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CHAPTER 1

Introduction and Motivation

1.1 High-frequency wave-propagation in physics

Hyperbolic partial differential equations and their applications are important in physics for a variety of
reasons. The transmission of information by means of waves in a wide range of fields such as hearing,
sight, television, and radio is modeled by this type of equations, see for example [37] and the references
therein. The model equation for the first field is the acoustic wave equation and for the latter three the
Maxwell equations. All of these equations have one thing in common: they often arise as descriptions of

wave-propagation.

Wave phenomena. There are some general wave phenomena that all waves exhibit when they propa-
gate. Since we are interested in the subject area of nonlinear optics, we briefly explain the following wave

phenomena in connection with it. For more details see [15, 22, 35, 37, 38] and [41, Chapter 6].

e The main theory of geometric optics is that light takes the most efficient path between its source
and the observer by traveling in straight lines along rays. With this physical theory, the rectilinear
propagation of light and the laws of reflection and refraction are described. However, there are
optical wave phenomena that cannot be described by geometrical optics. For example, light not

only travels in straight lines, but also spreads out over long distances as it travels.

e Diffractive optics is the extension of geometric optics, where in addition to the usual rays of geomet-
ric optics diffracted rays are now included in the theory. Hence, diffraction is generally understood
as the deviation of a wave propagation from the rectilinear path of rays, e.g. at the edge of an
obstacle or a split. Diffraction is explained with the help of Huygens’ wave principle [38, Subsec-
tion 4.4.1]. Roughly speaking, behind an obstacle the waves interact with each other and form
“diffracted” wave fronts. The phenomenon of diffraction of light in everyday life can be observed,

for example, in the fact that an opaque body does not cast a sharp shadow, but shows slightly



2 Chapter 1. Introduction and Motivation

blurred shadow edges.
In addition to the size of the obstacle, the wavelength of the light is crucial for the extent of

diffraction and the larger the wavelength, the stronger the diffraction.
Furthermore, nonlinear phenomena that may occur include the following;:

e The first nonlinear phenomenon is the generation of new frequency components or, in other words,
the generation of higher harmonics. For example, if we have a plane wave a(t, x)ei“’(t"”) with phase
(¢, ) and amplitude a(t, z), then nonlinear functions will produce waves with phases jp(¢, x) for
j € Z, where negative values of j come from the complex conjugate, by self-interaction. More
details on higher harmonics are given in Subsection 3.2.2. Waves with these higher harmonics will
then interact with each other. This generation and interaction of harmonics is one of the main

characteristics of nonlinear problems.

e Another crucial wave phenomenon which occurs when considering wave-propagation is the inter-
action of waves with distinct phases: the phenomenon of resonance. For nonlinear problems there
can be nontrivial interactions between the waves and, in particular, new phases may appear in the
description of the solution. Suppose that waves coexist with phases @;(¢,x), i = 1,2,3. Then we
call the three phases resonant if p3(t,z) = @a(t, ) + p1(t,x). The analysis of all interactions is
delicate, because in the case of near resonant interactions small divisors problems can occur. This

causes the analyzed terms to become large. Details on resonances are presented in Section 3.7.

We end this part about wave phenomena with another physical effect that can occur in connection
with waves. In the context of nonlinear optics, dispersion means that the speed of light depends on its
wavelength. In dispersive media the waves pulse spreads out and changes its shape as it travels. Disper-
sion describes the interaction with the matter in which the wave propagates. For example, white light
passing through a prism is decomposed into a spectrum of colors. Light with shorter wavelengths is bent

more than light with longer wavelengths because it travels more slowly through glass.

In this thesis, we specifically investigate semilinear hyperbolic partial differential equations that have
a special feature, namely that a small physical parameter occurs in these equations. Compared to the
distance of propagation, or other physical scales of the solution, the wavelength of the solution is often
short. Since the wavelength of a wave is inversely proportional to its frequency, the solution has a high
frequency and is highly oscillatory. In optics, this small parameter corresponds to the wavelength of light.

Throughout the thesis, we denote the small parameter by € € R.

Numerical challenges. In the simulation of wave phenomena in general, many ordinary and partial
differential equations which model the physical processes cannot be solved exactly. Therefore, numerical
integrators are used to approximate the solution. For computing an approximation of the solution nu-
merically, the underlying time interval and the domain in space are discretized into a finite number of
points. At these chosen grid points approximations of the exact solution values are computed. However,
even for linear highly-oscillatory equations like the harmonic oscillator, the explicit and implicit Euler
methods, for example, fail if the frequency is large compared to the step-size. For more details on har-

monic oscillators we refer to [41, Chapter 7].
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Furthermore, implicit schemes which approximate the solution of linear highly-oscillatory differential
equations very well become prohibitively costly if the differential equation is nonlinear. For this reason,
numerical methods particularly suited for nonlinear differential equations such as exponential integra-
tors, cf. [20], or splitting methods, cf. [33], were developed. However, it is well known that for standard
splitting methods and standard exponential Runge-Kutta methods a very fine resolution has to be used
to compute an approximation of a highly oscillatory solution numerically. In order to obtain a reason-
able approximation, the step-size must be considerably smaller than the inverse of the highest frequency.
Therefore, in the case of nonlinear optics, the number of grid-points in space and the number of time-steps
must be inversely proportional to the parameter ¢ for times of length O(1). This reduces the efficiency
significantly and leads to time-step restrictions which results in huge computational costs.

Moreover, based on geometric and diffractive optics, different time scales are distinguished. These time
scales are relative to the wavelength and represent geometric and diffractive effects which lead to a differ-
ent behaviour of the solution. With respect to the parameter e, geometric optics describes the propagtion
of light for times ¢ of magnitude O(e") = O(1). The diffractive effects appear on long time scales, and
therefore describe propagation for times ¢ of order O(¢7!). In optical phenomena, long propagation times
also increase the importance of nonlinear effects.

As a consequence, since we are interested in the regime of diffractive optics, the number of time-steps
must be inversely proportional to €2 because of the long time interval. However, computing a lot of
approximations leads to a long runtime and a lot of memory usage. In order to be efficient, numerical
methods have to be tailor-made and thus one has to deal with the structure of the underlying problem and
the occuring oscillations in a suitable way. One of our aims in this thesis is to avoid such costly numerical
approximations and the associated effort. We shall see that this also requires analytical approximations

that reduce the original problem to a simpler problem.

1.2 Semilinear hyperbolic systems and outline
A prominent example in which a small parameter occurs is the Maxwell-Lorentz system
0B = —curl E,
OtE = curl B — éQ7
Q= %(E—P) +¢[P|3P, (1.1)
3 JET)
€

div(E+P) =divB =0,

which models the propagation of a light beam in a Kerr medium. For further information on the Maxwell—
Lorentz system see for example [11, 13, 15, 16, 24, 28, 29]. E describes the electric and B describes
the magnetic field, respectively. Furthermore, the vector field P is the polarization and Q/e its time
derivative. Hence, Maxwell equations for E and B are coupled to two ordinary differential equations
for P and Q. The equations are normalized such that the speed of light is 1. In this example the
small physical parameter € € R corresponds to the ratio between the wavelength of light and the next

characteristic length of the problem, see for example [15].
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In order to rewrite the Maxwell-Lorentz system (1.1) into a semilinear hyperbolic system, we introduce
the vector u which consists of the four vector fields, the differential operator A(d) and the matrix E given
by

B 0 Vx 0 0 0 0 0
E — 0 0 0 0 0
a= |l a@= |V . E- ,
Q 0 0 0 0 o —-I 0 I
P 0 0 0 0 0 0 -7 0

where in three-dimensional space (d = 3) the entries in the matrices are 3 x 3 matrices, which means
0 = 03x3 and I = I3x3. The identities in the matrix E correspond to the terms with 1/¢ in the equations

of the Maxwell-Lorentz system. Moreover, with a trilinearity 7" defined as

0
0
T(u’ u) u) = 9
P3P
0
the Maxwell-Lorentz system (1.1) is equivalent to
1
oyu+ A(Q)u + gEu = eT(u,u,u). (1.2)

The nonlinearity is a vector of size s = 4d = 12 and the matrices are of size 12 x 12.

