regions is represented by a vertex in a graph.

129

5 Maximum Cuts

Vertices are connected if the regions of the image are adjacent to each other. Additionally,
edges are weighted based on the dissimilarity of the average colors of the regions of both
endpoints. To be more specific, the weight of an edge is larger if the average colors are more
dissimilar. Regions that are not separated by a maximum weight cut then represent regions
with similar average colors and can be merged.

Maximum weight cuts can also be used for solving the via minimization problem in VLSI
design and printed circuit board design [Bar+88]. In printed circuit board design, a “via” is a
hole that has to be drilled in order to create a feasible layer assignment that assigns crossing
wire segments to different layers. Since vias introduce additional costs during fabrication
and can lead to the malfunction of a circuit board, one wants to find an assignment that
minimizes the number of vias. To solve this problem, a reduced layout graph is used where
vertices correspond to connected components of critical segments, i.e., wire segments on
which no via can be placed. Vertices are connected by an edge if any two critical segments
within the components are connected by a free segment, i.e., a wire segment on which a via
can be placed. Edges are weighted based on the difference 𝑎 − 𝑏, where 𝑎 is the number of
vias needed when both endpoints are placed on the same layer, and 𝑏 is the number of vias
needed when both endpoints are placed on different layers. A maximum weight cut then
corresponds to a partitioning of the vertices that minimizes the number of vias.

Many practical approaches exist to compute a maximum cut [RRW10; Ben+11; Gar+14]
or a large (inexact) cut [Wan+13; BH13; Koc+13; AO09]. Curiously, reductions, which
have shown promising results for large instances of other fundamental NP-hard prob-
lems [Abu+07; HSS19; Lam+17], were previously not used in implementations of MaxCut
approaches. To the best of our knowledge, no research has been done on the efficiency of
reductions for MaxCut with the particular goal of achieving small reduced graphs in practice.

Overview. In this chapter, we extend the scope of practically efficient reductions from the
maximum (weight) independent set problem presented in the previous chapters to MaxCut.
We begin by presenting recent related work on MaxCut that includes two commonly used
lower bounds in Section 5.1.

The main contributions of this chapter are then presented in Sections 5.2 and 5.3. In
particular, we engineer a new suite of efficient reduction rules that subsume most of the
previously published rules and demonstrate their significant impact on benchmark data
sets, including synthetic instances and data sets from the VLSI and image segmentation
application domains. Our experiments reveal that current state-of-the-art approaches can
be sped up by up to multiple orders of magnitude when combined with our reduction rules.
On social and biological networks, reductions enable us to solve four instances that were
previously unsolved within a ten-hour time limit with state-of-the-art approaches; three of
these instances are now solved in less than two seconds. Finally, we conclude this chapter
with an outline of important open problems and opportunities for future work in Section 5.5.

Overall, this chapter serves as an example of how reductions can be useful for other NP-
hard problems, where their usage has not been explored as thoroughly as for independent
sets. As for the problems presented in detail in previous chapters, our algorithms are able to
increase both the number and scale of instances that can be solved efficiently in practice.

130

5.1 Related Work

5.1 RelatedWork

There are multiple works on improving fixed-parameter algorithms for MaxCut [Cro+13;
CJM15; EM18; MSZ18]. Even though these works introduce a large set of reduction rules
for effectively reducing a MaxCut instance, they are mostly focused on theoretical proper-
ties [Cro+13; CJM15; EM18; MSZ18; Pri05; Far+17]. These reductions typically have some
constraints on the subgraphs they can be applied to, like being clique forests or clique-cycle
forests. However, there are reduction rules for the general case that take exponential time in
the maximum cut size [MR99]. There are other reduction rules that are fairly simplistic and
focus on very narrow cases [Pri05]. For a thorough examination of existing reductions, we
refer to Ferizovic [Fer19].

Many fixed-parameter algorithms for MaxCut furthermore utilize well-known lower
bounds for the size of the maximum cut. By doing so, the corresponding algorithms have to
decide whether a given MaxCut instance has a cut of size 𝑘 + 𝑙 where 𝑘 ∈ ℕ0 is a parameter
and 𝑙 is the lower bound. In the following, we cover two commonly used lower bounds: the
Edwards-Erdős bound and the spanning tree bound.

Edwards-Erdős Bound. For a connected graph, the Edwards-Erdős bound [Edw73;
Edw75] is defined as 𝐸𝐸(𝐺) = 𝑚/2 + (𝑛 − 1)/4. A linear-time algorithm that computes
a cut satisfying the Edwards-Erdős bound for any given graph is provided by Van Ngoc
and Tuza [vNT93]. Given a graph 𝐺 and integer 𝑘 ∈ ℕ0, the Max Cut Above Edwards-
Erdős (MaxCutAEE) problem asks if 𝐺 admits a cut of size 𝐸𝐸(𝐺) + 𝑘. All reduction rules
for MaxCutAEE require a set 𝑆 ⊆ 𝑉 set such that 𝐺 ⧵ 𝑆 is a clique forest. Etscheid and
Mnich [EM18] propose an algorithm that computes such a set 𝑆 of at most 3𝑘 vertices in
timeO(𝑘 ⋅ (𝑛 +𝑚)).

Spanning Tree Bound. Another bound is based on utilizing the spanning forest of a graph
[MSZ18]. For a given 𝑘 ∈ ℕ0, a maximum cut of size 𝑛 − 1 + 𝑘 is searched for. This decision
problem is denoted as MaxCutAST (Max Cut Above Spanning Tree). For sparse graphs, this
bound is larger than the Edwards-Erdős bound. The reductions for the problem require a
set 𝑆 ⊂ 𝑉 such that 𝐺 ⧵ 𝑆 is a clique-cycle forest.

Note, that neither of the two bounds presented here is better for all graphs. Madathil et al.
[MSZ18] show that when 𝑛 − 1 > 𝑚/2 + (𝑛 + 1)/4, the spanning tree bound is preferable.
On the other hand, the Edwards-Erdős is preferable for dense graphs.

In terms of practical results, multiple approaches, both exact [RRW10; KM06; KMR14;
KMR17; Gus+20; HP21; Hrg+19; RKS22; Cha+22; LAS19] and heuristic [DGS18; BMZ02;
Koc+13], have been proposed in the literature. We note that many of these approaches
primarily target dense instances of the more general problem WeightedMaxCut [RRW10;
KMR14; KMR17; Gus+20; Hrg+19; HP21]. Thus, we only provide a brief overview of these
approaches. Note that we also include the exact algorithm by Rendl et al. [RRW10] in our
experimental evaluation to examine the effects of our preprocessing procedure on these
types of algorithms.

131

5 Maximum Cuts

5.1.1 Exact Approaches

Rendl et al. [RRW10] presented an overview of various techniques used by previous branch-
and-bound algorithms. Furthermore, the authors present their own bounding procedure,
which uses the semidefinite relaxation for WeightedMaxCut. Their experimental evaluation
on a large set of instances (see Section 2.3.2.a)) with up to 343 vertices indicates that their
algorithm outperforms previous approaches.

Krislock et al. [KMR17] also presented an exact branch-and-bound algorithm using a
novel bounding procedure that can be used for WeightedMaxCut. The authors compared
the performance of their algorithm to BiqMac by Rendl et al. [RRW10] on a set of 328
largely dense instances with less than 500 vertices from the BiqMac library [Wie18]. Their
algorithm is able to solve around 75% of instances (85% for hard instances) in less time.
We note that in addition to WeightedMaxCut, their algorithm can also be used for other
problems, including MWIS.

Recent parallel branch-and-bound algorithms are given by Hrga et al. [Hrg+19], Gus-
meroli et al. [Gus+20], and Hrga and Povh [HP21]. The most recent approach by Hrga
and Povh [HP21] uses a distributed memory parallelization to efficiently process multi-
ple branches of the branch-and-bound tree concurrently. In addition to comparing their
sequential algorithm against previous state-of-the-art approaches, they also evaluated the
scalability of their approach on up to 48 workers and showed good strong-scaling behavior.

In the following, we cover recent state-of-the-art approaches that focus on larger (and
sparse) instances, which our work focuses on. Note that many of the following approaches
also target the more general problem WeightedMaxCut.

Recently, Charfreitag et al. [Cha+22] proposed an exact algorithm for WeightedMaxCut
tailored towards large sparse instances. In particular, their branch-and-cut algorithm uses
innovations based on integer linear programming and polyhedral combinatorics. They
compared their algorithm against various state-of-the-art approaches, including the previ-
ously presented works by Krislock et al. [KMR17] and Gusmeroli et al. [Gus+20], which are
targeted towards dense instances. Their evaluation indicates that their algorithm outper-
forms these approaches on a large set of sparse instances taken from multiple real-world
applications. The authors also evaluated the usage of the reduction techniques presented
in this chapter. However, except for a few promising instances, performance gains from
reductions were negligible.

Lange et al. [LAS19] propose a preprocessing algorithm that uses novel reduction rules
for WeightedMaxCut and minimum weight multicuts, i.e., finding a 𝑘-way partition that
minimizes the total cut. Their reduction rules target single edges, triangles, as well as more
general connected subgraphs. The authors show that their preprocessing algorithm us-
ing these rules is able to drastically reduce the graph size for WeightedMaxCut instances
stemming from statistical physics. Rehfeldt et al. [RKS22] extend this set of reductions and in-
tegrate them into a parallel branch-and-cut algorithm. They compare their algorithm against
Gurobi [Gur21] and the algorithm of Charfreitag et al. [Cha+22] on a large set of dense and
sparse instances. The authors also note that recent versions of Gurobi are able to outper-
form many state-of-the-art approaches, including the algorithms by Rendl et al. [RRW10],
Gusmeroli et al. [Gus+20; Hrg+19], and Hrga and Pvoh [HP21].

132

5.2 Practically Efficient Reductions

5.1.2 Heuristic Approaches
Dunning et al. [DGS18] evaluated 37 different heuristic approaches from existing works
on a large set of over 3000 instances. Their evaluation indicates that an algorithm by Burer
et al. [BMZ02] is among the best state-of-the-art heuristics available. Furthermore, they
provide a machine learning-based algorithm portfolio called MqLib that selects the most
well-suited set of heuristics for a given problem instance. However, Wang and Hao [WH22]
note that their portfolio does not include several advanced algorithms available. Finally,
their algorithm is not able to determine if a computed cut is actually the maximum cut.

Wang and Hao [WH22] provide an overview of state-of-the-art metaheuristic algo-
rithms for the closely related quadratic unconstrained binary optimization problem. This
includes fast local search and population-based methods. They further evaluate multiple
state-of-the-art approaches on a set of 54 WeightedMaxCut instances with varying sizes
between 800 and 2000 vertices. In particular, they examine two algorithms based on path
relinking [Wan+12], a diversification-driven tabu search [GLH10], and two variants of an
automatic algorithm [dSR18] trained on different inputs. Their evaluation indicates that the
path relinking approach performs best in terms of the best solutions obtained, whereas the
automatic approach performs best in terms of average solution values.

5.2 Practically Efficient Reductions
We now introduce our new reduction rules. The main feature of our new rules is that they
do not depend on the computation of a clique-forest to determine if they can be applied.
Furthermore, our new rules subsume almost all rules from previous works [Cro+13; CJM15;
EM18; MSZ18; Far+17] except for reduction rules 10 and 11 by Crowston et al. [Cro+13].
Hence, our algorithm will only apply the rules proposed in this section. For proofs and
further details, including how to obtain a maximum cut of the unreduced instance, we refer
to Ferizovic [Fer19]. For an overview of how rules are subsumed, we refer to Table 5.1.

Table 5.1: Reduction rules subsumed by our new rules. An “x” in row 𝑎 and column 𝑏
means that rule 𝑎 subsumes rule 𝑏. If there are multiple “x”s in a column (say, rows 𝑎
and 𝑏 in column 𝑐), then rules 𝑎 and 𝑏 combined subsume rule 𝑐.

Source [Far+17] [CJM15] [Cro+13] [EM18] [MSZ18]

Rule A 5 6 7 8 9 9 6 7 8 9 10 11 12 13

1 x x x x x x x x x x x
2 x x x x x
5 x
7𝑤=1 x x

Reducing Cliques. Our first reduction rule targets cliques that have few external ver-
tices, i.e., cliques where the number of external vertices is at most half the number of vertices.

133

5 Maximum Cuts

G \N [v] G \N [v]

vwv w

Figure 5.1: Example application of reduction rule 1 to the clique𝑁[𝑣] (orange). The
vertices 𝑣 and 𝑤 (and all edges 𝐸(𝐺[𝑁[𝑣])) can be removed from the graph.

G \ {a′, a, b, b′}

ba

a′ b′

G \ {a′, a, b, b′}

ba

a′ b′

Figure 5.2: Example application of reduction rule 2 to the induced 3-path ⟨𝑎′, 𝑎, 𝑏, 𝑏′⟩
(orange). The vertices 𝑎 and 𝑏 (and their incident edges) can be removed from the
graph. An additional edge {𝑎′, 𝑏′} is added to the graph.

If such a clique is found, we are able to remove all its internal vertices and their incident
edges. Figure 5.1 shows an example application of this reduction rule.

Theorem 5.1 (Reduction Rule 1)
Let 𝐺 = (𝑉,𝐸) be a graph and let 𝑆 ⊆ 𝑉 induce a clique in 𝐺. If ∣𝐶ext(𝐺)(𝑆)∣ ≤ ⌈∣𝑆∣/2⌉, then
𝛽(𝐺) = 𝛽(𝐺′) + 𝛽(𝐾∣𝑆∣) for 𝐺′ = (𝑉 ⧵ 𝐶int(𝐺)(𝑆), 𝐸 ⧵ 𝐸(𝐺[𝑆])).

Reducing Paths. Our second reduction rule is able to reduce induced 3-paths ⟨𝑎′, 𝑎, 𝑏, 𝑏′⟩.
For such a path, we can remove both 𝑎 and 𝑏 (and their incident edges) and instead insert
an edge {𝑎′, 𝑏′}. Figure 5.2 shows an example application of this reduction rule.

Theorem 5.2 (Reduction Rule 2)
Let ⟨𝑎′, 𝑎, 𝑏, 𝑏′⟩ be an induced 3-path in a graph 𝐺 with𝑁(𝑎) = {𝑎′, 𝑏} and𝑁(𝑏) = {𝑎, 𝑏′}.
Construct 𝐺′ from 𝐺 by adding a new edge {𝑎′, 𝑏′} and removing the vertices 𝑎 and 𝑏. Then
𝛽(𝐺) = 𝛽(𝐺′) + 2.

134

5.2 Practically Efficient Reductions

ExtendingNear-Cliques. Since we are able to remove certain cliques with reduction rule 1,
we now present a transformation that is able to extend near-cliques under certain conditions.
To be more specific, we can extend a near-clique if its number of vertices is odd or it contains
more than two internal vertices. The newly constructed clique then might be reduced by
reduction rule 1, which can lead to an overall decrease in size.

Theorem 5.3 (Reduction Rule 3)
Let 𝐺 = (𝑉,𝐸) be a graph and let 𝑆 ⊆ 𝑉 induce a near-clique in 𝐺. Let 𝐺′ be the graph
obtained from 𝐺 by adding the missing edge 𝑒′ so that 𝑆 induces a clique in 𝐺′. If ∣𝑆∣ is odd or
∣𝐶int(𝐺)(𝑆)∣ > 2, then 𝛽(𝐺) = 𝛽(𝐺′).

Clique Edge Removal. Since some cliques are irreducible by currently known rules, it may
be beneficial to also apply reduction rule 3 “in reverse”. Although this “reverse” reduction
neither reduces the vertex set nor (as our experiments suggest) leads to applications of other
rules, it can undo unfruitful additions of edges made by reduction rule 3 and may remove
other edges from the graph.

Theorem 5.4 (Reduction Rule 4)
Let 𝐺 be a graph and let 𝑆 ⊆ 𝑉 induce a clique in 𝐺. If ∣𝑆∣ is odd or 𝐶int(𝐺)(𝑆) > 2, an edge
between two vertices of 𝐶int(𝐺)(𝑆) is removable. That is, 𝛽(𝐺) = 𝛽(𝐺′) for 𝐺′ = (𝑉,𝐸 ⧵ {𝑒}),
𝑒 ∈ 𝐸(𝐺[𝐶int(𝐺)(𝑆)]).

CommonClique. Thenext reduction rule is closely related to the upcoming generalization
of reduction rule 8 by Crowston et al. [Cro+13]. It is able to further reduce the case where
∣𝑋∣ = ∣𝑁(𝑋)∣ for a clique𝑋 of 𝐺. In comparison, the generalization of reduction rule 8 is
able to handle the case ∣𝑋∣ > ∣𝑁(𝑋)∣. Due to the degree to which these rules are similar,
they are also merged together in our implementation, as the techniques to handle both are
the same and will be discussed later on. An example application of this reduction rule is
given in Figure 5.3.

Theorem 5.5 (Reduction Rule 5)
Let𝑋 ⊆ 𝑉 induce a clique in a graph 𝐺, where ∣𝑋∣ = ∣𝑁(𝑋)∣ ≥ 1 and𝑁(𝑋) =𝑁(𝑥) ⧵ 𝑋 for
all 𝑥 ∈ 𝑋. Create 𝐺′ from 𝐺 by removing an arbitrary vertex of𝑋. Then 𝛽(𝐺) = 𝛽(𝐺′) + ∣𝑋∣.

Weighted Path Compression. The following reduction rule is our only rule whose applica-
tion turns unweighted instances into instances of WeightedMaxCut. Our experiments show
that this can reduce the graph size by up to half. This reduction to a weighted instance is
noteworthy, given that existing approaches for MaxCut usually support weighted instances.

Theorem 5.6 (Reduction Rule 6)
Let 𝐺 = (𝑉,𝐸,𝑤) be a graph with an edge weighting function 𝑤 ∶ 𝐸 → ℤ, and ⟨𝑎, 𝑏, 𝑎′⟩
be an induced 2-path with 𝑁(𝑏) = {𝑎, 𝑎′}. Let 𝑒1 be the edge between vertex 𝑎 and 𝑏;
let 𝑒2 be the one between 𝑏 and 𝑎′. Construct 𝐺′ from 𝐺 by deleting vertex 𝑏 and adding a
new edge {𝑎, 𝑎′} with 𝑤′({𝑎, 𝑎′}) = max{𝑤(𝑒1), 𝑤(𝑒2)} −max{0,𝑤(𝑒1) + 𝑤(𝑒2)}. Then
𝛽(𝐺,𝑤) = 𝛽(𝐺′,𝑤) +max{0,𝑤(𝑒1) +𝑤(𝑒2)}.

135

5 Maximum Cuts

G \N [v] G \N [v]

v w
X

v w

Figure 5.3: Example application of reduction rule 5 to the clique𝑁[𝑣] (orange). One
of the vertices of𝑋 = {𝑣,𝑤} (blue) can be removed from the graph. In this example 𝑤
is removed.

Generalization of Crowston et al. [Cro+13]. Our last two rules (reduction rules 7𝑤=1
and 7) generalize reduction rule 8 by Crowston et al., which we restate for completeness.

Theorem 5.7 (Reduction Rule 8 [Cro+13])
Let 𝐺 = (𝑉,𝐸, 𝑙) be a signed graph, 𝑆 ⊆ 𝑉 a set of vertices such that 𝐺[𝑉 ⧵ 𝑆] is a clique forest,
and 𝐶 a block in 𝐺[𝑉 ⧵ 𝑆]. If there is a 𝑋 ⊆ 𝐶int(𝐺[𝑉⧵𝑆])(𝐶) such that ∣𝑋∣ >

∣𝐶∣+∣𝑁(𝑋)∩𝑆∣
2 ≥ 1

and for all 𝑥 ∈ 𝑋: 𝑁+𝑙 (𝑥)∩𝑆 =𝑁
+
𝑙 (𝑋)∩𝑆 and𝑁

−
𝑙 (𝑥)∩𝑆 =𝑁

−
𝑙 (𝑋)∩𝑆. Construct the graph

𝐺′ from 𝐺 by removing any two vertices 𝑥1, 𝑥2 ∈ 𝑋. Then 𝛽(𝐺′) − 𝐸𝐸(𝐺′) = 𝛽(𝐺) − 𝐸𝐸(𝐺).

This reduction rule requires a vertex set 𝑆 such that 𝐺 ⧵ 𝑆 is a clique forest. Different
choices of 𝑆 then lead to different applications of this rule. Our generalizations do not require
such a set anymore and can find all possible applications for any choice of 𝑆.

Theorem 5.8 (Reduction Rule 7𝑤=1)
Let 𝑋 be the vertex set of a clique in 𝐺 with ∣𝑋∣ > max{∣𝑁(𝑋)∣, 1} and𝑁(𝑋) = 𝑁(𝑥) ⧵ 𝑋
for all 𝑥 ∈ 𝑋. Construct the graph 𝐺′ by deleting two arbitrary vertices 𝑥1, 𝑥2 ∈ 𝑋 from 𝐺.
Then 𝛽(𝐺) = 𝛽(𝐺′) + ∣𝑁(𝑥1)∣.

Theorem 5.9 (Reduction Rule 7)
Let 𝑋 ⊆ 𝑉 induce a clique in a signed graph (𝐺, 𝑙) such that ∀𝑒 ∈ 𝐸(𝐺[𝑋]) ∶ 𝑙(𝑒) =“−”
and ∣𝑋∣ > max{∣𝑁(𝑋)∣, 1}, 𝑁+𝑙 (𝑋) = 𝑁

+
𝑙 (𝑥) ⧵ 𝑋, and𝑁

−
𝑙 (𝑋) = 𝑁

−
𝑙 (𝑥) ⧵ 𝑋 for all 𝑥 ∈ 𝑋.

Construct a new graph 𝐺′ by removing two arbitrary vertices 𝑥1, 𝑥2 ∈ 𝑋 from 𝐺. Then
𝛽(𝐺) = 𝛽(𝐺′) + ∣𝑁(𝑥1)∣.

Weighted Generalizations. In order to also reduce weighted instances to some degree,
we use a simple weighted generalization of two reduction rules. That is, we extend their
applicability from an unweighted subgraph to a subgraph where all edges have the same
weight 𝑐 ∈ ℝ. We do this for reduction rules 1 and 3 as they are relatively easy to generalize.

136

5.3 Implementation

Theorem 5.10 (Reduction Rule 1𝑤=𝑐)
Let 𝐺 = (𝑉,𝐸,𝑤) be a weighted graph and let 𝑆 ⊆ 𝑉 induce a clique with 𝑤(𝑒) = 𝑐 for every
edge 𝑒 ∈ 𝐸(𝐺[𝑆]) for some constant 𝑐 ∈ ℝ. Let 𝐺′ = (𝑉 ⧵ 𝐶int(𝐺)(𝑆), 𝐸 ⧵ 𝐸(𝐺[𝑆]), 𝑤′) with
𝑤′(𝑒) = 𝑤(𝑒) for every 𝑒 ∈ 𝐸(𝐺′). If ∣𝐶ext(𝐺)(𝑆)∣ ≤ ⌈

∣𝑆∣
2 ⌉, then 𝛽𝑤(𝐺) = 𝛽𝑤(𝐺′) + 𝑐 ⋅ 𝛽(𝐾∣𝑆∣).

Theorem 5.11 (Reduction Rule 3𝑤=𝑐)
Let 𝐺 = (𝑉,𝐸,𝑤) be a weighted graph and let 𝑆 ⊆ 𝑉 induce a near-clique in 𝐺. Furthermore,
let 𝑤(𝑒) = 𝑐 for every edge 𝑒 ∈ 𝐸(𝐺[𝑆]) for some constant 𝑐 ∈ ℝ. Let 𝐺′ be the graph obtained
from𝐺 by adding the edge 𝑒′ so that 𝑆 induces a clique in𝐺′. Set𝑤′(𝑒′) = 𝑐, and𝑤′(𝑒) = 𝑤(𝑒)
for 𝑒 ∈ 𝐸. If ∣𝑆∣ is odd or ∣𝐶int(𝐺)(𝑆)∣ > 2, then 𝛽𝑤(𝐺) = 𝛽𝑤(𝐺′).

5.3 Implementation
We now discuss our overall reduction algorithm for MaxCut in detail. This algorithm uses
transformations between multiple variants of MaxCut, including weighted and signed. High-
level pseudocode is given in Algorithm 5.1. We also provide implementation details for
individual reduction rules and how we avoid unnecessary checks for their applicability.

Our algorithm begins by generating an unweighted instance by replacing every weighted
edge 𝑒 ∈ 𝐸 with weight 𝑤 with an unweighted subgraph with at most O(𝑤) vertices and
edges [Fer19]. Note that if the weights are large this transformation is costly, and the
resulting graph may not have size polynomial in the input. Afterwards, we apply our full
set of unweighted reduction rules: 1, 7𝑤=1 (together with 5), 2, and 3 (in this order). As
already mentioned earlier, reduction rule 7𝑤=1 is the unweighted version of 7. We then
create a signed instance of the graph by exhaustively executing weighted path compression
using reduction rule 6 with the restriction that the resulting weights are −1 or +1. We then
exhaustively apply reduction rule 7. Once the signed reductions are done, we apply reduction
rule 6 to fully compress all paths into weighted edges. This is then succeeded by reduction
rules 3𝑤=𝑐 and 1𝑤=𝑐.

Once no further reduction rules are applicable, we transform the instance into an un-
weighted one and apply reduction rule 4 in order to further reduce the number of edges. If a
weighted algorithm is to be used on the reduced graph, we exhaustively perform reduction
rule 6 to produce a weighted reduced graph. Note that different permutations of the order
in which reduction rules are applied can lead to different results. However, preliminary
experiments showed that the difference in kernel size and running time is usually small, and
the order we chose performed best.

In the following, we cover implementation details for finding candidates for the individual
reduction rules. For this purpose, we group the reduction rules by how they are applied.
Note that we store the edges of our graphs in a hash table to allow efficient edge lookups.

Reduction Rules 2 and 6. We can find all candidates for reduction rule 2 and 6 in linear
time O(𝑛) by iterating over all vertices and checking if a vertex 𝑣 has degree two. For
reduction rule 2, we additionally have to check if (1) 𝑣 has a neighbor 𝑤 that also has degree
two and (2) that the other neighbor of 𝑣 and 𝑤 are not the same vertex.

137

5 Maximum Cuts

Algorithm 5.1 : High-level overview of reduction algorithm for MaxCut. Adapted from
Ferizovic [Fer19].
Data : 𝐺 = (𝑉,𝐸), boolean weightedResult
Result : Reduced graphK

1 MaxCutReduction (𝐺,weightedResult)
2 success← True
3 while success do
4 success← False
5 MakeUnweighted(𝐺)
6 if ApplyUnweighted(𝐺) // Rule 1, 7𝑤=1, 5, 2 and 3; Return True on change
7 then
8 success← True
9 MakeSigned(𝐺) // Restricted rule 6

10 if ApplySigned(𝐺) // Rule 7; Return True on change
11 then
12 success← True
13 MakeWeighted(𝐺) // Rule 6
14 if ApplyWeighted(𝐺) // Rule 3𝑤=𝑐 and 1𝑤=𝑐; Return True on change
15 then
16 success← True

17 MakeUnweighted(𝐺)
18 ApplyRule4(𝐺)
19 if weightedResult then
20 MakeWeighted(𝐺)
21 return 𝐺

Reduction Rules 1, 3 and 4. We can find all candidates for reduction rule 1, 3 and 4
inO(𝑛 ⋅ Δ2) by iterating over all vertices. Depending on the rule, we then have to check if
different conditions hold when scanning a vertex 𝑣.

For reduction rules 1 and 4, we first mark all vertices that are external. This can be done
by iterating over the neighborhood of a vertex 𝑣 and determining the minimum degree 𝑑min
in𝑁[𝑣]. If 𝑑(𝑤) ≠ 𝑑min, then 𝑤 ∈ 𝑁[𝑣] is an external vertex. Afterwards, we iterate over
all vertices that have not been marked as external. For a vertex 𝑣, we then decide if𝑁[𝑣]
induces a clique in timeO(∣𝑁[𝑣]∣2) = O(Δ2). Finally, we determine the set of internal and
external vertices of the clique by checking if the degree of a vertex𝑤 ∈ 𝑁[𝑣] is equal to 𝑑(𝑣).

Finding all candidates for reduction rule 3 can also be done in timeO(𝑛 ⋅ Δ2) by scanning
all vertices. We first determine if a vertex 𝑣 has a neighborhood𝑁(𝑣) such that (1)𝑁(𝑣)
is a clique and (2) there is no vertex 𝑤 ∈ 𝑁(𝑣) such that 𝑑(𝑤) ≤ 𝑑(𝑣). This can be done
inO(∣𝑁(𝑣)∣2) time. Next, we determine the neighbor with minimal degree 𝑤min, iterate

138

5.3 Implementation

over𝑁(𝑤min), and test if there is a vertex 𝑤′ ∈ 𝑁(𝑤min) such that𝑁(𝑣) =𝑁(𝑤′). We then
check if𝑁[𝑣] ∪ {𝑤′} has an odd size or contains at least two internal vertices. Finally, we
determine if there is a single missing edge whose insertion results in𝑁[𝑣]∪ {𝑤′} becoming
a clique inO(∣𝑁[𝑣] ∪ {𝑤′}∣) time.

Reduction Rules 5 and 7. The following algorithm identifies all candidates of reduction
rule 5 (and 7) in linear time. First, we sort the adjacencies of all vertices. That is, for every
vertex 𝑣 ∈ 𝑉, the vertices in𝑁(𝑣) are sorted according to their identifier. For this, we create
an auxiliary array of size 𝑛 that contains empty lists. We then traverse the vertices 𝑤 ∈ 𝑁(𝑣)
for every vertex 𝑣 ∈ 𝑉 and insert each pair (𝑣,𝑤) in a list identified by indexing the auxiliary
array with 𝑤. We then iterate once over the array from the lowest identifier to the highest
and recreate the graph with sorted adjacencies. In total, this process takesO(𝑛 +𝑚) time.
However, in later applicability checks, we disregard sorting the adjacencies in linear time.
Instead, we use a comparison based sort on the adjacencies.

Afterwards, for any clique𝑋 of 𝐺, we have to check if all pairs (𝑥1, 𝑥2) of vertices from𝑋
satisfy𝑁[𝑥1] =𝑁[𝑥2] (neighborhood condition). Our algorithm uses tries [Fre60; Bri59]
to find all candidates. A trie supports two operations: Insert(key,val) and Retrieve(key).
The key parameter is an array of integers, and val is a single integer. Retrieve returns all
inserted values by Insert that have the same key. Both of these operations require time
linear in the length of the key. Internally, a trie stores the inserted elements as a tree, where
every node corresponds to one integer of the key, and every prefix is stored only once. This
means that two keys sharing a prefix share the same path through the trie until the position
where they differ. Values are stored in the leaves of this tree using an array of integers.

For each vertex 𝑣 ∈ 𝑉, we use the ordered set𝑁[𝑣] as key and 𝑣 as val. Notice that𝑁(𝑣)
is already sorted. The key𝑁[𝑣] can thus be computed through the insertion of 𝑣 into the
sequence𝑁(𝑣) in timeO(∣𝑁[𝑣]∣). After we perform Insert(𝑁[𝑣],𝑣) for every vertex 𝑣 ∈ 𝑉,
each trie leaf contains all vertices that satisfy the condition of reduction rule 5, i.e., they have
the same closed neighborhoods. This means that every vertex pair (𝑥1, 𝑥2) in the vertex set
𝑋 stored in a trie leaf satisfies the neighborhood condition. We then verify whether 𝑋 is
a clique inO(∣𝑋∣2) time. Since all vertices in𝑋 also have the same closed neighborhood,
we know that they induce a clique. Note that each such set 𝑋 is considered exactly once,
and the graph is fully partitioned, i.e., a vertex 𝑣 ∈ 𝑉 is only part of one set 𝑋. Thus this
requiresO(𝑛 +𝑚) time in total. As the last step, we check whether ∣𝑋∣ = ∣𝑁(𝑋)∣ ≥ 1.

Using an almost equivalent approach as we did for reduction rule 5, we can find all
candidates of reduction rule 7. Our implementation combines searching candidates for
these rules into a single routine.

Timestamping. Therefore, we only use this technique for reduction rules 1 and 7.
Next, we describe how to avoid unnecessary checks to see if reduction rules apply. For

this purpose, let the time of the most recent change in the neighborhood of a vertex 𝑣 be
𝑇 ∶ 𝑉→ℕ0, and let the variable 𝑡 ∈ ℕ describe the current time. Initially, 𝑇(𝑣) = 0 for all
𝑣 ∈ 𝑉(𝐺) and 𝑡 = 1. Every time a reduction rule performs a change on𝑁(𝑣), we set𝑇(𝑣) = 𝑡
and increment 𝑡. For each individual reduction rule 𝑟, we also maintain a timestamp 𝑡𝑟 ∈ ℕ0
(initialized with 0), indicating the upper bound up to which all vertices have already been

139

5 Maximum Cuts

processed. Hence, all vertices 𝑣 ∈ 𝑉(𝐺) with 𝑇(𝑣) ≤ 𝑡𝑟 do not need to be checked again by
reduction rule 𝑟.

Note that timestamping only works for “local” reduction rules—the rules whose appli-
cability can be determined by investigating the neighborhood of a vertex. Therefore, we
only use this technique for reduction rules 1 and 7. In preliminary experiments, we did not
find this method to be significantly faster (or slower) than others (for example, keeping a
queue of vertices with changed neighborhoods and then considering these vertices for all
reductions). However, unlike a queue, it allows us to limit possible redundant applications of
individual reductions as much as possible. A priority queue is an ideal choice for processing
timestamped vertices; however, in experiments, we found it sufficient to collect all vertices
with timestamps greater than 𝑡𝑟 and attempt to apply reduction rule 𝑟 on them all.

5.4 Experimental Evaluation
We now examine how state-of-the-art heuristic and exact approaches can benefit from using
our reduction algorithm. Particular attention will be placed on the benefits for large-scale
instances that are hard to solve. Furthermore, we evaluate the performance of the individual
reduction rules on a large set of synthetic instances.

