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A B S T R A C T

The fatigue strength of structures subjected to cyclic loading depends strongly on the stress ratio. Particularly,
in case of welded steel structures this fact is not considered in the corresponding standards nor in the guidelines.
Experimentally, two approaches are used to study the effect of stress ratio on the fatigue life. On the one
hand, based on the 𝑆-𝑁 curves obtained from tests performed at different stress ratios, the fatigue life under a
particular stress range is estimated. On the other hand, the stress amplitude corresponding to a constant fatigue
life is estimated by applying the failure criteria for fluctuating stress like the Goodman–Haigh relationship.
This paper presents a general probabilistic model, which estimates the 𝑆-𝑁 and Goodman–Haigh curves for any
stress ratio. Afterwards, this model is applied on data obtained from full and partial cyclic compression loading
tests performed on welded specimens made of steel St 52-3. The tested details correspond to the permissible
notch condition limit occurred in highly stressed structures used to build ships.
1. Introduction

In the field of steel structures some methods have been suggested in
order to evaluate the effect of the stress ratio 𝑅 on the fatigue strength
estimation. These models are given by a function of the type

𝛥𝜎𝐷(𝑅) = 𝛥𝜎𝐷 ⋅ 𝑓 (𝑅), (1)

where 𝑓 (𝑅) is a predefined function, known as enhancement factor and
𝛥𝜎𝐷 is a predefined fatigue strength. Note that the different standards
use the same kind of function, however, for different stress ratios (IIW,
𝑅 = 0.5 Hobbacher, 2016; FKM, 𝑅 = −1 fkm, 2003) and compensate
the discrepancy by different enhancement factors (Schork et al., 2020;
Kaffenberger, 2012).

In case of welded joints, Hobbacher suggests multiplying the detail
fatigue class by an enhancement factor 𝑓 (𝑅), which depends on the
level and direction of the residual stresses, see Hobbacher (2016). An
additional proposal of the enhancement factor 𝑓 (𝑅) is made by Yuen
in Yuen et al. (2013) in case of welded joints with severe stress concen-
trations typical of ship details under constant and variable amplitude
fatigue loading.

When the riveted structures are under study, on the one hand Taras
and Greiner proposed in Greiner et al. (2007) and Taras and Greiner

∗ Corresponding author at: KIT Stahl- und Leichtbau, Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT). Otto-Ammann-Platz
1, 76131 Karlsruhe, Germany.

E-mail address: paul.toasa@kit.edu (P.D. Toasa Caiza).

(2010) an enhancement factor 𝑓 (𝑅), which depends on the material
(wrought iron or steel) and on the period of construction (before or
after 1900) of the structure. Thus, in this model a detail category
𝛥𝜎𝐶 = 80 MPa for riveted specimens is suggested. The proposed factor
has not been validated by experimental tests, but it seems that they
are based on the results of a technical report from the Utrecht Uni-
versity (Unterweger and Taras, 2010; Unterweger et al., 2013), and on
some considerations made on the standard of the German railway (DB
Netz AG, 2002) and of the Austrian standard (CEN-CENELEC, 2006).

On the other hand, Heydarinouri et al. proposed in Heydarinouri
et al. (2019) a different factor, which is obtained by considering
the Constant Life Diagram (CLD) approach and a modified Johnson
criterion, see Budynas and Nisbett (2019) and Ghafoori et al. (2015).
However, in case of remaining fatigue life estimation under variable
amplitude loading, the authors themselves suggest not to apply their
proposed method for the determination of the finite fatigue life since
CLD is a local approach, but an estimation method based on the
𝑆-𝑁 curves.

Besides the empirical characteristics of the proposed factors 𝑓 (𝑅), it
is important to keep in mind that in every case it depends on a given
fatigue strength 𝛥𝜎𝐷 or detail category. However, the fatigue strength
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cannot be a predefined value but it depends on the experimental data.
In other words, the fatigue strength is not a deterministic value but a
random variable, so that, a suitable statistical analysis should be taken
into account in order to obtain reliable estimations. Some remarks
about this issue were already done in Sire and Ragueneau (2019).