Another semilinear hyperbolic model problem from physics is the Klein—-Gordon system

0 Vv 1(0 —of
dru + u+ - Y lu= elufzMu. (1.3)
VT ded € \v ded

Here, we have v € RY\{0} and a skew-symmetric matrix M € R*%; cf. [11, 29]. The Klein-Gordon
system is a nonlinear wave equation and the size of the vector u is given by s = d + 1. Similarly, as for

the Maxwell-Lorentz system we can define

A<a>=<° V>, E:(O “T), T(w,u,u) = [ufMu,

v Odxd v Ogxa
so that the Klein-Gordon system (1.3) has the same form as the representation (1.2).
Problem setting. Next, we specify (1.2). With respect to the Maxwell-Lorentz system (1.1), the
Klein—Gordon system (1.3), and the regime of diffractive geometric optics with dispersive effects (cf.

Section 1.1), the specific type of semilinear hyperbolic systems which we focus on in this thesis is of the

abstract form
1
ou+ A(Q)u + gEu = ¢T(u,u,u), te (0,tma/e], x € RY, (1.4a)
u(0,z) = p(x)e™/F 4 cc. (1.4b)

with highly oscillatory initial data. The parameter 0 < ¢ « 1 is considered to be small. For some finite

time t,,, > 0 and parameters d, s € N, u denotes a vector-valued solution which maps from [0, t.,q/c] x R?



1.2. Semilinear hyperbolic systems and outline 5

to R®. The differential operator A(d) is defined as
d
A@0) = D Audy, (1.5)
p=1

where Ay, ..., Ay € R®*® are symmetric matrices. The matrix E € R*** is skew-symmetric, i.e. ET = —F,

and induces dispersion of the different frequencies. For E = 0445 we are in the non-dispersive case. Since
d
all the eigenvalues of the Hermitian matrix »; A, —iFE are real, the system is hyperbolic. Such problems
p=1
have been referred to as Friedrich systems, cf. [17, Chapter I1I] and references therein. On the right-hand

side of (1.4a) the mapping T : R® x R® x R® — R*® is a trilinear nonlinearity. The initial data (1.4b) are

of the special form
u(0,z) = p(x)e™/E 4 cc.

and depend on a fixed and given wave vector x € R%\{0}. This particular form of a rapidly oscillating
exponential prefactor times a smooth envelope function p : R¢ — R® is called a wavetrain, cf. [2]. The

2

dot is the Euclidean scalar product so that k- z is a scalar. As usual, “c.c.” means complex conjugation
of the previous term, ensuring that the initial data is real.

Unfortunately, these specific semilinear hyperbolic systems are challenging. The small parameter ¢
makes it very delicate to treat the system (1.4a) numerically because the solution oscillates rapidly with
a frequency of (9(5_1) in time and space. Therefore, the numerical challenges highlighted in Section 1.1
apply. The parameter € occurs both in the PDE (1.4a) and in the initial data (1.4b). Furthermore, the
problem is scaled in such a way that nonlinear and diffractive effects appear, which is only the case on a
long time interval [0, ¢.,q/€]. Therefore, we cannot interpret the nonlinearity as a pertubation.

As a consequence, approximating the solution of (1.4) numerically with standard methods is prohibitively

inefficient and even unfeasible. Therefore, special analytical and numerical approximations are needed.

We note that highly oscillatory problems have motivated many attempts to devise simpler models
which are more suitable for numerical computations and at the same time provide a reasonable approx-
imation to the corresponding solution. Asymptotic expansions of solutions to systems similar to (1.4)
have been derived, e.g., in [16, 23, 26, 37] for geometric optics, i.e. for times of length O(1). The idea is
to expand the approximate solution in an asymptotic series in €. This means u ~ Z;C‘:l U 5, where the
higher order terms e’U; serve as correctors. These correctors improve the approximation given by the
leading order term U§. This asymptotic expansion is combined with a multiple scale ansatz which differs
depending on which time scale is considered. For more information we refer for example to [37] where the
author investigates the time scale of geometric optics. In contrast to [16, 23, 26, 37], as already mentioned,
we seek approximations on long time intervals of length O(sfl). In the diffractive regime approximations
with the same asymptotic expansion but now with a multiple scale ansatz which includes an additional
slow time variable exist. Approximations with infinitely small residual have been constructed in [14] for
semilinear and quasilinear systems, but with ¢F rather than E/e in (1.4a). More generalized nonlinear
hyperbolic systems, but with £ = 0 have been analyzed in [25]. Approximate solutions for quasilinear
systems with dispersion have been analyzed in [28], and for dispersive problems with bilinear nonlinearity

n [12], but without an explicit convergence rate.
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The goal of this thesis. The goal of the thesis can be divided into two sub-goals. The first sub-goal
is to derive a system of PDEs which is numerically more favorable than (1.4) but provides an analytical
approximation to the solution u that is better than previous classical approximations in [11, 29]. This
system is numerically more advantageous because there are no more e-induced oscillations in space.
However, the system still has oscillations in time. Therefore, secondly, we want to construct tailor-made
time integrators that also allow large step-sizes and which are not limited by the smallness parameter ¢.
The thesis is organized as follows.

We present in Chapter 2 the basic notation which is used throughout this thesis. In Chapter 3 we
investigate the specific form of the semilinear hyperbolic system (1.4) on which we focus in more detail
and formulate a number of assumptions. Next, we state the slowly varying envelope approximation
(SVEA) as a simplification of the problem (1.4). We extend the ansatz of the SVEA to a more accurate

approximation to the solution of (1.4) by adding more terms, i.e.

u(t,z) ~ Z eilrme—wt/ey (¢, x),
J
where j is an odd integer, w € R and the pair (w, k) satisfies the dispersion relation, for details see Chap-
ter 3. The drawback of this analytical approximation is that we have more coefficients to calculate and not
just one function. However, the bigger advantage is that the corresponding coefficients do no longer oscil-
late in space, since now, roughly speaking, the oscillations in space are in the prefactor. This analytical
approximation raises questions about which PDEs solve the associated coefficients u; and how accurate
the approximation is. We prove well-posedness of this approximation in an adequate analytic setting.
However, the associated system of PDEs still has e-induced oscillations in time. Thus, we introduce a
beneficial transformation. The resulting system appears to be more accessible for analytic investigation
and constructing numerical schemes. The first main result is stated in Chapter 4. Here, we present an
error bound for the SVEA that represents an improvement on previous results in the existing literature.

In addition to the analytical study of the introduced approximation in Chapter 4, we are also interested
in computing this approximation via numerical methods in Chapter 5. Thus, in Chapter 5 we introduce
a one-step time integrator. In particular, we state a rigorous error bound for this one-step method
and show that the global error scales like O(7) with a constant independent of €. Further, we extend
this one-step method to a two-step method. Again, we prove that this method is a first-order method
uniformly in e. In addition, for step-sizes 7 > ¢, the two-step method has the favourable property that
its accuracy improves to (’)(7’2) with a constant independent of €. This benefit is countered by the fact
that each time-step requires the computation of nested multiple sums, which means higher computational
costs. For this reason we reduce the workload by introducing an idea which we call “cherry picking”. We
validate these theoretical results with numerical experiments, focusing only on smaller problems such as
the one-dimensional Klein—-Gordon system (1.3).

In Chapter 6 we present another approach in which we attempt to address both problems, the e-
induced oscillations in space and time, simultaneously. We use an asymptotic expansion for the associated
coefficients of this ansatz, which eventually leads to an analytical approximation with smooth coefficients.
This approach is called modulated Fourier expansion and we present a corresponding error bound for
this approximation as the main result in Chapter 6.

Finally, we close this thesis with a short summary of the main results combined with a brief outlook
in Chapter 7.



CHAPTER 2

Preliminaries

Throughout this thesis, we use the following notation and abbreviations.

Miscellaneous. The one dimensional torus is denoted by T = R/27Z such that the d-dimensional torus
T9 is given as the space (R\Qﬂ'Z)d. The constant i denotes the imaginary unit, whereas ¢ is used as an
index in a few formulas. Moreover, the complex conjugate of a number or a vector a is denoted by a. We
use the abbreviation c.c. for “complex conjugate”, so that for all a € C*, s € N, the expression a + c.c. is
equivalent to a + a.

Furthermore, C > 0 and C(-) > 0 denote generic constants, which may have different values at different
appearances. The notation C(-) means that the constant in front of the brackets depends only on the
values specified in the brackets (This is not to be confused with the space of continuous function, which
is also denoted by C([0,t.a], X) for a function space X).