Methodology and Setup. All of our experiments were run on Machine B described in
Section 2.3.2.c). All algorithms were implemented in C++ and compiled using g++ version
7.3.0 using optimization flag -O3. We use the following state-of-the-art WeightedMaxCut
approaches for comparisons: the exact algorithms LocalSolver [Ben+11] (heuristically finds
a large cut and can then verify if it is maximum), BiqMac [RRW10] as well as the heuristic
algorithm MqLib [DGS18]. MqLib is unable to determine on its own when it reaches a
maximumcut and always exhausts the given time limit. We also evaluated an implementation
of the reduction rules used by Etscheid and Mnich [EM18], seeing that our new rules find
smaller kernels in shorter time. In the following, for a graph 𝐺 = (𝑉,𝐸), K denotes the
graph after all reductions have been applied exhaustively. For this purpose, we examine the
following efficiency metric: we denote the reduction efficiency by 𝑒(𝐺) = 1 − 𝑛(K)/𝑛. Note
that 𝑒(𝐺) is equal to 1 when all vertices are removed after applying all reduction rules and 0
if no vertices are removed.

For our experiments, we use different datasets, including random graphs, sparse real-
world networks, and denser instances from the BiqMac Library (see Section 2.3.2.a)). Note
that for a large set of instances tested, reductions are not able to provide any significant
reduction in size. For example, the rudy instances feature a uniform edge distribution and
an overall average degree of at least 3.5. We provide results for these instances in Appendix L.
Since our focus is on evaluating the performance of reduced graphs against unreduced ones,
we therefore exclude instances that can not be reduced from our evaluation.

5.4.1 Performance of Individual Rules
To analyze the impact of each individual reduction rule, we measure the size of the reduced
graph our algorithm procedures before and after their removal. Figure 5.4 shows our results

140

5.4 Experimental Evaluation

0.5 1.0 2.0 4.0 8.0

|E|/|V |

0.00

0.25

0.50

0.75

1.00

e(
G
)

RGG2D

0.5 1.0 2.0 4.0 8.0

|E|/|V |

0.00

0.25

0.50

0.75

1.00

GNM

Full
w/o Rule 1

w/o Rule 2
w/o Rule 3

w/o Rule 7

Figure 5.4:Comparison of the reduction efficiency of our full algorithm to the efficiency
of our algorithm without a particular reduction rule tested on 150 synthetic instances
with varying densities for each graph model.

on RGG2D and GNM graphs with 2048 vertices and varying densities. We have settled on
those two types of graphs as they represent different ends on the spectrum of reduction
efficiency, as seen in Figure 5.5. In particular, our preliminaries experiments indicated
that reductions perform well on instances that are sparse and have a non-uniform degree
distribution. Such properties are given by the random geometric graph model used for
generating the RGG2D instances. Likewise, reductions perform poorly on the uniform
random graphs that make up the GNM instances. We excluded reduction rule 4 from these
experiments as it only removes edges and thus leads to no difference in reduction efficiency.

Looking at Figure 5.4, we can see that reduction rule 1 gives themost significant reduction
in size. Its absence always diminishes the result more than any other rule. In particular,
we see a difference in efficiency of up to 0.47 (RGG2D) and 0.41 (GNM) when removing
reduction rule 1. The second most impactful rule for the RGG2D instances is reduction
rule 7, with a difference of only up to 0.04. For the GNM instances, reduction rule 2 is
second with a difference of up to 0.17. Whereas reduction rules 3 and 7 lead to no difference
in efficiency on these instances. Thus, we can conclude that depending on the graph type,
different reduction rules have varying importance. Furthermore, our simple reduction rule 1
seems to have the most significant impact on the overall reduction efficiency. Note that this
is in line with the theoretical results from Table 5.1, which states that reduction rule 1 covers
most of the previously published reduction rules, and reduction rule 2 still covers many but
fewer rules from previous work.

141

5 Maximum Cuts

0.5 1.0 2.0 4.0 8.0

|E|/|V |

0.0

0.2

0.4

0.6

0.8

1.0

e(
G
)

BA
GNM

RGG2D
RGG3D

RHG

Figure 5.5: Reduction efficiency of our full algorithm tested on 150 synthetic instances
with varying densities for each graph model.

5.4.2 Exactly Computing a Maximum Cut
To examine the improvements reductions bring for medium-sized instances, we compare
the time required to obtain a maximum cut for both the reduced and the original instance.
We performed these experiments using both LocalSolver and BiqMac. Note that we did
not use MqLib as it is not able to verify the optimality of the cut it computes. The results of
our experiments for the set of real-world instances are given in Table 5.2 (with weighted
path compression) and Table 5.3 (without weighted path compression). Since the image
segmentation instances are already weighted, they are omitted from Table 5.3.

First, we notice that reductions are able to provide moderate to significant speedups for
all instances that we have tested. In particular, we observe a speedup between 1.04 and
228.91 for instances that were previously solvable by LocalSolver. Likewise, for the instances
that BiqMac is able to process, we achieve a speedup of up to three orders of magnitude.
Additionally, we allow these algorithms to now compute a maximum cut in less than 17
minutes for a majority of instances that have previously been infeasible.

To examine the impact of allowing a weighted reduced graph, we now compare the
performance our algorithmusingweighted path compression (Table 5.2)with the unweighted
version (Table 5.3). We can see that by including weighted path compression, we can achieve
significantly better speedups, especially for the sparse real-world instances by Rossi and
Ahmed [RA15]. For example, on ego-facebook, we are able to achieve a speedup of 228.91
with compression and 11.83 without.

142

5.4 Experimental Evaluation

Table 5.2: Time to compute a maximum cut on the original instance 𝐺 and the reduced
instance K for LocalSolver (LS) and BiqMac (BM). Times 𝑡𝐴𝑙𝑔 are given in seconds.
Reductions are accounted for within the timings forK. Values in brackets provide the
speedup and are derived from 𝑡𝐴𝑙𝑔(𝐺)/𝑡𝐴𝑙𝑔(K). Times labeled with “−” exceeded the
ten-hour time limit, and an “f ” indicates the algorithm crashed.

Graph 𝑛 𝑒(𝐺) 𝑡LS(𝐺) 𝑡LS(K) 𝑡BM(𝐺) 𝑡BM(K)

ca-CSphd 1 882 0.99 24.07 0.32 [75.40] - 0.06 [∞]
ego-facebook 2 888 1.00 20.09 0.09 [228.91] - 0.01 [∞]
ENZYMES_g295 123 0.86 1.22 0.33 [3.70] 0.82 0.13 [6.57]
road-euroroad 1 174 0.79 - - - - - -
bio-yeast 1 458 0.81 - - - - 32 726.75 [∞]
rt-twitter-copen 761 0.85 - 834.71 [∞] - 1.77 [∞]
bio-diseasome 516 0.93 - 4.91 [∞] - 0.07 [∞]
ca-netscience 379 0.77 - 956.03 [∞] - 0.67 [∞]
soc-firm-hi-tech 33 0.36 4.67 1.61 [2.90] 0.09 0.06 [1.41]
g000302 317 0.21 0.58 0.49 [1.17] 1.88 0.74 [2.53]
g001918 777 0.12 1.47 1.41 [1.04] 31.11 17.45 [1.78]
g000981 110 0.28 10.73 4.73 [2.27] 531.47 21.53 [24.68]
g001207 84 0.19 1.10 0.16 [6.88] 53.20 0.06 [962.38]
g000292 212 0.03 0.45 0.45 [1.01] 0.43 0.37 [1.14]
imgseg_271031 900 0.99 10.66 0.19 [55.94] - 0.17 [∞]
imgseg_105019 3 548 0.93 234.01 22.68 [10.32] f 13 748.62 [∞]
imgseg_35058 1 274 0.37 34.93 24.71 [1.41] - - -
imgseg_374020 5 735 0.82 1 739.11 72.23 [24.08] f - -
imgseg_106025 1 565 0.68 159.31 34.05 [4.68] - - -

Finally, it is also noteworthy that we get significant improvements for the weighted
instances from VLSI design and image segmentation. We also examined the performance of
each individual reduction rule and noticed that this is solely due to reduction rule 1𝑤=𝑐. These
findings could improve the work by de Sous et al. [dSHK13], which also affects the work
by Dunning et al. [DGS18]. In conclusion, our novel reduction rules give us a simple but
powerful tool for speeding up existing state-of-the-art approaches for computing maximum
cuts. Moreover, as mentioned previously, even our simple weighted path compression by
itself is able to have a significant impact.

5.4.3 Analysis on Large Instances
We now examine the performance of our reduction algorithm and its impact on existing
heuristic approaches for large graph instances with up to millions of vertices. For this
purpose, we compared the cut size over time achieved by LocalSolver and MqLib with
and without our reductions. Note that we did not use BiqMac as it was not able to handle

143

5 Maximum Cuts

Table 5.3: Time to compute a maximum cut on the original instance 𝐺 and the reduced
instance K for LocalSolver (LS) and BiqMac (BM). Times 𝑡𝐴𝑙𝑔 are given in seconds.
Reductions are accounted for within the timings for K. Values in brackets provide
the speedup and are derived from 𝑡𝐴𝑙𝑔(𝐺)/𝑡𝐴𝑙𝑔(K). Times labeled with “−” exceeded
the ten-hour time limit, and an “f ” indicates the algorithm crashed. Weighted path
compression by reduction rule 6 is not used at the end – the reduced graph is unweighted.

Graph 𝑛 𝑒(𝐺) 𝑡LS(𝐺) 𝑡LS(K) 𝑡BM(𝐺) 𝑡BM(K)

ca-CSphd 1 882 0.98 24.79 1.12 [22.23] - 0.32 [∞]
ego-facebook 2 888 0.93 20.39 1.72 [11.83] 967.99 1.42 [682.04]
ENZYMES_g295 123 0.82 1.83 0.36 [5.09] 0.96 0.37 [2.60]
road-euroroad 1 174 0.69 - - - - - -
bio-yeast 1 458 0.72 - - - - - -
rt-twitter-copen 761 0.80 - 409.47 [∞] - 101.14 [∞]
bio-diseasome 516 0.93 - 6.66 [∞] - 0.35 [∞]
ca-netscience 379 0.67 - 4 116.61 [∞] - 2.10 [∞]
soc-firm-hi-tech 33 0.30 4.92 2.34 [2.10] 0.29 0.31 [0.94]
g000302 317 0.10 0.71 0.50 [1.41] 1.28 0.89 [1.44]
g001918 777 0.06 1.67 1.51 [1.10] 14.90 11.69 [1.27]
g000981 110 0.22 11.32 1.97 [5.74] 0.98 0.44 [2.23]
g001207 84 0.17 1.56 0.15 [10.11] 0.47 0.37 [1.28]
g000292 212 0.01 0.69 0.51 [1.35] 0.56 0.62 [0.91]

instances with more than 3000 vertices. Our results using a three-hour time limit for each
algorithm are given in Table 5.4. Furthermore, we present convergence plots in Figure 5.6.

First, we note that the time to compute the actual reduced graph is relatively small. In
particular, we are able to compute a reduced instance for a graph with 14million vertices
and edges in just over six minutes. Furthermore, we achieve an efficiency between 0.18 and
0.91 across all tested instances. When looking at the convergence plots (Figure 5.6), we can
observe that for multiple instances the additional preprocessing time of reductions is quickly
compensated by a significantly steeper increase in cut size compared to the unreduced
version. Additionally, for instances where a reduced instance can be computed very quickly,
such as web-google, we find a better solution almost instantaneously. In contrast, for ca-
coauthors-dblp reductions are not able to provide significant benefits. In general, the results
achieved by reductions followed by the local search heuristic are always better than just
using the local search heuristic alone. However, the final improvement on the size of the
largest cut found by LocalSolver and MqLib is generally small for the given time limit of
three hours.

144

5.4 Experimental Evaluation

100 101 102 103 104

0.8

0.9

1.0
So

lu
tio

n
si

ze
(%

of
be

st
) web-it-2004

100 101 102 103 104

0.8

0.9

1.0

web-google

100 101 102 103 104

Time (s)

0.8

0.9

1.0

So
lu

tio
n

si
ze

(%
of

be
st

) ca-IMDB

100 101 102 103 104

Time (s)

0.8

0.9

1.0

ca-coauthors-dblp

Unreduced Reduced

Figure 5.6: Convergence of LocalSolver on large instances. The dashed line represents
the size of the cut for the unreduced graph, the full line does so for the reduced graph.

Table 5.4: Evaluation of large graph instances. A three-hour time limit was used,
and five iterations were performed. 𝑡ker is the time needed for computing a reduced
instance. The columns DiffLS and DiffMQ indicate the percentage by which the size of
the largest computed cut is larger on the reduced graph compared to the unreduced
one for LocalSolver and MqLib, respectively.

Graph 𝑛 𝑑avg 𝑒(𝐺) 𝑡ker(𝐺) DiffLS DiffMQ

inf-road_central 14 081 816 1.20 0.59 362.32 inf% 2.70%
inf-power 4 941 1.33 0.62 0.04 1.64% 0.45%
web-google 1 299 2.13 0.79 0.01 0.69% 0.19%
ca-MathSciNet 332 689 2.47 0.63 8.02 1.33% 0.55%
ca-IMDB 896 305 4.22 0.42 27.55 0.97% 0.32%
web-Stanford 281 903 7.07 0.18 105.17 0.34% 0.30%
web-it-2004 509 338 14.09 0.91 22.10 0.08% 0.02%
ca-coauthors-dblp 540 486 28.20 0.25 72.39 0.05% 0.04%

145

5 Maximum Cuts

5.5 Conclusion and FutureWork
In this chapter, we proposed and engineered a new reduction algorithm for MaxCut. For
this purpose, we presented reduction rules that are not reliant on specific subgraphs such as
clique-forest and can thus be applied efficiently in practice. Note that these rules are able to
subsume many of the reduction rules presented in previous works.

Our extensive experiments show that our reduction algorithm has a significant impact
on handling MaxCut instances in practice. In particular, our experiments reveal that current
state-of-the-art approaches can be sped up by up to multiple orders of magnitude when
combined with our reduction algorithm. Since our reduction rules are often able to compute
small reduced graphs, we are able to drastically increase the scale of instances these algorithms
are able to handle. Finally, we evaluated the efficiency of the individual rules on different
types of synthetic graphs. Thus, we were able to identify that one of our most simplistic rules
often provides the largest impact on reduction efficiency.

Since our reduction algorithm makes use of different variants of MaxCut, including
unweighted, weighted, and signed, new reduction rules for these problems can easily be
integrated into it. Practically efficient reduction rules for WeightedMaxCut are of particular
interest since they can be used to compute a weighted reduced graph directly without relying
on unweighted and signed reduction rules. Furthermore, technical aspects of our reduction
algorithm could be improved to further boost its performance. This could include an im-
proved dependency checking mechanism across different reduction rules or a parallelization
of their application.

146

6Chapter 6

Conclusion

After presenting our contributions and results for the individual problems in the
previous chapters, we now conclude with a brief and unified summary of our work.
We also summarize general areas for promising future research on reductions in
practice (and theory).

6.1 Summary
In this dissertation, we presented several contributions that make use of reductions to build
and improve state-of-the-art algorithms for three different NP-hard optimization problems.
This includes a variety of both heuristic and exact approaches that combine reductions
with a wide spectrum of techniques, including graph partitioning, evolutionary algorithms,
local search, branch-and-reduce, and algorithm portfolios. In addition, we provided im-
portant theoretical contributions by proposing new reduction and transformation rules for
problems that have many applications, including map labeling [GNR16; Bar+16], vehicle
routing [Don+22], social network analysis [Put+15], or disk scheduling [CKR11]. Particular
attention was put on tailoring implementations of these rules that can be efficiently applied
in practice.

We evaluated our algorithms on a large set of instances stemming from multiple domains
and applications. In general, our experiments show that our algorithms are able to signifi-
cantly increase both the scale and speed at which instances can be processed in practice (by
up to orders of magnitude). This allows us to compute exact or high-quality solutions for
many previously infeasible instances. Wewere also able to win the Parameterized Algorithms
and Computational Experiments (PACE) 2019 Challenge [DFH19]. Additionally, to the best
of our knowledge, our algorithms were the first to establish the use of certain concepts, such
as inexact reductions, that have since been used in other state-of-the-art approaches [CLZ17;
Zhe+20]. Finally, as our experiments with existing approaches indicate, our algorithms can
easily be integrated into other algorithms to improve their performance.

Our algorithms are either available as standalone libraries or as part of the libraries
KaMIS1, WeGotYouCovered2 (maximum cardinality and weight independent sets), and
DMAX3 (maximum cardinality cuts). The KaMIS library, in particular, has been deployed
in multiple use-cases, including map labeling [Klu+19], DNA word design [LR21], micro-
transfer printing [FHL19], or satellite scheduling [EK20].
1https://karlsruhemis.github.io/
2https://github.com/KarlsruheMIS/pace-2019
3https://algo2.iti.kit.edu/schulz/maxcut/

147

https://karlsruhemis.github.io/
https://github.com/KarlsruheMIS/pace-2019
https://algo2.iti.kit.edu/schulz/maxcut/

6 Conclusion

6.2 Outlook
As already outlined in the conclusions for the individual problems, there exist several open
problems that are prevalent across different problems. We now present a unified outlook for
promising opportunities for these open problems.

Parallel algorithms that make use of reductions are still largely unexplored for multiple
problems. This includes shared-memory algorithms similar to the reduction algorithm by
Hespe et al. [HSS19] but also distributed approaches that pose their own set of problems.
However, due to the locality of many reduction rules, i.e., they only need to explore small
neighborhoods, we assume that an efficient distributed implementation that does not require
an excessive amount of communication is possible.

The particular selection of reduction rules that perform well on specific instances also
remains a largely open problem that has recently received more attention [SHG20]. We see
two interesting opportunities: (1) which reduction rules can be applied efficiently on an
instance to achieve a good balance between speed and quality, and (2) which reduction rules
provide the largest reduction in size at the cost of increased running time. Machine learning
provides an interesting possibility to tackle this issue. For example, graph characteristics
such as the degree distribution or clustering coefficient could be used to train a classifier
that picks an appropriate set of reduction rules. Closely related to this is the problem of
determining what actually makes a reduced instance hard to handle for both heuristic and
exact approaches.

We presented a set of transformations for maximum weight independent sets that is
able to temporarily increase the graph size in favor of a potentially smaller graph in the
long run. Due to the results achieved by this approach, we see an opportunity in exploring
this technique for other problems. This could lead to a more general branch-and-transform
framework that might be able to achieve better results than the currently prevalent branch-
and-reduce algorithms, where reductions usually reduce the graph size.

Finally, reduction rules have been successfully used to improve theoretical running time
bounds [HXC21]. Thus, it remains an interesting topic to analyze the theoretical benefit of
newly proposed reductions.

148

Appendix

A Instance Details
We present the number of vertices 𝑛 and edges𝑚 for the instances used in our experiments.
We also provide sources and the specific sections they are used in.

Table 1: Properties of large web graphs.

Graph 𝑛 𝑚 Source Section

eu-2005 862 664 16 138 486 [BV04; Bol+11] 3.2,3.3
dewiki-2013 1 532 354 33 093 029 [BV04; Bol+11] 3.3
hollywood-2011 2 180 759 114 492 816 [BV04; Bol+11] 3.3
orkut 3 072 441 117 185 082 [BV04; Bol+11] 3.3
enwiki-2013 4 206 785 91 939 728 [BV04; Bol+11] 3.3
ljournal-2008 5 363 260 49 514 271 [BV04; Bol+11] 3.3
uk-2002 18 520 486 261 787 258 [BV04; Bol+11] 3.2
wikilinks 25 890 800 543 159 884 [Kun13] 3.3
it-2004 41 291 594 1 027 474 947 [BV04; Bol+11] 3.2,3.3
sk-2005 50 636 154 1 810 063 330 [BV04; Bol+11] 3.2,3.3
uk-2007 105 896 555 3 301 876 564 [BV04; Bol+11] 3.2,3.3
webbase-2001 118 142 155 854 809 761 [BV04; Bol+11] 3.3

149

Appendix

Table 2: Properties of SNAP instances.

Graph 𝑛 𝑚 Source Section

as-skitter 1 696 415 11 095 298 [LK14] 3.5,4.2,4.3
ca-AstroPh 18 772 198 050 [LK14] 3.5,4.2,4.3
ca-CondMat 23 133 93 439 [LK14] 3.5,4.2,4.3
ca-GrQc 5 242 14 484 [LK14] 4.2,4.3
ca-HepPh 12 008 118 489 [LK14] 4.2,4.3
ca-HepTh 9877 25 973 [LK14] 4.2,4.3
email-Enron 36 692 182 831 [LK14] 3.5,4.2,4.3
email-EuAll 265 214 420 045 [LK14] 3.5,4.2,4.3
musae-twitch_DE 9 498 153 138 [LK14] 3.5
musae-twitch_FR 6 549 112 666 [LK14] 3.5
musae-twitch_ES 4 648 59 382 [LK14] 3.5
musae-twitch_RU 4 385 37 304 [LK14] 3.5
musae-twitch_EN 7 126 35 324 [LK14] 3.5
musae-twitch_PT 1 912 31 299 [LK14] 3.5
musae-github 37 700 289 003 [LK14] 3.5
musae-facebook 22 470 171 002 [LK14] 3.5
deezer_europe 28 281 92 752 [LK14] 3.5
lastfm_asia 7 624 27 806 [LK14] 3.5
p2p-Gnutella04 10 876 39 994 [LK14] 3.5,4.2,4.3
p2p-Gnutella05 8 846 31 839 [LK14] 4.2,4.3
p2p-Gnutella06 8 717 31 525 [LK14] 3.5,4.2,4.3
p2p-Gnutella08 6 301 20 777 [LK14] 4.2,4.3
p2p-Gnutella09 8 114 26 013 [LK14] 3.5,4.2,4.3
p2p-Gnutella24 26 518 65 369 [LK14] 4.2,4.3
p2p-Gnutella25 22 687 54 705 [LK14] 3.5,4.2,4.3
p2p-Gnutella30 36 682 88 328 [LK14] 4.2,4.3
p2p-Gnutella31 62 586 147 892 [LK14] 4.2,4.3
roadNet-CA 1 965 206 2 766 607 [LK14] 4.2,4.3
roadNet-PA 1 088 092 1 541 898 [LK14] 4.2,4.3
roadNet-TX 1 379 917 1 921 660 [LK14] 4.2,4.3
soc-Epinions1 75 879 405 740 [LK14] 4.2,4.3
soc-LiveJournal1 4 847 571 42 851 237 [LK14] 3.5,4.2,4.3
soc-Slashdot0811 77 360 469 180 [LK14] 4.2,4.3
soc-Slashdot0902 82 168 504 230 [LK14] 4.2,4.3
soc-pokec-relationships 1 632 803 22 301 964 [LK14] 4.2,4.3
web-BerkStan 685 230 6 649 470 [LK14] 3.5,4.2,4.3
web-Google 875 713 4 322 051 [LK14] 3.5,4.2,4.3
web-NotreDame 325 729 1 090 108 [LK14] 3.5,4.2,4.3
web-Stanford 281 903 1 992 636 [LK14] 3.2,3.3,3.5,4.2,4.3
wiki-Talk 2 394 385 4 659 565 [LK14] 4.2,4.3
wiki-Vote 7 115 100 762 [LK14] 4.2,4.3
loc-Gowalla 196 591 950 327 [LK14] 3.2
youtube 1 134 890 2 987 623 [LK14] 3.3

150

Instance Details

Table 3: Properties of additional social networks.

Graph 𝑛 𝑚 Source Section

enron 69 244 254 449 [RA15] 3.2
libimseti 220 970 17 233 144 [RA15] 3.2,3.3,3.5
citation 268 495 1 156 647 [Bad+18] 3.2
cnr-2000 325 557 2 738 969 [Bad+18] 3.2
google 356 648 2 093 324 [Bad+18] 3.2
baidu-relatedpages 415 641 2 374 044 [RA15] 3.5
petster-fs-dog 426 820 8 543 549 [RA15] 3.5
coPapers 434 102 16 036 720 [Bad+18] 3.2
skitter 554 930 5 797 663 [Bad+18] 3.2
amazon-2008 735 323 3 523 472 [Bad+18] 3.2,3.3
in-2004 1 382 908 13 591 473 [Bad+18] 3.2,3.5
as-Skitter-big 1 696 415 11 095 298 [Kun13] 3.2,3.3
hudong-internallink 1 984 484 14 428 382 [RA15] 3.5

151

Appendix

Table 4: Properties of DIMACS instances.

Graph 𝑛 𝑚 Source Section

C125.9 125 787 [JT96] 3.5
MANN_a27 378 702 [JT96] 3.5
MANN_a45 1 035 1 980 [JT96] 3.5
brock200_1 200 5 066 [JT96] 3.5
brock200_2 200 10 024 [JT96] 3.5
brock200_3 200 7 852 [JT96] 3.5
brock200_4 200 6 811 [JT96] 3.5
gen200_p0.9_44 200 1 990 [JT96] 3.5
gen200_p0.9_55 200 1 990 [JT96] 3.5
hamming8-4 256 11 776 [JT96] 3.5
johnson16-2-4 120 1 680 [JT96] 3.5
keller4 171 5 100 [JT96] 3.5
p_hat1000-1 1 000 377 247 [JT96] 3.5
p_hat1000-2 1 000 254 701 [JT96] 3.5
p_hat1500-1 1 500 839 327 [JT96] 3.5
p_hat300-1 300 33 917 [JT96] 3.5
p_hat300-2 300 22 922 [JT96] 3.5
p_hat300-3 300 11 460 [JT96] 3.5
p_hat500-1 500 93 181 [JT96] 3.5
p_hat500-2 500 61 804 [JT96] 3.5
p_hat500-3 500 30 950 [JT96] 3.5
p_hat700-1 700 183 651 [JT96] 3.5
p_hat700-2 700 122 922 [JT96] 3.5
san1000 1 000 249 000 [JT96] 3.5
san200_0.7_1 200 5 970 [JT96] 3.5
san200_0.7_2 200 5 970 [JT96] 3.5
san200_0.9_1 200 1 990 [JT96] 3.5
san200_0.9_2 200 1 990 [JT96] 3.5
san200_0.9_3 200 1 990 [JT96] 3.5
san400_0.5_1 400 39 900 [JT96] 3.5
san400_0.7_1 400 23 940 [JT96] 3.5
san400_0.7_2 400 23 940 [JT96] 3.5
san400_0.7_3 400 23 940 [JT96] 3.5
sanr200_0.7 200 6 032 [JT96] 3.5
sanr200_0.9 200 2 037 [JT96] 3.5
sanr400_0.5 400 39 816 [JT96] 3.5
sanr400_0.7 400 23 931 [JT96] 3.5

152

Instance Details

Table 5: Properties of road networks.

Graph 𝑛 𝑚 Source Section

luxembourg 114 599 119 666 [DGJ09] 3.5
ny 264 346 733 846 [DGJ09] 3.2,3.5
bay 321 270 397 415 [DGJ09] 3.2,3.5
col 435 666 521 200 [DGJ09] 3.2,3.5
fla 1 070 376 1 343 951 [DGJ09] 3.2,3.5
europe 18 029 721 22 217 686 [Del+09] 3.2,3.3
USA-road 23 947 347 28 854 312 [DGJ09] 3.2,3.3

153

Appendix

Table 6: Properties of OSM instances.

Graph 𝑛 𝑚 Source Section

alabama-AM2 1 164 38 772 [Cai+18] 4.2,4.3
alabama-AM3 3 504 619 328 [Cai+18] 4.2,4.3
district-of-columbia-AM1 2 500 49 302 [Cai+18] 4.2,4.3
district-of-columbia-AM2 13 597 3 219 590 [Cai+18] 4.2,4.3
district-of-columbia-AM3 46 221 55 458 274 [Cai+18] 4.2,4.3
florida-AM2 1 254 33 872 [Cai+18] 4.2,4.3
florida-AM3 2 985 308 086 [Cai+18] 4.2,4.3
georgia-AM3 1 680 148 252 [Cai+18] 4.2,4.3
greenland-AM3 4 986 7 304 722 [Cai+18] 4.2,4.3
hawaii-AM2 2 875 530 316 [Cai+18] 4.2,4.3
hawaii-AM3 28 006 98 889 842 [Cai+18] 4.2,4.3
idaho-AM3 4 064 7 848 160 [Cai+18] 4.2,4.3
kansas-AM3 2 732 1 613 824 [Cai+18] 4.2,4.3
kentucky-AM2 2 453 1 286 856 [Cai+18] 4.2,4.3
kentucky-AM3 19 095 119 067 260 [Cai+18] 4.2,4.3
louisiana-AM3 1 162 74 154 [Cai+18] 4.2,4.3
maryland-AM3 1 018 190 830 [Cai+18] 4.2,4.3
massachusetts-AM2 1 339 70 898 [Cai+18] 4.2,4.3
massachusetts-AM3 3 703 1 102 982 [Cai+18] 4.2,4.3
mexico-AM3 1 096 94 262 [Cai+18] 4.2,4.3
new-hampshire-AM3 1 107 36 042 [Cai+18] 4.2,4.3
north-carolina-AM3 1 557 473 478 [Cai+18] 4.2,4.3
oregon-AM2 1 325 115 034 [Cai+18] 4.2,4.3
oregon-AM3 5 588 5 825 402 [Cai+18] 4.2,4.3
pennsylvania-AM3 1 148 52 928 [Cai+18] 4.2,4.3
rhode-island-AM2 2 866 590 976 [Cai+18] 4.2,4.3
rhode-island-AM3 15 124 25 244 438 [Cai+18] 4.2,4.3
utah-AM3 1 339 85 744 [Cai+18] 4.2,4.3
vermont-AM3 3 436 2 272 328 [Cai+18] 4.2,4.3
virginia-AM2 2 279 120 080 [Cai+18] 4.2,4.3
virginia-AM3 6 185 1 331 806 [Cai+18] 4.2,4.3
washington-AM2 3 025 304 898 [Cai+18] 4.2,4.3
washington-AM3 10 022 4 692 426 [Cai+18] 4.2,4.3
west-virginia-AM3 1 185 251 240 [Cai+18] 4.2,4.3

154

Instance Details

Table 7: Properties of mesh instances.

Graph 𝑛 𝑚 Source Section

beethoven 4 419 6 491 [San+08] 3.2,4.3
blob 16 068 24 102 [San+08] 3.2,4.3
buddha 1 087 716 1 631 574 [San+08] 3.2,3.3,4.3
bunny 68 790 103 017 [San+08] 3.2,3.3,4.3
cow 5 036 7 366 [San+08] 3.2,4.3
dragon 150 000 225 000 [San+08] 3.2,3.3,4.3
dragonsub 600 000 900 000 [San+08] 3.2,3.3,4.3
ecat 684 496 1 026 744 [San+08] 3.2,4.3
face 22 871 34 054 [San+08] 3.2,4.3
fandisk 8 634 12 818 [San+08] 3.2,4.3
feline 41 262 61 893 [San+08] 3.2,3.3,4.3
gameguy 42 623 63 850 [San+08] 3.2,3.3,4.3
gargoyle 20 000 30 000 [San+08] 3.2,4.3
turtle 267 534 401 178 [San+08] 3.2,4.3
venus 5 672 8 508 [San+08] 3.2,3.3,4.3

Table 8: Properties of FE instances.

Graph 𝑛 𝑚 Source Section

fe_4elt2 11 143 32 818 [SWC04] 4.3
fe_sphere 16 386 49 152 [SWC04] 4.3
fe_pwt 36 519 144 794 [SWC04] 3.2,4.3
fe_body 45 087 163 734 [SWC04] 4.3
fe_tooth 78 136 452 591 [SWC04] 3.2,4.3
fe_rotor 99 617 662 431 [SWC04] 3.2,4.3
fe_ocean 143 437 409 593 [SWC04] 3.2,4.3

Table 9: Properties of additional Walshaw benchmark instances.

Graph 𝑛 𝑚 Source Section

crack 10 240 30 380 [SWC04] 3.2
vibrobox 12 328 165 250 [SWC04] 3.2
4elt 15 606 45 878 [SWC04] 3.2
cs4 22 499 43 858 [SWC04] 3.2
bcsstk30 28 924 1 007 284 [SWC04] 3.2
bcsstk31 35 588 572 914 [SWC04] 3.2
brack2 62 631 366 559 [SWC04] 3.2
598a 110 971 741 934 [SWC04] 3.2
wave 156 317 1 059 331 [SWC04] 3.2
auto 448 695 3 314 611 [SWC04] 3.2

155

Appendix

Table 10: Properties of Florida Sparse Matrix collection instances.

Graph 𝑛 𝑚 Source Section

Oregon-1 11 174 23 409 [DH11] 3.2
ca-HepPh 12 006 118 489 [DH11] 3.2
skirt 12 595 91 961 [DH11] 3.2
cbuckle 13 681 331 417 [DH11] 3.2
cyl6 13 681 350 280 [DH11] 3.2
case9 14 453 72 171 [DH11] 3.2
rajat07 14 842 24 571 [DH11] 3.2
Dubcova1 16 129 118 440 [DH11] 3.2
olafu 16 146 499 505 [DH11] 3.2
bodyy6 19 366 57 691 [DH11] 3.2
raefsky4 19 779 654 416 [DH11] 3.2
smt 25 710 1 863 737 [DH11] 3.2
pdb1HYS 36 417 2 154 174 [DH11] 3.2
c-57 37 833 183 682 [DH11] 3.2
copter2 55 476 352 238 [DH11] 3.2
TSOPF_FS_b300_c2 56 813 4 376 395 [DH11] 3.2
c-67 57 975 236 980 [DH11] 3.2
dixmaanl 60 000 119 999 [DH11] 3.2
blockqp1 60 012 300 011 [DH11] 3.2
Ga3As3H12 61 349 2 954 799 [DH11] 3.2
GaAsH6 61 349 1 660 230 [DH11] 3.2
cant 62 208 1 972 466 [DH11] 3.2
ncvxqp5 62 500 187 483 [DH11] 3.2
crankseg_2 63 838 7 042 510 [DH11] 3.2
c-68 64 810 565 996 [DH11] 3.2

156

Instance Details

Table 11: Properties of the first half of public PACE instances.