Unfortunately, most of the classic and new methods assume that
the fatigue strength can be described by a linear model linked with
a normal distribution. Some of these new proposals are, the six pa-
rameters model of Leonetti et al. which is based on a uncertainty
analysis (Leonetti et al., 2017, 2018), the model of Hensel, which
proposes a mean stress correction based on the sensitivity to mean
stress (Hensel, 2020), the four 4R method, which aims to determine
the local stress and is applied by Ahola et al. in Ahola et al. (2020)
and Ahola et al. (2021), and the analysis of the influence of the resid-
ual stress made by Baumgartner in Baumgartner and Bruder (2013).
Nevertheless, these assumptions are not exclusive of the fatigue studies
on structural steel, these are also considered in research of aeroengine
disks (Lu et al., 0000), preloaded threaded fasteners (Li et al., 2020),
fiber reinforced laminates (Meng et al., 2018) or lightweight composite
structures (Böhm and Głowacka, 2020).

As a matter of fact, it is already known that this phenomenon
actually is governed by a nonlinear model and a Generalized Extreme
Value (GEV) distribution.

In order to overcome the limitations of the models mentioned above,
a model based on the Stüssi function was proposed by Toasa and
Ummenhofer in Toasa Caiza and Ummenhofer (2018) for 𝑅 = 0,
n Toasa Caiza and Ummenhofer (2020) for full reversed data and
hen enhanced and applied in Toasa Caiza et al. (2021). However, this
roposals consider only the case when the experimental data come
rom full tension, tension dominated or full reversed fatigue tests, in
ther words when |𝑅| ≤ 1. Moreover, the enhanced model proposed
n Toasa Caiza et al. (2021) provides only a deterministic estimation of
he fatigue life.

For these reasons, a general model has to be built by considering
ny stress ratio 𝑅 and the probability of fatigue failure. In order to
eneralize the mentioned model in Toasa Caiza et al. (2021) for any
tress ratio 𝑅, it is necessary to consider the geometry of the loading
ave and the elasto-plastic behavior of the material.

As it is known, the geometry of the loading wave depends on the
elationship between the maximum and minimum stresses given by the
tress ratio. Under these circumstances, the behavior of the loading
ave can be classified according to four regions or quadrants shown

n Fig. 1.
Based on Fig. 1, it can be assumed that the limits of the stress

ange 𝛥𝜎 may depend on the ultimate tensile strength 𝑅𝑚. Thus, the
entioned limit behavior can be described by the function

(𝑅𝑚, 𝑅) =

{

𝑅𝑚(1 − 𝑅) if 𝑅 ∈ [0, 1],
𝑅𝑚(1 −

1
𝑅 ) if 𝑅 ∈ [−∞,−1[ ∪ ]1,∞],

(2)

hich is shown in Fig. 2.
The definition given by Eq. (2) assumes that after plastic deforma-

ion no changes in the yield strength 𝑅𝑒𝑙 or ultimate tensile strength
𝑚 are caused. This fact becomes relevant, when the absolute value of

ension or compression loads is bigger than 𝑅𝑒𝑙. In other words, when
he fatigue test corresponds to the Ultra Low Cycle Fatigue (ULCF) or
ow Cycle Fatigue (LCF) regimes.

Thus, it is important to keep in mind, that this assumption ignores
hat the stress reversal after yielding may cause a kinematic harden-
ng of the material, which leads to a shift of the yield surface. This
henomenon is described by the Bauschinger1 effect that describes a
hange in tensile or compression yield strength when the direction

1 Johann Bauschinger (Nürnberg, 11.06.1834–25.11.1893). German math-
matician and professor of Engineering Mechanics at Munich Polytechnic.
2

F

of loading is reversed after prior plastic deformation (Vlado A, 2001;
Gothivarekara et al., 2021).

For these reasons, the fatigue strength estimation where the plastic
behavior prevails is usually strain based, and where the elastic behavior
prevails, the stress is taken into account.

As might be expected, if the ultimate tensile strength 𝑅𝑚 is replaced
by the yield strength 𝑅𝑒𝑙 in Eq. (2), the effect of Bauschinger may
be disregarded. This fact, however would imply that the estimation in
VLCF and LCF regimes may not be performed.