Let j..x € N be an odd integer. We define the sets

\.7:{.7622_17 ‘]‘ <]de}7
j+:jﬁN

Throughout the thesis, we often consider combinations of three j; € J, ¢ = 1,2, 3, which we combine into

one multi-index
J:(jlaj2aj3) 6\737
and define the expression

#J =451+ jo+js €2Z—1.
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We list the acronyms which we will use frequently:

ODE ordinary differential equation PDE partial differential equation
NLS nonlinear Schrédinger SVEA slowly varying envelope approximation
KG Klein—-Gordon ML Maxwell-Lorentz

MFE modulated Fourier expansion
Vector algebra. For vectors a, b € R® or C* with a = (aq,...,as) and b = (by, ..., bs) we denote with

a-b=a*b= ZS] Trmbm

m=1
the Hermitian scalar product.

Furthermore, |al|, is the usual g-norm of the vector a. For ¢ = 1,2, the norms are given by

s s
lali = D lam| and a3 = > |am|*.
m=1 m=1

At this point we note that the estimates
a2 < [a]i < V/slal> (2.1)

hold. Moreover, we state some useful bounds. For vectors a, b € C® and a matrix B € C*** applying

the Cauchy-Schwarz inequality results in
|a" Bb| < |als |Bbls < |Bls [a]2 bl < [Blzali [b]i, (2.2)

where |B|y denotes the spectral norm. The second inequality in (2.2) follows since the Euclidean norm

is submultiplicative which means

|Bbls < |Bl2 |bla.

Trilinear nonlinearity. Throughout the thesis the nonlinear operator T is trilinear in the sense that
T : R®* x R* x R® — R® is a function which is (real-)linear in each of the three variables. Its trilinear
extension to C® x C® x C®* — C? is also denoted by T. For all vectors a, b, c € C° and ag, ay, bg, by,

CRr, ¢y € R® with a = ag +ia;, b = bg + ib;, ¢ = ¢ + ic; we can write by means of the linearity
T(a,b,c) =T(ag +ias,bg + iby,cg + icy)
= T(ag,bgr,cr) + i(T(aI,bR,cR) +T(ag,br,cr) + T(aR,bR,C])>
— (T(a;,b;,cR) +T(aj,bg,cr) +T(aR,b1,c1)> —iT(as, by, cy).

For this reason we obtain the fact that

T(a,b,c) =T(agr +ias,bg + iby,cp + icy)
=T(agr,br,cr) — i<T(afv br,cr) + T(ar,br,cr) + T(agr,bg, CI))
- (T(abbLCR) + T'(as,bgr,cr) + T(ag, by, CI)) +iT'(as, by, )

=T(aRfiaI,beibI,chic1) =T(§,B,E) (23)



holds.
Another formulation which we often use later on concerns the difference of two trilinear nonlinearities.

This difference can be rewritten by means of the trilinearity as
T(a,a,a) — T(b,b,b) =T(a,a,a) — T'(b,a,a) + T(b,a,a)
—T(b,b,a)+ T(b,b,a) — T(b,b,b)
=T(a—b,a,a) +T(b,a—b,a)+ T(b,b,a—b). (2.4)

Finally, we state a helpful bound of the nonlinearity in the Euclidean vector norm. Because of the
trilinearity we obtain for arbitrary vectors a, b, c € {R*, C*}
T(a,b,c) ZZ Zazb cmT(ei,e5,em),
i=1j=1m=1
where e, denotes the m-th unit vector. Furthermore, it is important to note that for the R® or C*

every basis only has a finite number of elements. Thus, there exists a constant C such that the bound
|T(ei,ej,em)|2 < C holds for all 4, j,m = 1,...,s, and with (2.1) it follows that

‘T a b C Z 2 ZS: aibijT(ehejaem)‘Q

i=1j=1m=1

< Clali|blifef1 < Crlalz|bl2[c]2, (2.5)

where Cp := Cs?.

Differential operators. Let f : [0,tcna] X R¢ - R with d € N and t.,, > 0 be a sufficiently smooth
function. In this section t € [0, tenq| denotes the time variable and z € R4 the spatial variable. We denote
the partial derivative of f with respect to time by 0;f. Concerning the spatial derivatives, we denote the
gradient of f by Vf with V = (01, ...,0a), where 0, = 0, is the partial derivative with respect to the
p~th spatial direction. Note that in the special case d = 1, we simply write 0, f instead of V f.

For a multi-index o = (o, ..., aq) € N we set 0% f := o7t --- 09 f.

Let Ff or fbe the Fourier transform of a distribution f € S’(R?), cf. Appendix A.2, then we obtain

(F(2°f)) (k) = i1k (F ) (k), (2.6)
cf. [34, Theorem 4.26 (b)], where

d
E* = kT - ky? and ol = Z ay. (2.7)
For e {1,...,d} we denote by D,, the Fourier multiplicator (Dﬂf) (k) = ik#f(k) such that by definition
Duf is the Fourier transform of ¢, f. Thus, for notational simplicity we define
DO f(k) := il ke f(k) (2.8)

such that by (2.6) we have that D“ f is the Fourier transform of 0% f.

In functional analysis, a function f : x — f(x) is often regarded as a point in a function space X
and the spatial variable x is omitted for notational simplicity. In this sense, the function x — f(¢, ) at
a fixed time ¢ is simply denoted by f(t) instead of f(¢,z). In the same spirit, the second argument of the

(spatial) Fourier transform i, k) of such a function will most often be omitted.
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CHAPTER 3

Problem setting and ansatz

In this chapter, we investigate the specific semilinear hyberbolic system (1.4) with trilinear nonlinearity
which we introduced in Section 1.2. We begin this chapter by taking a closer look at the numerical
and analytical challenges. In Section 3.2 we state some important definitions and assumptions that are
relevant within this thesis. Furthermore, we give an overview of classical results, such as the slowly
varying envelope approximation. The goal is to derive a system of PDEs which provides an analytical
approximation to the solution of (1.4) that is more accurate than the classical approximations. We
present our ansatz which is a natural extension of the SVEA in Section 3.3 and introduce in Section 3.4 a
suitable analytic setting for the analysis. The system of PDEs resulting from this approach is the starting
point for further investigation. After formulating the evolution equations in Fourier space in Section 3.5,
we establish a local well-posedness result on long time intervals in Section 3.6. To conclude this chapter,
we introduce an additional transformation in Section 3.7 which leads to a new system of equations.
Investigating the transformed system instead of the system (3.16) turns out to be advantageous. For this

reason, we use the new system as a starting point for later analysis in Chapter 4.

3.1 Numerical challenges

The system (1.4) is the main object of research in this thesis. The particular focus of this work lies on
constructing and analyzing suitable problem-adapted/tailor-made time-integration schemes. First, we go
into more detail about the numerical challenges we have. The small parameter ¢ is crucial because it

causes (almost) all the difficulties. The problems which occur are the following.

Oscillations in time and space. Physically relevant solutions oscillate rapidly in time and space with
frequency ~ 1/e. For this reason, we explain where these oscillations come from. For this purpose, it is

sufficient to consider the linear case, where T'(-,-,-) = 0.



12 Chapter 3. Problem setting and ansatz

The linear system: We consider the linear hyperbolic system

1
ou+ A(Q)u+ —Eu = 0, te (0,tma/e], x € RY,
€ (3.1)

u(0,z) = p(x)e/F 4 ce,

where the initial data correspond to (1.4b). Firstly, the solution oscillates in space because of the special
form of the initial data. Since ¢ is small and & € R%\{0} is given by the data, the exponential term
exp (1%) causes fast oscillations no matter how smooth the envelope p is. Simultaneously, the system
(3.1) has oscillations in time. Even if we considered the linear system (3.1) without derivatives in space,

meaning
1
ou + gEu =0, zeRY te [0, tena/e],

the term %Eu would induce oscillations in time. Formally the time derivative is large and, thus, even

the solution of the ODE would oscillate. Furthermore, even if we set F = 0 in (3.1), which means
dpu+ A(0)u =0, reRY tel0,tun./c],

the term A(d)u would cause difficulties, although it has no factor 1/e. The reason is again the special
form (1.4b) of the initial data. If the solution u has a similar form, we obtain a factor 1/e by the derivative
in space.

In summary, it follows that both terms L Fu and A(d)u produce oscillations in time and in space in their

own way. Therefore, the solution behaves highly oscillatory in time and in space.

The long time interval and the nonlinearity. Now, we again consider the original system (1.4).
We observe that both the oscillations in space and the oscillations in time become faster if £ becomes
smaller. However, concurrently the time interval where we compute the solution increases. This is a
second challenge that we have to face.