Graph 𝑛 𝑚 Source Section

001 6 160 40 207 [DFH19] 3.4,3.5
003 60 541 74 220 [DFH19] 3.4,3.5
005 200 819 [DFH19] 3.4,3.5
007 8 794 10 130 [DFH19] 3.4,3.5
009 38 452 174 645 [DFH19] 3.4,3.5
011 9 877 25 973 [DFH19] 3.4,3.5
013 45 307 55 440 [DFH19] 3.4,3.5
015 53 610 65 952 [DFH19] 3.4,3.5
017 23 541 51 747 [DFH19] 3.4,3.5
019 200 884 [DFH19] 3.4,3.5
021 24 765 30 242 [DFH19] 3.4,3.5
023 27 717 133 665 [DFH19] 3.4,3.5
025 23 194 28 221 [DFH19] 3.4,3.5
027 65 866 81 245 [DFH19] 3.4,3.5
029 13 431 21 999 [DFH19] 3.4,3.5
031 200 813 [DFH19] 3.4,3.5
033 4 410 6 885 [DFH19] 3.4,3.5
035 200 884 [DFH19] 3.4,3.5
037 198 824 [DFH19] 3.4,3.5
039 6 795 10 620 [DFH19] 3.4,3.5
041 200 1 040 [DFH19] 3.4,3.5
043 200 841 [DFH19] 3.4,3.5
045 200 1 044 [DFH19] 3.4,3.5
047 200 1 120 [DFH19] 3.4,3.5
049 200 957 [DFH19] 3.4,3.5
051 200 1 135 [DFH19] 3.4,3.5
053 200 1 062 [DFH19] 3.4,3.5
055 200 958 [DFH19] 3.4,3.5
057 200 1 200 [DFH19] 3.4,3.5
059 200 988 [DFH19] 3.4,3.5
061 200 952 [DFH19] 3.4,3.5
063 200 1 040 [DFH19] 3.4,3.5
065 200 1 037 [DFH19] 3.4,3.5
067 200 1 201 [DFH19] 3.4,3.5
069 200 1 120 [DFH19] 3.4,3.5
071 200 984 [DFH19] 3.4,3.5
073 200 1 107 [DFH19] 3.4,3.5
075 26 300 41 500 [DFH19] 3.4,3.5
077 200 988 [DFH19] 3.4,3.5
079 26 300 41 500 [DFH19] 3.4,3.5
081 199 1 124 [DFH19] 3.4
083 200 1 215 [DFH19] 3.4
085 11 470 17 408 [DFH19] 3.4
087 13 590 21 240 [DFH19] 3.4
089 57 316 77 978 [DFH19] 3.4
091 200 1 196 [DFH19] 3.4
093 200 1 207 [DFH19] 3.4
095 15 783 24 663 [DFH19] 3.4
097 18 096 28 281 [DFH19] 3.4
099 26 300 41 500 [DFH19] 3.4

157

Appendix

Table 12: Properties of the second half of public PACE instances.

Graph 𝑛 𝑚 Source Section

101 26 300 41 500 [DFH19] 3.4
103 15 783 24 663 [DFH19] 3.4
105 26 300 41 500 [DFH19] 3.4
107 13 590 21 240 [DFH19] 3.4
109 66 992 90 970 [DFH19] 3.4
111 450 17 831 [DFH19] 3.4
113 26 300 41 500 [DFH19] 3.4
115 18 096 28 281 [DFH19] 3.4
117 18 096 28 281 [DFH19] 3.4
119 18 096 28 281 [DFH19] 3.4
121 18 096 28 281 [DFH19] 3.4
123 26 300 41 500 [DFH19] 3.4
125 26 300 41 500 [DFH19] 3.4
127 18 096 28 281 [DFH19] 3.4
129 15 783 24 663 [DFH19] 3.4
131 2 980 5 360 [DFH19] 3.4
133 15 783 24 663 [DFH19] 3.4
135 26 300 41 500 [DFH19] 3.4
137 26 300 41 500 [DFH19] 3.4
139 18 096 28 281 [DFH19] 3.4
141 18 096 28 281 [DFH19] 3.4
143 18 096 28 281 [DFH19] 3.4
145 18 096 28 281 [DFH19] 3.4
147 18 096 28 281 [DFH19] 3.4
149 26 300 41 500 [DFH19] 3.4
151 15 783 24 663 [DFH19] 3.4
153 29 076 45 570 [DFH19] 3.4
155 26 300 41 500 [DFH19] 3.4
157 2 980 5 360 [DFH19] 3.4
159 18 096 28 281 [DFH19] 3.4
161 138 141 227 241 [DFH19] 3.4
163 18 096 28 281 [DFH19] 3.4
165 18 096 28 281 [DFH19] 3.4
167 15 783 24 663 [DFH19] 3.4
169 4 768 8 576 [DFH19] 3.4
171 18 096 28 281 [DFH19] 3.4
173 56 860 77 264 [DFH19] 3.4
175 3 523 6 446 [DFH19] 3.4
177 5 066 9 112 [DFH19] 3.4
179 15 783 24 663 [DFH19] 3.4
181 18 096 28 281 [DFH19] 3.4
183 72 420 118 362 [DFH19] 3.4
185 3 523 6 446 [DFH19] 3.4
187 4 227 7 734 [DFH19] 3.4
189 7 400 13 600 [DFH19] 3.4
191 4 579 8 378 [DFH19] 3.4
193 7 030 12 920 [DFH19] 3.4
195 1 150 81 068 [DFH19] 3.4
197 1 534 127 011 [DFH19] 3.4
199 1 534 126 163 [DFH19] 3.4

158

Instance Details

Table 13: Properties of the first half of private PACE instances.

Graph 𝑛 𝑚 Source Section

002 51 795 63 334 [DFH19] 3.4,3.5
004 8 114 26 013 [DFH19] 3.4,3.5
006 200 751 [DFH19] 3.4,3.5
008 7 537 72 833 [DFH19] 3.4,3.5
010 199 774 [DFH19] 3.4,3.5
012 53 444 68 044 [DFH19] 3.4,3.5
014 25 123 31 552 [DFH19] 3.4,3.5
016 153 802 [DFH19] 3.4,3.5
018 49 212 63 601 [DFH19] 3.4,3.5
020 57 287 71 155 [DFH19] 3.4,3.5
022 12 589 33 129 [DFH19] 3.4,3.5
024 7 620 47 293 [DFH19] 3.4,3.5
026 6 140 36 767 [DFH19] 3.4,3.5
028 54 991 67 000 [DFH19] 3.4,3.5
030 62 853 79 557 [DFH19] 3.4,3.5
032 1 490 2 680 [DFH19] 3.4,3.5
034 1 490 2 680 [DFH19] 3.4,3.5
036 26 300 41 500 [DFH19] 3.4,3.5
038 786 14 024 [DFH19] 3.4,3.5
040 210 625 [DFH19] 3.4,3.5
042 200 974 [DFH19] 3.4,3.5
044 200 1 186 [DFH19] 3.4,3.5
046 200 812 [DFH19] 3.4,3.5
048 200 1 052 [DFH19] 3.4,3.5
050 200 1 048 [DFH19] 3.4,3.5
052 200 1 019 [DFH19] 3.4,3.5
054 200 985 [DFH19] 3.4,3.5
056 200 1 117 [DFH19] 3.4,3.5
058 200 1 202 [DFH19] 3.4,3.5
060 200 1 147 [DFH19] 3.4,3.5
062 199 1 164 [DFH19] 3.4,3.5
064 200 1 071 [DFH19] 3.4,3.5
066 200 884 [DFH19] 3.4,3.5
068 200 983 [DFH19] 3.4,3.5
070 200 887 [DFH19] 3.4,3.5
072 200 1 204 [DFH19] 3.4,3.5
074 200 820 [DFH19] 3.4,3.5
076 26 300 41 500 [DFH19] 3.4,3.5
078 11 349 17 739 [DFH19] 3.4,3.5
080 26 300 41 500 [DFH19] 3.4,3.5
082 200 978 [DFH19] 3.4
084 13 590 21 240 [DFH19] 3.4
086 26 300 41 500 [DFH19] 3.4
088 26 300 41 500 [DFH19] 3.4
090 11 349 17 739 [DFH19] 3.4
092 450 17 794 [DFH19] 3.4
094 5 960 10 720 [DFH19] 3.4
096 26 300 41 500 [DFH19] 3.4
098 26 300 41 500 [DFH19] 3.4
100 26 300 41 500 [DFH19] 3.4

159

Appendix

Table 14: Properties of the second half of private PACE instances.

Graph 𝑛 𝑚 Source Section

102 26 300 41 500 [DFH19] 3.4
104 26 300 41 500 [DFH19] 3.4
106 2 980 5 360 [DFH19] 3.4
108 26 300 41 500 [DFH19] 3.4
110 98 128 161 357 [DFH19] 3.4
112 18 096 28 281 [DFH19] 3.4
114 15 783 24 663 [DFH19] 3.4
116 26 300 41 500 [DFH19] 3.4
118 26 300 41 500 [DFH19] 3.4
120 70 144 116 378 [DFH19] 3.4
122 26 300 41 500 [DFH19] 3.4
124 26 300 41 500 [DFH19] 3.4
126 18 096 28 281 [DFH19] 3.4
128 26 300 41 500 [DFH19] 3.4
130 26 300 41 500 [DFH19] 3.4
132 15 783 24 663 [DFH19] 3.4
134 26 300 41 500 [DFH19] 3.4
136 18 096 28 281 [DFH19] 3.4
138 18 096 28 281 [DFH19] 3.4
140 26 300 41 500 [DFH19] 3.4
142 2 980 5 360 [DFH19] 3.4
144 26 300 41 500 [DFH19] 3.4
146 26 300 41 500 [DFH19] 3.4
148 26 300 41 500 [DFH19] 3.4
150 26 300 41 500 [DFH19] 3.4
152 13 590 21 240 [DFH19] 3.4
154 15 783 24 663 [DFH19] 3.4
156 450 17 809 [DFH19] 3.4
158 15 783 24 663 [DFH19] 3.4
160 18 096 28 281 [DFH19] 3.4
162 50 635 83 075 [DFH19] 3.4
164 29 296 46 040 [DFH19] 3.4
166 3 278 5 896 [DFH19] 3.4
168 2 980 5 360 [DFH19] 3.4
170 15 783 24 663 [DFH19] 3.4
172 4 025 7 435 [DFH19] 3.4
174 2 980 5 360 [DFH19] 3.4
176 15 783 24 663 [DFH19] 3.4
178 18 096 28 281 [DFH19] 3.4
180 15 783 24 663 [DFH19] 3.4
182 26 300 41 500 [DFH19] 3.4
184 6 290 11 560 [DFH19] 3.4
186 26 300 41 500 [DFH19] 3.4
188 6 660 12 240 [DFH19] 3.4
190 3 875 7 090 [DFH19] 3.4
192 2 980 5 360 [DFH19] 3.4
194 1 150 80 851 [DFH19] 3.4
196 1 534 126 082 [DFH19] 3.4
198 1 150 80 072 [DFH19] 3.4
200 1 150 80 258 [DFH19] 3.4

160

Instance Details

Table 15: Properties of rudy MaxCut instances.

Graph 𝑛 𝑚 Source Section

g05_100 100 2 475 [Wie18] 5.4
g05_60 60 885 [Wie18] 5.4
g05_80 80 1 580 [Wie18] 5.4
pm1d_100 100 4 901 [Wie18] 5.4
pm1d_80 80 3 128 [Wie18] 5.4
pm1s_100 100 495 [Wie18] 5.4
pm1s_80 79 316 [Wie18] 5.4
pw01_100 100 495 [Wie18] 5.4
pw05_100 100 2 475 [Wie18] 5.4
pw09_100 100 4 455 [Wie18] 5.4
w01_100 100 470 [Wie18] 5.4
w05_100 100 2 356 [Wie18] 5.4
w09_100 100 4 245 [Wie18] 5.4

Table 16: Properties of medium-sized MaxCut instances.

Graph 𝑛 𝑚 Source Section

ca-CSphd 1 882 1 740 [RA15] 5.4
ego-facebook 2 888 2 981 [RA15] 5.4
ENZYMES_g295 123 278 [RA15] 5.4
road-euroroad 1 174 1 417 [RA15] 5.4
bio-yeast 1 458 1 948 [RA15] 5.4
rt-twitter-copen 761 1 029 [RA15] 5.4
bio-diseasome 516 1 188 [RA15] 5.4
ca-netscience 379 914 [RA15] 5.4
soc-firm-hi-tech 33 125 [RA15] 5.4
g000302 317 476 [DGS18] 5.4
g001918 777 1 239 [DGS18] 5.4
g000981 110 188 [DGS18] 5.4
g001207 84 149 [DGS18] 5.4
g000292 212 381 [DGS18] 5.4
imgseg_271031 900 1 027 [DGS18] 5.4
imgseg_105019 3 548 4 325 [DGS18] 5.4
imgseg_35058 1 274 1 806 [DGS18] 5.4
imgseg_374020 5 735 4 427 [DGS18] 5.4
imgseg_106025 1 565 2 629 [DGS18] 5.4

161

Appendix

Table 17: Properties of large-sized MaxCut instances.

Graph 𝑛 𝑚 Source Section

inf-road_central 14 081 816 16 933 413 [RA15] 5.4
inf-power 4 941 6 594 [RA15] 5.4
web-google 1 299 2 773 [RA15] 5.4
ca-MathSciNet 332 689 820 644 [RA15] 5.4
ca-IMDB 896 305 3 782 463 [RA15] 5.4
web-Stanford 281 903 1 992 636 [RA15] 5.4
web-it-2004 509 338 7 178 413 [RA15] 5.4
ca-coauthors-dblp 540 586 15 245 729 [RA15] 5.4

162

Additional Results for Inexact Iterative Reductions

B Additional Results for Inexact Iterative Reductions
We present additional results for the comparison of the heuristic MIS algorithms ReduMIS,
EvoMIS, and ARW (see Section 3.2.4.b)) on instances from the Florida Sparse Matrix
collection. For each algorithm, we give the maximum and average solution sizes achieved
over five runs with different random seeds. The global best solution is highlighted in bold.

Table 18: Results for graphs from Florida Sparse Matrix collection.

Graph ReduMIS EvoMIS ARW

Name 𝑛 Opt. Avg. Max. Avg. Max. Avg. Max.

Oregon-1 11 174 9 512 9 512 9 512 9 512 9 512 9 512 9 512
ca-HepPh 12 006 4 994 4 994 4 994 4 994 4 994 4 994 4 994
skirt 12 595 2 383 2 383 2 383 2 383 2 383 2 383 2 383
cbuckle 13 681 1 097 1 097 1 097 1 097 1 097 1 097 1 097
cyl6 13 681 600 600 600 600 600 600 600
case9 14 453 7 224 7 224 7 224 7 224 7 224 7 224 7 224
rajat07 14 842 4 971 4 971 4 971 4 971 4 971 4 971 4 971
Dubcova1 16 129 4 096 4 096 4 096 4 096 4 096 4 096 4 096
olafu 16 146 735 735 735 735 735 735 735
bodyy6 19 366 - 6 229 6 232 6 232 6 233 6 226 6 228
raefsky4 19 779 1 055 1 055 1 055 1 055 1 055 1 053 1 053
smt 25 710 - 782 782 782 782 780 780
pdb1HYS 36 417 - 1 077 1 078 1 078 1 078 1 070 1 071
c-57 37 833 19 997 19 997 19 997 19 997 19 997 19 997 19 997
copter2 55 476 - 15 192 15 194 15 192 15 195 15 186 15 194
TSOPF_FS_b300_c2 56 813 28 338 28 338 28 338 28 338 28 338 28 338 28 338
c-67 57 975 31 257 31 257 31 257 31 257 31 257 31 257 31 257
dixmaanl 60 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000
blockqp1 60 012 20 011 20 011 20 011 20 011 20 011 20 011 20 011
Ga3As3H12 61 349 - 8 068 8 132 7 839 8 151 8 061 8 124
GaAsH6 61 349 - 8 567 8 589 8 562 8 572 8 519 8 575
cant 62 208 - 6 260 6 260 6 260 6 260 6 255 6 255
ncvxqp5* 62 500 - 24 504 24 523 24 526 24 537 24 580 24 608
crankseg_2 63 838 1 735 1 735 1 735 1 735 1 735 1 735 1 735
c-68 64 810 36 546 36 546 36 546 36 546 36 546 36 546 36 546

163

Appendix

C Convergence Plots for Inexact Iterative Reductions
We present additional convergence plots for the heuristic MIS algorithms ReduMIS, EvoMIS,
andARWused in our experimental evaluation in Section 3.2.4. The results for each algorithm
are event-based geometric average values over five runs with different random seeds.

100 101 102 103 104

290000

300000

310000

320000

330000

So
lu

tio
n

si
ze

as-skitter

10−1 100 101 102 103 104
16000

17000

18000

feline

100 101 102 103 104

Time (s)

500000

520000

540000

So
lu

tio
n

si
ze

fla

100 101 102 103 104

Time (s)

880000

890000

in-2004

ARW EvoMIS ReduMIS

Figure 1: Convergence plots for as-skitter (top left), feline (top right), fla (bottom left),
and in-2004 (bottom right).

164

Convergence Plots for On-the-fly Reductions

D Convergence Plots for On-the-fly Reductions
In the following, we present additional convergence plots for our experimental evaluation
in Section 3.3.2. This includes the heuristic MIS algorithms ReduMIS, KerMIS, ARW, and
OnlineMIS. The results for each algorithm are event-based geometric average values over
three runs with different random seeds.

100 101 102 103 104
302000

304000

306000

308000

310000

So
lu

tio
n

si
ze

amazon-2008

100 101 102 103 104
1.150

1.155

1.160

1.165

1.170

×106 as-Skitter-big

100 101 102 103 104

Time (s)

550000

600000

650000

700000

So
lu

tio
n

si
ze

dewiki-2013

101 102 103 104

Time (s)

2.05

2.10

2.15

×106 enwiki-2013

ReduMIS KerMIS ARW OnlineMIS

Figure 2: Convergence plots for amazon-2008 (top left), as-Skitter-big (top right),
dewiki-2013 (bottom left), and enwiki-2013 (bottom right).

165

Appendix

100 101 102 103 104

440000

445000

450000

So
lu

tio
n

si
ze

eu-2005

101 102

523200

523250

523300

523350

523400

hollywood-2011

100 101 102 103 104

Time (s)

110000

120000

So
lu

tio
n

si
ze

libimseti

101 102 103 104

Time (s)

2.95

2.96

2.97

×106 ljournal-2008

ReduMIS KerMIS ARW OnlineMIS

Figure 3:Convergence plots for eu-2005 (top left), hollywood-2011 (top right), libimseti
(bottom left), and ljournal-2008 (bottom right).

166

Convergence Plots for On-the-fly Reductions

101 102 103 104
200000

400000

600000

800000

So
lu

tio
n

si
ze

orkut

10−1 100 101 102 103 104

158000

160000

162000

web-Stanford

102 103 104

Time (s)

7.90

7.95

8.00

So
lu

tio
n

si
ze

×107 webbase-2001

102 103 104

Time (s)

1.91

1.92

1.93

1.94

×107 wikilinks

ReduMIS KerMIS ARW OnlineMIS

Figure 4: Convergence plots for orkut (top left), web-Stanford (top right), webbase-
2001 (bottom left), and wikilinks (bottom right).

167

Appendix

102 103 104

2.52

2.54

2.56

So
lu

tio
n

si
ze

×107 it-2004

103 104
6.60

6.65

6.70

×107 uk-2007

101 102 103 104

Time (s)

8.9

9.0

9.1

9.2

So
lu

tio
n

si
ze

×106 europe

100 101 102 103 104

Time (s)

200000

300000

400000

buddha

ReduMIS KerMIS ARW OnlineMIS

Figure 5: Convergence plots for it-2004 (top left), uk-2007 (top right), europe (bottom
left), and buddha (bottom right).

168

Convergence Plots for On-the-fly Reductions

10−1 100 101 102 103 104

20000

40000

60000

So
lu

tio
n

si
ze

dragon

10−1 100 101 102 103 104
0

5000

10000

15000

feline

10−1 100 101 102 103 104

Time (s)

10000

12500

15000

17500

20000

So
lu

tio
n

si
ze

gameguy

10−2 10−1 100 101 102 103

Time (s)

1000

2000

venus

ReduMIS KerMIS ARW OnlineMIS

Figure 6: Convergence plots for dragon (top left), feline (top right), gameguy (bottom
left), and venus (bottom right).

169

Appendix

E Detailed Results for Targeted Branching Rules
In the following, we present detailed results of our experimental evaluation of branching
strategies for exact MIS algorithms (Section 3.5.4). The tables show arithmetic means of
running times 𝑡 (in seconds) over three runs with different random seeds and the speedup
𝑠. Speedups are computed by dividing the running time of maximum degree branching
by the running time of the respective technique. Timeouts are assigned a running time of
ten hours. We also present the aggregated speedup 𝑠total computed by dividing the running
time of both algorithms over all instances (omitting instances where both algorithms do not
finish within our time limit). A value is highlighted in bold if it is the best one within a row.

Table 19:Detailed results for our decomposition-based strategies on sparse networks.

Graph max. deg. articulation edge cuts nested dis.

Sparse net. t t (s) t (s) t (s)

as-skitter 2 058.32 2 100.57 (0.98) 2 071.06 (0.99) 2 068.46 (1.00)
baidu-relatedpages 0.82 0.88 (0.94) 0.86 (0.96) 7.22 (0.11)
bay 1.68 1.87 (0.90) 1.31 (1.28) 23.43 (0.07)
col 5 019.93 4 737.48 (1.06) 3 872.65 (1.30) 5 101.46 (0.98)
fla 25.33 23.47 (1.08) 24.58 (1.03) 329.42 (0.08)
hudong-internallink 0.99 1.55 (0.64) 1.46 (0.68) 1.99 (0.50)
in-2004 5.22 5.46 (0.96) 5.37 (0.97) 16.18 (0.32)
libimseti 1 497.59 1 507.54 (0.99) 1 503.49 (1.00) 1 704.53 (0.88)
musae-twitch_DE 20 906.93 21 470.00 (0.97) 20 987.30 (1.00) 20 949.83 (1.00)
musae-twitch_FR 37.13 37.81 (0.98) 37.32 (1.00) 41.55 (0.89)
petster-fs-dog 6.82 10.21 (0.67) 8.67 (0.79) 12.47 (0.55)
soc-LiveJournal1 9.87 11.50 (0.86) 11.06 (0.89) 23.91 (0.41)
web-BerkStan 134.22 360.88 (0.37) 138.84 (0.97) 207.92 (0.65)
web-Google 0.61 0.85 (0.71) 0.68 (0.89) 1.46 (0.41)
web-NotreDame 12.10 9.07 (1.33) 12.11 (1.00) 48.83 (0.25)
web-Stanford >36 000 8.38 (>4 294.84) 27.41 (>1 313.18) 42.80 (>841.16)

𝑠total 1.00 2.17 2.29 2.15

170

Detailed Results for Targeted Branching Rules

Table 20:Detailed results for our decomposition-based strategies on PACE instances.

Graph max. deg. articulation edge cuts nested dis.

PACE t t (s) t (s) t (s)

05 1.97 2.00 (0.98) 2.00 (0.99) 2.44 (0.81)
06 0.85 0.87 (0.98) 0.87 (0.98) 1.33 (0.64)
10 2.24 2.27 (0.99) 2.26 (0.99) 2.66 (0.84)
16 25 836.77 26 175.23 (0.99) 25 763.30 (1.00) 25 865.40 (1.00)
19 3.17 3.22 (0.98) 3.18 (0.99) 3.63 (0.87)
31 74.37 76.03 (0.98) 75.45 (0.99) 74.82 (0.99)
33 1.01 1.03 (0.98) 1.02 (0.99) 40.09 (0.03)
35 7.64 7.84 (0.97) 7.77 (0.98) 8.13 (0.94)
36 1.84 1.87 (0.98) 1.85 (0.99) 3.93 (0.47)
37 10.27 10.48 (0.98) 10.47 (0.98) 10.75 (0.96)
38 12.33 11.24 (1.10) 3.25 (3.79) 15.35 (0.80)
39 93.79 96.82 (0.97) 95.96 (0.98) 95.21 (0.99)
40 4 690.64 4 794.37 (0.98) 4 758.15 (0.99) 4 712.57 (1.00)
41 48.56 49.84 (0.97) 49.39 (0.98) 49.35 (0.98)
42 37.32 38.11 (0.98) 37.91 (0.98) 37.87 (0.99)
43 175.11 178.81 (0.98) 177.26 (0.99) 175.24 (1.00)
44 92.90 95.13 (0.98) 94.28 (0.99) 93.40 (0.99)
45 25.41 26.01 (0.98) 25.73 (0.99) 25.90 (0.98)
46 109.55 111.95 (0.98) 111.00 (0.99) 110.22 (0.99)
47 58.47 59.70 (0.98) 59.38 (0.98) 59.22 (0.99)
48 25.28 25.80 (0.98) 25.60 (0.99) 25.80 (0.98)
49 17.80 18.19 (0.98) 18.10 (0.98) 18.30 (0.97)
50 48.87 50.01 (0.98) 49.56 (0.99) 49.40 (0.99)
51 56.70 58.00 (0.98) 57.63 (0.98) 57.52 (0.99)
52 22.16 22.68 (0.98) 22.53 (0.98) 22.69 (0.98)
53 59.88 61.42 (0.97) 60.77 (0.99) 60.42 (0.99)
54 32.08 32.89 (0.98) 32.73 (0.98) 32.67 (0.98)
55 6.83 6.97 (0.98) 6.92 (0.99) 7.32 (0.93)
56 97.00 99.09 (0.98) 98.31 (0.99) 97.80 (0.99)
57 66.01 67.76 (0.97) 67.18 (0.98) 66.83 (0.99)
58 48.12 48.83 (0.99) 48.72 (0.99) 48.63 (0.99)
59 13.30 13.60 (0.98) 13.54 (0.98) 13.80 (0.96)
60 79.56 81.58 (0.98) 80.94 (0.98) 80.23 (0.99)
61 21.91 22.31 (0.98) 22.26 (0.98) 22.36 (0.98)
62 66.22 68.48 (0.97) 67.40 (0.98) 66.80 (0.99)
63 69.06 70.55 (0.98) 69.91 (0.99) 69.35 (1.00)
64 29.58 30.07 (0.98) 29.99 (0.99) 30.09 (0.98)
65 36.84 37.53 (0.98) 37.28 (0.99) 37.29 (0.99)
66 8.06 8.28 (0.97) 8.23 (0.98) 8.63 (0.93)
67 122.74 124.79 (0.98) 124.25 (0.99) 123.38 (0.99)
68 8.79 8.92 (0.99) 8.86 (0.99) 9.24 (0.95)
69 43.11 44.13 (0.98) 43.85 (0.98) 43.63 (0.99)
70 11.79 12.00 (0.98) 11.97 (0.99) 12.25 (0.96)
71 36.20 36.83 (0.98) 36.66 (0.99) 36.64 (0.99)
72 46.44 47.47 (0.98) 46.91 (0.99) 46.86 (0.99)
73 43.02 44.07 (0.98) 43.77 (0.98) 43.65 (0.99)
74 7.06 7.24 (0.97) 7.14 (0.99) 7.49 (0.94)
77 13.30 13.65 (0.97) 13.51 (0.98) 13.79 (0.96)

𝑠total 1.00 0.99 1.00 1.00

171

Appendix

Table 21: Detailed results for our decomposition-based strategies on DIMACS in-
stances.

Graph max. deg. articulation edge cuts nested dis.

DIMACS t t (s) t (s) t (s)

C125.9 0.98 1.01 (0.97) 1.00 (0.98) 1.43 (0.69)
MANN_a27 0.48 0.49 (0.98) 0.49 (0.98) 0.98 (0.49)
MANN_a45 73.80 75.24 (0.98) 74.93 (0.98) 74.70 (0.99)
brock200_1 137.34 140.20 (0.98) 137.56 (1.00) 140.01 (0.98)
brock200_2 4.59 4.69 (0.98) 4.70 (0.98) 10.07 (0.46)
brock200_3 22.06 22.33 (0.99) 21.92 (1.01) 26.39 (0.84)
brock200_4 28.34 28.72 (0.99) 28.35 (1.00) 32.48 (0.87)
gen200_p0.9_44 152.61 156.30 (0.98) 154.50 (0.99) 153.49 (0.99)
gen200_p0.9_55 131.24 134.64 (0.97) 133.04 (0.99) 132.58 (0.99)
hamming8-4 19.29 19.65 (0.98) 19.49 (0.99) 25.38 (0.76)
johnson16-2-4 39.87 41.17 (0.97) 40.21 (0.99) 40.33 (0.99)
keller4 2.62 2.68 (0.98) 2.65 (0.99) 4.37 (0.60)
p_hat1000-1 860.24 868.71 (0.99) 870.04 (0.99) 906.24 (0.95)
p_hat1000-2 33 035.45 33 656.50 (0.98) 33 508.10 (0.99) 33 247.45 (0.99)
p_hat1500-1 8 935.77 9 015.15 (0.99) 9 015.74 (0.99) 8 994.28 (0.99)
p_hat300-1 3.70 3.79 (0.98) 3.82 (0.97) 23.94 (0.15)
p_hat300-2 5.53 5.66 (0.98) 5.63 (0.98) 21.76 (0.25)
p_hat300-3 189.58 191.06 (0.99) 188.96 (1.00) 196.89 (0.96)
p_hat500-1 38.63 39.26 (0.98) 39.41 (0.98) 59.29 (0.65)
p_hat500-2 96.36 97.82 (0.99) 97.58 (0.99) 107.29 (0.90)
p_hat500-3 14 860.70 14 895.15 (1.00) 14 979.65 (0.99) 14 909.35 (1.00)
p_hat700-1 163.30 162.84 (1.00) 163.17 (1.00) 177.34 (0.92)
p_hat700-2 906.32 917.87 (0.99) 914.96 (0.99) 917.50 (0.99)
san1000 895.34 902.64 (0.99) 903.38 (0.99) 920.28 (0.97)
san200_0.7_1 10.85 11.01 (0.98) 10.90 (1.00) 14.45 (0.75)
san200_0.7_2 0.33 0.34 (0.95) 0.32 (1.01) 2.34 (0.14)
san200_0.9_1 13.93 14.37 (0.97) 14.08 (0.99) 14.94 (0.93)
san200_0.9_2 34.15 34.77 (0.98) 34.35 (0.99) 34.90 (0.98)
san200_0.9_3 1 069.00 1 094.54 (0.98) 1 078.09 (0.99) 1 071.31 (1.00)
san400_0.5_1 9.21 9.35 (0.98) 9.36 (0.98) 16.76 (0.55)
san400_0.7_1 1 125.52 1 139.20 (0.99) 1 131.38 (0.99) 1 130.07 (1.00)
san400_0.7_2 3 062.38 3 053.97 (1.00) 3 083.59 (0.99) 3 073.66 (1.00)
san400_0.7_3 4 411.82 4 464.53 (0.99) 4 447.19 (0.99) 4 423.16 (1.00)
sanr200_0.7 48.35 49.51 (0.98) 48.71 (0.99) 52.13 (0.93)
sanr200_0.9 679.25 696.41 (0.98) 688.51 (0.99) 680.29 (1.00)
sanr400_0.5 373.40 374.20 (1.00) 374.26 (1.00) 380.08 (0.98)
sanr400_0.7 29 766.80 30 390.80 (0.98) 30 270.10 (0.98) 30 001.55 (0.99)

𝑠total 1.00 0.99 0.99 0.99

172

Detailed Results for Targeted Branching Rules

Table 22:Detailed results for our reduction-based strategies on sparse networks.

Graph max. deg. Twin Funnel Unconfined Packing Combined

Sparse net. t t (s) t (s) t (s) t (s) t (s)

as-skitter 2 058.32 2 054.41 (1.00) 1 849.79 (1.11) 1 977.94 (1.04) 1 681.87 (1.22) 1 704.73 (1.21)
baidu-relatedpages 0.82 0.80 (1.02) 0.84 (0.97) 0.85 (0.97) 0.83 (0.98) 0.93 (0.88)
bay 1.68 1.68 (1.00) 8.22 (0.20) 4.71 (0.36) 1.89 (0.89) 8.38 (0.20)
col 5 019.93 5 752.08 (0.87) 5 416.72 (0.93) 8 187.80 (0.61) 9 370.05 (0.54) 5 924.10 (0.85)
fla 25.33 25.41 (1.00) 45.62 (0.56) 76.60 (0.33) 34.78 (0.73) 42.75 (0.59)
hudong-internallink 0.99 1.31 (0.76) 1.27 (0.78) 1.21 (0.82) 1.55 (0.64) 1.12 (0.88)
in-2004 5.22 4.88 (1.07) 5.25 (0.99) 10.85 (0.48) 5.50 (0.95) 10.73 (0.49)
libimseti 1 497.59 1 452.17 (1.03) 1 620.09 (0.92) 1 440.71 (1.04) 1 476.25 (1.01) 1 706.07 (0.88)
musae-twitch_DE 20 906.93 20 996.87 (1.00) 21 190.67 (0.99) 22 650.53 (0.92) 19 345.03 (1.08) 23 006.50 (0.91)
musae-twitch_FR 37.13 37.04 (1.00) 38.58 (0.96) 41.15 (0.90) 35.60 (1.04) 42.46 (0.87)
petster-fs-dog 6.82 6.62 (1.03) 8.16 (0.84) 8.66 (0.79) 9.68 (0.70) 9.20 (0.74)
soc-LiveJournal1 9.87 6.64 (1.49) 9.57 (1.03) 9.49 (1.04) 11.33 (0.87) 10.69 (0.92)
web-BerkStan 134.22 135.47 (0.99) 122.30 (1.10) 146.94 (0.91) 123.60 (1.09) 174.07 (0.77)
web-Google 0.61 0.53 (1.15) 0.69 (0.87) 0.68 (0.89) 0.78 (0.78) 0.68 (0.89)
web-NotreDame 12.10 12.63 (0.96) 15.23 (0.79) 12.38 (0.98) 14.09 (0.86) 17.52 (0.69)
web-Stanford >36 000 >36 000 >36 000 >36 000 17 886.35 (>2.01) 17 989.97 (>2.00)

𝑠total 1.00 0.97 0.98 0.86 1.31 1.30

173

Appendix

Table 23:Detailed results for our reduction-based strategies on PACE instances.