The following sections on this paper are organized as follows.
Section 2 presents the deterministic approach to model the Wöhler
and Goodman–Haigh curves for any stress ratio 𝑅. Section 3 presents
a general probabilistic proposal to model the curves mentioned in
previous section. Section 4 presents an application of the methods
proposed in Sections 2 and 3, which considers the fatigue data of
welded specimens of steel St 52-3. These specimens are related with
high stress structures used to build ships. Finally, Section 5 presents
the conclusions of this study and propose the subsequent research to
be performed.

2. Deterministic Stüssi model for any stress ratio 𝐑

Taking into account the assumption of no Bauschinger effect and Eq.
(2) defined in the previous section, a general Stüssi equation to model
the 𝑆-𝑁 curves for any stress ratio 𝑅 can be written as

𝛥𝜎 =
𝑇 (𝑅𝑚, 𝑅) + 𝛼𝑁𝛽𝛥𝜎∞

1 + 𝛼𝑁𝛽 = S(𝑁,𝑅), (3)

here

𝛥𝜎: stress range during the fatigue test
𝑁 ∶ number of load cycles up to failure or up to end of the test
𝑅𝑚 ∶ ultimate tensile strength

𝛥𝜎∞ ∶ fatigue limit2

𝛼, 𝛽 ∶ geometrical parameters
𝑅 ∶ stress ratio

S: Stüssi function.

The model given by Eq. (3) depends on two geometrical parameters
and 𝛽 which can be estimated by applying a linear regression and on

wo material parameters 𝑅𝑚 and 𝛥𝜎∞, which are supposed to be known.

.1. Parameter estimation

The estimation of the geometrical parameters 𝛼 and 𝛽 from Eq. (3)
an be performed as follows. By manipulating the Stüssi equation, (3),
his can be written as

𝑁𝛽 =
𝑇 (𝑅𝑚, 𝑅) − 𝛥𝜎
𝛥𝜎 − 𝛥𝜎∞

. (4)

Then, by applying logarithms in Eq. (4), the Stüssi equation can be
written in a linear form as follows

log(𝑁) = 1
𝛽
log

(

𝑇 (𝑅𝑚, 𝑅) − 𝛥𝜎
𝛥𝜎 − 𝛥𝜎∞

)

− 1
𝛽
log(𝛼). (5)

The Eq. (5) is no more than an elementary linear equation of the
type

𝑌 = 𝐴𝑋 + 𝐵, (6)

2 The existence of the fatigue limit is still an open debate, see for exam-
le Bathias (1999), Miller and O’donnell (1999), Pyttel et al. (2011) and
ernández-Canteli et al. (2020).
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Fig. 1. Effects of the stress ratio on the loading wave geometry. |𝜎𝑚𝑎𝑥| < 𝑅𝑚, |𝜎𝑚𝑖𝑛| < 𝑅𝑚.
t

where
𝑌 = log(𝑁),

𝑋 = log
(

𝑇 (𝑅𝑚, 𝑅) − 𝛥𝜎
𝛥𝜎 − 𝛥𝜎∞

)

,

= 1
𝛽
,

= − 1
𝛽
log(𝛼).

The parameters 𝐴 and 𝐵 of Eq. (6) can be determined from the
xperimental data of fatigue failures by applying a linear regression
odel. Then, the geometrical parameters 𝛼 and 𝛽 are given by

= 1
𝐴

(7)

and

𝛼 = 𝑒
−𝐵
𝐴 . (8)

A graphical representation of Eq. (6) for different stress ratios 𝑅 is
shown in Fig. 3.

2.2. Graphical representation

The Stüssi function offers a good geometrical approach to depict the
3

theoretical fatigue behavior of a material. Moreover, it describes clearly
Fig. 2. Function 𝑇 (𝑅𝑚 , 𝑅).

he asymptotic behavior regarding the ultimate tensile strength 𝑅𝑚 and

the fatigue limit 𝛥𝜎∞, since for Eq. (3)

lim 𝑆(𝑁,𝑅) = 𝑇 (𝑅 ,𝑅), (9)

𝑁→0 𝑚
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Fig. 3. Linear regressions of the Stüssi function 𝑆(𝑁,𝑅) for different stress ratios.