For a standard time integrator numerically speaking this would mean that if we decrease € we have to
choose more time-steps because the number of time-steps has to be inversely proportional to the param-
eter . However, a larger number of time-steps results in a longer calculation time and roundoff issues.
In total the number of time-steps has to be inversely proportional to €? due to the additional long time
interval. The conclusion is that the computational work would increase significantly.

Finally, we have a nonlinear problem because of the nonlinearity 7. The factor € in front of the non-
linearity is favorable at first glance. One could think that the nonlinearity is only a small nonlinear
pertubation. However, we consider time intervals of length O(¢71), cf. (1.4a). The scaling of the systems
we consider is chosen so that the nonlinearity has an effect of order O(1) on such long time intervals. In
other words, the factor 1/e of the long time interval and the factor ¢ in front of the nonlinearity evens
out. Therefore, unfortunately we cannot consider the nonlinearity as a small perturbation of the linear
system.

Furthermore, we know from the introduction that the nonlinearity also creates oscillations which may

resonate with the linear propagator.

Unbounded domain. In order to perform numerical simulations we have to truncate the full space

R?. The long-time simulation of wave-propagation is a challenging task. The reason is that in numerical
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simulations we have to regard a finite space domain. In other words, we have to truncate the domain R?
and apply artificial conditions at the boundaries. The solution of wave-propagation leaves every bounded
domain after a certain time. Consequently, this truncated domain has to be large enough such that
the solution does not leave the domain to avoid effects from the artificial boundary conditions on the

calculated solution. However, if the boundaries are set far apart, this increase the computational cost.

Conclusion. As a consequence of these challenges, applying standard time-integration methods to the
system (1.4a) is prohibitively inefficient or even infeasible. Infeasible in the sense that the runtime is
extremely long and the accuracy of the approximation is very poor. For this reason the idea is roughly
speaking to introduce an analytical approximation of the exact solution, e.g. by a series expansion
with new coefficient functions. Thereby one obtains a system for these new coefficient functions, which

hopefully can be solved better numerically.

3.2 Assumptions and classification in the state of art

Again from a numerical perspective the main problem is that typical solutions oscillate rapidly in time and
space such that it is inappropriate to apply standard numerical methods to compute an approximation.
Standard methods will fail and constructing tailor-made methods for this problem class is a considerable
challenge.

This problem has motivated many attempts to create suitable analytical approximations. The focus
here is the attempt to devise simpler models which are more suitable for numerical computations and
simultaneously provide a reasonable approximation to u. Among these models, the nonlinear Schréodinger
approximation is particularly appealing; cf. [11, 12, 14, 25, 27, 29, 39]. However, for example in [11, 29]
the authors do not present any numerical methods but they focus on approximations. Since we aim to
construct more accurate approximations than in [11, 29], we will briefly discuss their work. The central
goal for them is to derive a nonlinear Schrodinger equation with a non-oscillatory solution that still
allows them to approximate the solution of the original problem (1.4). This is attractive because solving
the nonlinear Schrédinger equation is numerically a lot easier than computing an approximation of the
original highly oscillatory problem. The first step on the way to establishing the nonlinear Schrédinger
equation is another approximation, which is called the slowly varying envelope approximation. We will
discuss this in more detail in Subsection 3.2.2.

We start this section with a number of definitions and assumptions which are based on [4, 11, 29].

3.2.1 Definitions and assumptions

For a vector § € R? we define a matrix
d
AB) = ) BuA,  eR™ (3.2)
pn=1

We have seen a similar notation before. The notation (3.2) is consistent with the definition of A(d) in
(1.5). If we compare (3.2) with the definition of the differential operator (1.5) we see that the partial
derivatives have been replaced by entries of the vector 8. Moreover, thinking about the Fourier transform

(cf. (2.6)), where the space derivatives turn into multiplications with numbers, it is clear that the matrix
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A(B) has a relation to the operator A(0). Another important observation is that the matrix A(3) is
symmetric according to the assumption of the single matrices A, u=1,...,d.

Next, we define a matrix which will appear quiet frequently throughout because many terms can be
expressed in a convenient form in terms of that matrix.
For a € R and 3 € R? we define

L(a,B) = —al + A(f) —iE  eC*>. (3.3)

The matrix £(0,5) = A(S) — iE has a special role which will be seen later. A crucial observation is
that L(a, B) is Hermitian for all o € R and 3 € R?, because according to the problem setting, A(f) is
symmetric and E is skew-symmetric. This is important since we directly know that L(«, 8) is unitarily
diagonalizable with real eigenvalues.

Now, we consider a special form of the matrix (3.3), where we set § = k. We recall that the wave
vector € R4\ {0} is a fixed vector given by the data. From now on we set w € R equal to an eigenvalue of
L£(0, k). In other words, the parameter w = w(x) depends on k and has to be an eigenvalue of the matrix

A(k) —iE. In the literature one says that for fixed x the pair (w(k), k) satisfies the dispersion relation
det (L(w, k) = 0. (3.4)

Hence, the matrix £(w, k) is singular and has a non-trivial kernel, which becomes important later.
Furthermore, we define a quantity which is called the group velocity cq4(k) € R? as a parameter which

depends on k and is given by
cg(K) = Vw(k). (3.5)

Here, V denotes the derivative with respect to the wave vector . In summary, the group velocity ¢4 (),
the parameter w(x), and the wave vector x are explicitly given in terms of the data and, therefore, in the
following are fixed.

Next, the following assumptions are made. The first assumption is the polarization condition. The
polarization condition is that the smooth envelope p of the initial data lies in the kernel of the matrix
L(w, k). This assumption is crucial for the classical results of the slowly varying envelope approximation
and the nonlinear Schrodinger approximation. However, it is also an important assumption for our own

work.

Assumption 3.2.1 (Polarization condition).

The initial data (1.4b) are polarized, i.e.
p(x) € ker(L(w, k) for all z € RY.

The dimension of ker (E(w, /<;)) depends on the algebraic multiplicity of the eigenvalue w of the matrix
L(0,k). Since L£(0, k) is Hermitian we know that the geometric multiplicity and algebraic multiplicity
are equal for every eigenvalue of this matrix.

We remark that instead of Assumption 3.2.1 it is actually sufficient to assume that p(z) = po(z) +
ep1(z) with po(z) € ker([,(w, /<;)) This assumption has also been made, e.g., in [11, 29]. However, for the

sake of simplicity with respect to the presentation, we assume that p; = 0 and thus p(x) = pg(x).
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Of course, Assumption 3.2.1 constrains the choice of initial data, however, we illustrate the advantage of

this assumption with a simple example. Consider the linear system
i
Oru+ —L(w, k)u =0,
€

where u : [0,tcna/c] x RT — C* and initial data u(0,2) = u’(x) € R®. By definition (3.3) for £(w, x) we
know that there exists a diagonalization £(w, k) = PAP* with a unitary matrix ¥ and a real diagonal
matrix A = diag(w — wi(K),...,w — ws(k)), where w,,(k), m = 1,...,s, denote the eigenvalues of the

matrix £(0, k). We perform the change of variables v = U*u to obtain the diagonalized system

o + TAw = 0,
€

v(0,2) = U*u(x). (3.6)

We observe that the linear part of the equation creates in the m-th component fast oscillations with
frequencies w — wy, (k). To avoid this effect we choose, as already mentioned, the parameter w equal
to one of these eigenvalues w,, (k). This means the pair (w, k) satisfies the dispersion relation (3.4). If
we now assume that the initial data u®(z) is contained in the corresponding eigenspace for all z € R?,
completely or up to O(e) terms, the initial data v(0,z) given by (3.6) have the same property. Hence,
the creation of oscillations by the linear propagator are prevented.

In other words, the dispersion relation (3.4) combined with the polarization condition (Assumption 3.2.1)
can be understood as filtering out the high oscillations for the part of the solution which lies in the kernel
of L(w, k). Unfortunately, it is not so simple in the nonlinear case because the nonlinearity also creates
other oscillations which may resonate with the linear propagator.

The next assumptions mainly concern the matrix (3.3) and provide information about its properties.

Assumption 3.2.2 (Smooth eigendecomposition).

The matriz L£(0, 3) = A(B) —iE has a smooth eigendecomposition for 3 € RN{0}. This means if A\(3)
is an eigenvalue of L£(0,3), then A € C*(RN\{0},R), and there is a corresponding eigenvector 1)(3) such
that |(B)|2 = 1 for all B and ¢ € C*(R4\{0},C?).

Assumption 3.2.2 corresponds to Assumption 2 in [11].