Graph max. deg. Twin Funnel Unconfined Packing Combined

PACE t t (s) t (s) t (s) t (s) t (s)

05 1.97 1.96 (1.01) 1.99 (0.99) 2.04 (0.97) 1.66 (1.19) 2.11 (0.93)
06 0.85 0.85 (1.00) 0.74 (1.15) 0.92 (0.92) 0.67 (1.27) 0.81 (1.05)
10 2.24 2.23 (1.01) 2.23 (1.00) 2.32 (0.97) 1.88 (1.19) 2.06 (1.09)
16 25 836.77 25 856.57 (1.00) 22 446.13 (1.15) 34 642.13 (0.75) 18 511.88 (1.40) 22 590.78 (1.14)
19 3.17 3.14 (1.01) 2.90 (1.09) 3.25 (0.98) 2.60 (1.22) 3.04 (1.04)
31 74.37 74.31 (1.00) 58.14 (1.28) 73.23 (1.02) 55.99 (1.33) 54.11 (1.37)
33 1.01 1.01 (1.00) 1.15 (0.88) 1.14 (0.89) 1.02 (0.99) 1.29 (0.79)
35 7.64 7.63 (1.00) 7.37 (1.04) 7.90 (0.97) 6.54 (1.17) 7.75 (0.99)
36 1.84 1.86 (0.99) 11.44 (0.16) 162.22 (0.01) 1.90 (0.97) 75.52 (0.02)
37 10.27 10.31 (1.00) 10.27 (1.00) 10.63 (0.97) 8.21 (1.25) 10.90 (0.94)
38 12.33 12.36 (1.00) 11.08 (1.11) 11.40 (1.08) 11.44 (1.08) 10.05 (1.23)
39 93.79 93.99 (1.00) 32.43 (2.89) 127.32 (0.74) 93.99 (1.00) 98.25 (0.95)
40 4 690.64 4 689.28 (1.00) 4 285.37 (1.09) 4 530.07 (1.04) 4 176.59 (1.12) 4 131.79 (1.14)
41 48.56 48.42 (1.00) 42.00 (1.16) 48.66 (1.00) 36.87 (1.32) 38.74 (1.25)
42 37.32 37.19 (1.00) 35.69 (1.05) 37.60 (0.99) 28.55 (1.31) 36.07 (1.03)
43 175.11 174.63 (1.00) 158.08 (1.11) 172.91 (1.01) 130.75 (1.34) 154.96 (1.13)
44 92.90 92.97 (1.00) 82.64 (1.12) 94.37 (0.98) 69.68 (1.33) 90.20 (1.03)
45 25.41 25.37 (1.00) 25.29 (1.01) 26.20 (0.97) 19.83 (1.28) 26.38 (0.96)
46 109.55 109.47 (1.00) 92.61 (1.18) 108.01 (1.01) 79.76 (1.37) 82.72 (1.32)
47 58.47 58.18 (1.00) 53.01 (1.10) 59.16 (0.99) 42.32 (1.38) 52.28 (1.12)
48 25.28 25.21 (1.00) 22.65 (1.12) 25.72 (0.98) 18.56 (1.36) 22.93 (1.10)
49 17.80 17.76 (1.00) 16.43 (1.08) 19.02 (0.94) 12.97 (1.37) 16.18 (1.10)
50 48.87 48.90 (1.00) 46.07 (1.06) 49.75 (0.98) 37.70 (1.30) 47.09 (1.04)
51 56.70 56.58 (1.00) 51.45 (1.10) 57.63 (0.98) 43.45 (1.31) 50.32 (1.13)
52 22.16 22.12 (1.00) 20.56 (1.08) 22.99 (0.96) 15.78 (1.40) 20.82 (1.06)
53 59.88 59.88 (1.00) 54.78 (1.09) 60.43 (0.99) 46.87 (1.28) 55.74 (1.07)
54 32.08 32.02 (1.00) 29.29 (1.10) 32.89 (0.98) 26.55 (1.21) 27.76 (1.16)
55 6.83 6.80 (1.00) 6.50 (1.05) 6.99 (0.98) 5.23 (1.31) 6.35 (1.08)
56 97.00 96.45 (1.01) 88.78 (1.09) 98.09 (0.99) 70.18 (1.38) 81.46 (1.19)
57 66.01 65.97 (1.00) 57.60 (1.15) 65.90 (1.00) 49.95 (1.32) 52.45 (1.26)
58 48.12 47.74 (1.01) 45.82 (1.05) 48.56 (0.99) 35.94 (1.34) 46.62 (1.03)
59 13.30 13.30 (1.00) 12.73 (1.04) 13.72 (0.97) 10.61 (1.25) 12.30 (1.08)
60 79.56 79.36 (1.00) 71.73 (1.11) 80.70 (0.99) 59.65 (1.33) 71.85 (1.11)
61 21.91 21.91 (1.00) 20.47 (1.07) 22.28 (0.98) 17.50 (1.25) 21.06 (1.04)
62 66.22 66.18 (1.00) 59.16 (1.12) 67.83 (0.98) 49.87 (1.33) 59.64 (1.11)
63 69.06 68.81 (1.00) 61.23 (1.13) 70.81 (0.98) 53.40 (1.29) 58.65 (1.18)
64 29.58 29.38 (1.01) 26.96 (1.10) 29.46 (1.00) 22.35 (1.32) 26.78 (1.10)
65 36.84 36.72 (1.00) 33.42 (1.10) 37.93 (0.97) 28.23 (1.30) 31.17 (1.18)
66 8.06 8.06 (1.00) 7.47 (1.08) 8.21 (0.98) 6.21 (1.30) 7.97 (1.01)
67 122.74 122.34 (1.00) 113.33 (1.08) 123.58 (0.99) 95.55 (1.28) 112.43 (1.09)
68 8.79 8.75 (1.00) 8.92 (0.99) 8.94 (0.98) 6.69 (1.31) 8.57 (1.03)
69 43.11 43.11 (1.00) 38.46 (1.12) 44.18 (0.98) 33.88 (1.27) 39.86 (1.08)
70 11.79 11.73 (1.00) 10.09 (1.17) 12.22 (0.96) 9.71 (1.21) 9.76 (1.21)
71 36.20 35.91 (1.01) 32.22 (1.12) 35.37 (1.02) 27.23 (1.33) 33.39 (1.08)
72 46.44 46.18 (1.01) 41.66 (1.11) 46.68 (0.99) 36.28 (1.28) 41.86 (1.11)
73 43.02 43.00 (1.00) 40.38 (1.07) 43.77 (0.98) 31.91 (1.35) 43.51 (0.99)
74 7.06 7.06 (1.00) 6.67 (1.06) 7.86 (0.90) 5.48 (1.29) 6.96 (1.01)
77 13.30 13.25 (1.00) 12.74 (1.04) 13.80 (0.96) 10.61 (1.25) 12.31 (1.08)

𝑠total 1.00 1.00 1.14 0.79 1.34 1.14

174

Detailed Results for Targeted Branching Rules

Table 24:Detailed results for our reduction-based strategies on DIMACS instances.

Graph max. deg. Twin Funnel Unconfined Packing Combined

DIMACS t t (s) t (s) t (s) t (s) t (s)

C125.9 0.98 0.98 (1.00) 0.92 (1.07) 0.98 (1.00) 0.85 (1.15) 0.91 (1.08)
MANN_a27 0.48 0.48 (1.00) 0.57 (0.85) 0.52 (0.92) 0.48 (1.01) 0.59 (0.82)
MANN_a45 73.80 73.76 (1.00) 83.81 (0.88) 78.58 (0.94) 71.86 (1.03) 85.47 (0.86)
brock200_1 137.34 136.98 (1.00) 140.15 (0.98) 137.32 (1.00) 135.14 (1.02) 138.64 (0.99)
brock200_2 4.59 4.60 (1.00) 4.71 (0.98) 4.59 (1.00) 4.58 (1.00) 4.70 (0.98)
brock200_3 22.06 21.78 (1.01) 22.38 (0.99) 21.85 (1.01) 21.76 (1.01) 22.46 (0.98)
brock200_4 28.34 28.15 (1.01) 29.09 (0.97) 28.16 (1.01) 28.25 (1.00) 29.24 (0.97)
gen200_p0.9_44 152.61 152.40 (1.00) 136.94 (1.11) 169.47 (0.90) 132.81 (1.15) 149.63 (1.02)
gen200_p0.9_55 131.24 131.20 (1.00) 125.61 (1.04) 127.51 (1.03) 102.10 (1.29) 50.64 (2.59)
hamming8-4 19.29 19.30 (1.00) 19.78 (0.98) 19.12 (1.01) 19.35 (1.00) 19.67 (0.98)
johnson16-2-4 39.87 39.79 (1.00) 41.63 (0.96) 41.40 (0.96) 38.70 (1.03) 43.09 (0.93)
keller4 2.62 2.62 (1.00) 2.68 (0.98) 2.63 (1.00) 2.58 (1.02) 2.65 (0.99)
p_hat1000-1 860.24 859.74 (1.00) 870.92 (0.99) 873.91 (0.98) 862.77 (1.00) 871.60 (0.99)
p_hat1000-2 33 035.45 33 314.15 (0.99) 32 999.15 (1.00) 32 812.80 (1.01) 30 913.22 (1.07) 31 202.52 (1.06)
p_hat1500-1 8 935.77 8 935.50 (1.00) 9 009.69 (0.99) 8 954.18 (1.00) 8 958.19 (1.00) 9 046.97 (0.99)
p_hat300-1 3.70 3.69 (1.00) 3.78 (0.98) 3.69 (1.00) 3.68 (1.00) 3.78 (0.98)
p_hat300-2 5.53 5.53 (1.00) 5.68 (0.97) 5.54 (1.00) 5.48 (1.01) 5.63 (0.98)
p_hat300-3 189.58 187.77 (1.01) 189.16 (1.00) 185.68 (1.02) 175.01 (1.08) 179.53 (1.06)
p_hat500-1 38.63 38.70 (1.00) 39.36 (0.98) 39.03 (0.99) 38.61 (1.00) 39.34 (0.98)
p_hat500-2 96.36 96.39 (1.00) 97.87 (0.98) 96.21 (1.00) 95.08 (1.01) 96.96 (0.99)
p_hat500-3 14 860.70 14 887.15 (1.00) 14 624.90 (1.02) 14 765.90 (1.01) 13 429.92 (1.11) 13 712.38 (1.08)
p_hat700-1 163.30 160.75 (1.02) 163.63 (1.00) 160.81 (1.02) 163.24 (1.00) 163.31 (1.00)
p_hat700-2 906.32 908.46 (1.00) 914.56 (0.99) 906.78 (1.00) 866.08 (1.05) 879.99 (1.03)
san1000 895.34 898.16 (1.00) 906.21 (0.99) 901.40 (0.99) 913.29 (0.98) 932.29 (0.96)
san200_0.7_1 10.85 10.78 (1.01) 11.01 (0.99) 10.91 (0.99) 10.93 (0.99) 11.06 (0.98)
san200_0.7_2 0.33 0.32 (1.04) 0.33 (0.98) 0.31 (1.07) 0.32 (1.01) 0.33 (0.99)
san200_0.9_1 13.93 13.90 (1.00) 13.35 (1.04) 4.94 (2.82) 12.03 (1.16) 12.13 (1.15)
san200_0.9_2 34.15 33.87 (1.01) 21.46 (1.59) 12.32 (2.77) 15.80 (2.16) 10.01 (3.41)
san200_0.9_3 1 069.00 1 068.17 (1.00) 1 016.33 (1.05) 639.01 (1.67) 843.40 (1.27) 600.71 (1.78)
san400_0.5_1 9.21 9.21 (1.00) 9.37 (0.98) 9.13 (1.01) 9.24 (1.00) 9.37 (0.98)
san400_0.7_1 1 125.52 1 121.99 (1.00) 1 146.32 (0.98) 1 125.12 (1.00) 1 132.10 (0.99) 1 151.14 (0.98)
san400_0.7_2 3 062.38 3 063.23 (1.00) 3 066.62 (1.00) 3 463.29 (0.88) 3 048.94 (1.00) 3 489.72 (0.88)
san400_0.7_3 4 411.82 4 405.26 (1.00) 4 487.18 (0.98) 4 398.18 (1.00) 4 497.81 (0.98) 4 521.80 (0.98)
sanr200_0.7 48.35 48.34 (1.00) 50.09 (0.97) 48.41 (1.00) 48.49 (1.00) 50.25 (0.96)
sanr200_0.9 679.25 679.65 (1.00) 633.59 (1.07) 664.95 (1.02) 531.48 (1.28) 567.49 (1.20)
sanr400_0.5 373.40 370.59 (1.01) 376.93 (0.99) 377.71 (0.99) 370.72 (1.01) 376.10 (0.99)
sanr400_0.7 29 766.80 29 838.40 (1.00) 30 466.35 (0.98) 29 844.65 (1.00) 29 473.60 (1.01) 30 242.80 (0.98)

𝑠total 1.00 1.00 0.99 1.00 1.04 1.03

175

Appendix

F Kernel Sizes for Generalized Reduction Rules
We now present the number of vertices 𝑛 and edges 𝑚, as well as the number of vertices
𝑛(Kdense) and 𝑛(Kfull) of the reduced instances computed by both variants (BnRfull and
BnRdense) of our branch-and-reduce algorithm for MWIS. Instances are those used in our
experimental evaluation in Section 4.2.4.

Table 25: Reduced instance sizes of OSM instances.

Graph 𝑛 𝑚 𝑛(Kdense) 𝑛(Kfull)

alabama-AM2 1 164 38 772 173 173
alabama-AM3 3 504 619 328 1 614 1 614
district-of-columbia-AM1 2 500 49 302 800 800
district-of-columbia-AM2 13 597 3 219 590 6 360 6 360
district-of-columbia-AM3 46 221 55 458 274 33 367 33 367
florida-AM2 1 254 33 872 41 41
florida-AM3 2 985 308 086 1 069 1 069
georgia-AM3 1 680 148 252 861 861
greenland-AM3 4 986 7 304 722 3 942 3 942
hawaii-AM2 2 875 530 316 428 428
hawaii-AM3 28 006 98 889 842 24 436 24 436
idaho-AM3 4 064 7 848 160 3 208 3 208
kansas-AM3 2 732 1 613 824 1 605 1 605
kentucky-AM2 2 453 1 286 856 442 442
kentucky-AM3 19 095 119 067 260 16 871 16 871
louisiana-AM3 1 162 74 154 382 382
maryland-AM3 1 018 190 830 187 187
massachusetts-AM2 1 339 70 898 196 196
massachusetts-AM3 3 703 1 102 982 2 008 2 008
mexico-AM3 1 096 94 262 620 620
new-hampshire-AM3 1 107 36 042 247 247
north-carolina-AM3 1 557 473 478 1 178 1 178
oregon-AM2 1 325 115 034 35 35
oregon-AM3 5 588 5 825 402 3 670 3 670
pennsylvania-AM3 1 148 52 928 315 315
rhode-island-AM2 2 866 590 976 1 103 1 103
rhode-island-AM3 15 124 25 244 438 13 031 13 031
utah-AM3 1 339 85 744 568 568
vermont-AM3 3 436 2 272 328 2 630 2 630
virginia-AM2 2 279 120 080 237 237
virginia-AM3 6 185 1 331 806 3 867 3 867
washington-AM2 3 025 304 898 382 382
washington-AM3 10 022 4 692 426 8 030 8 030
west-virginia-AM3 1 185 251 240 991 991

176

Kernel Sizes for Generalized Reduction Rules

Table 26: Reduced instance sizes of SNAP instances.

Graph 𝑛 𝑚 𝑛(Kdense) 𝑛(Kfull)

as-skitter 1 696 415 22 190 596 27 318 9 180
ca-AstroPh 18 772 396 100 0 0
ca-CondMat 23 133 186 878 0 0
ca-GrQc 5 242 28 968 0 0
ca-HepPh 12 008 236 978 0 0
ca-HepTh 9877 51 946 0 0
email-Enron 36 692 367 662 0 0
email-EuAll 265 214 728 962 0 0
p2p-Gnutella04 10 876 79 988 0 0
p2p-Gnutella05 8 846 63 678 0 0
p2p-Gnutella06 8 717 63 050 0 0
p2p-Gnutella08 6 301 41 554 0 0
p2p-Gnutella09 8 114 52 026 0 0
p2p-Gnutella24 26 518 130 738 0 0
p2p-Gnutella25 22 687 109 410 11 0
p2p-Gnutella30 36 682 176 656 10 0
p2p-Gnutella31 62 586 295 784 0 0
roadNet-CA 1 965 206 5 533 214 233 083 63 926
roadNet-PA 1 088 092 3 083 796 135 536 38 080
roadNet-TX 1 379 917 3 843 320 151 570 39 433
soc-Epinions1 75 879 811 480 6 0
soc-LiveJournal1 4 847 571 85 702 474 61 690 29 779
soc-Slashdot0811 77 360 938 360 0 0
soc-Slashdot0902 82 168 1 008 460 20 0
soc-pokec-relationships 1 632 803 44 603 928 927 214 902 748
web-BerkStan 685 230 13 298 940 37 004 17 482
web-Google 875 713 8 644 102 2 892 1 178
web-NotreDame 325 729 2 180 216 14 038 6 760
web-Stanford 281 903 3 985 272 14 280 2 640
wiki-Talk 2 394 385 9 319 130 0 0
wiki-Vote 7 115 201 524 246 237

177

Appendix

G Detailed Results for Generalized Reduction Rules
In the following, we present detailed results of our experimental evaluation of exact and
heuristic algorithms for MWIS (Section 4.2.4). We include the heuristic algorithms HILS
and DynWVC, their extended variants Red + HILS and Red + DynWVC, as well as our
exact algorithms BnRdense and BnRfull. Detailed tables show running times 𝑡max (in seconds)
and solution weights 𝑤max for the best solution computed by each algorithm. The results for
heuristic algorithms are running times for the best solution achieved over five runs with
different random seeds. The best solution weight for each instance is highlighted in bold.
Rows are highlighted in gray if either BnRdense or BnRfull is able to find an exact solution.

Table 27:Detailed results of base algorithms on OSM instances.

DynWVC1 DynWVC2 HILS BnRdense BnRfull

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max

alabama-AM2 0.62 174 241 26.83 174 297 0.04 174 309 0.40 174 309 0.79 174 309
alabama-AM3 464.02 185 527 887.55 185 652 0.73 185 744 15.79 185 707 80.78 185 707
district-of-columbia-AM1 12.64 196 475 11.40 196 475 0.26 196 475 1.97 196 475 4.13 196 475
district-of-columbia-AM2 272.37 208 942 596.62 208 954 717.75 209 132 20.03 147 450 233.70 147 450
district-of-columbia-AM3 949.96 224 289 782.62 223 780 989.68 227 598 553.84 92 784 918.07 92 714
florida-AM2 1.14 230 595 0.72 230 595 0.04 230 595 0.03 230 595 0.02 230 595
florida-AM3 553.56 237 127 181.58 237 081 2.76 237 333 20.52 237 333 324.38 226 767
georgia-AM3 0.88 222 652 1.29 222 652 0.05 222 652 4.88 214 918 14.35 214 918
greenland-AM3 73.16 14 011 51.09 14 008 1.72 14 011 14.52 13 152 47.25 13 069
hawaii-AM2 4.85 125 273 3.20 125 276 0.33 125 284 3.59 125 284 10.89 125 284
hawaii-AM3 898.64 140 596 904.15 140 486 332.32 141 035 288.58 106 251 1 177.95 129 812
idaho-AM3 76.55 77 145 85.35 77 145 1.49 77 145 866.90 77 010 61.26 76 831
kansas-AM3 46.87 87 976 44.26 87 976 0.84 87 976 11.35 87 925 18.99 87 925
kentucky-AM2 5.12 97 397 7.39 97 397 0.47 97 397 11.35 97 397 42.05 97 397
kentucky-AM3 932.32 100 463 722.69 100 430 802.03 100 507 172.30 91 864 3 346.94 96 634
louisiana-AM3 0.32 60 005 0.27 60 002 0.03 60 024 3.38 60 024 20.17 60 024
maryland-AM3 1.34 45 496 0.87 45 496 0.02 45 496 3.34 45 496 11.08 45 496
massachusetts-AM2 0.37 140 095 0.09 140 095 0.02 140 095 0.46 140 095 0.48 140 095
massachusetts-AM3 435.31 145 863 154.61 145 863 2.73 145 866 12.87 145 617 23.97 145 631
mexico-AM3 0.14 97 663 46.86 97 663 0.04 97 663 14.25 97 663 289.14 97 663
new-hampshire-AM3 0.22 116 060 0.42 116 060 0.03 116 060 3.25 116 060 8.75 116 060
north-carolina-AM3 796.26 49 716 285.91 49 720 0.08 49 720 10.45 49 562 11.55 49 562
oregon-AM2 0.22 165 047 0.25 165 047 0.04 165 047 0.04 165 047 0.09 165 047
oregon-AM3 393.23 175 046 126.97 175 060 3.36 175 078 351.99 174 334 474.15 164 941
pennsylvania-AM3 0.09 143 870 0.15 143 870 0.04 143 870 9.98 143 870 38.76 143 870
rhode-island-AM2 6.66 184 562 24.74 184 576 0.40 184 596 10.70 184 543 16.79 184 543
rhode-island-AM3 54.99 201 553 609.14 201 344 43.34 201 758 399.33 162 639 931.05 163 080
utah-AM3 136.15 98 802 233.52 98 847 0.08 98 847 64.04 98 847 285.22 98 847
vermont-AM3 119.63 63 234 88.35 63 238 0.95 63 302 95.81 55 584 443.88 55 577
virginia-AM2 0.89 295 794 1.32 295 668 0.12 295 867 0.93 295 867 0.77 295 867
virginia-AM3 289.23 307 867 883.75 307 845 3.75 308 305 109.20 306 985 786.05 233 572
washington-AM2 2.00 305 619 15.60 305 619 0.62 305 619 2.44 305 619 2.20 305 619
washington-AM3 79.77 313 808 401.59 313 827 13.88 314 288 248.77 271 747 532.25 271 747
west-virginia-AM3 1.10 47 927 0.87 47 927 0.08 47 927 14.38 47 927 854.73 47 927

178

D
etailed

ResultsforG
eneralized

Reduction
Rules

Table 28:Detailed results of base algorithms on SNAP instances.

DynWVC1 DynWVC2 HILS BnRdense BnRfull

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max

as-skitter 997.39 123 412 428 576.93 123 105 765 998.75 122 539 706 641.38 123 172 824 746.93 123 904 741
ca-AstroPh 207.99 796 467 108.35 796 535 46.76 796 556 0.03 796 556 0.03 796 556
ca-CondMat 71.54 1 143 431 222.30 1 143 471 45.07 1 143 480 0.02 1 143 480 0.02 1 143 480
ca-GrQc 1.75 289 481 0.82 289 481 0.60 289 481 0.00 289 481 0.00 289 481
ca-HepPh 26.36 579 624 17.31 579 662 11.44 579 675 0.02 579 675 0.02 579 675
ca-HepTh 9.87 560 630 12.64 560 642 94.19 560 662 0.01 560 662 0.01 560 662
email-Enron 295.02 2 457 460 910.50 2 457 505 79.40 2 457 547 0.04 2 457 547 0.03 2 457 547
email-EuAll 180.92 25 330 331 179.26 25 330 331 501.09 25 330 331 0.13 25 330 331 0.19 25 330 331
p2p-Gnutella04 2.46 667 496 866.88 667 503 2.64 667 539 0.01 667 539 0.01 667 539
p2p-Gnutella05 24.23 556 559 3.54 556 559 0.60 556 559 0.01 556 559 0.01 556 559
p2p-Gnutella06 532.67 547 585 1.38 547 586 1.47 547 591 0.01 547 591 0.01 547 591
p2p-Gnutella08 0.21 435 893 0.19 435 893 0.25 435 893 0.00 435 893 0.01 435 893
p2p-Gnutella09 0.23 568 472 0.22 568 472 0.15 568 472 0.01 568 472 0.01 568 472
p2p-Gnutella24 10.83 1 970 325 9.81 1 970 325 4.06 1 970 329 0.02 1 970 329 0.02 1 970 329
p2p-Gnutella25 2.22 1 697 310 6.33 1 697 310 1.64 1 697 310 0.01 1 697 310 0.02 1 697 310
p2p-Gnutella30 10.06 2 785 926 22.66 2 785 922 7.36 2 785 957 0.02 2 785 957 0.03 2 785 957
p2p-Gnutella31 169.03 4 750 622 43.15 4 750 632 34.33 4 750 671 0.13 4 750 671 0.04 4 750 671
roadNet-CA 1 001.61 109 028 140 1 000.88 109 023 976 3 312.19 108 167 310 931.36 106 500 027 774.56 111 408 830
roadNet-PA 720.57 60 940 033 787.59 60 940 033 998.56 59 915 775 988.62 58 927 755 32.06 61 686 106
roadNet-TX 1 001.45 77 498 612 1 000.78 77 525 099 1 697.13 76 366 577 870.62 75 843 903 33.49 78 606 965
soc-Epinions1 617.40 5 668 054 625.89 5 668 180 694.51 5 668 382 0.07 5 668 401 0.11 5 668 401
soc-LiveJournal1 1 001.31 277 850 684 1 001.23 277 824 322 12 437.50 280 559 036 86.66 283 869 420 270.96 283 948 671
soc-Slashdot0811 809.97 5 650 118 477.14 5 650 303 767.51 5 650 644 0.10 5 650 791 0.18 5 650 791
soc-Slashdot0902 783.10 5 953 052 272.11 5 953 235 786.70 5 953 436 0.13 5 953 582 0.21 5 953 582
soc-pokec-relationships 999.99 82 522 272 1 001.42 82 640 035 2 482.18 82 381 583 287.40 82 595 492 1 404.57 75 717 984
web-BerkStan 347.17 43 595 139 372.33 43 593 142 994.73 43 319 988 22.58 43 138 612 831.75 43 766 431
web-Google 759.75 56 193 138 683.63 56 190 870 994.58 55 954 155 2.08 56 313 384 3.16 56 313 384
web-NotreDame 963.44 25 975 765 875.22 25 968 209 998.79 25 970 368 354.79 25 947 936 28.11 25 957 800
web-Stanford 999.97 17 731 195 997.98 17 735 700 999.91 17 679 156 47.62 17 634 819 4.69 17 799 469
wiki-Talk 961.05 235 874 406 991.31 235 874 419 996.02 235 852 509 3.85 235 875 181 3.36 235 875 181
wiki-Vote 0.74 500 436 0.75 500 436 23.96 500 436 0.05 500 436 0.06 500 436

179

Appendix

Table 29:Detailed results of combined algorithms on OSM instances.

Red + DynWVC1 Red + DynWVC2 Red + HILS BnRdense BnRfull

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max

alabama-AM2 0.11 174 309 0.11 174 309 0.10 174 309 0.40 174 309 0.79 174 309
alabama-AM3 370.80 185 727 295.20 185 729 4.05 185 744 15.79 185 707 80.78 185 707
district-of-columbia-AM1 0.92 196 475 0.92 196 475 0.37 196 475 1.97 196 475 4.13 196 475
district-of-columbia-AM2 334.12 209 125 982.91 209 056 220.82 209 132 20.03 147 450 233.70 147 450
district-of-columbia-AM3 879.25 225 535 789.47 225 031 320.06 227 534 553.84 92 784 918.07 92 714
florida-AM2 0.03 230 595 0.03 230 595 0.03 230 595 0.03 230 595 0.02 230 595
florida-AM3 8.66 237 331 8.57 237 331 8.01 237 333 20.52 237 333 324.38 226 767
georgia-AM3 2.64 222 652 2.62 222 652 2.43 222 652 4.88 214 918 14.35 214 918
greenland-AM3 712.63 14 007 462.23 14 006 10.34 14 011 14.52 13 152 47.25 13 069
hawaii-AM2 0.96 125 284 0.96 125 284 0.93 125 284 3.59 125 284 10.89 125 284
hawaii-AM3 405.34 140 714 957.61 140 709 329.20 141 011 288.58 106 251 1 177.95 129 812
idaho-AM3 40.38 77 145 20.79 77 145 203.76 77 145 866.90 77 010 61.26 76 831
kansas-AM3 13.59 87 976 18.43 87 976 2.06 87 976 11.35 87 925 18.99 87 925
kentucky-AM2 1.13 97 397 1.13 97 397 1.07 97 397 11.35 97 397 42.05 97 397
kentucky-AM3 766.39 100 479 759.20 100 480 973.22 100 486 172.30 91 864 3 346.94 96 634
louisiana-AM3 1.35 60 024 1.35 60 024 1.33 60 024 3.38 60 024 20.17 60 024
maryland-AM3 2.07 45 496 2.07 45 496 2.07 45 496 3.34 45 496 11.08 45 496
massachusetts-AM2 0.04 140 095 0.04 140 095 0.04 140 095 0.46 140 095 0.48 140 095
massachusetts-AM3 10.68 145 866 8.38 145 866 2.92 145 866 12.87 145 617 23.97 145 631
mexico-AM3 5.39 97 663 5.34 97 663 5.28 97 663 14.25 97 663 289.14 97 663
new-hampshire-AM3 1.51 116 060 1.51 116 060 1.50 116 060 3.25 116 060 8.75 116 060
north-carolina-AM3 1.76 49 720 0.79 49 720 0.48 49 720 10.45 49 562 11.55 49 562
oregon-AM2 0.04 165 047 0.04 165 047 0.04 165 047 0.04 165 047 0.09 165 047
oregon-AM3 135.72 175 073 167.56 175 075 5.18 175 078 351.99 174 334 474.15 164 941
pennsylvania-AM3 4.35 143 870 4.34 143 870 4.33 143 870 9.98 143 870 38.76 143 870
rhode-island-AM2 1.03 184 596 2.40 184 596 0.43 184 596 10.70 184 543 16.79 184 543
rhode-island-AM3 993.86 201 667 255.71 201 668 605.61 201 734 399.33 162 639 931.05 163 080
utah-AM3 168.07 98 847 2.36 98 847 2.10 98 847 64.04 98 847 285.22 98 847
vermont-AM3 62.85 63 280 690.58 63 256 2.95 63 312 95.81 55 584 443.88 55 577
virginia-AM2 0.25 295 867 0.25 295 867 0.23 295 867 0.93 295 867 0.77 295 867
virginia-AM3 708.66 308 052 790.21 308 090 19.34 308 305 109.20 306 985 786.05 233 572
washington-AM2 0.24 305 619 0.24 305 619 0.23 305 619 2.44 305 619 2.20 305 619
washington-AM3 59.08 314 097 505.58 314 079 863.47 314 288 248.77 271 747 532.25 271 747
west-virginia-AM3 3.06 47 927 3.77 47 927 2.54 47 927 14.38 47 927 854.73 47 927

180

D
etailed

ResultsforG
eneralized

Reduction
Rules

Table 30:Detailed results of combined algorithms on SNAP instances.

Red + DynWVC1 Red + DynWVC2 Red + HILS BnRdense BnRfull

Graph 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max 𝑡max 𝑤max

as-skitter 64.52 123 995 654 85.60 123 995 808 845.70 123 996 322 641.38 123 172 824 746.93 123 904 741
ca-AstroPh 0.02 796 556 0.02 796 556 0.02 796 556 0.03 796 556 0.03 796 556
ca-CondMat 0.01 1 143 480 0.01 1 143 480 0.01 1 143 480 0.02 1 143 480 0.02 1 143 480
ca-GrQc 0.00 289 481 0.00 289 481 0.00 289 481 0.00 289 481 0.00 289 481
ca-HepPh 0.02 579 675 0.02 579 675 0.02 579 675 0.02 579 675 0.02 579 675
ca-HepTh 0.00 560 662 0.00 560 662 0.00 560 662 0.01 560 662 0.01 560 662
email-Enron 0.03 2 457 547 0.03 2 457 547 0.03 2 457 547 0.04 2 457 547 0.03 2 457 547
email-EuAll 0.12 25 330 331 0.12 25 330 331 0.12 25 330 331 0.13 25 330 331 0.19 25 330 331
p2p-Gnutella04 0.01 667 539 0.01 667 539 0.01 667 539 0.01 667 539 0.01 667 539
p2p-Gnutella05 0.01 556 559 0.01 556 559 0.01 556 559 0.01 556 559 0.01 556 559
p2p-Gnutella06 0.01 547 591 0.01 547 591 0.01 547 591 0.01 547 591 0.01 547 591
p2p-Gnutella08 0.00 435 893 0.00 435 893 0.00 435 893 0.00 435 893 0.01 435 893
p2p-Gnutella09 0.01 568 472 0.01 568 472 0.01 568 472 0.01 568 472 0.01 568 472
p2p-Gnutella24 0.01 1 970 329 0.01 1 970 329 0.01 1 970 329 0.02 1 970 329 0.02 1 970 329
p2p-Gnutella25 0.01 1 697 310 0.01 1 697 310 0.01 1 697 310 0.01 1 697 310 0.02 1 697 310
p2p-Gnutella30 0.01 2 785 957 0.01 2 785 957 0.01 2 785 957 0.02 2 785 957 0.03 2 785 957
p2p-Gnutella31 0.02 4 750 671 0.02 4 750 671 0.02 4 750 671 0.13 4 750 671 0.04 4 750 671
roadNet-CA 918.32 111 398 659 866.70 111 398 243 994.57 111 402 080 931.36 106 500 027 774.56 111 408 830
roadNet-PA 733.57 61 680 822 639.56 61 680 822 947.93 61 682 180 988.62 58 927 755 32.06 61 686 106
roadNet-TX 952.53 78 601 859 771.05 78 601 813 946.32 78 602 984 870.62 75 843 903 33.49 78 606 965
soc-Epinions1 0.08 5 668 401 0.08 5 668 401 0.08 5 668 401 0.07 5 668 401 0.11 5 668 401
soc-LiveJournal1 916.65 283 973 802 996.68 283 973 997 761.51 283 975 036 86.66 283 869 420 270.96 283 948 671
soc-Slashdot0811 0.14 5 650 791 0.14 5 650 791 0.14 5 650 791 0.10 5 650 791 0.18 5 650 791
soc-Slashdot0902 0.17 5 953 582 0.17 5 953 582 0.17 5 953 582 0.13 5 953 582 0.21 5 953 582
soc-pokec-relationships 1 400.47 43 734 005 1 400.47 43 734 005 2 400.00 82 845 330 287.40 82 595 492 1 404.57 75 717 984
web-BerkStan 373.58 43 877 439 612.64 43 877 349 859.76 43 877 507 22.58 43 138 612 831.75 43 766 431
web-Google 3.20 56 313 343 3.30 56 313 349 3.01 56 313 384 2.08 56 313 384 3.16 56 313 384
web-NotreDame 147.60 25 995 575 850.00 25 995 615 173.50 25 995 648 354.79 25 947 936 28.11 25 957 800
web-Stanford 5.08 17 799 379 5.19 17 799 405 131.24 17 799 556 47.62 17 634 819 4.69 17 799 469
wiki-Talk 2.30 235 875 181 2.30 235 875 181 2.30 235 875 181 3.85 235 875 181 3.36 235 875 181
wiki-Vote 0.04 500 436 0.04 500 436 0.03 500 436 0.05 500 436 0.06 500 436

181

Appendix

H Convergence Plots for Generalized Reductions
We present additional convergence plots for our experimental evaluation of exact and
heuristic MWIS algorithms (Section 4.2.4). This includes the heuristic algorithms HILS
and DynWVC, their extended variants Red + HILS and Red + DynWVC, as well as our
exact algorithms BnRdense and BnRfull. The results for heuristic algorithms are event-based
geometric average values over five runs with different random seeds.