Fig. 4. 𝑆-𝑁 or Wöhler curves based on the Stüssi function for different stress ratios.

and

lim
𝑁→∞

𝑆(𝑁,𝑅) = 𝛥𝜎∞. (10)

A graphical representation of 𝑆-𝑁 curves given by Eq. (3) for dif-
ferent values of stress ratio 𝑅 is shown in Fig. 4.

2.3. Goodman–Haigh diagrams

Once the 𝑆-𝑁 curves have been defined, the Goodman–Haigh dia-
grams can be plotted. These diagrams describe the fatigue strength for
a constant fatigue life while the stress ratio is varying.

By applying Eq. (3), the mean stress 𝜎𝜇,𝑖,𝑗 and stress amplitude 𝜎𝑎,𝑖,𝑗
as function of a fatigue life 𝑁𝑖 and stress ratio 𝑅𝑗 are given by

𝜎𝜇,𝑖,𝑗 =
𝑆(𝑁𝑖, 𝑅𝑗 )

2
⋅
(1 + 𝑅𝑗

1 − 𝑅𝑗

)

(11)

and

𝜎𝑎,𝑖,𝑗 =
𝑆(𝑁𝑖, 𝑅𝑗 )

2
. (12)

Then, by varying the stress ratio 𝑅𝑗 and keeping constant the
oading cycles 𝑁𝑖, a set of points corresponding to a constant fatigue
ife are obtained.

Finally, for a better visualization, the straight lines given by

𝑎 = 𝜎𝜇 ⋅
(1 − 𝑅𝑗

1 + 𝑅𝑗

)

(13)

ave to be plotted.
4
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Table 1
Experimental data of the fatigue tests under constant amplitude loading and the
estimations obtained from them.

(a) Experimental data (b) Estimations

Experimental data Estimations

𝛥𝜎𝑖 𝑁𝑖,𝑗 Weibull parameters Fatigue life 𝑁𝑖

𝛥𝜎1 𝑁1,1 , 𝑁1,2 ,… , 𝑁1,𝑗1 𝑎1 , 𝑏1 , 𝑐1 𝑁1(𝑃 = 𝑝1)

𝛥𝜎2 𝑁2,1 , 𝑁2,2 ,… , 𝑁2,𝑗2 𝑎2 , 𝑏2 , 𝑐2 𝑁2(𝑃 = 𝑝1)

⋮ ⋮ ⋮ ⋮

𝛥𝜎𝑛 𝑁𝑛,1 , 𝑁𝑛,2 ,… , 𝑁𝑛,𝑗𝑛 𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛 𝑁𝑛(𝑃 = 𝑝1)

3. Probabilistic Stüssi model for any stress ratio 𝐑

It is well known that the fatigue life time or fatigue strength is a
random variable. However, for decades, it was assumed that its random
behavior can be described by a linear model linked to a Gaussian
distribution. This fact is even today considered in the official standards
and guidelines such as Eurocode 3 (CEN-CENELEC, 2010), International
Institute of welding (IIW) (Hobbacher, 2009, 2010), ISO12107 (ISO/TC
164/SC 4, 2012), German railways (DB Netz AG, 2002), Swiss stan-
dard (SIA, 2011), guidelines for design of wind turbines (Det Norske
Veritas, 2002), ship structures (Yuen et al., 2013) and much more.

However, it has been shown that this phenomenon actually is prop-
erly described by nonlinear model together with a Generalized Extreme
Value (GEV) distribution, see Castillo et al. (1985), Castillo and Galam-
bos (1987), Castillo (1988) and Castillo and Hadi (1994). Among the
GEV distributions, the Weibull3 distribution is the most common used
in case of life time is the random variable under study, see Kotz and
Nadarajah (2000) and Rinne (2008). The applicability of the Weibull
distribution to model the fatigue strength is well presented in the book
of Castillo and Fernández-Cantelli, see Castillo and Fernández-Canteli
(2009).