Two natural questions arise. Firstly, are these assumptions also fulfilled by the two systems we are
interested in? Secondly, why do we have to exclude § = 07
At this point, it is helpful to explicitly specify the eigenvalues of the Klein—Gordon system and the
Maxwell-Lorentz system. For the Maxwell-Lorentz system and the Klein—Gordon system the eigenvalues
are stated in [11, Example 3 and 4]. However, for example with the Laplace expansion of determinants,
cf. [30, Corollary 7.22], one can recalculate them oneself. We consider both systems separately. Instead

of k we consider at first an arbitrary vector 8 to gain an insight of the general form of the eigenvalues.
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Example 3.2.3 (The Klein—-Gordon system (1.3)). In this case, for d € N, solving the equation
det (L£(0,8) —AI) =0
yields the three different eigenvalues

A(B) = 4/1815 + [v]3,
A3(B) = 0.

The eigenvalues A1(B3) and A2(B) have algebraic multiplicity 1. The eigenvalue A3(8) = 0 is an eigenvalue
with algebraic multiplicity d — 1. It is obvious that for the one-dimensional case d = 1, we only have the
two eigenvalues A\ (8) and Aa(f).

From these formulas we observe that if 3 = v = 0 holds, the three eigenvalues will not be distinct anymore.

Example 3.2.4 (The Maxwell-Lorentz system (1.1)). Here, we consider the three-dimensional case

d = 3. In this case, solving the equation
det (£(0,8) — M) =0

yields seven different eigenvalues

M) = 5 (V20418 + 188 + 200~ 1510 + 168 )
Xa(B) = V2,
3a(9) = 5 (V20 + 131 + 198 - y/2(1 = 1502) + 168 )

)\4(5) =0,
As(B) = =A3(B),  Ae(B) = —X2(B), M(B) =—M(B).

The eigenvalues A2(B) and Ag(B) have algebraic multiplicity 1. All the other eigenvalues are eigenvalues

with algebraic multiplicity 2.
We observe that if =0, we have A1(0) = A2(0), As(0) = A7(0), and A3(0) = A5(0) = A\y(0) = 0.

For both systems it is crucial that the eigenvalues A;(f) have constant multiplicities in a neighbor-
hood of B, so they are distinct and their algebraic and geometric multiplicities are equal. Otherwise
Assumption 3.2.2 is not necessarily fulfilled. In the literature, cf. [37, Chapter 3.I], such eigenvalues
whose algebraic and geometric multiplicities are equal are called semisimple. Furthermore, there exists
a result for semisimple eigenvalues, cf. [37, Theorem 3.1.1], which ensures that Assumption 3.2.2 is valid.
From the observations which we made for the Klein—Gordon system and the Maxwell-Lorentz system
we obtain the following. For every 3 € R?\{0} the eigenvalues \;(3) have constant multiplicities in a
neighborhood of 5.

Since we are interested in more general matrices £(a, 8) later, we make the following remark.

Remark 3.2.5. We note that L(a, §) = —al + L(0, B) has the same eigenvectors as L£(0, ) and that the

eigenvalues are shifted by —«. Hence, if Assumption 3.2.2 is fulfilled, then for every a € R the eigenvalues
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and eigenvectors of L(a, ) have the smoothness specified in Assumption 3.2.2, too. This inheritance is

a useful feature of the matrices L(«, ).
The last assumption in this section concerns another special form of matrix £(a, 3).
Assumption 3.2.6. For j € {3,...,jw + 2} the matriz L(jw, jk) is invertible.

We remark that for j = 3 Assumption 3.2.6 was also made in [11, Assumption 3]. We have expanded
the assumption a bit.
It is important to point out that this assumption induces a restriction on the choice of w. Recall that we
set w equal to an eigenvalue of the matrix £(0, ), cf. (3.4). Now, suppose that for all 3 € R?\{0}, the
matrix £(0,3) has one eigenvalue A\°(3) which is constantly equal to zero. For comparison see A3(f3) in
Example 3.2.3 with d > 1 or M\4(3) in Example 3.2.4. Then, for x # 0, A\? is also an eigenvalue of the
matrix £(0, jk) for j € {3,..., jmax + 2}. However, with w = A\ = 0 the matrix £L(jw,jr) = L£(0, jr) for
JEA{3, . Jmax + 2}, and L(jw, jk) is no longer invertible. Hence, this contradicts Assumption 3.2.6 and

we outline that we should not choose w = 0.

In summary, the Assumptions 3.2.1, 3.2.2 and 3.2.6 are all technical assumptions that we will need
later. At first glance it is not obvious that these assumptions are indeed true for the two systems,
the Klein—Gordon system and the Maxwell-Lorentz system. However, if one computes explicitly the

eigenvalues of the two systems, one can check that all these assumptions are valid.

3.2.2 Review of previous results in the literature

All the previously introduced assumptions and some further assumptions are needed to derive the slowly
varying envelope approximation and the nonlinear Schrédinger approximation.
In [11] the classical nonlinear Schrodinger approximation is derived in two steps. The first step is known

as the slowly varying envelope approximation.

The slowly varying envelope approximation. The idea of the slowly varying envelope approxima-

tion (SVEA) from [11] is that the exact solution is approximated by
u(t, ) ~ Usypa (t, @) = Usypa (t, 2)el 2790/ Lc e (3.7)

where Usypa @ [0, tma/c] x R? — C® is now complex-valued. Furthermore, the pair (w,x) satisfies the
dispersion relation (3.4). If t = 0, then the w term vanishs and we obtain a function in the form of (1.4b).
By just comparing, it is clear that Usyga (0, z) should exactly be p(x).

In order to come up with a differential equation for the new variable Usygs, we formally substitute the
ansatz (3.7) into the equation (1.4a). Since (3.7) is an ansatz with complex conjugate terms, every
term and its associated complex conjugate appear. At this point we will go into more detail about the
individual steps, since we will proceed similarly in our approach later on.

Using the product rule, the time derivative of usyg, yields with U = Usvea(t, x)

Opugypa(t, ) = (atU - 1:}U> ellmz=wt/e L e, (3.8)
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For the spatial derivatives which are hidden in the differential operator A(d) we obtain

d d .
A(O) gy (t,7) = (2 AU+ Y %AMU> eilmo—etl/e | e (3.9)
€

=1 p=1
Therefore, plugging the ansatz (3.7) into the left-hand side of (1.4a) yields an expression which looks quiet
complicated. However, by definitions of the differential operator A(d) and the matrix £, see (1.5) and
(3.3), respectively, we are able to write the left-hand side into a more compact form. With U = Usvea(t, x)

it follows that

. d d .
1w m 1 i(k-z—wt)/
(atU— zU+;1AMBHU+§1?AMU+ EEU) e “tcc

= (@U + éﬁ(w, K)U + A(&)U) ellra=whle 4 ¢, (3.10)

Next, we consider the right-hand side of (1.4a). Substituting ugyps into the nonlinearity T yields with
U = Usvea(t, x)

T(uSVEA7 UsvEa, USVEA)(ta l‘)

= Slme—wep( U, U) + ellmo—wil/e (T(U, U,U)+TU,U,U)+T(U,U,U ))
+ i (T, T, 0) + T(O,U,0,0) + T(U,T,U)) + e 5e=0/0(T,T,T) (3.11)

= Bilwe—wt)/ep(, U, U) + eltwa—wt)/e (T(U, U,T) +T(U,T,U) +T(U,U, U)) +ee.,

where we use the trilinearity and sort by exponentials.
Higher harmonics are precisely terms which involve exponential functions like e=3i(%#=«t)/2 Tn the next

step, we aim to discard higher harmonics. The reason why we want to get rid of these terms is that in

(k-z—wt)/e —i(k-z—wt)/e

, where the minus one is
+3i(k-z—wt)/e

(3.10) we only have exponential terms of the form e! or e

hidden in the c.c. term. Therefore, we do not have a counterpart for e This is precisely
what causes the approximation error in the SVEA ansatz.

ti(mz—wt)/e and ignore the higher harmonics. Because of is this we obtain two

We compare in terms of e
differential equations for U and U without any c.c. terms. Thus, with U = Ugyga(t, z) the envelope

equation of Ugyg, is given by the PDE
o,U + iﬁ(w, KU + A(Q)U = e (T(U,U,T) + T(U,T,U) + T(T,U,U)). (3.12)

The main advantage of (3.12) over (1.4) is that (3.12) has no e-induced oscillations in space anymore. The
reason is that the initial data Usyga (0, z) is exactly p(x) which is smooth in contrast to (1.4b). However,
the fast oscillations in time of the nonpolarized modes must still be taken into account, which means that
for this part of the solution the discretization step in numerical computations must still be small.