10−2 10−1 100 101 102 103

150000

160000

170000

180000

So
lu

tio
n

si
ze

alabama-AM3

10−2 10−1 100 101 102

220000

225000

230000

florida-AM2

10−2 10−1 100 101 102

Time (s)

190000

200000

210000

220000

So
lu

tio
n

si
ze

georgia-AM3

10−1 100 101 102 103

Time (s)

85000

86000

87000

88000

kansas-AM3

BnRfull

BnRdense

DynWVC1
Red + DynWVC1

DynWVC2
Red + DynWVC2
HILS
Red + HILS

Figure 7: Convergence plots for alabama-AM3 (top left), florida-AM2 (top right),
georgia-AM3 (bottom left), and kansas-AM3 (bottom right).

182

Convergence Plots for Generalized Reductions

10−2 10−1 100 101 102 103

42000

44000

So
lu

tio
n

si
ze

maryland-AM3

10−1 100 101 102 103

130000

135000

140000

145000

massachusetts-AM3

10−2 10−1 100 101 102 103

Time (s)

80000

90000

100000

So
lu

tio
n

si
ze

utah-AM3

10−1 100 101 102 103

Time (s)

40000

50000

60000

vermont-AM3

BnRfull

BnRdense

DynWVC1
Red + DynWVC1

DynWVC2
Red + DynWVC2
HILS
Red + HILS

Figure 8: Convergence plots for maryland-AM3 (top left), massachusetts-AM3 (top
right), utah-AM3 (bottom left), and vermont-AM3 (bottom right).

183

Appendix

102 103

1.20

1.21

1.22

1.23

1.24

So
lu

tio
n

si
ze

×108 as-skitter

10−1 100 101 102

780000

785000

790000

795000

ca-AstroPh

10−1 100 101 102 103

Time (s)

2.5315

2.5320

2.5325

2.5330

So
lu

tio
n

si
ze

×107 email-EuAll

10−2 10−1

Time (s)

432000

434000

436000

p2p-Gnutella08

BnRfull

BnRdense

DynWVC1
Red + DynWVC1

DynWVC2
Red + DynWVC2
HILS
Red + HILS

Figure 9:Convergence plots for as-skitter (top left), ca-AstroPh (top right), email-EuAll
(bottom left), and p2p-Gnutella08 (bottom right).

184

Convergence Plots for Generalized Reductions

101 102 103

7.2

7.4

7.6

7.8

So
lu

tio
n

si
ze

×107 roadNet-TX

102 103 104

2.750

2.775

2.800

2.825

×108 soc-LiveJournal1

101 102 103

Time (s)

5.525

5.550

5.575

5.600

5.625

So
lu

tio
n

si
ze

×107 web-Google

101 102 103

Time (s)

2.356

2.357

2.358

×108 wiki-Talk

BnRfull

BnRdense

DynWVC1
Red + DynWVC1

DynWVC2
Red + DynWVC2
HILS
Red + HILS

Figure 10: Convergence plots for roadNet-TX (top left), soc-LiveJournal1 (top right),
web-Google (bottom left), and wiki-Talk (bottom right).

185

Appendix

I Branch-and-Reduce for Comparison Increasing
Transformations

In the following, we present detailed results on the irreducible graphs computed for the
instances used in our experimental evaluation of exactMWIS algorithms (Section 4.3.4). This
includes the algorithms BnRdense, BnRfull, NonIncreasing, Cyclic-Fast, and Cyclic-Strong.
Detailed tables show the number of vertices 𝑛(K) of the obtained irreducible graphs, the
time 𝑡𝑟 (in seconds) needed to obtain them, and the total solving time 𝑡𝑡 (in seconds). The
global best solving time 𝑡𝑡 is highlighted in bold. Rows are highlighted in gray if one of our
algorithms NonIncreasing, Cyclic-Fast, or Cyclic-Strong is able to obtain an empty graph.

Table 31:Detailed results on FE instances.

Graph 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡

FE instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

fe_4elt2 8 580 0.29 - 8 578 0.87 - 562 0.10 - 0 0.12 0.13 0 0.16 0.17
fe_body 16 107 0.69 - 15 992 3.40 - 1 162 0.16 - 625 0.44 - 553 0.94 -
fe_ocean 141 283 1.05 - 0 5.94 5.99 138 338 8.90 - 138 134 9.61 - 138 049 10.78 -
fe_pwt 34 521 0.46 - 34 521 2.70 - 25 550 0.78 - 20 241 1.80 - 14 107 5.65 -
fe_rotor 98 271 9.80 - 98 271 24.47 - 91 946 4.80 - 91 634 4.82 - 89 647 11.11 -
fe_sphere 15 269 0.21 - 15 269 1.47 - 2 961 0.34 - 147 0.62 0.83 0 0.75 0.77
fe_tooth 10 922 1.69 - 10 801 3.79 - 15 0.41 0.46 0 0.30 0.34 0 0.28 0.32

186

Branch-and-Reduce
forC

om
parison

Increasing
Transform

ations

Table 32:Detailed results on OSM instances.

Graph 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡

OSM instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

alabama-AM2 173 0.06 0.31 173 0.07 0.55 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
alabama-AM3 1 614 12.05 - 1 614 14.37 - 1 288 0.34 - 456 1.45 3.94 0 33.11 33.16
district-of-columbia-AM1 800 1.22 - 800 1.28 - 367 0.03 39.81 185 0.41 0.80 0 3.65 3.66
district-of-columbia-AM2 6 360 11.86 - 6 360 14.39 - 5 606 0.85 - 1 855 2.51 - 1 484 84.91 -
district-of-columbia-AM3 33 367 63.23 - 33 367 358.14 - 32 320 33.68 - 28 842 66.67 - 25 031 441.44 -
florida-AM2 41 0.01 0.01 41 0.01 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
florida-AM3 1 069 31.52 45.81 1 069 35.20 - 814 0.13 3.85 661 0.44 2.93 267 42.26 45.05
georgia-AM3 861 8.99 892.17 861 10.14 - 796 0.08 25.97 587 0.69 10.35 425 12.84 32.53
greenland-AM3 3 942 3.81 - 3 942 24.77 - 3 953 3.94 - 3 339 10.27 - 3 339 54.44 -
hawaii-AM2 428 2.08 4.27 428 2.15 10.22 262 0.07 0.18 0 0.09 0.09 0 0.10 0.10
hawaii-AM3 24 436 70.38 - 24 436 743.04 - 24 184 98.22 - 22 997 118.52 - 21 087 632.02 -
idaho-AM3 3 208 3.17 - 3 208 29.91 - 3 204 6.96 - 3 160 8.74 - 2 909 33.77 -
kansas-AM3 1 605 2.46 - 1 605 4.81 - 1 550 0.49 - 903 2.46 430.93 860 41.61 489.15
kentucky-AM2 442 2.05 11.85 442 2.19 67.28 183 0.20 0.39 0 0.22 0.23 0 0.41 0.42
kentucky-AM3 16 871 109.47 - 16 871 3 344.67 - 16 807 237.86 - 15 947 298.49 - 15 684 705.46 -
louisiana-AM3 382 4.56 6.55 382 5.04 25.22 349 0.03 0.82 0 0.07 0.07 0 0.16 0.16
maryland-AM3 187 7.59 8.49 187 8.65 10.73 335 0.03 0.19 0 0.11 0.11 0 0.15 0.15
massachusetts-AM2 196 0.04 0.36 196 0.04 0.58 193 0.02 0.07 0 0.06 0.06 0 0.07 0.07
massachusetts-AM3 2 008 9.42 - 2 008 12.62 - 1 928 0.36 - 1 636 1.08 - 1 632 31.83 -
mexico-AM3 620 25.29 80.23 620 27.52 991.99 514 0.03 1.47 483 0.28 1.50 0 21.03 21.30
new-hampshire-AM3 247 4.99 6.19 247 5.69 15.89 164 0.02 0.17 0 0.07 0.07 0 0.09 0.09
north-carolina-AM3 1 178 0.69 - 1 178 1.22 - 1 146 0.25 - 1 144 0.43 - 700 47.38 379.088
oregon-AM2 35 0.04 0.05 35 0.05 0.05 0 0.01 0.01 0 0.02 0.02 0 0.01 0.01
oregon-AM3 3 670 9.95 - 3 670 34.95 - 3 584 3.92 - 3 417 6.21 - 2 721 38.72 -
pennsylvania-AM3 315 16.69 20.71 315 19.39 113.87 317 0.03 0.39 0 0.07 0.07 0 0.12 0.12
rhode-island-AM2 1 103 0.55 - 1 103 0.68 - 845 0.17 163.07 0 0.53 0.53 0 4.57 4.58
rhode-island-AM3 13 031 7.75 - 13 031 193.76 - 12 934 26.54 - 12 653 29.75 - 12 653 59.69 -
utah-AM3 568 8.21 51.91 568 8.97 276.27 396 0.03 0.87 0 0.09 0.09 0 0.40 0.41
vermont-AM3 2 630 4.79 - 2 630 9.82 - 2 289 0.97 - 2 069 1.37 - 2 045 55.28 -
virginia-AM2 237 0.13 0.61 237 0.12 0.99 0 0.03 0.03 0 0.03 0.03 0 0.03 0.03
virginia-AM3 3 867 34.13 - 3 867 39.74 - 3 738 0.40 - 2 827 1.28 - 2 547 81.67 -
washington-AM2 382 0.24 5.31 382 0.18 8.58 171 0.05 0.37 0 0.06 0.06 0 0.07 0.07
washington-AM3 8 030 50.21 - 8 030 67.00 - 7 649 2.19 - 6 895 3.12 - 6 159 73.52 -
west-virginia-AM3 991 10.69 - 991 12.13 - 970 0.08 238.39 890 0.33 155.49 881 38.73 241.68187

A
ppendix

Table 33:Detailed results on mesh instances.

Graph 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡
mesh instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

beethoven 1 254 0.02 7.86 427 0.02 0.08 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
blob 5 746 0.08 - 1 464 0.06 0.20 0 0.03 0.03 0 0.03 0.04 0 0.03 0.03
buddha 380 315 5.56 - 107 265 26.19 67.85 86 1.83 2.74 0 1.87 2.26 0 1.91 2.39
bunny 24 580 0.34 - 3 290 0.56 0.89 0 0.12 0.14 0 0.13 0.16 0 0.15 0.18
cow 1 916 0.02 - 513 0.02 0.06 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
dragon 51 885 0.89 - 12 893 1.34 3.83 0 0.18 0.21 0 0.19 0.23 0 0.21 0.25
dragonsub 218 779 2.60 - 19 470 4.15 5.66 506 1.03 2.08 0 1.13 1.36 0 1.07 1.28
ecat 239 787 4.07 - 26 270 10.09 12.93 274 2.12 3.16 0 2.12 2.51 0 2.14 2.56
face 7 588 0.09 - 1 540 0.10 0.21 0 0.03 0.04 0 0.03 0.03 0 0.03 0.04
fandisk 2 851 0.05 - 336 0.03 0.07 51 0.02 0.03 0 0.02 0.02 0 0.02 0.02
feline 14 817 0.20 - 2 743 0.25 0.47 0 0.08 0.09 0 0.08 0.09 0 0.08 0.09
gameguy 13 959 0.17 - 312 0.10 0.12 0 0.06 0.07 0 0.06 0.07 0 0.06 0.07
gargoyle 6 512 0.15 - 1 819 0.14 0.36 0 0.03 0.03 0 0.03 0.03 0 0.03 0.03
turtle 91 624 1.17 - 16 095 1.92 4.98 186 0.42 0.65 0 0.41 0.49 0 0.47 0.56
venus 1 898 0.02 - 175 0.01 0.02 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01

188

Branch-and-Reduce
forC

om
parison

Increasing
Transform

ations

Table 34:Detailed results on SNAP instances.

Graph 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡 𝑛(K) 𝑡𝑟 𝑡𝑡

SNAP instances BnRdense BnRfull NonIncreasing Cyclic-Fast Cyclic-Strong

as-skitter 26 584 25.82 - 8 585 36.69 - 3 426 4.75 - 2 782 5.50 - 2 343 6.80 -
ca-AstroPh 0 0.02 0.03 0 0.02 0.03 0 0.02 0.03 0 0.03 0.04 0 0.03 0.03
ca-CondMat 0 0.02 0.03 0 0.01 0.02 0 0.01 0.02 0 0.03 0.03 0 0.01 0.02
ca-GrQc 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
ca-HepPh 0 0.01 0.02 0 0.01 0.02 0 0.01 0.01 0 0.01 0.02 0 0.01 0.01
ca-HepTh 0 0.01 0.01 0 0.00 0.01 0 0.01 0.01 0 0.01 0.01 0 0.00 0.00
email-Enron 0 0.02 0.03 0 0.02 0.03 0 0.04 0.04 0 0.03 0.03 0 0.03 0.03
email-EuAll 0 0.08 0.17 0 0.09 0.16 0 0.06 0.08 0 0.09 0.13 0 0.07 0.10
p2p-Gnutella04 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
p2p-Gnutella05 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
p2p-Gnutella06 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
p2p-Gnutella08 0 0.00 0.00 0 0.00 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
p2p-Gnutella09 0 0.00 0.01 0 0.01 0.01 0 0.00 0.01 0 0.00 0.00 0 0.00 0.01
p2p-Gnutella24 0 0.01 0.02 0 0.02 0.03 0 0.01 0.01 0 0.01 0.02 0 0.01 0.01
p2p-Gnutella25 10 0.01 0.02 0 0.01 0.02 0 0.01 0.01 0 0.01 0.02 0 0.02 0.02
p2p-Gnutella30 0 0.01 0.02 0 0.02 0.03 0 0.02 0.02 0 0.02 0.02 0 0.01 0.02
p2p-Gnutella31 0 0.04 0.07 0 0.04 0.07 0 0.03 0.03 0 0.05 0.06 0 0.04 0.05
roadNet-CA 234 433 3.96 - 66 406 20.51 437.62 478 2.14 5.70 0 2.42 3.57 0 2.59 3.07
roadNet-PA 133 814 2.43 - 35 442 7.73 23.86 300 1.05 2.24 0 1.19 1.44 0 1.14 1.40
roadNet-TX 153 985 2.65 - 40 350 10.49 24.30 882 1.23 3.98 0 1.32 1.64 0 1.34 1.65
soc-Epinions1 7 0.05 0.07 0 0.06 0.08 0 0.08 0.10 0 0.07 0.08 0 0.07 0.08
soc-LiveJournal1 60 041 236.88 - 29 508 213.74 - 4 319 22.27 - 3 530 24.13 - 1 314 37.77 -
soc-Slashdot0811 0 0.08 0.11 0 0.08 0.11 0 0.07 0.08 0 0.07 0.09 0 0.06 0.07
soc-Slashdot0902 0 0.07 0.09 0 0.07 0.10 0 0.09 0.11 0 0.08 0.10 0 0.10 0.12
soc-pokec-relationships 926 346 299.11 - 898 779 1 013.39 - 808 542 188.57 - 807 412 217.83 - 807 395 388.57 -
web-BerkStan 36 637 6.58 - 16 661 8.70 - 1 999 6.86 120.05 151 6.46 6.83 151 7.89 8.25
web-Google 2 810 1.57 2.40 1 254 2.42 3.66 361 1.75 2.95 46 1.88 2.47 46 7.97 9.24
web-NotreDame 13 464 1.03 - 6 052 2.03 - 2 460 0.40 - 2 061 0.56 1.60 117 2.44 2.57
web-Stanford 14 153 1.81 - 3 325 2.45 - 112 2.25 2.50 0 1.80 1.99 0 2.17 2.38
wiki-Talk 0 1.00 1.71 0 1.32 1.96 0 1.26 1.84 0 1.24 1.80 0 1.67 2.28
wiki-Vote 477 0.03 0.12 0 0.02 0.03 0 0.02 0.02 0 0.02 0.02 0 0.02 0.02

189

Appendix

J State-of-the-Art Comparison for Increasing Transformations
We present detailed results on the solutions computed for the instances used in our experi-
mental evaluation of exact and heuristic MWIS algorithms in Section 4.3.4. This includes
the heuristic algorithms DynWVC and HILS, as well as our exact algorithms NonIncreasing,
Cyclic-Fast, and Cyclic-Strong. Tables show the best solution weight 𝑤max found by each
algorithm and the time 𝑡max (in seconds) required to compute it. Results for heuristic ap-
proaches show the best solution weight (and time to compute it) over five runs with different
random seeds. The global best solution is highlighted in bold. Rows are highlighted in gray
if one of our exact algorithms NonIncreasing, Cyclic-Fast, or Cyclic-Strong is able to solve
the corresponding instances.

Table 35: Best solutions on FE instances.

Graph 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥

FE instances DynWVC1 DynWVC2 HILS Cyclic-Fast Cyclic-Strong Non-Increasing

fe_4elt2 961.12 427 755 974.87 427 755 759.23 427 646 0.11 428 029 0.11 428 029 0.18 428 016
fe_body 504.31 1 678 616 499.03 1 678 496 806.46 1 678 708 0.51 1 680 182 0.86 1 680 117 0.27 1 680 133
fe_ocean 983.53 7 222 521 379.75 7 220 128 999.57 7 069 279 18.85 6 591 832 19.04 6 591 537 18.85 6 597 698
fe_pwt 814.23 1 176 721 320.05 1 176 784 932.43 1 175 754 3.03 1 162 232 5.45 888 959 1.57 1 151 777
fe_rotor 961.76 2 659 653 874.68 2 659 473 973.92 2 650 132 13.95 2 531 152 20.55 2 538 117 13.56 2 532 168
fe_sphere 875.87 616 978 872.36 616 978 843.67 616 528 0.63 617 816 0.67 617 816 0.46 617 585
fe_tooth 353.21 3 031 269 619.96 3 031 385 994.97 3 032 819 0.26 3 033 298 0.26 3 033 298 0.27 3 033 298

190

State-of-the-A
rtC

om
parison

forIncreasing
Transform

ations

Table 36: Best solutions on OSM instances.

Graph 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥

OSM instances DynWVC1 DynWVC2 HILS Cyclic-Fast Cyclic-Strong Non-Increasing

alabama-AM2 0.18 174 252 0.24 174 269 0.03 174 309 0.01 174 309 0.01 174 309 0.01 174 309
alabama-AM3 725.34 185 518 199.94 185 655 0.58 185 744 1.76 185 744 32.42 185 744 0.60 185 744
district-of-columbia-AM1 23.96 196 475 28.42 196 475 0.14 196 475 0.32 196 475 3.52 196 475 0.06 196 475
district-of-columbia-AM2 159.08 208 989 915.18 208 977 400.69 209 132 4.21 209 132 84.21 209 131 686.26 174 114
district-of-columbia-AM3 461.10 224 760 313.17 223 955 849.37 227 613 904.91 142 454 804.79 156 967 168.55 120 366
florida-AM2 0.18 230 595 0.53 230 595 0.04 230 595 0.00 230 595 0.00 230 595 0.00 230 595
florida-AM3 425.87 237 229 862.04 237 120 3.98 237 333 1.57 237 333 40.97 237 333 2.08 237 333
georgia-AM3 0.42 222 652 1.31 222 652 0.04 222 652 0.98 222 652 12.97 222 652 14.56 222 652
greenland-AM3 58.88 14 007 640.46 14 010 1.18 14 011 10.95 14 011 58.24 14 008 5.06 14 012
hawaii-AM2 1.89 125 270 1.63 125 270 0.20 125 284 0.09 125 284 0.10 125 284 0.13 125 284
hawaii-AM3 406.57 140 656 887.44 140 595 213.32 141 035 152.38 116 202 681.39 121 222 155.21 107 879
idaho-AM3 79.67 77 145 58.83 77 145 0.78 77 145 11.95 77 141 40.71 77 144 8.89 77 144
kansas-AM3 333.60 87 976 276.26 87 976 0.55 87 976 2.25 87 976 110.41 87 976 337.83 87 976
kentucky-AM2 3.23 97 397 2.92 97 397 0.26 97 397 0.23 97 397 0.44 97 397 0.26 97 397
kentucky-AM3 951.91 100 476 96.83 100 455 515.99 100 507 354.45 100 510 776.69 100 510 305.01 100 497
louisiana-AM3 8.63 60 024 0.18 60 002 0.01 60 024 0.05 60 024 0.11 60 024 0.15 60 024
maryland-AM3 0.79 45 496 0.59 45 496 0.01 45 496 0.11 45 496 0.15 45 496 0.14 45 496
massachusetts-AM2 0.25 140 095 0.74 140 095 0.01 140 095 0.04 140 095 0.05 140 095 0.03 140 095
massachusetts-AM3 980.11 145 852 270.28 145 862 0.77 145 866 1.39 145 866 31.04 145 866 0.76 145 866
mexico-AM3 0.71 97 663 2.28 97 663 0.02 97 663 0.96 97 663 21.19 97 663 0.67 97 663
new-hampshire-AM3 0.08 116 060 1.63 116 060 0.03 116 060 0.05 116 060 0.08 116 060 0.06 116 060
north-carolina-AM3 0.58 49 694 114.45 49 720 0.03 49 720 0.74 49 720 45.82 49 720 0.47 49 720
oregon-AM2 0.62 165 047 0.37 165 047 0.02 165 047 0.01 165 047 0.01 165 047 0.01 165 047
oregon-AM3 174.64 175 059 511.10 175 067 4.65 175 078 9.50 175 078 39.78 175 077 21.29 175 078
pennsylvania-AM3 0.06 143 870 0.14 143 870 0.02 143 870 0.07 143 870 0.12 143 870 0.16 143 870
rhode-island-AM2 7.75 184 537 13.90 184 576 0.24 184 596 0.41 184 596 4.37 184 596 0.27 184 596
rhode-island-AM3 230.53 201 470 711.97 201 359 30.15 201 758 44.88 167 162 82.02 167 162 45.46 166 103
utah-AM3 215.88 98 802 136.90 98 847 0.07 98 847 0.09 98 847 0.27 98 847 0.44 98 847
vermont-AM3 28.77 63 234 768.43 63 248 979.14 63 310 145.39 63 312 448.54 63 312 217.67 63 312
virginia-AM2 0.53 295 758 20.50 295 638 0.07 295 867 0.02 295 867 0.02 295 867 0.02 295 867
virginia-AM3 754.86 307 782 809.24 307 907 2.52 308 305 34.42 308 305 200.13 308 305 49.42 308 305
washington-AM2 1.24 305 619 13.35 305 619 0.25 305 619 0.06 305 619 0.07 305 619 0.08 305 619
washington-AM3 37.94 313 689 383.62 313 844 10.17 314 288 3.60 284 684 72.84 288 116 4.56 282 020
west-virginia-AM3 2.75 47 927 2.84 47 927 0.07 47 927 2.88 47 927 41.73 47 927 2.60 47 927191

A
ppendix

Table 37: Best solutions on mesh instances.

Graph 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥

mesh instances DynWVC1 DynWVC2 HILS Cyclic-Fast Cyclic-Strong Non-Increasing

beethoven 8.86 238 726 8.79 238 726 462.31 238 746 0.00 238 794 0.00 238 794 0.00 238 794
blob 39.91 854 843 40.00 854 843 351.91 855 004 0.02 855 547 0.02 855 547 0.02 855 547
buddha 879.42 56 757 052 797.35 56 757 052 999.94 55 490 134 1.75 57 555 880 1.77 57 555 880 2.24 57 555 880
bunny 702.13 3 683 000 695.55 3 683 000 964.60 3 681 696 0.11 3 686 960 0.13 3 686 960 0.11 3 686 960
cow 62.04 269 340 61.40 269 340 935.58 269 464 0.01 269 543 0.01 269 543 0.01 269 543
dragon 970.34 7 943 911 981.51 7 944 042 996.01 7 940 422 0.21 7 956 530 0.22 7 956 530 0.22 7 956 530
dragonsub 323.07 31 762 035 379.11 31 762 035 999.54 31 304 363 1.10 32 213 898 1.11 32 213 898 1.88 32 213 898
ecat 565.03 36 129 804 542.87 36 129 804 999.91 35 512 644 2.19 36 650 298 2.29 36 650 298 2.44 36 650 298
face 87.05 1 218 510 86.38 1 218 510 228.77 1 218 565 0.03 1 219 418 0.03 1 219 418 0.03 1 219 418
fandisk 8.26 462 950 8.42 462 950 232.96 463 090 0.01 463 288 0.01 463 288 0.01 463 288
feline 730.80 2 204 925 734.34 2 204 925 640.98 2 204 911 0.09 2 207 219 0.08 2 207 219 0.09 2 207 219
gameguy 519.12 2 323 941 525.93 2 323 941 736.64 2 322 824 0.05 2 325 878 0.05 2 325 878 0.05 2 325 878
gargoyle 29.25 1 058 496 29.11 1 058 496 724.41 1 058 652 0.03 1 059 559 0.03 1 059 559 0.03 1 059 559
turtle 982.00 14 215 429 976.57 14 213 516 999.68 14 151 616 0.42 14 263 005 0.43 14 263 005 0.56 14 263 005
venus 559.29 305 571 556.38 305 571 130.83 305 724 0.01 305 749 0.01 305 749 0.01 305 749

192

State-of-the-A
rtC

om
parison

forIncreasing
Transform

ations

Table 38: Best solutions on SNAP instances.

Graph 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑤𝑚𝑎𝑥

SNAP instances DynWVC1 DynWVC2 HILS Cyclic-Fast Cyclic-Strong Non-Increasing

as-skitter 989.05 123 613 404 383.97 123 273 938 999.32 122 658 804 346.69 124 137 148 354.71 124 137 365 431.90 124 136 621
ca-AstroPh 32.46 797 475 125.05 797 480 13.47 797 510 0.02 797 510 0.02 797 510 0.02 797 510
ca-CondMat 114.85 1 147 814 27.75 1 147 845 50.90 1 147 950 0.01 1 147 950 0.01 1 147 950 0.01 1 147 950
ca-GrQc 4.87 286 489 1.93 286 489 0.34 286 489 0.00 286 489 0.00 286 489 0.00 286 489
ca-HepPh 13.21 581 014 17.34 581 028 7.73 581 039 0.01 581 039 0.01 581 039 0.01 581 039
ca-HepTh 6.57 561 982 5.30 561 974 4.68 562 004 0.00 562 004 0.00 562 004 0.00 562 004
email-Enron 454.49 2 464 887 594.93 2 464 890 71.07 2 464 922 0.02 2 464 935 0.03 2 464 935 0.02 2 464 935
email-EuAll 134.83 25 286 322 132.62 25 286 322 338.14 25 286 322 0.07 25 286 322 0.07 25 286 322 0.06 25 286 322
p2p-Gnutella04 1.46 679 105 2.34 679 111 94.12 679 111 0.01 679 111 0.01 679 111 0.01 679 111
p2p-Gnutella05 1.15 554 926 3.55 554 931 135.17 554 943 0.01 554 943 0.01 554 943 0.01 554 943
p2p-Gnutella06 525.35 548 611 186.97 548 611 1.29 548 612 0.01 548 612 0.01 548 612 0.01 548 612
p2p-Gnutella08 0.15 434 575 0.18 434 577 0.12 434 577 0.00 434 577 0.00 434 577 0.00 434 577
p2p-Gnutella09 0.39 568 439 0.28 568 439 0.09 568 439 0.00 568 439 0.00 568 439 0.00 568 439
p2p-Gnutella24 8.01 1 984 567 5.51 1 984 567 3.17 1 984 567 0.01 1 984 567 0.01 1 984 567 0.01 1 984 567
p2p-Gnutella25 2.66 1 701 967 2.20 1 701 967 1.17 1 701 967 0.01 1 701 967 0.01 1 701 967 0.01 1 701 967
p2p-Gnutella30 8.83 2 787 903 132.71 2 787 899 15.14 2 787 907 0.01 2 787 907 0.01 2 787 907 0.02 2 787 907
p2p-Gnutella31 70.88 4 776 960 47.97 4 776 961 115.01 4 776 986 0.02 4 776 986 0.02 4 776 986 0.03 4 776 986
roadNet-CA 999.98 109 586 054 999.90 109 582 579 1 000.00 106 584 645 1.94 111 360 828 1.86 111 360 828 4.09 111 360 828
roadNet-PA 511.59 60 990 177 469.18 60 990 177 999.94 60 037 011 0.96 61 731 589 1.04 61 731 589 1.83 61 731 589
roadNet-TX 789.43 77 672 388 694.33 77 672 388 999.97 76 347 666 1.29 78 599 946 1.29 78 599 946 3.42 78 599 946
soc-Epinions1 290.84 5 690 651 272.56 5 690 773 253.10 5 690 874 0.08 5 690 970 0.08 5 690 970 0.08 5 690 970
soc-LiveJournal1 999.99 279 150 686 999.99 279 231 875 1 000.00 255 079 926 51.33 284 036 222 44.19 284 036 239 39.36 283 970 295
soc-Slashdot0811 238.18 5 660 385 880.68 5 660 555 446.95 5 660 787 0.09 5 660 899 0.08 5 660 899 0.08 5 660 899
soc-Slashdot0902 270.85 5 971 308 435.90 5 971 476 604.07 5 971 664 0.11 5 971 849 0.11 5 971 849 0.12 5 971 849
soc-pokec-relationships 999.85 83 223 668 999.13 83 155 217 1 000.00 82 021 946 254.59 76 075 111 488.31 76 075 700 228.07 76 063 476
web-BerkStan 194.20 43 640 833 164.10 43 637 382 998.73 43 424 373 6.74 43 907 482 8.05 43 907 482 16.01 43 907 482
web-Google 349.08 56 209 005 324.65 56 206 250 995.92 56 008 278 1.72 56 326 504 6.44 56 326 504 2.17 56 326 504
web-NotreDame 949.84 26 010 791 905.72 26 009 287 997.00 26 002 793 1.60 26 016 941 2.74 26 016 941 1.36 26 016 941
web-Stanford 943.85 17 748 798 671.32 17 741 043 999.50 17 709 827 1.68 17 792 930 1.86 17 792 930 1.71 17 792 930
wiki-Talk 951.51 235 836 837 972.93 235 836 913 999.69 235 818 823 1.29 235 837 346 1.29 235 837 346 1.31 235 837 346
wiki-Vote 188.76 500 075 0.32 500 079 10.34 500 079 0.02 500 079 0.02 500 079 0.02 500 079

193

Appendix

K Convergence Plots for Increasing Transformations
We present convergence plots for samples of instances from each instance class (FE, mesh,
OSM, SNAP) used in our experimental evaluation of exact and heuristic MWIS algorithms
(Section 4.3.4) This includes the heuristic algorithms DynWVC and HILS, as well as the
exact algorithms BnRdense, BnRfull, NonIncreasing, Cyclic-Fast, and Cyclic-Strong. The
results for heuristic algorithms are event-based geometric average values over five runs with
different random seeds.

100 101 102 103

6.0

6.5

7.0

So
lu

tio
n

si
ze

×106 fe ocean

100 101 102 103

0.9

1.0

1.1

×106 fe pwt

10−1 100 101 102 103

Time (s)

580000

600000

620000

So
lu

tio
n

si
ze

fe sphere

100 101 102 103

Time (s)

2.7

2.8

2.9

3.0

×106 fe tooth

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 11: Convergence plots for FE instances fe_ocean (top left), fe_pwt (top right),
fe_sphere (bottom left), and fe_tooth (bottom right).

194

Convergence Plots for Increasing Transformations

10−2 10−1 100 101 102 103
180000

200000

220000

240000

So
lu

tio
n

si
ze

beethoven

101 102 103

4.0

4.5

5.0

5.5

×107 buddha

10−1 100 101 102 103

Time (s)

1.6

1.8

2.0

2.2

So
lu

tio
n

si
ze

×106 gameguy

10−2 10−1 100 101 102 103

Time (s)

225000

250000

275000

300000

venus

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 12: Convergence plots for mesh instances beethoven (top left), buddha (top
right), gameguy (bottom left), and venus (bottom right).

195

Appendix

10−2 10−1 100 101 102 103

150000

160000

170000

180000

So
lu

tio
n

si
ze

alabama-AM3

10−1 100 101 102 103

125000

150000

175000

200000

district-of-columbia-AM2

10−3 10−2 10−1 100

Time (s)

224000

226000

228000

230000

So
lu

tio
n

si
ze

florida-AM2

10−310−210−1 100 101 102 103

Time (s)

190000

200000

210000

220000

georgia-AM3

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 13: Convergence plots for OSM instances alabama-AM3 (top left), district-
of-columbia-AM2 (top right), florida-AM2 (bottom left), and georgia-AM3 (bottom
right).