According to the remarks presented above, the loading cycles 𝑁
will follow a three parameter Weibull Distribution𝑊 (𝑎, 𝑏, 𝑐), whose
cumulative distribution function (CDF) is given by

𝐹𝑁 (𝑁𝑖) = 𝑃 (𝑁 ≤ 𝑁𝑖) = 1 − exp
[

−
(

𝑁𝑖 − 𝑎
𝑏

)𝑐]

, 𝑥 ≥ 𝑎, (14)

where

𝑁 ∶ Random loading cycles
𝑁𝑖 ∶ Fixed experimental loading cycles

𝑎 ∈ R ∶ Location or translation parameter, also known as threshold,
𝑏 > 0 ∶ Scale or statistical dispersion parameter,
𝑐 > 0 ∶ Shape parameter,

𝑃 ∶ Probability of failure.

In other words, Eq. (14) gives the probability of reaching a fatigue
life of at least 𝑁𝑖 loading cycles.

Thus, the first goal is estimating the Weibull parameters correspond-
ing to the fatigue life 𝑁 for a given stress range 𝛥𝜎𝑖.

3.1. Parameter estimation

Before making estimations about the fatigue life under a particular
stress range, it is necessary to estimate the parameters of the Weibull
distribution corresponding to this stress range.

By considering the random loading cycles given in the second
column of Table 1a, the parameters of the three parameter Weibull Dis-
tribution for every stress range 𝛥𝜎𝑖 can be estimated, see first column
of Table 1b.

3 Ernst Hjalmar Waloddi Weibull. Vittskövle (Sweden), 18.06.1887 -
nnecy (France), 12.10.1979. Swedish engineer and mathematician.



Applications in Engineering Science 10 (2022) 100091P.D. Toasa Caiza et al.
Table 2
Chemical composition of the steel ST 52-3 used to manufacture the specimens.

Chemical composition of the specimens [%]

C = 0,20 P = 0.017 Nb = 0.004 N = 0,006
M = 1.49 S = 0.016 V = 0.005
Si = 0.41 Al = 0.030 Ti = 0.0003

There are several methods to estimate these parameters, see Dupuis
(1999), Gourdin et al. (1994), Gupta and Panchang (1989), Hirose
(1996), Hosking et al. (1985), Marković et al. (2009), Offinger (1996),
Rinne (2008) and Zanaquis and Kyparisis (1986). Within this paper
the general probability weighted moments (PWM) method proposed
in Toasa Caiza and Ummenhofer (2011) will be applied.

Once the Weibull parameters have been estimated, the quantile of
the fatigue life �̂� for a specific probability 𝑝 can be estimated, see
second column of Table 1a. Thus, by manipulating Eq. (14) and con-
sidering the estimated Weibull parameters, the fatigue life is estimated
by

�̂�(𝑃 = 𝑝) = 𝑎 + �̂�
[

− log (1 − 𝑝)
]

1
𝑐
. (15)

Finally, the pairs (𝛥𝜎𝑖, 𝑁𝑖) are considered to estimate the probabilis-
tic Stüssi function by applying the linear regression method proposed
in Section 2.1.

3.2. Goodman–Haigh diagrams

Similar to the method explained in Section 2.3, probabilistic
Goodman–Hiagh diagrams can be plotted as well. In this case, the mean
stresses and stress amplitudes have to be calculated by considering the
fatigue life estimations 𝑁𝑖 in Eqs. (11) and (12).

4. Application on welded specimens

In order to apply and evaluate the suitability of the method pro-
posed in the previous sections, the experimental data correspond-
ing to welded details with a double side longitudinal stiffener with
non-load carrying fillet were considered, see Rörup and Petershagen
(2000) and Rörup (2005). The geometry of these details represent the
permissible limit of notch condition in highly stressed ship structures.