The accuracy of the SVEA is O(g) on long time intervals [0, t..q/€] in suitable norms. We refer to [11,
Theorem 1], where the error bound

sup [u(t) — usvea(t)|r=we) < Ce (3.13)
te[0,tena/e]

was shown under a lot of assumptions such as Assumptions 3.2.1, 3.2.2 and 3.2.6.
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The fact that the discretization step in numerical computations must still be small for the nonpolarized
modes motivates to simplify the problem further and to look for approximations that are independent
of £. In the second step, it is shown in [11] that the envelope equation can be replaced by the nonlinear
Schrodinger equation without spoiling the accuracy. Thus, the NLS approximation is an approximation
of the same precision as the slowly varying envelope approximation for long times t € [0,t.../c]. We

explain this in more detail.

Nonlinear Schriodinger approximation. The ansatz is the same as for the SVEA, see (3.7). In this

model the idea is to approximate
u(t, z) ~ s (t, ) = Unps(t, 2)el 52790/ e

where again (w, k) satisfy the dispersion relation (3.4) and Uyys : [0, tenq/c] x RY — C* is now the solution
of a nonlinear Schrédinger equation. For the initial data again the Uy.s(0, ) coincide with the p(zx) of
(1.4b).
At this point, we will not go into the derivation but will rather explain what makes this approximation
so special.
If a co-moving coordinate system and a transformation in time are used, then the corresponding PDE of
the NLS approximation does not depend on € and only has to be solved on a time interval which is also
independent of e. The time interval has only a length of t,,4 instead of length ¢.,4/¢; cf. Remark 8.v. in
[11]. For the numerics this is very attractive because instead of solving a highly oscillatory problem with
difficulties in space and in time, we simply have to solve an NLS equation on a time interval of O(1). In
summary, the problem to be solved reduces to an NLS equation which does not depend on € anymore
and the parameter € also disappears from the time interval. Thus, two numerical challenges which we
stated in Section 3.1 disappear. As the name says, the NLS equation has still a nonlinearity but as long
as there are no oscillations this is not a big problem. There are standard methods, like splitting methods,
which can solve this efficiently.
Furthermore, the error bound
sup [[u(t) — unes(t)||poe(ray < Ce

te[0,tenda /€]
was shown under a number of assumptions in [11, Corollary 2]. In summary, the nonlinear Schrédinger
approximation offers a possibility to approximate the solution of (1.4) up to O(e) and the difficulties
which are caused by oscillations or a long time interval no longer occur.
In some situations, however, a more accurate approximation to u is desirable. The approximation of
PDEs by nonlinear Schrédinger equations and other modulation equations is extensively discussed in [39]
and references therein.
Moreover, it is well-known that the accuracy of the nonlinear Schrodinger approximation deteriorates in
the case of short or chirped pulses. A distinction between the two types of pulses can be found in [11].

In the case of short pulses, where the initial profile p(z) in (1.4b) is given of the form

T — X

p(x) = f < ) with 0 < p « 1 and f smooth, (3.14)

f3

there is a rule of thumb in [2] which suggests that the amplitude should not change more than 10% per

wavelength. For much shorter pulses, the SVEA is not a reliable approximation and therefore inappro-
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priate. This applies in consequence to the NLS approximation as well. For more information we refer for
example to [2]. However, for such situations many improved models have been proposed and analyzed,
e.g., in [1-3, 9, 11, 13, 29]. In contrast to these references, we are not interested in this situation. Instead
of short or chirped pulses we restrict ourselves to wavetrains given by (3.14) with ¢ = 1. This is a
restriction of the setting, however, we strive for higher accuracy. An illustrative example of a wavetrain
and a short pulse is given in Figure 3.1. Here, the envelope p varies on a scale which is much larger than
the wavelength of the oscillations and for ¢ — 0 the width of the support of the envelope gets smaller.
We note that we choose different scales for the xz-axis for the two plots in Figure 3.1 because the envelope
for the short pulse is narrower in the right plot. As a consequence, the number of optical cycles for such

a short pulse is O(e/o).
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Figure 3.1: Initial data (1.4b) with e = 0.01, k = 1.2 and p(z) = exp (— <LOE’) > Wavetrain with
0 = 1 on the left and short pulse with ¢ = /¢ = 0.1 on the right.

Our goal is to derive a system of PDEs which is numerically more favorable than (1.4) but provides
an approximation to the solution u up to an error of (9(52). More accurate approximations play an
important role if the classical accuracy O(g) is not enough. For numerical methods, the procedure is to
refine the discretization and decrease the parameters, such as mesh width and time-step-size, to increase
the accuracy. However, since ¢ is fixed and given by the model problem, we cannot decrease € to obtain a
better accuracy. For this reason, the accuracy must be improved by considering a higher-order extension
of the classical slowly varying envelope approximation. This yields to an increase of the power of € in the
error approximation.

We recall that substituting ugygs into the nonlinearity 7" yields (3.11). The approximation error in

the SVEA ansatz is caused by the higher harmonics terms with prefactor e+3i(sz—wt)/e

which are ignored
in the envelope equation.

This is the motivation to make the following ansatz for our work.
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3.3 Ansatz

We start this section by defining our ansatz. In the following j.... is a positive odd integer. In our ansatz

the exact solution of (1.4) is approximated by

u(t,z) ~ lme) (¢ 1) = 2 eilra=wtl/ey (¢ x), (3.15)
jeJ
for 7 = {+1,43,..., £ ju.}- Asbefore, the pair (w, ) satisfies the dispersion relation (3.4). Furthermore,
we assume that u_; = u; holds.
First, we explain in more detail why our ansatz (3.15) has this exact form. In contrast, for example, to
the ansatz of the SVEA (3.7), we omit the expression “+c.c.” because the complex conjugate terms are
hidden in the sum ;. More precisely, with 7, = J n N and u_; = u; we can equivalently write

JjeT

Z eij(n-szt)/suj(t’x) _ Z eij(n-xfwt)/suj(t,x) +cc.,
jeJ JeT+

where we also take into account higher harmonics. For j,.. = 1 our ansatz (3.15) looks very similar to
(3.7). Later, after deriving the evolution equations for the coefficients u;, we indeed obtain for j,.. =1
the SVEA again. This is the reason why we interpret this ansatz as a natural extension of the SVEA.
Next, we know that the nonlinearity T is odd, or more precisely trilinear. Therefore, only odd harmonics
are created by the nonlinearity because we are interested in initial data of the form (1.4b), where no even
harmonic is given.

Since the procedure for deriving the evolution equations for the coeflicients u; is similar to that of the
SVEA, this time we will not go into detail. The calculation of the time derivative and the spatial
derivatives of fil/max) with the help of the product rule follows similarly to (3.8) and (3.9), respectively.
However, the small difference is that a factor j occurs in the matrix £(jw, j&). In comparison to (3.10),
the matrix L£(w, k) is generalized by L(jw, jx). Therefore, plugging the ansatz (3.15) into the left-hand
side of (1.4a) yields

Z (é’tuj (t,z) + l[,(jw7j,‘€)u]‘(t,l’) + A(&)uj(t,:c)> gl (ma—wt)/e,

= c

Substituting U=+ into the nonlinearity 7' has in comparison to the SVEA a more complicated form.
Again we use the trilinearity and sort by exponentials, however, the number of possible higher harmonics
is larger. The number of possible multi-indices J is larger as well. Thus, we have to sum over all possible

multi-indices (j1, jo, j3) € J°, where the sum j; + jo + j3 € {£1,+3,..., £3j...}. We obtain

T (i\j(jmax)(t7 x)’ l’i(jmax)(t7 .’I;), i_\’].(jmax)(t7 w)) — Z ei(jl +j2+j3)(ﬁ'$—wt)/ET(ujl ; sz , Ujg)(t, x)
(J1,J2,73)€T3
= Z Z eij(wm_Wt)/ET(ujl ) Ujazs ujs)(t7 1‘)
jodd  jitj2+js=j
|71<3jmax
Therefore, substituting the ansatz (3.15) into (1.4) and comparing the left- and right-hand side leads
to the observation that we do not have a counterpart for the higher harmonics e'(5#=“t/e with j

{£Jmax £ 2, £3Jmax}. Similarly to the SVEA, this is the reason for discarding terms with prefactor
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eldlrz=wt)/e if |51 > 5 All in all comparing in terms of eV (* =%/ with || < j... yields the system
i,
atuj + g[.:(]w,jﬁl)uj‘ + A(a)uj =€ Z T(“j]?“jgﬁ“h)? (316)
Ji+j2+iz=j

for je 7y =T AN, te(0,tuq/e], zeR%L
The sum on the right-hand side is taken over the set
{J = Gt ards) € T* 48 1= i+ 2 + s = 3} (3.17)

This set has only finitely many elements. For example for j,., = 3, the set contains 12 multi-indices for

j =1 and 10 multi-indices for j = 3. We note that
il + L2l + 8| = [Tl = [#J] = |1 + j2 + js| = [i].