196

Convergence Plots for Increasing Transformations

10−2 10−1 100 101 102 103

13000

13500

14000

So
lu

tio
n

si
ze

greenland-AM3

10−2 10−1 100 101 102 103

115000

120000

125000

hawaii-AM2

10−3 10−2 10−1 100 101 102

Time (s)

41000

42000

43000

44000

45000

So
lu

tio
n

si
ze

maryland-AM3

10−310−210−1 100 101 102 103

Time (s)

40000

42500

45000

47500

50000
north-carolina-AM3

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 14: Convergence plots for OSM instances greenland-AM3 (top left), hawaii-
AM2 (top right), maryland-AM3 (bottom left), and north-carolina-AM3 (bottom
right).

197

Appendix

101 102 103
1.20

1.21

1.22

1.23

1.24

So
lu

tio
n

si
ze

×108 as-skitter

10−1 100 101 102 103
792000

794000

796000

ca-AstroPh

10−1 100 101 102 103

Time (s)

1.142

1.144

1.146

1.148

So
lu

tio
n

si
ze

×106 ca-CondMat

10−1 100 101 102 103

Time (s)

2.455

2.460

2.465
×106 email-Enron

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 15: Convergence plots for SNAP instances as-skitter (top left), ca-AstroPh (top
right), ca-CondMat (bottom left), and email-Enron (bottom right).

198

Convergence Plots for Increasing Transformations

10−2 10−1 100 101 102
550000

552000

554000

So
lu

tio
n

si
ze

p2p-Gnutella05

101 102 103

1.00

1.05

1.10

×108 roadNet-CA

10−1 100 101 102 103

Time (s)

5.60

5.65

So
lu

tio
n

si
ze

×106 soc-Epinions1

100 101 102 103

Time (s)

2.56

2.58

2.60

×107 web-NotreDame

Cyclic-Fast
Cyclic-Strong
Non-Increasing
BnRdense

BnRfull

DynWVC1
DynWVC2
HILS

Figure 16: Convergence plots for SNAP instances p2p-Gnutella05 (top left), roadNet-
CA (top right), soc-Epinions1 (bottom left), and web-NotreDame (bottom right).

199

Appendix

L Reduced Rudy Instances for MaximumCuts
Finally, we present the results of applying our reduction algorithm presented in Section 5.3
on the rudy instances of the BiqMac Library [Wie18]. For each instance, we present the
reduction efficiency 𝑒(𝐺) = 1 − 𝑛(K)/𝑛 for a reduced instanceK.

Table 39: Reduction efficiency for rudy instances.

Name 𝑛 𝑚 𝑒(𝐺)

g05_100 100 2 475 0.00
g05_60 60 885 0.00
g05_80 80 1 580 0.00
pm1d_100 100 4 901 0.00
pm1d_80 80 3 128 0.00
pm1s_100 100 495 0.00
pm1s_80 79 316 0.01
pw01_100 100 495 0.00
pw05_100 100 2 475 0.00
pw09_100 100 4 455 0.00
w01_100 100 470 0.00
w05_100 100 2 356 0.00
w09_100 100 4 245 0.00

200

Publications and SupervisedTheses

In Conference Proceedings

Sebastian Lamm and Peter Sanders. “Communication-Efficient Massively Distributed Con-
nected Components”. In: to appear IEEE Intl. Parallel and Distributed Processing Symp.
(IPDPS). 2022
Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching for the Maxi-
mum Independent Set Problem”. In: Intl. Symp. on Experimental Algorithms (SEA). 2021,
17:1–17:21. doi: 10.4230/LIPIcs.SEA.2021.17

Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdán Zaválnij.
“Boosting Data Reduction for the Maximum Weight Independent Set Problem Using In-
creasing Transformations”. In: Symp. on Algorithm Engineering and Experiments (ALENEX).
2021, pages 128–142. doi: 10.1137/1.9781611976472.10

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “WeGotYouCov-
ered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track”. In: SIAM
Workshop on Combinatorial Scientific Computing (CSC). 2020, pages 1–11. doi: 10.1137/1.
9781611976229.1

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, and
Darren Strash. “Engineering Kernelization for Maximum Cut”. In: Symp. on Algorithm Engi-
neering and Experiments (ALENEX). 2020, pages 27–41. doi: 10.1137/1.9781611976007.
3

Sebastian Lamm, Christian Schulz, Darren Strash, RobertWilliger, andHuashuo Zhang. “Ex-
actly Solving the Maximum Weight Independent Set Problem on Large Real-World Graphs”.
In: Workshop on Algorithm Engineering and Experiments (ALENEX). 2019, pages 144–158.
doi: 10.1137/1.9781611975499.12

Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz
von Looz. “Communication-Free Massively Distributed Graph Generation”. In: IEEE Intl.
Parallel and Distributed Processing Symp. (IPDPS). 2018, pages 336–347. doi: 10.1109/
IPDPS.2018.00043

Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm, Huyen Chau Nguyen,
Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias Sturm, and Peter Sanders. “Thrill:
High-Performance Algorithmic Distributed Batch Data Processing with C++”. In: IEEE Intl.
Conf. on Big Data (BigData). 2016, pages 172–183. doi: 10.1109/BigData.2016.7840603

201

https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1109/BigData.2016.7840603

Publications and Supervised Theses

Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato
F. Werneck. “Accelerating Local Search for the Maximum Independent Set Problem”. In:
Intl. Symp. on Experimental Algorithms (SEA). 2016, pages 118–133. doi: 10.1007/978-3-
319-38851-9_9

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
“Finding Near-Optimal Independent Sets at Scale”. In: Workshop on Algorithm Engineering
and Experiments (ALENEX). 2016, pages 138–150. doi: 10.1137/1.9781611974317.12
Sebastian Lamm, Peter Sanders, and Christian Schulz. “Graph Partitioning for Independent
Sets”. In: Intl. Symp. on Experimental Algorithms (SEA). 2015, pages 68–81. doi: 10.1007/
978-3-319-20086-6_6

Journal Articles

Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders, Christian
Schulz, Darren Strash, and Moritz von Looz. “Communication-Free Massively Distributed
Graph Generation”. In: J. Parallel Distributed Comput. 131 (2019), pages 200–217. doi:
10.1016/j.jpdc.2019.03.011

Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade, and Carsten
Dachsbacher. “Efficient Parallel Random Sampling - Vectorized, Cache-Efficient, and On-
line”. In: ACM Trans. Math. Softw. 44.3 (2018), 29:1–29:14. doi: 10.1145/3157734

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
“Finding Near-Optimal Independent Sets at Scale”. In: J. Heuristics 23.4 (2017), pages 207–
229. doi: 10.1007/s10732-017-9337-x

Technical Reports

Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching for the Maxi-
mum Independent Set Problem”. In: Computing Research Repository (CoRR) abs/2102.01540
(2021). doi: 10.48550/ARXIV.2102.01540
Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian Schulz,
and Darren Strash. “Recent Advances in Practical Data Reduction”. In: Computing Research
Repository (CoRR) abs/2012.12594 (2020). doi: 10.48550/ARXIV.2012.12594
Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya
Safro, Peter Sanders, and Christian Schulz. “Recent Advances in Scalable Network Genera-
tion”. In: Computing Research Repository (CoRR) abs/2003.00736 (2020). doi: 10.48550/
ARXIV.2003.00736

Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdán Zavál-
nij. “Boosting Data Reduction for the Maximum Weight Independent Set Problem Using
Increasing Transformations”. In: Computing Research Repository (CoRR) abs/2008.05180
(2020). doi: 10.48550/ARXIV.2008.05180

202

https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1137/1.9781611974317.12
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1145/3157734
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.48550/ARXIV.2102.01540
https://doi.org/10.48550/ARXIV.2012.12594
https://doi.org/10.48550/ARXIV.2003.00736
https://doi.org/10.48550/ARXIV.2003.00736
https://doi.org/10.48550/ARXIV.2008.05180

Publications and Supervised Theses

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “WeGotYouCovered:
The Winning Solver from the PACE 2019 Implementation Challenge, Vertex Cover Track”.
In: Computing Research Repository (CoRR) abs/1908.06795 (2019). doi: 10.48550/ARXIV.
1908.06795

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, and
Darren Strash. “Engineering Kernelization for Maximum Cut”. In: Computing Research
Repository (CoRR) abs/1905.10902 (2019). doi: 10.48550/ARXIV.1905.10902

Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang.
“Exactly Solving the Maximum Weight Independent Set Problem on Large Real-World
Graphs”. In: Computing Research Repository (CoRR) abs/1810.10834 (2018). doi: 10.

48550/ARXIV.1810.10834

Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz
von Looz. “Communication-Free Massively Distributed Graph Generation”. In: Computing
Research Repository (CoRR) abs/1710.07565 (2017). doi: 10.48550/ARXIV.1710.07565

Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade, and Carsten
Dachsbacher. “Efficient Random Sampling - Parallel, Vectorized, Cache-Efficient, and
Online”. In: Computing Research Repository (CoRR) abs/1610.05141 (2016). doi: 10.48550/
ARXIV.1610.05141

Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm, Huyen Chau Nguyen,
Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias Sturm, and Peter Sanders. “Thrill:
High-Performance Algorithmic Distributed Batch Data Processing with C++”. In: Comput-
ing Research Repository (CoRR) abs/1608.05634 (2016). doi: 10.48550/ARXIV.1608.05634

Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato
F. Werneck. “Accelerating Local Search for the Maximum Independent Set Problem”. In:
Computing Research Repository (CoRR) abs/1602.01659 (2016). doi: 10.48550/ARXIV.
1602.01659

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
“Finding Near-Optimal Independent Sets at Scale”. In: Computing Research Repository
(CoRR) abs/1509.00764 (2015). doi: 10.48550/ARXIV.1509.00764

Sebastian Lamm, Peter Sanders, and Christian Schulz. “Graph Partitioning for Independent
Sets”. In: Computing Research Repository (CoRR) abs/1502.01687 (2015). doi: 10.48550/
ARXIV.1502.01687

Theses

Sebastian Lamm. “Communication Efficient Algorithms for Generating Massive Networks”.
Master’s thesis. Karlsruhe Institute of Technology, Germany, 2017

Sebastian Lamm. “Evolutionary Algorithms for Independent Sets”. Bachelor’s thesis. Karl-
sruhe Institute of Technology, Germany, 2014

203

https://doi.org/10.48550/ARXIV.1908.06795
https://doi.org/10.48550/ARXIV.1908.06795
https://doi.org/10.48550/ARXIV.1905.10902
https://doi.org/10.48550/ARXIV.1810.10834
https://doi.org/10.48550/ARXIV.1810.10834
https://doi.org/10.48550/ARXIV.1710.07565
https://doi.org/10.48550/ARXIV.1610.05141
https://doi.org/10.48550/ARXIV.1610.05141
https://doi.org/10.48550/ARXIV.1608.05634
https://doi.org/10.48550/ARXIV.1602.01659
https://doi.org/10.48550/ARXIV.1602.01659
https://doi.org/10.48550/ARXIV.1509.00764
https://doi.org/10.48550/ARXIV.1502.01687
https://doi.org/10.48550/ARXIV.1502.01687

Publications and Supervised Theses

SupervisedTheses

Tim Niklas Uhl. “Communication Efficient Triangle Counting”. Master’s thesis. Karlsruhe
Institute of Technology, Germany, 2021
Adrian Feilhauer. “Communication-Free Generation of Graphs with Planted Communities”.
Master’s thesis. Karlsruhe Institute of Technology, Germany, 2020
Christian Schorr. “Improved Branching Strategies for Maximum Independent Sets”. Bache-
lor’s thesis. Karlsruhe Institute of Technology, Germany, 2020
Alexander Gellner. “Engineering Generalized Reductions for the Maximum Weight Inde-
pendent Set Problem”. Master’s thesis. Karlsruhe Institute of Technology, Germany, 2020

Damir Ferizovic. “A Practical Analysis of Kernelization Techniques for the Maximum Cut
Problem”. Master’s thesis. Karlsruhe Institute of Technology, Germany, 2019
Tom George. “Distributed Kernelization for Independent Sets”. Bachelor’s thesis. Karlsruhe
Institute of Technology, Germany, 2018

204

Bibliography

[Abu+04] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A.
Langston, W. Henry Suters, and Christopher T. Symons. “Kernelization Algo-
rithms for the Vertex Cover Problem: Theory and Experiments”. In: Workshop
on Algorithm Engineering and Experiments (ALENEX). 2004, pages 62–69.

[see pages 2, 11, 28, 37]

[Abu+07] Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry
Suters. “Crown Structures for Vertex Cover Kernelization”. In: Theory Comput.
Syst. 41.3 (2007), pages 411–430. doi: 10.1007/s00224-007-1328-0.

[see page 130]

[Abu+20] Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe,
Christian Schulz, and Darren Strash. “Recent Advances in Practical Data
Reduction”. In: Computing Research Repository (CoRR) abs/2012.12594 (2020).
doi: 10.48550/ARXIV.2012.12594. [see pages 1, 2, 11, 25, 26, 89, 90, 202]

[AC19] Maram Alsahafy and Lijun Chang. “Computing Maximum Independent Sets
over Large Sparse Graphs”. In: Intl. Conf. onWeb Information Systems Engineer-
ing (WISE). 2019, pages 711–727. doi: 10.1007/978-3-030-34223-4_45.

[see pages 3, 4, 31, 32, 40, 73, 75, 86]

[Age94] Alexander A. Ageev. “On Finding Critical Independent and Vertex Sets”.
In: SIAM J. Discret. Math. 7.2 (1994), pages 293–295. doi: 10 . 1137 /

S0895480191217569. [see pages 96, 97]

[AI16] Takuya Akiba and Yoichi Iwata. “Branch-and-Reduce Exponential/FPT Al-
gorithms in Practice: A Case Study of Vertex Cover”. In: Theor. Comput.
Sci. 609 (2016), pages 211–225. doi: 10 . 1016 / j . tcs . 2015 . 09 . 023.

[see pages 1–5, 15, 18, 26–28, 33, 37–42, 47–49, 52–54, 57–59, 64–66,
73–75, 79–82, 90, 97, 99, 105, 106, 108, 121]

[AKK11] Ferhat Ay, Manolis Kellis, and Tamer Kahveci. “SubMAP: Aligning Metabolic
Pathways with Subnetwork Mappings”. In: J. Comput. Biol. 18.3 (2011),
pages 219–235. doi: 10.1089/cmb.2010.0280. [see page 90]

[Ale+03] Gabriela Alexe, Peter L. Hammer, Vadim V. Lozin, and Dominique de Werra.
“Struction Revisited”. In:Discret. Appl. Math. 132.1-3 (2003), pages 27–46. doi:
10.1016/S0166-218X(03)00388-3. [see pages 112, 113]

205

https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.48550/ARXIV.2012.12594
https://doi.org/10.1007/978-3-030-34223-4_45
https://doi.org/10.1137/S0895480191217569
https://doi.org/10.1137/S0895480191217569
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1089/cmb.2010.0280
https://doi.org/10.1016/S0166-218X(03)00388-3

Bibliography

[AO09] Emely Arráiz and Oswaldo Olivo. “Competitive Simulated Annealing and
Tabu Search Algorithms for the Max-Cut Problem”. In: Genetic and Evolu-
tionary Computation Conf. (GECCO). 2009, pages 1797–1798. doi: 10.1145/
1569901.1570167. [see page 130]

[APR98] James Abello, Panos M. Pardalos, and Mauricio G. C. Resende. “On Maximum
Clique Problems in Very Large Graphs”. In: External Memory Algorithms. 1998,
pages 119–130. doi: 10.1090/dimacs/050/06. [see page 32]

[ARW12] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. “Fast
Local Search for the Maximum Independent Set Problem”. In: J. Heuristics
18.4 (2012), pages 525–547. doi: 10.1007/s10732-012-9196-4.

[see pages 4, 18, 27, 29, 41, 44, 48, 49, 56–58, 64, 65, 93, 99]

[Bab94] Luitpold Babel. “A Fast Algorithm for the Maximum Weight Clique Problem”.
In: Computing 52.1 (1994), pages 31–38. doi: 10.1007/BF02243394.

[see page 91]

[Bäc96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice - Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms. 1996. isbn:
9780195099713. [see page 44]

[Bad+18] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Chris-
tian Schulz, and Dorothea Wagner. “Benchmarking for Graph Clustering and
Partitioning”. In: Encyclopedia of Social Network Analysis and Mining. 2018.
doi: 10.1007/978-1-4939-7131-2_23. [see pages 18, 151]

[Bal70] Michel L. Balinski. “On a Selection Problem”. In: Manage. Sci. 17.3 (1970),
pages 230–231. doi: 10.1287/mnsc.17.3.230. [see page 97]

[Bar+16] Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash.
“Temporal Map Labeling: A New Unified Framework with Experiments”. In:
ACM Intl. Conf. on Advances in Geographic Information Systems (SIGSPATIAL).
2016, 23:1–23:10. doi: 10.1145/2996913.2996957. [see pages 2, 19, 90, 147]

[Bar+88] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt.
“An Application of Combinatorial Optimization to Statistical Physics and
Circuit Layout Design”. In: Oper. Res. 36.3 (1988), pages 493–513. doi: 10.
1287/opre.36.3.493. [see pages v, vii, 3, 129, 130]

[Bar82] Francisco Barahona. “On the Computational Complexity of Ising Spin Glass
Models”. In: J. Phys. A: Mathematical and General 15.10 (1982), pages 3241–
3253. doi: 10.1088/0305-4470/15/10/028. [see pages v, vii, 3, 129]

[Bar96] Francisco Barahona. “Network Design Using Cut Inequalities”. In: SIAM J.
Optim. 6.3 (1996), pages 823–837. doi: 10.1137/S1052623494279134.

[see page 129]

[Bat+14] Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov, and Panos M. Pardalos.
“Improvements to MCS Algorithm for the Maximum Clique Problem”. In: J.
Comb. Optim. 27.2 (2014), pages 397–416. doi: 10.1007/s10878-012-9592-
6. [see pages 31, 58, 65]

206

https://doi.org/10.1145/1569901.1570167
https://doi.org/10.1145/1569901.1570167
https://doi.org/10.1090/dimacs/050/06
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/BF02243394
https://doi.org/10.1007/978-1-4939-7131-2_23
https://doi.org/10.1287/mnsc.17.3.230
https://doi.org/10.1145/2996913.2996957
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1137/S1052623494279134
https://doi.org/10.1007/s10878-012-9592-6
https://doi.org/10.1007/s10878-012-9592-6

Bibliography

[Ben+11] Thierry Benoist, Bertrand Estellon, Frédéric Gardi, Romain Megel, and Karim
Nouioua. “LocalSolver 1.x: A Black-Box Local-Search Solver for 0-1 Program-
ming”. In: 4OR 9.3 (2011), pages 299–316. doi: 10.1007/s10288-011-0165-
9. [see pages 130, 140]

[BH13] UnaBenlic and Jin-KaoHao. “Breakout Local Search for theMax-Cut Problem”.
In: Eng. Appl. Artif. Intell. 26.3 (2013), pages 1162–1173. doi: 10.1016/j.
engappai.2012.09.001. [see page 130]

[Bin+16a] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm, Huyen
Chau Nguyen, Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias
Sturm, and Peter Sanders. “Thrill: High-Performance Algorithmic Distributed
Batch Data Processing with C++”. In: IEEE Intl. Conf. on Big Data (BigData).
2016, pages 172–183. doi: 10.1109/BigData.2016.7840603. [see page 201]

[Bin+16b] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm, Huyen
Chau Nguyen, Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias
Sturm, and Peter Sanders. “Thrill: High-Performance Algorithmic Distributed
Batch Data Processing with C++”. In: Computing Research Repository (CoRR)
abs/1608.05634 (2016). doi: 10.48550/ARXIV.1608.05634. [see page 203]

[BJR89] Francisco Barahona, Michael Jünger, and Gerhard Reinelt. “Experiments in
Quadratic 0-1 Programming”. In: Math. Program. 44.1-3 (1989), pages 127–
137. doi: 10.1007/BF01587084. [see page 12]

[BK73] Coenraad Bron and Joep Kerbosch. “Finding All Cliques of an Undirected
Graph (Algorithm 457)”. In: Commun. ACM 16.9 (1973), pages 575–576. doi:
10.1145/362342.362367. [see page 32]

[BK94] Thomas Bäck and Sami Khuri. “An Evolutionary Heuristic for the Maximum
Independent Set Problem”. In: IEEEConf. on Evolutionary Computation (ICEC).
1994, pages 531–535. doi: 10.1109/ICEC.1994.350004.

[see pages 42, 43, 46, 50]

[BMZ02] Samuel Burer, Renato D. C. Monteiro, and Yin Zhang. “Rank-Two Relaxation
Heuristics for MAX-CUT and Other Binary Quadratic Programs”. In: SIAM
J. Optim. 12.2 (2002), pages 503–521. doi: 10.1137/S1052623400382467.

[see pages 131, 133]

[Bol+11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. “Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering for Com-
pressing Social Networks”. In: Intl. Conf. on World Wide Web (WWW). 2011,
pages 587–596. doi: 10.1145/1963405.1963488. [see pages 18, 149]

[Bou+12] Nicolas Bourgeois, Bruno Escoffier, Vangelis T. Paschos, and Johan M. M.
van Rooij. “Fast Algorithms for Max Independent Set”. In: Algorithmica 62.1-2
(2012), pages 382–415. doi: 10.1007/s00453-010-9460-7. [see page 74]

[BP01] Roberto Battiti and Marco Protasi. “Reactive Local Search for the Maximum
Clique Problem”. In: Algorithmica 29.4 (2001), pages 610–637. doi: 10.1007/
s004530010074. [see page 33]

207

https://doi.org/10.1007/s10288-011-0165-9
https://doi.org/10.1007/s10288-011-0165-9
https://doi.org/10.1016/j.engappai.2012.09.001
https://doi.org/10.1016/j.engappai.2012.09.001
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.48550/ARXIV.1608.05634
https://doi.org/10.1007/BF01587084
https://doi.org/10.1145/362342.362367
https://doi.org/10.1109/ICEC.1994.350004
https://doi.org/10.1137/S1052623400382467
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1007/s00453-010-9460-7
https://doi.org/10.1007/s004530010074
https://doi.org/10.1007/s004530010074

Bibliography

[Bré79] Daniel Brélaz. “NewMethods to Color Vertices of a Graph”. In:Commun. ACM
22.4 (1979), pages 251–256. doi: 10.1145/359094.359101. [see page 99]

[Bri59] ReneDe La Briandais. “File SearchingUsing Variable Length Keys”. In:Western
Joint Computer Conf. (IRE-AIEE-ACM). 1959, pages 295–298. doi: 10.1145/
1457838.1457895. [see page 139]

[Bro+90] Andries E. Brouwer, James B. Shearer, Neil J. A. Sloane, and Warren D. Smith.
“A New Table of Constant Weight Codes”. In: IEEE Trans. Inf. Theory 36.6
(1990), pages 1334–1380. doi: 10.1109/18.59932. [see pages 2, 90]

[BT07] Sergiy Butenko and Svyatoslav Trukhanov. “Using Critical Sets to Solve
the Maximum Independent Set Problem”. In: Oper. Res. Lett. 35.4 (2007),
pages 519–524. doi: 10.1016/j.orl.2006.07.004.

[see pages 5, 28, 91, 96, 97, 107]

[But+02] Sergiy Butenko, Panos M. Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro
Stetsyuk. “Finding Maximum Independent Sets in Graphs Arising from Cod-
ingTheory”. In:ACMSymp. on Applied Computing (SAC). 2002, pages 542–546.
doi: 10.1145/508791.508897. [see pages 2, 28, 33]

[BV04] Paolo Boldi and SebastianoVigna. “TheWebGraph Framework I: Compression
Techniques”. In: Intl. Conf. on World Wide Web (WWW). 2004, pages 595–602.
doi: 10.1145/988672.988752. [see pages 18, 149]

[BY86] Egon Balas and Chang Sung Yu. “Finding a Maximum Clique in an Arbitrary
Graph”. In: SIAM J. Comput. 15.4 (1986), pages 1054–1068. doi: 10.1137/
0215075. [see pages 26, 91]

[BZ03] Pavel A. Borisovsky and Marina S. Zavolovskaya. “Experimental Compari-
son of Two Evolutionary Algorithms for the Independent Set Problem”. In:
Workshops on Applications of Evolutionary Computing (EvoWorkshops). 2003,
pages 154–164. doi: 10.1007/3-540-36605-9_15. [see pages 42, 43, 46]

[Cai+13] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. “NuMVC: An Efficient
Local Search Algorithm for Minimum Vertex Cover”. In: J. Artif. Intell. Res. 46
(2013), pages 687–716. doi: 10.1613/jair.3907. [see pages 29–31]

[Cai+18] Shaowei Cai, Wenying Hou, Jinkun Lin, and Yuanjie Li. “Improving Local
Search for Minimum Weight Vertex Cover by Dynamic Strategies”. In: Intl.
Joint Conf. on Artificial Intelligence (IJCAI). 2018, pages 1412–1418. doi: 10.
24963/ijcai.2018/196. [see pages 19, 93, 106, 107, 124, 154]

[Cai+21] Shaowei Cai, Jinkun Lin, Yiyuan Wang, and Darren Strash. “A Semi-Exact
Algorithm for Quickly Computing AMaximumWeight Clique in Large Sparse
Graphs”. In: J. Artif. Intell. Res. 72 (2021), pages 39–67. doi: 10.1613/jair.1.
12327. [see page 95]

[Cai15] Shaowei Cai. “Balance between Complexity and Quality: Local Search for
Minimum Vertex Cover in Massive Graphs”. In: Intl. Joint Conf. on Artificial
Intelligence (IJCAI). 2015, pages 747–753. [see pages 29–31, 93, 95]

208

https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1109/18.59932
https://doi.org/10.1016/j.orl.2006.07.004
https://doi.org/10.1145/508791.508897
https://doi.org/10.1145/988672.988752
https://doi.org/10.1137/0215075
https://doi.org/10.1137/0215075
https://doi.org/10.1007/3-540-36605-9_15
https://doi.org/10.1613/jair.3907
https://doi.org/10.24963/ijcai.2018/196
https://doi.org/10.24963/ijcai.2018/196
https://doi.org/10.1613/jair.1.12327
https://doi.org/10.1613/jair.1.12327

Bibliography

[CFJ04] Benny Chor, Mike Fellows, and David W. Juedes. “Linear Kernels in Linear
Time, or How to Save k Colors inO(𝑛2) Steps”. In: Intl. Workshop on Graph-
Theoretic Concepts in Computer Science (WG). 2004, pages 257–269. doi: 10.
1007/978-3-540-30559-0_22. [see page 35]

[CH19] Yuning Chen and Jin-Kao Hao. “Dynamic Thresholding Search for Minimum
Vertex Cover in Massive Sparse Graphs”. In: Eng. Appl. Artif. Intell. 82 (2019),
pages 76–84. doi: 10.1016/j.engappai.2019.03.015. [see page 31]

[Cha+22] Jonas Charfreitag, Michael Jünger, Sven Mallach, and Petra Mutzel. “McSparse:
Exact Solutions of Sparse Maximum Cut and Sparse Unconstrained Binary
Quadratic Optimization Problems”. In: Symp. on Algorithm Engineering and Ex-
periments (ALENEX). 2022, pages 54–66. doi: 10.1137/1.9781611977042.5.

[see pages 131, 132]

[Cha20] Lijun Chang. “Efficient Maximum Clique Computation and Enumeration
over Large Sparse Graphs”. In: VLDB J. 29.5 (2020), pages 999–1022. doi:
10.1007/s00778-020-00602-z. [see page 32]

[Che+12] James Cheng, Yiping Ke, Shumo Chu, and Carter Cheng. “Efficient Processing
of Distance Queries in Large Graphs: A Vertex Cover Approach”. In: ACM
Intl. Conf. on Management of Data (SIGMOD). 2012, pages 457–468. doi:
10.1145/2213836.2213888. [see page 18]

[Chi+07] Charles C. Chiang, Andrew B. Kahng, Subarna Sinha, Xu Xu, and Alexander
Zelikovsky. “Fast and Efficient Bright-Field AAPSM Conflict Detection and
Correction”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26.1
(2007), pages 115–126. doi: 10.1109/TCAD.2006.882642.

[see pages v, vii, 3, 129]

[CJM15] Robert Crowston, Mark Jones, and Matthias Mnich. “Max-Cut Parameterized
Above the Edwards-Erdős Bound”. In: Algorithmica 72.3 (2015), pages 734–
757. doi: 10.1007/s00453-014-9870-z. [see pages 6, 131, 133]

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia. “Vertex Cover: Further Observations
and Further Improvements”. In: J. Algorithms 41.2 (2001), pages 280–301. doi:
10.1006/jagm.2001.1186. [see pages 33–35]

[CKR11] Jerry Chi-Yuan Chou, Jinoh Kim, and Doron Rotem. “Energy-Aware Schedul-
ing in Disk Storage Systems”. In: Intl. Conf. on Distributed Computing Systems
(ICDCS). 2011, pages 423–433. doi: 10.1109/ICDCS.2011.40.

[see pages 2, 90, 147]

[CKX06] Jianer Chen, Iyad A. Kanj, and Ge Xia. “Improved Parameterized Upper
Bounds for Vertex Cover”. In: Intl. Symp. on Mathematical Foundations of
Computer Science (MFCS). 2006, pages 238–249. doi: 10.1007/11821069_21.

[see page 1]

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. “Improved Upper Bounds for Vertex
Cover”. In: Theor. Comput. Sci. 411.40-42 (2010), pages 3736–3756. doi: 10.
1016/j.tcs.2010.06.026. [see page 74]

209

https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1016/j.engappai.2019.03.015
https://doi.org/10.1137/1.9781611977042.5
https://doi.org/10.1007/s00778-020-00602-z
https://doi.org/10.1145/2213836.2213888
https://doi.org/10.1109/TCAD.2006.882642
https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1109/ICDCS.2011.40
https://doi.org/10.1007/11821069_21
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026

Bibliography

[CL16] Shaowei Cai and Jinkun Lin. “Fast Solving Maximum Weight Clique Problem
in Massive Graphs”. In: Intl. Joint Conf. on Artificial Intelligence (IJCAI). 2016,
pages 568–574. [see page 95]

[CLL17] Shaowei Cai, Jinkun Lin, and Chuan Luo. “Finding a Small Vertex Cover in
Massive Sparse Graphs: Construct, Local Search, and Preprocess”. In: J. Artif.
Intell. Res. 59 (2017), pages 463–494. doi: 10.1613/jair.5443. [see page 30]

[CLZ17] Lijun Chang, Wei Li, and Wenjie Zhang. “Computing a Near-Maximum In-
dependent Set in Linear Time by Reducing-Peeling”. In: ACM Intl. Conf. on
Management of Data (SIGMOD). 2017, pages 1181–1196. doi: 10.1145/
3035918.3035939. [see pages 3, 4, 30, 31, 64, 66, 73, 86, 92, 94, 98, 147]

[CM07] Carlos Cotta and Pablo Moscato. “Memetic Algorithms”. In: Handbook
of Approximation Algorithms and Metaheuristics. 2007. doi: 10 . 1201 /

9781420010749.ch27. [see page 14]

[CP90] Randy Carraghan and Panos M. Pardalos. “An Exact Algorithm for the Max-
imum Clique Problem”. In: Oper. Res. Lett. 9.6 (1990), pages 375–382. doi:
10.1016/0167-6377(90)90057-C. [see page 75]

[Cro+13] Robert Crowston, Gregory Z. Gutin, Mark Jones, and Gabriele Muciaccia.
“Maximum Balanced Subgraph Problem Parameterized Above Lower Bound”.
In: Theor. Comput. Sci. 513 (2013), pages 53–64. doi: 10.1016/j.tcs.2013.
10.026. [see pages 6, 131, 133, 135, 136]

[CSS11] Shaowei Cai, Kaile Su, and Abdul Sattar. “Local Search with Edge Weighting
and Configuration Checking Heuristics for Minimum Vertex Cover”. In: Artif.
Intell. 175.9-10 (2011), pages 1672–1696. doi: 10.1016/j.artint.2011.03.
003. [see page 93]

[Dah+16a] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Renato F. Werneck. “Accelerating Local Search for the Maximum
Independent Set Problem”. In: Intl. Symp. on Experimental Algorithms (SEA).
2016, pages 118–133. doi: 10.1007/978-3-319-38851-9_9.

[see pages 2, 7, 25, 29, 30, 66, 73, 93, 94, 202]

[Dah+16b] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Renato F. Werneck. “Accelerating Local Search for the Maxi-
mum Independent Set Problem”. In: Computing Research Repository (CoRR)
abs/1602.01659 (2016). doi: 10.48550/ARXIV.1602.01659.

[see pages 7, 25, 203]

[Del+09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. “En-
gineering Route Planning Algorithms”. In: Algorithmics of Large and Complex
Networks. 2009, pages 117–139. doi: 10.1007/978-3-642-02094-0_7.

[see pages 18, 153]

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. 1999.
doi: 10.1007/978-1-4612-0515-9. [see page 11]

210

https://doi.org/10.1613/jair.5443
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1201/9781420010749.ch27
https://doi.org/10.1201/9781420010749.ch27
https://doi.org/10.1016/0167-6377(90)90057-C
https://doi.org/10.1016/j.tcs.2013.10.026
https://doi.org/10.1016/j.tcs.2013.10.026
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.48550/ARXIV.1602.01659
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-1-4612-0515-9

Bibliography

[DFH19] M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. “The PACE
2019 Parameterized Algorithms and Computational Experiments Challenge:
The Fourth Iteration (Invited Paper)”. In: Intl. Symp. on Parameterized and
Exact Computation (IPEC). 2019, 25:1–25:23. doi: 10.4230/LIPIcs.IPEC.
2019.25. [see pages 18, 67, 147, 157–160]

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. The Short-
est Path Problem: Ninth DIMACS Implementation Challenge. 2009. isbn:
9780821843833. [see pages 18, 153]

[DGS18] Iain Dunning, Swati Gupta, and John Silberholz. “What Works Best When? A
Systematic Evaluation of Heuristics for Max-Cut and QUBO”. In: INFORMS
J. Comput. 30.3 (2018), pages 608–624. doi: 10.1287/ijoc.2017.0798.