4.1. Specimens

The test specimens were manufactured of steel St 52-3, whose chem-
ical composition and mechanical properties are described in Tables 2
and 3. Since the application of the Stüssi model requires to know
the fatigue limit 𝛥𝜎∞, it is worth mentioning that in this application,
the fatigue limit is assumed to be the equal the constant amplitude
fatigue limit (CAFL), according to the definition given in the Eurocode
EN-1993-1-9. In other words, the fatigue limit corresponds to the
estimation of the CAFL with 95% confidence at 5 ⋅ 106 loading cycles.

According to the standards, the minimum yield strength of the steel
St 52-3 has to be 355 MPa. The fillet joint was manually arc welded in
the horizontal position by using an electrode of the type E 43 22R(C)3
according to DIN 1913. The throat thickness of the joint was 3,5 mm.

For the fatigue tests, details with a longitudinal stiffener with
non-load carrying fillet welds were selected, see Fig. 5. These details
represent the permissible notch condition limit occurred in highly
stressed structures used to build ships. Furthermore, high residual ten-
sile stresses could be expected in the fatigue critical area in small-scale
specimens such as those considered in this work.
5

Table 3
Mechanical properties of the steel used to manufacture the specimens.

Mechanical properties of the steel St 52-3

Yield strength 𝑅𝑒𝑙 406 MPa
Tensile strength 𝑅𝑚 579 MPa
Rupture elongation 𝐴5 27%
Fatigue limit 𝛥𝜎∞ 58.57 MPa

Charpy V impact values at T = 20 ◦C

1. Test 110 J
2. Test 100 J
3. Test 114 J

Fig. 5. Geometry of the specimen.

Table 4
Results of the fatigue tests under constant amplitude loading.

Loading cycles up to failure

𝛥𝜎 [MPa] 𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

220

94 700 113 600 136 400 348 000
108 600 115 000 138 000 350 000
124 070 122 100 142 700 357 000

123 300 154 700 370 000
146 400 163 000 395 000
151 400 166 500 398 000
168 800 172 500 436 000

185 500 457 000

140

306 300 381 500 409 000 755 400
325 000 421 500 430 000 974 000
375 000 457 900 501 000 1 021 000
428 000 464 300 525 000 1 210 000
539 100 480 600 526 000 1 311 000
654 900 502 300 583 800 1 350 000

520 000 588 500 1 520 000
645 500

4.2. Fatigue experiments

The specimens were tested under controlled axial loading. Most of
experiments was executed on a servo hydraulic machine at an average
frequency of 6 Hz. While, some experiments were carried out on a
resonance-testing machine at 33 Hz. The higher frequency did not have
a noticeable influence on the fatigue life of the specimens. The applied
stresses were nominal stresses corresponding to the cross section of the
basic plate.

According to the data documentation given in Rörup and Petersha-
gen (2000) and Rörup (2005), no information about strain gauges is
presented, so that, it is assumed that misalignment of the specimen
during the test is negligible.

The rupture of the specimen was used as failure criterion, which is
considered as equivalent to a visible crack in a real ship structure. In
the tests with stress ratio 𝑅 = −∞ the small or almost null maximum
stress 𝜎𝑚𝑎𝑥 resulted in a minimum surface of ductile collapse. This fact
leaded to a longer fatigue life, see Table 4.
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Table 5
Geometrical parameters of the deterministic Stüssi model.

Geometrical parameters of the Stüssi model

𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

𝛼 0.001 16 0.003 93 0.000 97 0.000 056
𝛽 0.6518 0.6185 0.6822 0.8223

Fig. 6. Linear regression of the Stüssi function 𝑆(𝑁,𝑅).

Fig. 7. 𝑆-𝑁 curves for different stress ratios.

.3. Deterministic fatigue life estimation

As it was mentioned in Section 2.1, by performing a regression
nalysis the parameters 𝐴 and 𝐵 of Eq. (6) can be calculated. Then, by
pplying the Eqs. (7) and (8) the geometrical parameters are obtained.
he Table 5 shows the obtained parameters.

The Fig. 6 shows the linear regressions corresponding to the exper-
mental data.

Afterwards, the deterministic 𝑆-𝑁 curves based on the Stüssi func-
ion can be plotted, see Fig. 7.