Since the condition u_; = u; holds, the PDEs for u_y, ..., u_j; . are redundant but compatible. This

can be verified as follows. For the matrix £(jw, jk) we deduce by definition (3.3) that

L(jw,jk) = —jwl + A(jr) +iE
=~ (jul + A(=j) — iE) = —£(—jw, —j#).

Thus, for the linear part of (3.16) that contains the matrix £(jw, jx) we obtain together with u_; = @;

1., . i . .
CLGw, jR)uj = ZL(=jw, —jr)u-;.
For the nonlinear part, the relation (2.3) yields

Z T(ujlvujwujs) = 2 T(ujuujfzvujs.)'
Jitj2+iz=j Jitje+is=—J
Therefore, the PDE (3.16) is compatible with the condition that u_; = ;. We end this section with a

statement for the initial data and a remark. The coupled system (3.16) is endowed with initial data
us1(0,) = u?l) = p, uy;(0,-) =ul,; =0 for |j| > 1. (3.18)

Remark 3.3.1. Similarly as for the SVEA, the main advantage of (3.16) over (1.4) is that the solution
of (3.16) does not oscillate in space, because the initial data (3.18) are smooth in comparison to (1.4b).
In contrast to the SVEA, the price to pay is that the total number of unknowns in (3.16) is (Jn. + 1)/2
times as large than in (1.4). If we compute only the first two coefficients, which means j,., = 3, the
number of unknowns is only twice as large, which is still a very cheap price for the numerical advantage.
Since we have only removed the oscillations in space, typical solutions of (3.16) still oscillate in time
due to the term éﬁ(jw,j%;)uj. However, it turns out later that this situation is now more favourable. We

present this in the next chapter in Remark j.1.3.

Of course investigating approximations of (1.4) is not new. Similar approximations have been con-
sidered in many other works. In nonlinear geometric or diffractive optics a well-known approach is to
look for an approximation of the form u(t,z) ~ U(t,z, (k- & — wt)/e). Here U = U(t,x,0) is a profile
which is periodic with respect to the additional variable 6; cf. [2, 13, 14, 16, 23, 25, 28, 37]. In [g],

the authors construct uniformly accurate numerical methods for highly oscillatory problems by means
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of this approach. However, introducing an additional variable has a drawback. The additional variable
increases the number of unknowns of the numerical discretization by a factor Ny, where Ny is the number
of grid points in the #-direction. This is the reason why we do not use a profile U (¢, z, 8) explicitly in our
approach. However, we remark that the ansatz (3.15) can be interpreted as a truncated Fourier series of

0 — U(t,z,0), where all Fourier modes with index j ¢ J are discarded.

The next goal is to define the proper analytical setting in which we aim to consider the problem class.

3.4 Analytical setting

With regard to analyze the system (3.16) and to investigate the approximation behavior of the ansatz
(3.15) we establish a suitable analytical setting in this section.
Let Ff = f be the Fourier transform of f, see (A.1), and let S’(R?%) be the dual of the Schwartz space
defined in Appendix A.2.
As in [11] we will work in the Wiener algebra, defined by
W (RY) = {feS'(RY): fe L'(RY)}

with the norm

1 lwgsy = 1Pz gey = j Fk)] d
Rd

For r € N the Wiener algebra of order r is defined as
W (RY) = {fe W(R?) :0*f e W(R?) for all a € N§,|a|; <7},
cf. (16) in [11], where ||y is defined in (2.7). It is endowed with the norm

I flwrgay = D, 10° flwe-

loi<r
When r = 0, we write for simplicity W (R¢) instead of W°(R?).

For vector-valued versions of the function spaces W7 for r € Ny and also L', we define the norm

Wl sor = Fllusien = [ 9k Fer! &y (3.19)
]Rd

where |- |2 describes the Euclidean vector norm. Throughout the thesis we use the abbreviation || - ||y~ =

|| . HW’I‘(Rd)S for r e No.

In fact, many of the results that are presented in [11] can also be obtained in Sobolev spaces. However,
in order to use Sobolev embedding to handle the nonlinearity we would need the additional assumption
r> %. Furthermore, the Wiener algebras have favorable properties which are summarized later on. An-
other reason why people are interested in the Wiener algebra instead of Sobolev spaces is the following.
The Wiener norm of the initial envelopes of short pulses (3.14) remain bounded when ¢ — 0, whereas
any Sobolev norm tends to infinity. For more information we refer the interested reader to [2, 11, 29].

Next, we state the classical properties of the Wiener algebra which are used in this thesis (cf. [29,

Proposition 3.2], [11, Proposition 1] or [3]).
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Properties of the Wiener algebra:

e The space (W"(R?), |- |w) is a Banach algebra which means for all f, g € W"(R%) we have
Ifglwr®ey < Cllflwr@alglwrzay-

e The Wiener algebra W (R?) is continuously embedded in L* (R¢).

Remark 3.4.1. The first property in particular means that we have bilinear estimates. This property is
very useful in order to handle the nonlinearity. The resulting estimates, such as Lemma 3.5.1, (3.30) and
(3.31) are used quite often. A similar bilinear estimate is also known for Sobolev spaces. However, for
Sobolev spaces this bilinear estimate is only true if r > d/2. For Wiener algebras there is no restriction
on the parameter r. Thus, this bilinear estimate is even true for the space W, where r is equal to zero.

The second property plays a crucial role in our error bounds later on.

For estimates in the Wiener algebra it is convenient to consider the evolution equation (3.16) in Fourier
space. The following sections of this chapter are based on [4]. Compared to [4], where j,.. = 3, we treat

an arbitrary odd number j,.,.-

3.5 Evolution equations in Fourier space

Formally the solutions u; of the system (3.16) can be Fourier transformed by (A.2) with coefficients (A.1).

If w; is sufficiently smooth, then the derivatives in space for € {1,...,d} are given by
onu;(t,x) = (2m) =2 Jaj (t,k)one™ ™ dk = (2m) =42 J (ik, )", (¢, k)elF* dk
R4 Rd

such that space derivatives correspond to multiplications of the Fourier coefficients. Differentiating (A.2)

with respect to t formally gives

Oruj(t,x) = (2m) =42 J Oy (t, ke dk (3.20)
R4
and
d ‘ .
A(0)uj(t,x) = (2m) =2 f (Z ik:HAH) a;(t, k)t dk = (2m) =42 f 1A(K)a;(t, k)e** dk.  (3.21)
pe =1 Rd

Therefore, we obtain by inserting (3.20) and (3.21) into the left-hand side of the system (3.16)
Guus (1) + ~L(w, JR)u (1,2) + A(@)u; (1, 2)

= (2m) %2 J (ataj(t,k) + L (3w, jr), (k) + 1A (k) (t, k)> ke g
R c
= (2m)92 J (Gtﬁj(t, k) + éﬁ(jw,j/i + ek)u,(t, k)) R k.