[see pages 19, 129, 131, 133, 140, 143, 161]

[DH11] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1 (2011), 1:1–1:25. doi: 10.1145/
2049662.2049663. [see pages 18, 156]

[DM02] Elizabeth D. Dolan and Jorge J. Moré. “Benchmarking Optimization Software
with Performance Profiles”. In: Math. Program. 91.2 (2002), pages 201–213.
doi: 10.1007/s101070100263. [see page 22]

[Don+21] Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis,
Mauricio G. C. Resende, and Quico Spaen. “New Instances for Maximum
Weight Independent Set from a Vehicle Routing Application”. In: Computing
Research Repository (CoRR) (2021). doi: 10.48550/ARXIV.2105.12623.

[see page 90]

[Don+22] Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis,
Mauricio G. C. Resende, and Quico Spaen. “A Metaheuristic Algorithm for
Large Maximum Weight Independent Set Problems”. In: Computing Research
Repository (CoRR) abs/2203.15805 (2022). doi: 10.48550/ARXIV.2203.
15805. [see pages v, vii, 2, 90, 94, 147]

[dSHK13] Samuel de Sousa, Yll Haxhimusa, and Walter G. Kropatsch. “Estimation of
DistributionAlgorithm for theMax-Cut Problem”. In: Intl.Workshop onGraph-
Based Representations in Pattern Recognition (GbRPR). 2013, pages 244–253.
doi: 10.1007/978-3-642-38221-5_26. [see pages 129, 143]

[dSR18] Marcelo de Souza and Marcus Ritt. “Automatic Grammar-Based Design of
Heuristic Algorithms for Unconstrained Binary Quadratic Programming”. In:
European Conf. on Evolutionary Computation in Combinatorial Optimization
(EvoCOP). 2018, pages 67–84. doi: 10.1007/978-3-319-77449-7_5.

[see page 133]

[Ebl+12] John D. Eblen, Charles A. Phillips, Gary L. Rogers, and Michael A. Langston.
“The Maximum Clique Enumeration Problem: Algorithms, Applications, and
Implementations”. In:BMCBioinform. 13.S-10 (2012), S5. doi: 10.1186/1471-
2105-13-S10-S5. [see page 32]

211

https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.48550/ARXIV.2105.12623
https://doi.org/10.48550/ARXIV.2203.15805
https://doi.org/10.48550/ARXIV.2203.15805
https://doi.org/10.1007/978-3-642-38221-5_26
https://doi.org/10.1007/978-3-319-77449-7_5
https://doi.org/10.1186/1471-2105-13-S10-S5
https://doi.org/10.1186/1471-2105-13-S10-S5

Bibliography

[Edw73] Christopher S. Edwards. “Some Extremal Properties of Bipartite Subgraphs”. In:
Canad. J. Math. 25.3 (1973), pages 475–485. doi: 10.4153/CJM-1973-048-x.

[see page 131]

[Edw75] Christopher S. Edwards. “An Improved Lower Bound for the Number of Edges
in a Largest Bipartite Subgraph”. In:Czechoslovak Symp. on GraphTheory. 1975,
pages 167–181. [see page 131]

[EHd84] Christian Ebenegger, Peter L. Hammer, and Dominique de Werra. “Pseudo-
Boolean Functions and Stability of Graphs”. In: Algebraic and Combinatorial
Methods in Operations Research. Volume 95. 1984, pages 83–97. doi: 10.1016/
S0304-0208(08)72955-4. [see pages 5, 91, 92, 96, 112–114]

[EK20] Duncan Eddy and Mykel J. Kochenderfer. “A Maximum Independent Set
Method for Scheduling Earth Observing Satellite Constellations”. In: Com-
puting Research Repository (CoRR) abs/2008.08446 (2020). doi: 10.48550/
ARXIV.2008.08446. [see page 147]

[EM18] Michael Etscheid and Matthias Mnich. “Linear Kernels and Linear-Time Algo-
rithms for Finding Large Cuts”. In: Algorithmica 80.9 (2018), pages 2574–2615.
doi: 10.1007/s00453-017-0388-z. [see pages 6, 131, 133, 140]

[Fan+14] Zhiwen Fang, Chu-Min Li, Kan Qiao, Xu Feng, and Ke Xu. “Solving Maximum
Weight Clique Using Maximum Satisfiability Reasoning”. In: European Conf.
on Artificial Intelligenc (ECAI). 2014, pages 303–308. doi: 10.3233/978-1-
61499-419-0-303. [see page 95]

[Fan+15] Yi Fan, Chengqian Li, ZongjieMa, Ljiljana Brankovic, Vladimir Estivill-Castro,
and Abdul Sattar. “Exploiting Reduction Rules and Data Structures: Local
Search forMinimumVertex Cover inMassive Graphs”. In:Computing Research
Repository (CoRR) abs/1509.05870 (2015). doi: 10.48550/ARXIV.1509.
05870. [see pages 29–31]

[Fan+17] Yi Fan, Nan Li, Chengqian Li, Zongjie Ma, Longin Jan Latecki, and Kaile
Su. “Restart and Random Walk in Local Search for Maximum Vertex Weight
Cliques with Evaluations in Clustering Aggregation”. In: Intl. Joint Conf. on
Artificial Intelligence (IJCAI). 2017, pages 622–630. doi: 10.24963/ijcai.
2017/87. [see page 95]

[Far+17] Luérbio Faria, Sulamita Klein, Ignasi Sau, and Rubens Sucupira. “Improved
Kernels for Signed Max Cut Parameterized Above Lower Bound on (r, l)-
Graphs”. In: Discret. Math. Theor. Comput. Sci. 19.1 (2017). doi: 10.23638/
DMTCS-19-1-14. [see pages 6, 131, 133]

[Fei20] Adrian Feilhauer. “Communication-Free Generation of Graphs with Planted
Communities”. Master’s thesis. Karlsruhe Institute of Technology, Germany,
2020. [see page 204]

212

https://doi.org/10.4153/CJM-1973-048-x
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.48550/ARXIV.2008.08446
https://doi.org/10.48550/ARXIV.2008.08446
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.3233/978-1-61499-419-0-303
https://doi.org/10.3233/978-1-61499-419-0-303
https://doi.org/10.48550/ARXIV.1509.05870
https://doi.org/10.48550/ARXIV.1509.05870
https://doi.org/10.24963/ijcai.2017/87
https://doi.org/10.24963/ijcai.2017/87
https://doi.org/10.23638/DMTCS-19-1-14
https://doi.org/10.23638/DMTCS-19-1-14

Bibliography

[Fer+19] Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian
Schulz, and Darren Strash. “Engineering Kernelization for Maximum Cut”.
In: Computing Research Repository (CoRR) abs/1905.10902 (2019). doi: 10.
48550/ARXIV.1905.10902. [see pages 7, 129, 203]

[Fer+20] Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian
Schulz, and Darren Strash. “Engineering Kernelization for Maximum Cut”. In:
Symp. on Algorithm Engineering and Experiments (ALENEX). 2020, pages 27–
41. doi: 10.1137/1.9781611976007.3. [see pages 2, 7, 129, 201]

[Fer19] Damir Ferizovic. “A Practical Analysis of Kernelization Techniques for the
Maximum Cut Problem”. Master’s thesis. Karlsruhe Institute of Technology,
Germany, 2019. [see pages 131, 133, 137, 138, 204]

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. “A Measure & Con-
quer Approach for the Analysis of Exact Algorithms”. In: J. ACM 56.5 (2009),
25:1–25:32. doi: 10.1145/1552285.1552286.

[see pages 2, 4, 11, 28, 33, 34, 38, 40, 74, 92]

[FHL19] Robert Fischbach, Tilman Horst, and Jens Lienig. “Assembly-Related
Chip/Package Co-Design of Heterogeneous Systems Manufactured by Micro-
Transfer Printing”. In: Design, Automation and Test in Europe Conf. and Exhi-
bition (DATE). 2019, pages 956–959. doi: 10.23919/DATE.2019.8714884.

[see pages 2, 147]

[FNS16] Stefan Funke, André Nusser, and Sabine Storandt. “On k-Path Covers and their
Applications”. In: VLDB J. 25.1 (2016), pages 103–123. doi: 10.1007/s00778-
015-0392-3. [see page 18]

[Fom+19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-
nelization: Theory of Parameterized Preprocessing. 2019. isbn: 9781107057760.

[see page 7]

[Fou22] OpenStreetMap Foundation. OpenStreetMap. 2022. url: https : / / www .
openstreetmap.org. [see page 19]

[FR89] Thomas A. Feo and Mauricio G. C. Resende. “A Probabilistic Heuristic for
a Computationally Difficult Set Covering Problem”. In: Oper. Res. Lett. 8.2
(1989), pages 67–71. doi: 10.1016/0167-6377(89)90002-3. [see page 94]

[FR95] Thomas A. Feo and Mauricio G. C. Resende. “Greedy Randomized Adaptive
Search Procedures”. In: J. Glob. Optim. 6.2 (1995), pages 109–133. doi: 10.
1007/BF01096763. [see page 94]

[Fre60] Edward Fredkin. “Trie Memory”. In: Commun. ACM 3.9 (1960), pages 490–
499. doi: 10.1145/367390.367400. [see page 139]

[Fun+17] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash,
and Moritz von Looz. “Communication-Free Massively Distributed Graph
Generation”. In:Computing Research Repository (CoRR) abs/1710.07565 (2017).
doi: 10.48550/ARXIV.1710.07565. [see page 203]

213

https://doi.org/10.48550/ARXIV.1905.10902
https://doi.org/10.48550/ARXIV.1905.10902
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.23919/DATE.2019.8714884
https://doi.org/10.1007/s00778-015-0392-3
https://doi.org/10.1007/s00778-015-0392-3
https://www.openstreetmap.org
https://www.openstreetmap.org
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763
https://doi.org/10.1145/367390.367400
https://doi.org/10.48550/ARXIV.1710.07565

Bibliography

[Fun+18] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash,
and Moritz von Looz. “Communication-Free Massively Distributed Graph
Generation”. In: IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS).
2018, pages 336–347. doi: 10.1109/IPDPS.2018.00043. [see page 201]

[Fun+19] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter San-
ders, Christian Schulz, Darren Strash, and Moritz von Looz. “Communication-
Free Massively Distributed Graph Generation”. In: J. Parallel Distributed Com-
put. 131 (2019), pages 200–217. doi: 10.1016/j.jpdc.2019.03.011.

[see pages 19, 202]

[Gao+17] Wanru Gao, Tobias Friedrich, TimoKötzing, and FrankNeumann. “Scaling up
Local Search forMinimumVertex Cover in Large Graphs by Parallel Kerneliza-
tion”. In: Australasian Conf. on Artificial Intelligence (AI). 2017, pages 131–143.
doi: 10.1007/978-3-319-63004-5_11. [see pages 30, 86]

[Gao+18] Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang. “An
Exact Algorithm for Maximum k-Plexes in Massive Graphs”. In: Intl. Joint
Conf. on Artificial Intelligence (IJCAI). 2018, pages 1449–1455. doi: 10.24963/
ijcai.2018/201. [see page 73]

[Gar+14] Frédéric Gardi, Thierry Benoist, Julien Darlay, Bertrand Estellon, and Ro-
main Megel. Mathematical Programming Solver Based on Local Search. 2014,
page 112. doi: 10.1002/9781118966464. [see page 130]

[Gel+20] Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and
Bogdán Zaválnij. “Boosting Data Reduction for the Maximum Weight In-
dependent Set Problem Using Increasing Transformations”. In: Computing
Research Repository (CoRR) abs/2008.05180 (2020). doi: 10.48550/ARXIV.
2008.05180. [see pages 7, 89, 202]

[Gel+21] Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and
Bogdán Zaválnij. “Boosting Data Reduction for the Maximum Weight In-
dependent Set Problem Using Increasing Transformations”. In: Symp. on Al-
gorithm Engineering and Experiments (ALENEX). 2021, pages 128–142. doi:
10.1137/1.9781611976472.10. [see pages 7, 89, 92, 201]

[Gel20] Alexander Gellner. “Engineering Generalized Reductions for the Maximum
Weight Independent Set Problem”. Master’s thesis. Karlsruhe Institute of Tech-
nology, Germany, 2020. [see page 204]

[Geo18] Tom George. “Distributed Kernelization for Independent Sets”. Bachelor’s
thesis. Karlsruhe Institute of Technology, Germany, 2018. [see page 204]

[Geo73] Alan George. “Nested Dissection of a Regular Finite Element Mesh”. In: SIAM
Journal on Numerical Analysis 10.2 (1973), pages 345–363. doi: 10.1137/
0710032. [see page 77]

[GG21] Jiaqi Gu and Ping Guo. “PEAVC: An Improved Minimum Vertex Cover Solver
for Massive Sparse Graphs”. In: Eng. Appl. Artif. Intell. 104 (2021). doi: 10.
1016/j.engappai.2021.104344. [see page 31]

214

https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1007/978-3-319-63004-5_11
https://doi.org/10.24963/ijcai.2018/201
https://doi.org/10.24963/ijcai.2018/201
https://doi.org/10.1002/9781118966464
https://doi.org/10.48550/ARXIV.2008.05180
https://doi.org/10.48550/ARXIV.2008.05180
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1016/j.engappai.2021.104344
https://doi.org/10.1016/j.engappai.2021.104344

Bibliography

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. 1979. isbn: 0716710455. [see pages 11, 12, 90]

[GJS74] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some Simplified
NP-Complete Problems”. In: ACM Symp. on Theory of Computing (STOC).
1974, pages 47–63. doi: 10.1145/800119.803884. [see page 129]

[GLC04] Andrea Grosso,Marco Locatelli, and Federico Della Croce. “Combining Swaps
and Node Weights in an Adaptive Greedy Approach for the Maximum Clique
Problem”. In: J. Heuristics 10.2 (2004), pages 135–152. doi: 10.1023/B:
HEUR.0000026264.51747.7f. [see page 33]

[GLH10] Fred W. Glover, Zhipeng Lü, and Jin-Kao Hao. “Diversification-Driven Tabu
Search for Unconstrained Binary Quadratic Problems”. In: 4OR 8.3 (2010),
pages 239–253. doi: 10.1007/s10288-009-0115-y. [see page 133]

[Glo89] Fred W. Glover. “Tabu Search - Part I”. In: INFORMS J. Comput. 1.3 (1989),
pages 190–206. doi: 10.1287/ijoc.1.3.190. [see page 13]

[GLP08] Andrea Grosso, Marco Locatelli, and Wayne J. Pullan. “Simple Ingredients
Leading to Very Efficient Heuristics for the Maximum Clique Problem”. In: J.
Heuristics 14.6 (2008), pages 587–612. doi: 10.1007/s10732-007-9055-x.

[see pages 18, 29, 33, 49, 56]

[GNN13] Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg. “Trajectory-
Based Dynamic Map Labeling”. In: Intl. Symp. on Algorithms and Computation
(ISAAC). 2013, pages 413–423. doi: 10.1007/978-3-642-45030-3_39.

[see pages v, vii]

[GNR16] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. “Evaluation of Labeling
Strategies for Rotating Maps”. In: ACM J. Exp. Algorithmics 21.1 (2016), 1.4:1–
1.4:21. doi: 10.1145/2851493. [see pages 2, 19, 90, 147]

[Gol89] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine
Learning. 1989. isbn: 0201157675. [see page 13]

[Got+19] Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner.
“Faster and Better Nested Dissection Orders for Customizable Contraction
Hierarchies”. In: Algorithms 12.9 (2019), page 196. doi: 10.3390/a12090196.

[see page 82]

[GS16] Nicholas I. M. Gould and Jennifer A. Scott. “A Note on Performance Profiles
for Benchmarking Software”. In: ACM Trans. Math. Softw. 43.2 (2016), 15:1–
15:5. doi: 10.1145/2950048. [see page 22]

[GT88] AndrewV.Goldberg andRobert E. Tarjan. “ANewApproach to theMaximum-
Flow Problem”. In: J. ACM 35.4 (1988), pages 921–940. doi: 10.1145/48014.
61051. [see page 76]

[Gu+21] Jiewei Gu, Weiguo Zheng, Yuzheng Cai, and Peng Peng. “Towards Comput-
ing a Near-Maximum Weighted Independent Set on Massive Graphs”. In:
ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD). 2021,
pages 467–477. doi: 10.1145/3447548.3467232. [see page 94]

215

https://doi.org/10.1145/800119.803884
https://doi.org/10.1023/B:HEUR.0000026264.51747.7f
https://doi.org/10.1023/B:HEUR.0000026264.51747.7f
https://doi.org/10.1007/s10288-009-0115-y
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1007/s10732-007-9055-x
https://doi.org/10.1007/978-3-642-45030-3_39
https://doi.org/10.1145/2851493
https://doi.org/10.3390/a12090196
https://doi.org/10.1145/2950048
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/3447548.3467232

Bibliography

[Gur21] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2021. url:
https://www.gurobi.com. [see pages 19, 73, 132]

[Gus+20] Nicolò Gusmeroli, Timotej Hrga, Borut Lužar, Janez Povh, Melanie Sieben-
hofer, and Angelika Wiegele. “BiqBin: A Parallel Branch-and-Bound Solver for
Binary Quadratic Problems with Linear Constraints”. In: Computing Research
Repository (CoRR) abs/2009.06240 (2020). doi: 10.48550/ARXIV.2009.
06240. [see pages 131, 132]

[GWA00] Eleanor J. Gardiner, Peter Willett, and Peter J. Artymiuk. “Graph-Theoretic
Techniques for Macromolecular Docking”. In: J. Chem. Inf. Comput. Sci. 40.2
(2000), pages 273–279. doi: 10.1021/ci990262o. [see pages v, vii, 2, 26]

[Har59] Frank Harary. “On the Measurement of Structural Balance”. In: Behavioral Sci.
4.4 (1959), pages 316–323. doi: 10.1002/bs.3830040405.

[see pages v, vii, 3, 129]

[Hes+19] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “We-
GotYouCovered: The Winning Solver from the PACE 2019 Implementation
Challenge, Vertex Cover Track”. In: Computing Research Repository (CoRR)
abs/1908.06795 (2019). doi: 10.48550/ARXIV.1908.06795.

[see pages 7, 25, 203]

[Hes+20] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “We-
GotYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex
Cover Track”. In: SIAMWorkshop onCombinatorial Scientific Computing (CSC).
2020, pages 1–11. doi: 10.1137/1.9781611976229.1.

[see pages 25, 26, 28, 29, 201]

[HK73] John E. Hopcroft and Richard M. Karp. “An 𝑛5/2 Algorithm for Maximum
Matchings in Bipartite Graphs”. In: SIAM J. Comput. 2.4 (1973), pages 225–231.
doi: 10.1137/0202019. [see pages 37, 45, 76, 96]

[HLH97] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. “An Economics
Approach to Hard Computational Problems”. In: Science 275.5296 (1997),
pages 51–54. doi: 10.1126/science.275.5296.51. [see page 15]

[HLS21a] Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching
for the Maximum Independent Set Problem”. In: Intl. Symp. on Experimental
Algorithms (SEA). 2021, 17:1–17:21. doi: 10.4230/LIPIcs.SEA.2021.17.

[see pages 2, 7, 25, 26, 28, 201]

[HLS21b] Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching
for the Maximum Independent Set Problem”. In: Computing Research Repos-
itory (CoRR) abs/2102.01540 (2021). doi: 10.48550/ARXIV.2102.01540.

[see pages 7, 25, 202]

[HLW02] Frank Harary, Meng-Hiot Lim, and Donald C. Wunsch. “Signed Graphs for
Portfolio Analysis in Risk Management”. In: IMA J. Mgmt. Math. 13.3 (2002),
pages 201–210. doi: 10.1093/imaman/13.3.201. [see pages 3, 129]

216

https://www.gurobi.com
https://doi.org/10.48550/ARXIV.2009.06240
https://doi.org/10.48550/ARXIV.2009.06240
https://doi.org/10.1021/ci990262o
https://doi.org/10.1002/bs.3830040405
https://doi.org/10.48550/ARXIV.1908.06795
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/0202019
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.48550/ARXIV.2102.01540
https://doi.org/10.1093/imaman/13.3.201

Bibliography

[HMdW85a] Peter L. Hammer, Nadimpalli V. R. Mahadev, and Dominique de Werra. “Sta-
bility in CAN-Free Graphs”. In: J. Comb.Theory, Ser. B 38.1 (1985), pages 23–30.
doi: 10.1016/0095-8956(85)90089-9. [see page 113]

[HMdW85b] Peter L. Hammer, Nadimpalli V. R. Mahadev, and Dominique de Werra. “The
Struction of a Graph: Application to CN-Free Graphs”. In: Comb. 5.2 (1985),
pages 141–147. doi: 10.1007/BF02579377. [see page 113]

[HMU04] Pierre Hansen, Nenad Mladenovic, and Dragan Urosevic. “Variable Neighbor-
hood Search for the Maximum Clique”. In: Discret. Appl. Math. 145.1 (2004),
pages 117–125. doi: 10.1016/j.dam.2003.09.012. [see page 33]

[HP21] Timotej Hrga and Janez Povh. “MADAM: A Parallel Exact Solver for Max-
Cut Based on Semidefinite Programming and ADMM”. In: Comput. Optim.
Appl. 80.2 (2021), pages 347–375. doi: 10.1007/s10589-021-00310-6.

[see pages 131, 132]

[Hrg+19] Timotej Hrga, Borut Luzar, Janez Povh, and Angelika Wiegele. “BiqBin: Mov-
ing Boundaries for NP-hard Problems by HPC”. In: Intl. Conf. on High Perfor-
mance Computing (HPC). 2019, pages 327–339. doi: 10.1007/978-3-030-
55347-0_28. [see pages 131, 132]

[HSS19] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernelization
for Maximum Independent Sets”. In: ACM J. Exp. Algorithmics 24.1 (2019),
1.16:1–1.16:22. doi: 10.1145/3355502.

[see pages 28, 29, 31, 38, 73, 86, 98, 130, 148]

[HT73] John E. Hopcroft and Robert E. Tarjan. “Efficient Algorithms for GraphManip-
ulation [H] (Algorithm 447)”. In: Commun. ACM 16.6 (1973), pages 372–378.
doi: 10.1145/362248.362272. [see page 75]

[HT94] Kathy W. Hoke and M. F. Troyon. “The Struction Algorithm for the Maximum
Stable Set Problem Revisited”. In:Discret. Math. 131.1-3 (1994), pages 105–113.
doi: 10.1016/0012-365X(94)90377-8. [see page 113]

[HXC21] Sen Huang, Mingyu Xiao, and Xiaoyu Chen. “Exact Algorithms for Maximum
Weighted Independent Set on Sparse Graphs (Extended Abstract)”. In: Intl.
Conf. on Computing and Combinatorics (COCOON). 2021, pages 617–628.
doi: 10.1007/978-3-030-89543-3_51. [see pages 2, 92, 148]

[IOY14] Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. “Linear-Time FPT Algorithms
viaNetwork Flow”. In: Symp. onDiscrete Algorithms (SODA). 2014, pages 1749–
1761. doi: 10.1137/1.9781611973402.127. [see pages 28, 37, 92]

[JH15] Yan Jin and Jin-Kao Hao. “General Swap-Based Multiple Neighborhood Tabu
search for the Maximum Independent Set Problem”. In: Eng. Appl. Artif. Intell.
37 (2015), pages 20–33. doi: 10.1016/j.engappai.2014.08.007.

[see pages 29, 30, 93]

[Jia+18] Hua Jiang, Chu-Min Li, Yanli Liu, and Felip Manyà. “A Two-Stage MaxSAT
Reasoning Approach for the Maximum Weight Clique Problem”. In: AAAI
Conf. on Artificial Intelligence (AAAI). 2018, pages 1338–1346. [see page 95]

217

https://doi.org/10.1016/0095-8956(85)90089-9
https://doi.org/10.1007/BF02579377
https://doi.org/10.1016/j.dam.2003.09.012
https://doi.org/10.1007/s10589-021-00310-6
https://doi.org/10.1007/978-3-030-55347-0_28
https://doi.org/10.1007/978-3-030-55347-0_28
https://doi.org/10.1145/3355502
https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/0012-365X(94)90377-8
https://doi.org/10.1007/978-3-030-89543-3_51
https://doi.org/10.1137/1.9781611973402.127
https://doi.org/10.1016/j.engappai.2014.08.007

Bibliography

[JLM17] Hua Jiang, Chu-Min Li, and Felip Manyà. “An Exact Algorithm for the Maxi-
mum Weight Clique Problem in Large Graphs”. In: AAAI Conf. on Artificial
Intelligence (AAAI). 2017, pages 830–838. [see page 95]

[Jon06] Kenneth A. De Jong. Evolutionary Computation - A Unified Approach. 2006.
isbn: 9781450371278. [see page 44]

[JT96] David S. Johnson and Michael A. Trick. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. 1996. isbn: 9780821866092.

[see pages 18, 95, 152]

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Symp.
on the Complexity of Computer Computations. 1972, pages 85–103. doi: 10.
1007/978-1-4684-2001-2_9. [see pages 1, 11, 26]

[KHN05] Kengo Katayama, Akihiro Hamamoto, and Hiroyuki Narihisa. “An Effective
Local Search for the Maximum Clique Problem”. In: Inf. Process. Lett. 95.5
(2005), pages 503–511. doi: 10.1016/j.ipl.2005.05.010. [see page 33]

[Kie+10] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. “Distributed
Time-Dependent Contraction Hierarchies”. In: Intl. Symp. on Experimental
Algorithms (SEA). 2010, pages 83–93. doi: 10.1007/978-3-642-13193-6_8.

[see pages 2, 26]

[KLR09] Joachim Kneis, Alexander Langer, and Peter Rossmanith. “A Fine-Grained
Analysis of a Simple Independent Set Algorithm”. In: IARCS Annual Conf.
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS). 2009, pages 287–298. doi: 10.4230/LIPIcs.FSTTCS.2009.2326.

[see pages 38, 40, 41]

[Klu+19] Fabian Klute, Guangping Li, Raphael Löffler, Martin Nöllenburg, and Manuela
Schmidt. “Exploring Semi-Automatic Map Labeling”. In: ACM Intl. Conf. on
Advances in Geographic Information Systems (SIGSPATIAL). 2019, pages 13–22.
doi: 10.1145/3347146.3359359. [see pages v, vii, 2, 26, 147]

[KM06] Kartik Krishnan and John E. Mitchell. “A Semidefinite Programming Based
Polyhedral Cut and Price Approach for the Maxcut Problem”. In: Comput.
Optim. Appl. 33.1 (2006), pages 51–71. doi: 10.1007/s10589-005-5958-3.

[see page 131]

[KMR14] NathanKrislock, JérômeMalick, and Frédéric Roupin. “Improved Semidefinite
Bounding Procedure for Solving Max-Cut Problems to Optimality”. In: Math.
Program. 143.1-2 (2014), pages 61–86. doi: 10.1145/3005345. [see page 131]

[KMR17] NathanKrislock, JérômeMalick, and Frédéric Roupin. “BiqCrunch: A Semidef-
inite Branch-and-Bound Method for Solving Binary Quadratic Problems”. In:
ACM Trans. Math. Softw. 43.4 (2017), 32:1–32:23. doi: 10.1145/3005345.

[see pages 131, 132]

218

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.ipl.2005.05.010
https://doi.org/10.1007/978-3-642-13193-6_8
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2326
https://doi.org/10.1145/3347146.3359359
https://doi.org/10.1007/s10589-005-5958-3
https://doi.org/10.1145/3005345
https://doi.org/10.1145/3005345

Bibliography

[Koc+13] Gary A. Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred
W. Glover. “Solving Large Scale Max Cut Problems via Tabu Search”. In: J.
Heuristics 19.4 (2013), pages 565–571. doi: 10.1007/s10732-011-9189-8.

[see pages 130, 131]

[Kum08] Deniss Kumlander. “On Importance of a Special Sorting in the Maximum-
Weight Clique AlgorithmBased on Colour Classes”. In: Intl. Conf. onModelling,
Computation and Optimization in Information Systems and Management Sci-
ences (MCO). 2008, pages 165–174. doi: 10.1007/978-3-540-87477-5_18.

[see page 94]

[Kun13] Jérôme Kunegis. “KONECT: The Koblenz Network Collection”. In: Intl. Conf.
on World Wide Web (WWW) (Companion Volume). 2013, pages 1343–1350.
doi: 10.1145/2487788.2488173. [see pages 149, 151]

[Lam+15] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. “Finding Near-Optimal Independent Sets at Scale”. In: Computing
Research Repository (CoRR) abs/1509.00764 (2015). doi: 10.48550/ARXIV.
1509.00764. [see pages 7, 25, 203]

[Lam+16] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. “Finding Near-Optimal Independent Sets at Scale”. In: Workshop on
Algorithm Engineering and Experiments (ALENEX). 2016, pages 138–150. doi:
10.1137/1.9781611974317.12. [see pages 7, 25, 94, 202]

[Lam+17] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. “Finding Near-Optimal Independent Sets at Scale”. In: J. Heuristics
23.4 (2017), pages 207–229. doi: 10.1007/s10732-017-9337-x.

[see pages 7, 18, 25, 59, 62, 93, 130, 202]

[Lam+18] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and
Huashuo Zhang. “Exactly Solving the Maximum Weight Independent Set
Problem on Large Real-World Graphs”. In: Computing Research Reposi-
tory (CoRR) abs/1810.10834 (2018). doi: 10.48550/ARXIV.1810.10834.

[see pages 7, 89, 203]

[Lam+19] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and
Huashuo Zhang. “Exactly Solving the Maximum Weight Independent
Set Problem on Large Real-World Graphs”. In: Workshop on Algorithm
Engineering and Experiments (ALENEX). 2019, pages 144–158. doi:
10.1137/1.9781611975499.12. [see pages 7, 89, 92, 94, 112, 117, 201]

[Lam14] Sebastian Lamm. “Evolutionary Algorithms for Independent Sets”. Bachelor’s
thesis. Karlsruhe Institute of Technology, Germany, 2014. [see page 203]

[Lam17] Sebastian Lamm. “Communication Efficient Algorithms for Generating Mas-
sive Networks”. Master’s thesis. Karlsruhe Institute of Technology, Germany,
2017. [see page 203]

219

https://doi.org/10.1007/s10732-011-9189-8
https://doi.org/10.1007/978-3-540-87477-5_18
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.48550/ARXIV.1509.00764
https://doi.org/10.48550/ARXIV.1509.00764
https://doi.org/10.1137/1.9781611974317.12
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.48550/ARXIV.1810.10834
https://doi.org/10.1137/1.9781611975499.12

Bibliography

[Lar07] Craig E. Larson. “A Note On Critical Independence Reductions”. In: Bulletin
of the Institute of Combinatorics and its Applications. 2007, pages 34–46.

[see page 92]

[LAS19] Jan-Hendrik Lange, Bjoern Andres, and Paul Swoboda. “Combinatorial Persis-
tency Criteria for Multicut and Max-Cut”. In: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2019, pages 6093–6102. doi: 10.1109/CVPR.
2019.00625. [see pages 131, 132]

[LCH17] Yuanjie Li, Shaowei Cai, and Wenying Hou. “An Efficient Local Search Al-
gorithm for Minimum Weighted Vertex Cover on Massive Graphs”. In: Intl.
Conf. on Simulated Evolution and Learning (SEAL). 2017, pages 145–157. doi:
10.1007/978-3-319-68759-9_13. [see pages 19, 93]

[LFX13] Chu-Min Li, Zhiwen Fang, and Ke Xu. “Combining MaxSAT Reasoning and
Incremental Upper Bound for the Maximum Clique Problem”. In: IEEE Intl.
Conf. on Tools with Artificial Intelligence (ICTAI). 2013, pages 939–946. doi:
10.1109/ICTAI.2013.143. [see pages 31, 75]

[Li+18] Chu-Min Li, Yanli Liu, Hua Jiang, Felip Manyà, and Yu Li. “A New Upper
Bound for the Maximum Weight Clique Problem”. In: Eur. J. Oper. Res. 270.1
(2018), pages 66–77. doi: 10.1016/j.ejor.2018.03.020. [see page 95]

[Li+20] Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin.
“NuMWVC: A Novel Local Search for Minimum Weighted Vertex Cover
Problem”. In: J. Oper. Res. Soc. 71.9 (2020), pages 1498–1509. doi: 10.1080/
01605682.2019.1621218. [see pages 2, 93]

[Liu+15] Yu Liu, Jiaheng Lu, Hua Yang, Xiaokui Xiao, and Zhewei Wei. “Towards Maxi-
mum Independent Sets onMassiveGraphs”. In:Proc. VLDBEndow. 8.13 (2015),
pages 2122–2133. doi: 10.14778/2831360.2831366. [see pages 30, 41]

[LJM17] Chu-Min Li, Hua Jiang, and Felip Manyà. “On Minimization of the Number of
Branches in Branch-and-BoundAlgorithms for theMaximumClique Problem”.
In: Comput. Oper. Res. 84 (2017), pages 1–15. doi: 10.1016/j.cor.2017.02.
017. [see pages 4, 31, 65–67, 75]

[LJX15] Chu-Min Li, Hua Jiang, and Ruchu Xu. “Incremental MaxSAT Reasoning to
Reduce Branches in a Branch-and-Bound Algorithm for MaxClique”. In: Intl.
Conf. on Learning and Intelligent Optimization (LION). 2015, pages 268–274.
doi: 10.1007/978-3-319-19084-6_26. [see page 75]

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. 2014. url: http://snap.stanford.edu/data.