The obtained 𝑆-𝑁 curves fit properly the experimental data. Nev-
rtheless, the expected big variance of the data at 140 MPa at 𝑅 = 0
nd 𝑅 = ∞ suggest that a statistical evaluation is necessary in order to
btain reliable estimations, see Section 4.4.

Besides the 𝑆-𝑁 curves, the proposed method allows to obtain
oodman–Haigh diagrams as it was explained in Section 2.3. Thus,

he mean stresses and stress amplitudes corresponding to four constant
ives can be calculated, see Table 6. The Goodman–Haigh diagram
hows the expected fatigue behavior for every stress ratio.

Based on the values presented in Table 6, the Goodman–Haigh
iagram can be plotted, see Fig. 8.
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Table 6
Mean stresses and stress amplitudes for constant fatigue lives based on the deterministic
Stüssi model.

Mean stresses and stress amplitudes for constant fatigue lives

𝑁 𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎
105 113 113 0 122.9 −65.3 130.7 −179.6 179.6
5⋅105 66.3 66.3 0 68.1 −35.5 71 −98.8 98.8
2⋅106 45.7 45.7 0 46.4 −23.4 46.7 −56.4 56.4
5⋅106 38.6 38.6 0 39.1 −19.4 38.8 −42.8 42.8

Fig. 8. Goodman–Haigh or constant fatigue life diagram.

Table 7
Weibull parameters of the probabilistic Stüssi model.

Weibull parameters of the Stüssi model

𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

𝛥𝜎 = 220 [MPa]

𝑎 67 059.8 105 386 116 380 331 918
�̂� 47 348.7 30 985.4 46 314.6 61 376.8
𝑐 2.6163 1.227 02 2.308 93 1.270 73

𝛥𝜎 = 140 [MPa]

𝑎 264 779 −5 213 350 174 021 −545 095
�̂� 179 289 5 698 150 384 782 1 824 680
𝑐 1.094 79 137.363 4.711 44 7.101 48

4.4. Probabilistic fatigue life estimation

As it was mentioned in Section 3.1, probabilistic 𝑆-𝑁 curves can be
plotted by considering the proposed method. To do that, the Weibull
parameters corresponding to a particular stress range 𝛥𝜎𝑖 have to be
estimated, in this paper the PWM method is applied. Afterwards, the
fatigue life for a given probability 𝑝 can be estimated. The estimator of
the Weibull parameters are shown in Table 7

After the estimation of the Weibull parameters, the quantile of
the fatigue life 𝑁 for probabilities of failure 𝑝 = 0.05 and 𝑝 = 0.5
were estimated according to Eq. (15). These fatigue lives are shown
in Table 8.

Then, the geometrical parameters of the Stüssi model can be esti-
mated, see Table 9

Afterwards, the probabilistic 𝑆-𝑁 curves based on the Stüssi func-
tion can be plotted, see Fig. 9.

By applying the proposed method, the geometry of the 𝑆-𝑁 curves
re properly described. However, in case of 𝑅 = −∞ the big variance
f the data corresponding to 140 MPa causes that the confidence
ntervals of the fatigue life increases notably under this stress range.
his issue may be prevented by performing additional experiments at
tress ranges below 100 MPa.
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t
p

Fig. 9. Probabilistic 𝑆-𝑁 curves for different stress ratios 𝑅 = 0,−1,−3,−∞ and for a probability 𝑝 = 0.5, 0.05.
Table 8
Fatigue life estimations for 𝑝 = 0.05 and 𝑝 = 0.5.

Fatigue life estimations

𝑁𝑖 𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

𝛥𝜎1 = 220 [MPa]

𝑁1(𝑃 = 0.05) 82 274.7 108 140 129 175 337 846
𝑁1(𝑃 = 0.5) 108 219 128 371 155 896 377 917

𝛥𝜎2 = 140 [MPa]

𝑁2(𝑃 = 0.05) 276 673 362 917 378 866 655 908
𝑁2(𝑃 = 0.5) 393 060 469 621 530 004 1 187 810

Table 9
Geometrical parameters corresponding to the probabilistic Stüssi model.

Geometrical parameters of the Stüssi model

𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

Probability p = 0.05

𝛼 0.000 573 098 0.003 790 23 0.000 436 961 0
𝛽 0.730 15 0.632 809 0.761 764 1.334 73

Probability p = 0.5

𝛼 0.000 777 762 0.005 578 53 0.001 136 65 0.000 108 261
𝛽 0.686 542 0.590 725 0.669 832 0.773 236

Finally, in order to plot the probabilistic Goodman–Haigh diagrams
he estimations of mean stresses and stress amplitudes for a given
7

robability can be calculated, see Table 10.
Table 10
Mean stresses and stress amplitudes for constant fatigue lives based on the probabilistic
Stüssi model.

Mean stresses and stress amplitudes for constant fatigue lives

𝑁 𝑅 = 0 𝑅 = −1 𝑅 = −3 𝑅 = −∞

𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎 𝜎𝜇 𝜎𝑎
Probability p = 0.05

105 102.3 102.3 0 113.5 −61.4 122.8 −210.2 210.2
5⋅105 57.3 57.3 0 63 −31.5 63 −84 84
2⋅106 40.2 40.2 0 43.8 −20.9 41.8 −39.7 39.7
5⋅106 35 35 0 37.5 −17.8 35.6 −32.5 32.5

Probability p = 0.5

105 113 113 0 120.7 −65 130.1 −174.2 174.2
5⋅105 64.6 64.6 0 68.6 −35.7 71.4 −98.5 98.5
2⋅106 44.2 44.2 0 47.4 −23.6 47.2 −58 58
5⋅106 37.4 37.4 0 40 −19.6 39.2 −44.3 44.3

The big variance of the data corresponding to 𝑅 = −∞ and 𝛥𝜎 = 140
MPa can be also observed in the Goodman–Haigh diagram, see the red
lines in Fig. 10. As it was mentioned before, additional experiments at
tress ranges below 100 MPa could prevent this issue and reduce the size

of the corresponding confidence intervals.
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Fig. 10. Goodman–Haigh diagram for probabilities 𝑝 = 0.05 and 𝑝 = 0.5.

. Conclusions and subsequent research

Analyzing and evaluating the influence of the stress ratio on the
atigue strength of steel structures represents a relevant design factor.
t has been seen that most of the attempts to model the effect of the
tress ratio are empirical and based on questionable assumptions, such
s the linearity of the relationship stress-loading cycles, the normal dis-
ribution of the fatigue life and the inclusion of a enhancement factor.
nder these circumstances, only a limited judgment of the experimental

esults can be performed, so that, the obtained estimations lack of
eliability.

As an attempt to overcome the limitations of common models and
rying to include the appropriate statistical concept, the authors of this
ork have proposed a probabilistic model based on the Stüssi function
nd on a Weibull distribution. The proposed method allows to depict
he 𝑆-𝑁 curves and Goodman–Haigh diagrams for a given probability
nd any stress ratio. From the technical point of view, this model offers
reliable alternative to evaluate the effect of the stress ratio on the

stimation of the fatigue life. However, in order to cover a wide fatigue
ange, it is mandatory to have data from a wide experimental frame. In
ther words, the fatigue experiments should be performed from the LCF
o VHCF regimes. Thus, this method may help the engineers to improve
he design criteria and motivate the experts to consider or at least to
iscuss the actual statistical results in the committees responsible for
he standards updates.

Particularly, in this work the proposed method has been applied
o evaluate the fatigue data from welded specimens made of steel
t 52-3, which are typical used in ship structures subjected to high
tresses. These data correspond only to finite fatigue life experiments
erformed under four different stress ratios. Although this fact limits
he application of the method in a wider fatigue range, the results offer
eliable estimations in the experimental frame.

Despite the promising results, it is necessary to perform further
atigue tests in LCF and HCF in order to provide additional arguments
o support the feasibility of the proposed model. Moreover, subsequent
esearch is necessary to study the influence of the Bauschinger effect
nd the role of the strain in the fatigue life in ULCF regime. Finally, in
rder to obtain more reliable estimations of the fatigue limit, additional
xperiments in HCF or VHCF regimes with different stress ratios have
o be performed as well.
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