[see pages 18, 19, 150]

[LM99] Manuel Laguna and Rafael Marti. “GRASP and Path Relinking for 2-Layer
Straight Line Crossing Minimization”. In: INFORMS J. Comput. 11.1 (1999),
pages 44–52. doi: 10.1287/ijoc.11.1.44. [see page 94]

220

https://doi.org/10.1109/CVPR.2019.00625
https://doi.org/10.1109/CVPR.2019.00625
https://doi.org/10.1007/978-3-319-68759-9_13
https://doi.org/10.1109/ICTAI.2013.143
https://doi.org/10.1016/j.ejor.2018.03.020
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.14778/2831360.2831366
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.1007/978-3-319-19084-6_26
http://snap.stanford.edu/data
https://doi.org/10.1287/ijoc.11.1.44

Bibliography

[Loz00] Vadim V. Lozin. “Conic Reduction of Graphs for the Stable Set Problem”.
In: Discret. Math. 222.1-3 (2000), pages 199–211. doi: 10.1016/S0012-
365X(99)00408-2. [see page 127]

[LP09] László Lovász and Michael D. Plummer. Matching Theory. Volume 367. 2009.
isbn: 9780080872322. [see page 127]

[LQ10] Chu-Min Li and ZheQuan. “An Efficient Branch-and-BoundAlgorithmBased
on MaxSAT for the Maximum Clique Problem”. In: AAAI Conf. on Artificial
Intelligence (AAAI). 2010. [see pages 31, 73, 75, 95]

[LR21] Victor Luncasu andMadalina Raschip. “AGraph-BasedApproach for theDNA
Word Design Problem”. In: IEEE ACM Trans. Comput. Biol. Bioinform. 18.6
(2021), pages 2747–2752. doi: 10.1109/TCBB.2020.3008346. [see page 147]

[LS22] Sebastian Lamm and Peter Sanders. “Communication-Efficient Massively
Distributed Connected Components”. In: to appear IEEE Intl. Parallel and
Distributed Processing Symp. (IPDPS). 2022. [see page 201]

[LSS15a] Sebastian Lamm, Peter Sanders, and Christian Schulz. “Graph Partitioning
for Independent Sets”. In: Intl. Symp. on Experimental Algorithms (SEA). 2015,
pages 68–81. doi: 10.1007/978-3-319-20086-6_6.

[see pages 2, 3, 25, 49, 202]

[LSS15b] Sebastian Lamm, Peter Sanders, and Christian Schulz. “Graph Partitioning for
Independent Sets”. In: Computing Research Repository (CoRR) abs/1502.01687
(2015). doi: 10.48550/ARXIV.1502.01687. [see pages 3, 203]

[Luo+19] Chuan Luo, Holger H. Hoos, Shaowei Cai, Qingwei Lin, Hongyu Zhang, and
Dongmei Zhang. “Local Search with Efficient Automatic Configuration for
Minimum Vertex Cover”. In: Intl. Joint Conf. on Artificial Intelligence (IJCAI).
2019, pages 1297–1304. doi: 10.24963/ijcai.2019/180. [see page 31]

[Ma+16] Zongjie Ma, Yi Fan, Kaile Su, Chengqian Li, and Abdul Sattar. “Local Search
with Noisy Strategy for Minimum Vertex Cover in Massive Graphs”. In: Pacific
Rim Intl. Conf. on Artificial Intelligence (PRICAI). 2016, pages 283–294. doi:
10.1007/978-3-319-42911-3_24. [see pages 29, 30]

[Mas+10] Franco Mascia, Elisa Cilia, Mauro Brunato, and Andrea Passerini. “Predicting
Structural and Functional Sites in Proteins by Searching for Maximum-Weight
Cliques”. In:AAAIConf. onArtificial Intelligence (AAAI). 2010. [see pages 2, 90]

[McC+17] Ciaran McCreesh, Patrick Prosser, Kyle A. Simpson, and James Trimble. “On
Maximum Weight Clique Algorithms, and How They Are Evaluated”. In:
Intl. Conf. on Principles and Practice of Constraint Programming (CP). 2017,
pages 206–225. doi: 10.1007/978-3-319-66158-2_14. [see page 19]

[McG12] Catherine C. McGeoch. A Guide to Experimental Algorithmics. 2012. isbn:
0521173019. [see page 22]

[MG95] Brad L. Miller and David E. Goldberg. “Genetic Algorithms, Tournament
Selection, and the Effects of Noise”. In: Complex Syst. 9.3 (1995), pages 193–
212 . [see page 45]

221

https://doi.org/10.1016/S0012-365X(99)00408-2
https://doi.org/10.1016/S0012-365X(99)00408-2
https://doi.org/10.1109/TCBB.2020.3008346
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.48550/ARXIV.1502.01687
https://doi.org/10.24963/ijcai.2019/180
https://doi.org/10.1007/978-3-319-42911-3_24
https://doi.org/10.1007/978-3-319-66158-2_14

Bibliography

[ML12] Tianyang Ma and Longin J. Latecki. “Maximum Weight Cliques with Mutex
Constraints for Video Object Segmentation”. In: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2012, pages 670–677. doi: 10.1109/
CVPR.2012.6247735. [see page 90]

[MMM09] Saeed Mehrabi, Abbas Mehrabi, and Ali D. Mehrabi. “A New Hybrid Genetic
Algorithm for Maximum Independent Set Problem”. In: Intl. Conf. on Software
and Data Technologies (ICSOFT). 2009, pages 314–317. [see pages 43, 47]

[MR99] Meena Mahajan and Venkatesh Raman. “Parameterizing above Guaranteed
Values: MaxSat and MaxCut”. In: J. Algorithms 31.2 (1999), pages 335–354 .

[see page 131]

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic
Toolbox. 2008. doi: 10.1007/978-3-540-77978-0. [see pages 13, 14]

[MSZ18] Jayakrishnan Madathil, Saket Saurabh, and Meirav Zehavi. “Max-Cut Above
Spanning Tree is Fixed-Parameter Tractable”. In: Intl. Computer Science Symp.
in Russia (CSR). 2018, pages 244–256. doi: 10.1007/978-3-319-90530-
3_21. [see pages 6, 131, 133]

[NJ75] George L. Nemhauser and Leslie E. Trotter Jr. “Vertex Packings: Structural
Properties and Algorithms”. In: Math. Program. 8.1 (1975), pages 232–248.
doi: 10.1007/BF01580444. [see pages 28, 33, 37]

[NKÖ97] Kari J. Nurmela, Markku K. Kaikkonen, and Patric R. J. Östergård. “New
Constant Weight Codes from Linear Permutation Groups”. In: IEEE Trans. Inf.
Theory 43.5 (1997), pages 1623–1630. doi: 10.1109/18.623163.

[see pages 2, 90]

[NPS18] BrunoC. S. Nogueira, RianG. S. Pinheiro, andAnand Subramanian. “AHybrid
Iterated Local Search Heuristic for the Maximum Weight Independent Set
Problem”. In: Optim. Lett. 12.3 (2018), pages 567–583. doi: 10.1007/s11590-
017-1128-7. [see pages 93, 94, 96, 101, 107, 121]

[Öst01] Patric R. J. Östergård. “A New Algorithm for the Maximum-Weight Clique
Problem”. In: Nord. J. Comput. 8.4 (2001), pages 424–436 . [see page 94]

[Öst02] Patric R. J. Östergård. “A Fast Algorithm for the Maximum Clique Problem”.
In: Discret. Appl. Math. 120.1-3 (2002), pages 197–207. doi: 10.1016/S0166-
218X(01)00290-6. [see pages 91, 94]

[Pen+20] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. “Recent Advances
in Scalable Network Generation”. In: Computing Research Repository (CoRR)
abs/2003.00736 (2020). doi: 10.48550/ARXIV.2003.00736. [see page 202]

[PHD19] Elijah Pelofske, Georg Hahn, and Hristo N. Djidjev. “Solving Large Minimum
Vertex Cover Problems on a Quantum Annealer”. In: ACM Intl. Conf. on Com-
puting Frontiers (CF). 2019, pages 76–84. doi: 10.1145/3310273.3321562.

[see page 28]

222

https://doi.org/10.1109/CVPR.2012.6247735
https://doi.org/10.1109/CVPR.2012.6247735
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-319-90530-3_21
https://doi.org/10.1007/978-3-319-90530-3_21
https://doi.org/10.1007/BF01580444
https://doi.org/10.1109/18.623163
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.48550/ARXIV.2003.00736
https://doi.org/10.1145/3310273.3321562

Bibliography

[Pri05] Elena Prieto. “TheMethod of Extremal Structure on the k-MaximumCut Prob-
lem”. In: Computing: The Australasian Theory Symp. (CATS). 2005, pages 119–
126. [see pages 6, 131]

[PT19] Patrick Prosser and James Trimble. Peaty: An Exact Solver for the Vertex Cover
Problem. 2019. url: https://dx.doi.org/10.5281/zenodo.3082356.

[see page 73]

[Pul06] Wayne J. Pullan. “Phased Local Search for the Maximum Clique Problem”.
In: J. Comb. Optim. 12.3 (2006), pages 303–323. doi: 10.1007/s10878-006-
9635-y. [see page 33]

[Pul09] Wayne J. Pullan. “Optimisation of Unweighted/Weighted Maximum Inde-
pendent Sets and Minimum Vertex Covers”. In: Discret. Optim. 6.2 (2009),
pages 214–219. doi: 10.1016/j.disopt.2008.12.001. [see pages 29, 93]

[Put+15] Deepak Puthal, Surya Nepal, Cécile Paris, Rajiv Ranjan, and Jinjun Chen.
“Efficient Algorithms for Social Network Coverage and Reach”. In: IEEE Intl.
Cong. on Big Data (BigData Congress). 2015, pages 467–474. doi: 10.1109/
BigDataCongress.2015.75. [see pages 2, 26, 147]

[PV06] Anders S. Pedersen and Preben D. Vestergaard. “Bounds on the Number of
Vertex Independent Sets in a Graph”. In: Taiwanese Journal of Mathematics 10.6
(2006), pages 1575–1587. doi: 10.11650/twjm/1500404576. [see page 120]

[PvdG21] Rick Plachetta and Alexander van der Grinten. “SAT-and-Reduce for Vertex
Cover: Accelerating Branch-and-Reduce by SAT Solving”. In: Symp. on Al-
gorithm Engineering and Experiments (ALENEX). 2021, pages 169–180. doi:
10.1137/1.9781611976472.13. [see pages 29, 73]

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with
Interactive Graph Analytics and Visualization”. In: AAAI Conf. on Artificial In-
telligence (AAAI). 2015, pages 4292–4293. url: http://networkrepository.
com. [see pages 18, 19, 95, 142, 151, 161, 162]

[Reb+11] Steffen Rebennack, Marcus Oswald, Dirk O. Theis, Hanna Seitz, Gerhard
Reinelt, and Panos M. Pardalos. “A Branch and Cut Solver for the Maximum
Stable Set Problem”. In: J. Comb. Optim. 21.4 (2011), pages 434–457. doi:
10.1007/s10878-009-9264-3. [see page 93]

[Rhy70] John M. W. Rhys. “A Selection Problem of Shared Fixed Costs and Network
Flows”. In: Manage. Sci. 17.3 (1970), pages 200–207. doi: 10.1287/mnsc.17.
3.200. [see page 97]

[Rin18] Giovanni Rinaldi. Rudy. 2018. url: http://biqmac.aau.at/library/tar_
files/mac_all.tar.gz. [see page 19]

[RKS22] Daniel Rehfeldt, Thorsten Koch, and Yuji Shinano. “Faster Exact Solution
of Sparse MaxCut and QUBO Problems”. In: Computing Research Repository
(CoRR) abs/2202.02305 (2022). doi: 10.48550/ARXIV.2202.02305.

[see pages 131, 132]

223

https://dx.doi.org/10.5281/zenodo.3082356
https://doi.org/10.1007/s10878-006-9635-y
https://doi.org/10.1007/s10878-006-9635-y
https://doi.org/10.1016/j.disopt.2008.12.001
https://doi.org/10.1109/BigDataCongress.2015.75
https://doi.org/10.1109/BigDataCongress.2015.75
https://doi.org/10.11650/twjm/1500404576
https://doi.org/10.1137/1.9781611976472.13
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1007/s10878-009-9264-3
https://doi.org/10.1287/mnsc.17.3.200
https://doi.org/10.1287/mnsc.17.3.200
http://biqmac.aau.at/library/tar_files/mac_all.tar.gz
http://biqmac.aau.at/library/tar_files/mac_all.tar.gz
https://doi.org/10.48550/ARXIV.2202.02305

Bibliography

[RR14] Mauricio G. C. Resende and Celso C. Ribeiro. “GRASP: Greedy Randomized
Adaptive Search Procedures”. In: Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques. 2014, pages 287–312. doi:
10.1007/978-1-4614-6940-7_11. [see page 94]

[RRW10] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. “Solving Max-Cut to
Optimality by Intersecting Semidefinite and Polyhedral Relaxations”. In:Math.
Program. 121.2 (2010), pages 307–335. doi: 10.1007/s10107-008-0235-8.

[see pages 130–132, 140]

[San+08] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. “Efficient
Traversal of Mesh Edges using Adjacency Primitives”. In: ACM Trans. Graph.
27.5 (2008), page 144. doi: 10.1145/1409060.1409097.

[see pages 18, 19, 26, 155]

[San+16] Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel
Schrade, and Carsten Dachsbacher. “Efficient Random Sampling - Parallel,
Vectorized, Cache-Efficient, and Online”. In: Computing Research Reposi-
tory (CoRR) abs/1610.05141 (2016). doi: 10.48550/ARXIV.1610.05141.

[see page 203]

[San+18] Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel
Schrade, and Carsten Dachsbacher. “Efficient Parallel Random Sampling -
Vectorized, Cache-Efficient, and Online”. In: ACM Trans. Math. Softw. 44.3
(2018), 29:1–29:14. doi: 10.1145/3157734. [see page 202]

[San09] Peter Sanders. “Algorithm Engineering - An Attempt at a Definition”. In:
Efficient Algorithms. 2009, pages 321–340. doi: 10.1007/978-3-642-03456-
5_22. [see page 16]

[San10] Peter Sanders. “Algorithm Engineering”. In: Inform. Spektrum 33.5 (2010),
pages 475–478. doi: 10.1007/s00287-010-0464-0. [see page 16]

[Sch20a] Sebastian Schlag. “High-Quality Hypergraph Partitioning”. PhD thesis. Karl-
sruhe Institute of Technology, Germany, 2020. [see pages 16, 17, 22]

[Sch20b] Christian Schorr. “Improved Branching Strategies for Maximum Independent
Sets”. Bachelor’s thesis. Karlsruhe Institute of Technology, Germany, 2020.

[see page 204]

[SHG20] Matthias F. Stallmann, Yang Ho, and Timothy D. Goodrich. “Graph Profil-
ing for Vertex Cover: Targeted Reductions in a Branch and Reduce Solver”.
In: Computing Research Repository (CoRR) abs/2003.06639 (2020). doi: 10.
48550/ARXIV.2003.06639. [see pages 28, 29, 86, 148]

[Shi+17] Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, and Sumio Masuda.
“Fast Maximum Weight Clique Extraction Algorithm: Optimal Tables for
Branch-and-Bound”. In: Discret. Appl. Math. 223 (2017), pages 120–134. doi:
10.1016/j.dam.2017.01.026. [see page 95]

[Ski20] Steven Skiena. The Algorithm Design Manual. 2020. doi: 10.1007/978-3-
030-54256-6. [see page 11]

224

https://doi.org/10.1007/978-1-4614-6940-7_11
https://doi.org/10.1007/s10107-008-0235-8
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.48550/ARXIV.1610.05141
https://doi.org/10.1145/3157734
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/s00287-010-0464-0
https://doi.org/10.48550/ARXIV.2003.06639
https://doi.org/10.48550/ARXIV.2003.06639
https://doi.org/10.1016/j.dam.2017.01.026
https://doi.org/10.1007/978-3-030-54256-6
https://doi.org/10.1007/978-3-030-54256-6

Bibliography

[SLP16] Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. “A New Exact
MaximumCliqueAlgorithm for Large andMassive SparseGraphs”. In:Comput.
Oper. Res. 66 (2016), pages 81–94. doi: 10.1016/j.cor.2015.07.013.

[see page 32]

[SR18] Thomas Stützle and Rubén Ruiz. “Iterated Local Search”. In: Handbook of
Heuristics. 2018, pages 579–605. doi: 10.1007/978-3-319-07124-4_8.

[see page 13]

[SRJ11] Pablo San Segundo, Diego Rodriguez-Losada, and Agustin Jiménez. “An Exact
Bit-Parallel Algorithm for the Maximum Clique Problem”. In: Comput. Oper.
Res. 38.2 (2011), pages 571–581. doi: 10.1016/j.cor.2010.07.019.

[see pages 31, 42]

[SS12] Peter Sanders and Christian Schulz. “Distributed Evolutionary Graph Parti-
tioning”. In: Meeting on Algorithm Engineering and Experiments (ALENEX).
2012, pages 16–29. doi: 10.1137/1.9781611972924.2. [see pages 20, 21]

[SS13a] Peter Sanders and Christian Schulz. “KaHIP v0.53 - Karlsruhe High Qual-
ity Partitioning - User Guide”. In: Computing Research Repository (CoRR)
abs/1311.1714 (2013). doi: 10.48550/ARXIV.1311.1714.

[see pages 29, 42, 44, 48]

[SS13b] Peter Sanders and Christian Schulz. “Think Locally, Act Globally: Highly
BalancedGraph Partitioning”. In: Intl. Symp. on Experimental Algorithms (SEA).
2013, pages 164–175. doi: 10.1007/978-3-642-38527-8_16. [see page 82]

[SS16] Peter Sanders andChristian Schulz. “ScalableGeneration of Scale-FreeGraphs”.
In: Inf. Process. Lett. 116.7 (2016), pages 489–491. doi: 10.1016/j.ipl.2016.
02.004. [see page 19]

[ST14] Pablo San Segundo and Cristóbal Tapia. “Relaxed Approximate Coloring in
Exact Maximum Clique Search”. In: Comput. Oper. Res. 44 (2014), pages 185–
192. doi: 10.1016/j.cor.2013.10.018. [see pages 31, 42, 75]

[Str16] Darren Strash. “On the Power of Simple Reductions for the Maximum Inde-
pendent Set Problem”. In: Intl. Conf. on Computing and Combinatorics (CO-
COON). 2016, pages 345–356. doi: 10.1007/978-3-319-42634-1_28.

[see pages 18, 28, 33, 57, 65, 86, 98]

[SW11] Peter Sanders and Dorothea Wagner. “Algorithm Engineering”. In: it Inf.
Technol. 53.6 (2011), pages 263–265. doi: 10 . 1524 / itit . 2011 . 9072.

[see page 16]

[SW13] Peter Sanders and Dorothea Wagner. “Algorithm Engineering”. In: Inform.
Spektrum 36.2 (2013), pages 187–190. doi: 10.1007/s00287-013-0684-1.

[see page 16]

[SWC04] Alan J. Soper, Chris Walshaw, and Mark Cross. “A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph-Partitioning”. In: J.
Glob. Optim. 29.2 (2004), pages 225–241. doi: 10.1023/B:JOGO.0000042115.
44455.f3. [see pages 18, 19, 155]

225

https://doi.org/10.1016/j.cor.2015.07.013
https://doi.org/10.1007/978-3-319-07124-4_8
https://doi.org/10.1016/j.cor.2010.07.019
https://doi.org/10.1137/1.9781611972924.2
https://doi.org/10.48550/ARXIV.1311.1714
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.1016/j.cor.2013.10.018
https://doi.org/10.1007/978-3-319-42634-1_28
https://doi.org/10.1524/itit.2011.9072
https://doi.org/10.1007/s00287-013-0684-1
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3

Bibliography

[SZ18] Sándor Szabó and Bogdán Zaválnij. “A Different Approach to Maximum
Clique Search”. In: Intl. Symp. on Symbolic andNumeric Algorithms for Scientific
Computing (SYNASC). 2018, pages 310–316. doi: 10.1109/SYNASC.2018.
00055. [see page 73]

[TK09] Etsuji Tomita and Toshikatsu Kameda. “An Efficient Branch-and-Bound Al-
gorithm for Finding a Maximum Clique with Computational Experiments”.
In: J. Glob. Optim. 44.2 (2009), page 311. doi: 10.1007/s10898-008-9362-2.

[see page 32]

[Tom+13] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, and Mitsuo Wakatsuki. “A
Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum
Clique with Computational Experiments”. In: IEICE Trans. Inf. Syst. 96-D.6
(2013), pages 1286–1298. doi: 10.1587/transinf.E96.D.1286.

[see pages 31, 42, 75]

[TT77] Robert E. Tarjan and Anthony E. Trojanowski. “Finding a Maximum Inde-
pendent Set”. In: SIAM J. Comput. 6.3 (1977), pages 537–546. doi: 10.1137/
0206038. [see page 28]

[Tuk57] John W. Tukey. “On the Comparative Anatomy of Transformations”. In: The
Annals of Mathematical Statistics 28.3 (1957), pages 602–632. doi: 10.1214/
aoms/1177706875. [see page 22]

[Tuk77] John W. Tukey. Exploratory Data Analysis. 1977. isbn: 9780201076165.
[see page 22]

[Uhl21] Tim Niklas Uhl. “Communication Efficient Triangle Counting”. Master’s thesis.
Karlsruhe Institute of Technology, Germany, 2021. [see page 204]

[VBB15] Anurag Verma, Austin Buchanan, and Sergiy Butenko. “Solving the Maximum
Clique and Vertex Coloring Problems on Very Large Sparse Networks”. In:
INFORMS J. Comput. 27.1 (2015), pages 164–177. doi: 10.1287/ijoc.2014.
0618. [see page 32]

[vLA87] Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated Annealing: Theory
and Applications. Volume 37. 1987. doi: 10.1007/978-94-015-7744-1.

[see page 13]

[vNT93] Nguyen van Ngoc and Zsolt Tuza. “Linear-Time Approximation Algorithms
for the Max Cut Problem”. In: Combinatorics, Probability and Computing 2
(1993), pages 201–210. doi: 10.1017/S0963548300000596. [see page 131]

[Wan+12] Yang Wang, Zhipeng Lü, Fred W. Glover, and Jin-Kao Hao. “Path Relinking
for Unconstrained Binary Quadratic Programming”. In: Eur. J. Oper. Res. 223.3
(2012), pages 595–604. doi: 10.1016/j.ejor.2012.07.012. [see page 133]

[Wan+13] Yang Wang, Zhipeng Lü, Fred W. Glover, and Jin-Kao Hao. “Probabilistic
GRASP-Tabu Search Algorithms for the UBQP Problem”. In: Comput. Oper.
Res. 40.12 (2013), pages 3100–3107. doi: 10.1016/j.cor.2011.12.006.

[see page 130]

226

https://doi.org/10.1109/SYNASC.2018.00055
https://doi.org/10.1109/SYNASC.2018.00055
https://doi.org/10.1007/s10898-008-9362-2
https://doi.org/10.1587/transinf.E96.D.1286
https://doi.org/10.1137/0206038
https://doi.org/10.1137/0206038
https://doi.org/10.1214/aoms/1177706875
https://doi.org/10.1214/aoms/1177706875
https://doi.org/10.1287/ijoc.2014.0618
https://doi.org/10.1287/ijoc.2014.0618
https://doi.org/10.1007/978-94-015-7744-1
https://doi.org/10.1017/S0963548300000596
https://doi.org/10.1016/j.ejor.2012.07.012
https://doi.org/10.1016/j.cor.2011.12.006

Bibliography

[Wan+19] Luzhi Wang, Chu-Min Li, Junping Zhou, Bo Jin, and Minghao Yin. “An Exact
Algorithm for Minimum Weight Vertex Cover Problem in Large Graphs”.
In: Computing Research Repository (CoRR) abs/1903.05948 (2019). doi: 10.
48550/ARXIV.1903.05948. [see pages 2, 92]

[Wan+20] Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. “SCCWalk: An
Efficient Local Search Algorithm and its Improvements for Maximum Weight
Clique Problem”. In: Artif. Intell. 280 (2020), page 103230. doi: 10.1016/j.
artint.2019.103230. [see page 95]

[War+05] Deepak Warrier, Wilbert E. Wilhelm, Jeffrey S. Warren, and Illya V. Hicks.
“A Branch-and-Price Approach for the Maximum Weight Independent Set
Problem”. In:Networks 46.4 (2005), pages 198–209. doi: 10.1002/net.20088.

[see page 93]

[War03] Deepak Warrier. “A Branch, Price, and Cut Approach to Solving the Maxi-
mum Weighted Independent Set Problem”. PhD thesis. Texas A&M University,
United States, 2003. [see page 93]

[WCY16] Yiyuan Wang, Shaowei Cai, and Minghao Yin. “Two Efficient Local Search
Algorithms forMaximumWeight Clique Problem”. In:AAAI Conf. on Artificial
Intelligence (AAAI). 2016, pages 805–811. [see page 95]

[WH06] Jeffrey S. Warren and Illya V. Hicks. “Combinatorial Branch-and-Bound for
the Maximum Weight Independent Set Problem”. 2006. url: https://www.
caam.rice.edu/~ivhicks/jeff.rev.pdf. [see pages 91, 98, 99, 107]

[WH13] QinghuaWu and Jin-KaoHao. “AnAdaptiveMultistart Tabu Search Approach
to Solve the Maximum Clique Problem”. In: J. Comb. Optim. 26.1 (2013),
pages 86–108. doi: 10.1007/s10878-011-9437-8. [see pages 29, 30, 95]

[WH15a] QinghuaWu and Jin-KaoHao. “A Review onAlgorithms forMaximumClique
Problems”. In: Eur. J. Oper. Res. 242.3 (2015), pages 693–709. doi: 10.1016/j.
ejor.2014.09.064. [see pages 11, 32]

[WH15b] Qinghua Wu and Jin-Kao Hao. “Solving the Winner Determination Problem
via a Weighted Maximum Clique Heuristic”. In: Expert Syst. Appl. 42.1 (2015),
pages 355–365. doi: 10.1016/j.eswa.2014.07.027. [see pages 2, 90]

[WH22] Yang Wang and Jin-Kao Hao. “Metaheuristic Algorithms”. In: The Quadratic
Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applica-
tions. 2022. Chapter 9, pages 209–225. isbn: 9783031045196. [see page 133]

[WHG12] Qinghua Wu, Jin-Kao Hao, and Fred W. Glover. “Multi-Neighborhood Tabu
Search for the Maximum Weight Clique Problem”. In: Ann. Oper. Res. 196.1
(2012), pages 611–634. doi: 10.1007/s10479-012-1124-3.

[see pages 29, 30, 95]

[Wie18] Angelika Wiegele. BiqMac Library. 2018. url: http://biqmac.aau.at/
biqmaclib.html. [see pages 19, 132, 161, 200]

227

https://doi.org/10.48550/ARXIV.1903.05948
https://doi.org/10.48550/ARXIV.1903.05948
https://doi.org/10.1016/j.artint.2019.103230
https://doi.org/10.1016/j.artint.2019.103230
https://doi.org/10.1002/net.20088
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://doi.org/10.1007/s10878-011-9437-8
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/j.eswa.2014.07.027
https://doi.org/10.1007/s10479-012-1124-3
http://biqmac.aau.at/biqmaclib.html
http://biqmac.aau.at/biqmaclib.html

Bibliography

[XGA13] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. “Scalable Maximum Clique
Computation Using MapReduce”. In: IEEE Intl. Conf. on Data Engineering
(ICDE). 2013, pages 74–85. doi: 10.1109/ICDE.2013.6544815. [see page 31]

[Xia+17] Mingyu Xiao, Weibo Lin, Yuanshun Dai, and Yifeng Zeng. “A Fast Algorithm
to Compute Maximum k-Plexes in Social Network Analysis”. In: AAAI Conf.
on Artificial Intelligence (AAAI). 2017, pages 919–925. [see pages 2, 11, 28]

[Xia+21] Mingyu Xiao, Sen Huang, Yi Zhou, and Bolin Ding. “Efficient Reductions and
a Fast Algorithm of Maximum Weighted Independent Set”. In: Intl. Conf. on
World Wide Web (WWW). 2021, pages 3930–3940. doi: 10.1145/3442381.
3450130. [see page 92]

[XKK16] Hong Xu, T. K. Satish Kumar, and Sven Koenig. “A New Solver for the Mini-
mum Weighted Vertex Cover Problem”. In: Intl. Conf. on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR). 2016, pages 392–405.
doi: 10.1007/978-3-319-33954-2_28. [see page 93]

[XN13] Mingyu Xiao and Hiroshi Nagamochi. “Confining Sets and Avoiding Bot-
tleneck Cases: A Simple Maximum Independent Set Algorithm in Degree-3
Graphs”. In: Theor. Comput. Sci. 469 (2013), pages 92–104. doi: 10.1016/j.
tcs.2012.09.022. [see pages 28, 33, 35–38, 78–80]

[XN17] Mingyu Xiao and Hiroshi Nagamochi. “Exact Algorithms for Maximum In-
dependent Set”. In: Inf. Comput. 255 (2017), pages 126–146. doi: 10.1016/j.
ic.2017.06.001. [see pages 4, 15, 28, 38, 74, 79, 80]

[Zav19] Bogdán Zaválnij. zbogdan/pace-2019 a. 2019. url: https://doi.org/10.
5281/zenodo.3228802. [see page 73]

[Zhe+20] Weiguo Zheng, Jiewei Gu, Peng Peng, and Jeffrey Xu Yu. “Efficient Weighted
Independent Set Computation over Large Graphs”. In: IEEE Intl. Conf. on Data
Engineering (ICDE). 2020, pages 1970–1973. doi: 10.1109/ICDE48307.2020.
00216. [see pages 2, 64, 92, 147]

[ZHG17] Yi Zhou, Jin-Kao Hao, and Adrien Goëffon. “PUSH: A Generalized Operator
for the Maximum Vertex Weight Clique Problem”. In: Eur. J. Oper. Res. 257.1
(2017), pages 41–54. doi: 10.1016/j.ejor.2016.07.056. [see page 95]

[Zuc07] David Zuckerman. “Linear Degree Extractors and the Inapproximability
of Max Clique and Chromatic Number”. In: Theory Comput. 3.1 (2007),
pages 103–128. doi: 10.4086/toc.2007.v003a006. [see page 11]

228

https://doi.org/10.1109/ICDE.2013.6544815
https://doi.org/10.1145/3442381.3450130
https://doi.org/10.1145/3442381.3450130
https://doi.org/10.1007/978-3-319-33954-2_28
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1016/j.ic.2017.06.001
https://doi.org/10.1016/j.ic.2017.06.001
https://doi.org/10.5281/zenodo.3228802
https://doi.org/10.5281/zenodo.3228802
https://doi.org/10.1109/ICDE48307.2020.00216
https://doi.org/10.1109/ICDE48307.2020.00216
https://doi.org/10.1016/j.ejor.2016.07.056
https://doi.org/10.4086/toc.2007.v003a006

	Title Page
	Abstract
	Deutsche Zusammenfassung
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Main Contributions
	1.1.1 Maximum Cardinality Independent Sets
	1.1.2 Maximum Weight Independent Sets
	1.1.3 Maximum Cuts

	1.2 Outline

	2 Preliminaries
	2.1 Notation and Definitions
	2.1.1 Kernelization and Reductions
	2.1.2 Graphs
	2.1.3 Problem Definitions

	2.2 Algorithmic Components
	2.2.1 Local Search
	2.2.2 Evolutionary Algorithms
	2.2.3 Branch-and-Reduce
	2.2.4 Algorithm Portfolios

	2.3 Methodology
	2.3.1 Algorithm Engineering
	2.3.2 Experimental Methodology

	3 Maximum Cardinality Independent Sets
	3.1 Related Work
	3.1.1 Exact Approaches
	3.1.2 Heuristic Approaches
	3.1.3 Maximum Clique and Clique Enumeration
	3.1.4 Reduction Rules
	3.1.5 Branch-and-Reduce
	3.1.6 The ARW Algorithm

	3.2 Inexact Iterative Reductions
	3.2.1 Previous Work on Evolutionary Algorithms
	3.2.2 Evolutionary Components
	3.2.3 Reduction Algorithms
	3.2.4 Experimental Evaluation

	3.3 On-the-fly Reductions
	3.3.1 Techniques for Accelerating Local Search
	3.3.2 Experimental Evaluation

	3.4 Exact Portfolio Algorithm
	3.4.1 Techniques
	3.4.2 Putting it all Together
	3.4.3 Experimental Evaluation

	3.5 Targeted Branching Rules
	3.5.1 Previous Work on Branching Strategies
	3.5.2 Decomposition Branching
	3.5.3 Reduction Branching
	3.5.4 Experimental Evaluation

	3.6 Conclusion and Future Work

	4 Maximum Weight Independent Sets
	4.1 Related Work
	4.1.1 Exact Approaches
	4.1.2 Heuristic Approaches
	4.1.3 Maximum Weight Clique

	4.2 Generalized Reduction Rules
	4.2.1 Critical Weighted Independent Set Reduction
	4.2.2 Efficient Branch-and-Reduce
	4.2.3 Weighted Reduction Rules
	4.2.4 Experimental Evaluation

	4.3 Increasing Transformations
	4.3.1 Struction
	4.3.2 New Weighted Struction Variants
	4.3.3 Practically Efficient Structions
	4.3.4 Experimental Evaluation

	4.4 Conclusion and Future Work

	5 Maximum Cuts
	5.1 Related Work
	5.1.1 Exact Approaches
	5.1.2 Heuristic Approaches

	5.2 Practically Efficient Reductions
	5.3 Implementation
	5.4 Experimental Evaluation
	5.4.1 Performance of Individual Rules
	5.4.2 Exactly Computing a Maximum Cut
	5.4.3 Analysis on Large Instances

	5.5 Conclusion and Future Work

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	Appendix
	A Instance Details
	B Additional Results for Inexact Iterative Reductions
	C Convergence Plots for Inexact Iterative Reductions
	D Convergence Plots for On-the-fly Reductions
	E Detailed Results for Targeted Branching Rules
	F Kernel Sizes for Generalized Reduction Rules
	G Detailed Results for Generalized Reduction Rules
	H Convergence Plots for Generalized Reductions
	I Branch-and-Reduce for Comparison Increasing Transformations
	J State-of-the-Art Comparison for Increasing Transformations
	K Convergence Plots for Increasing Transformations
	L Reduced Rudy Instances for Maximum Cuts

	Publications and Supervised Theses
	Bibliography