Rd
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Throughout the thesis we introduce the shorthand notation
L;(0) = L(jw,jr+0) = —jwl + A(jk + 6) — iE, for jeJ,, (3.22)
where we omit w and x because they are fixed. Thus, it follows that applying the Fourier transform to
the left-hand side of (3.16) gives
F (0w + éﬁ(jw, jryus + Ay ) (k) = 0 (t, k) + gzj(ak)aj(t, k).
Furthermore, the trilinear nonlinearity of (3.16) is formally given by
T (wjy sy, gy

(@)
= (zm) 0 [ [ [ OO e @, (10), 1, (K, B, (69) AR AR kD

R4 R4 R4

= (am) 2 [ {(m) [ [ 25 (60,5, 062), 1, (5~ KO = K2 ak@) aO) |

Rd R4

Rd
= em [ [ @ ), 8 (K 85— KO — ) Ak kD | (o),
Rd Rd
where we substitute k = k() + k@) 4 k3,
With the notation K = (k’(l), k3, k(3)) e R x R? x R? and #K = k™M + k®) + £®) € R? we obtain that
the Fourier transform of T'(u;, , uj,,u;,) is given by
]:(T(U'jl y Ujigs ujs)) (k) = (277)_d J T(ajl (k(l))v ajz (k(Q))v aja (k(g))) dK =:T (ajd ) ajz ) aja) (k‘),
#K=Fk

(3.23)
where we use the notation
(5, (6), 3 (6, 85, (b)) A = [ [ 205, (6D), 8 (K, By k= ) = K) d) k).
#K=Fk R4 R¢
Hence, uw = (u, ..., u;,,,) solves the system (3.16) if and only if & = (%1, ...,4,,,,) solves the system
dv;(t, k) + éﬁj (ek)u;(t,k) =¢ Z T (U, gy Ugy ) (1, k), G€ Ty, te(0,tuma/e], keRY (3.24)
#I=j

where #J = j1 + j2 + j3, and with initial data
11(0,-) = P, u;(0,-) =0, forj>1, (3.25)
where p is the Fourier transform of p from (1.4b).

At this point, we note that the convention u_; = w; implies that u_;(t,k) = @;(t,—k). The reason is

that we obtain

uj(x) = (2m) 2 f a; (k)¢ d,

Rd

u_j(x) = (2m)~ 4> Jde = (2m)~ 2 faj(k)e—ik.z Ak
RY Rd
= (27r)*d/2 fmeik-z dk.

Rd
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Note that in general @_;(t,k) # U;(t,k), which we have to keep in mind in the implementation of

numerical methods. For the analysis this implies

s @ = [ 1850t Dladk = [ [ Bk = [ @ -k)ldk = 13,0100 (320
RA R4 R4

Furthermore, for negative indices it follows by means of the skew symmetry of E and the definition (3.22)
L_;(0) = jwl — A(jr — 0) —iE = — (—jwl + A(jr — ) —iE) = —L;(—0) for j e 74, (3.27)

such that (3.24) holds also for j € {—1,..., —jnax}-

Now, we state some helpful bounds for the trilinear nonlinearity 7, defined in (3.23), which are

frequently used later on.

Lemma 3.5.1. For fi, fo, f3 € W(R?) we have
-~ ~ ~ 3 ~
HT(flaf27f3)HL1 < CTHHfiHL17 (328)
i=1
where Cr := Cp(2m)~¢ and Cr is the constant defined in (2.5).
If additionally g1, g2, 93 € W(R?) and if | filw, ||lgi|w < C for some C > 0, it follows that

3
| T(f1, For f3) = T(G1,92,93) | 2 < CTC? > | Fi = G 11 (3.29)

i=1

Proof. For fi, fo, f3 € W(R?) we use the definition of L', (3.23), and obtain with (2.5)

|7 Fi, far f3) | < (2m)” f J T(fi(kV), fo(k® )»ﬁ*)(k(3))>‘2 dK dk

Re # K=k
&@ﬂ”fjﬁﬁwmm@W%MQWWNKM
Rd # K=k
= Cr( J|f1 (kM) dk “ f|f2 N2 dk® (jp%(k(?’))\zdk(?’))
]Rd

= Cr(2m) Y fill e foll o | fl e
For fi, f2, 3,91, 92, g3 € W(R?) with | f;|w < C and ||g;|w < C we have with (2.4)
HT(.]?l? j\'27 .]?3) - T(§17§27§3)||L1
<|T(F =G, For B3 1 + [ TG, fo = G20 Fa)]| 1+ | T (G162, Fs — G5)] s

< Cr(2m)” (Hf1 il Pl g Lol o+ 172 = Gl ool + 1o = Gl oL 21

< Cr(2n %?ZM 9ill 1

1=1

where we use (3.28) for each of the three terms. [ |
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Remark 3.5.2. By definition of the Wiener algebra the estimates (3.28) and (3.29) are equivalent to

3
IT(fr, for f9) |y < Cr [ T filw (3.30)
=1
and
3
|T(f1, for £3) = T(91, 92, 93) |y, < CTC2 Y | fi = gillw- (3.31)
=1

After introducing the analytical setting, we establish a local well-posedness result in the next section.

3.6 Local well-posedness

In this section we show well-posedness of the system (3.16) on long time intervals, more precisely on a

time interval [0,t* /e), where t*

end end

> 0 is independent of e. The following results hold for arbitrary odd
Jmax > 0. We start this section with the definition of a suitable norm and some helpful estimates.

For v = (v1,...,vj,..) € W* x ... x W?° we define the norm
|vllwe = 2[orllws + 2Jvswe + ... + 2fvjlwe

The factor 2 is introduced in order to account for the terms with negative indices which appear on the

right-hand side of (3.24), hidden in the sum )] . If we use the convention that v_;(k) = 0;(—k) holds
#J=j
for j € J, as before, then we have with (3.26) that

lolwe = > lvjlwe.

JjeT

For v = (v1,...,vj,..) € W x ... x W the inequalities

Z H Z T(aju@jwﬁjs) I < Z Z HT(QA}ﬁvﬁjzaﬁjs)HLl < Z HT(ﬁjuaj27ﬁj3)HL1

JjeT  #J=j JeTJ #J=j JeJs3
<Cr Y, 15l e 185 s 195 |0 < Crloliy (3.32)
JeJ3

follow from (3.28) and the fact that the set of indices over which is summed in ] includes more elements
JeTgs
than the index set of the sum >, >, . Let uw = (u1,...,u; ,,, ) be another element in W x ... x W.
JET #JI=3j
Similarly to the proof of Lemma 3.5.1 for the estimate (3.29), the trilinearity of T yields

Z Z ”T<aj1vaj2’aj3) - T(ﬁjn@jz’ajs)HLl
JET #J=j

<> 3 ol = ol sl s o+ Vs = 85l oo o | sl + 1850 = Bl [95,a sel)
JET #J=j

< 7 (ol + lulwlvlw + fulfy ) Ju — vl (3.33)
with the same reasoning as in (3.32).

After these preparations, we show local well-posedness of (3.16). We remark that the polarization of the

initial data, cf. Assumption 3.2.1, is not required for the following result.
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Lemma 3.6.1 (Local well-posedness).

(i) If pe W, then there is a existence time t* , > 0 such that for every e € (0,1] the system (3.16) with

end

initial data (3.18) has a unique mild solution

u = (ul""7ujmaz)7 uj € C([O’t:7rd/€)’w)'

(ii) If pe W' and t,., < t*, for some t.,, > 0 independent of €, then the mild solution on [0,t.,./¢] is

end

a classical solution u = (uy,...,u;, ) with

wy € O[O, ta/e], W) 0 C([0,Lu/2] ).

(iii) If pe W2 and t,,, < t*,,, then

uj € C%([0, tona/e], W) A CH([0, tona/e]l, W) A C([0, to/e], W2).

We immediately conclude by continuity the existence of constants Cy,; and C, 2 such that

sup  Jus(Olw < Cury  jeTs (3.3
te[0,tena/c]

in case (ii), and

sup  [uj(t) w2 < Cup,  jET4 (3.35)
te[0,tend/c]

in case (iii). In both cases the constant C,, ; for i = 1,2, depends only on ¢.,4, C'7 and on ||p||y:, but not

on €.

Proof. The proof is based on classical arguments such as the varaition of constants formula and Banach’s

fixed point theorem, cf. [36, Chapter 6], but nevertheless we outline the main steps.

Step 1. First, we choose ¢ € (0,1] fixed. We define the operator

vy A .
Al = : LAy = SL(w,R) + A9) (3.36)
ima Ao Vimas
with domain D(A) = W' x ... x W'. This operator generates a strongly continuous group (e**),cr on

tA

W x ... x W. Moreover, we note that for j € 7, and every t € R the group operator e/ is an isometry,

because

leivg] = [F(ev5)] 0 = J\eiw"(ewaﬁj(’fﬂz dk = f 18;(k)], dk = [vj]w
]Rd

R4
for all v; € W. Here, we use the fact that £;(ek) is Hermitian and thus the matrix elt£i(ek)/e ig unitary.
With the operator A; from (3.36) the system (3.16) can be reformulated as

oruj + Aju; = ¢ Z T (g, W)y, U, ) for j e J;. (3.37)

#J=j
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Step 2. We show existence in a closed ball via Banach’s fixed point theorem. We introduce for a

number 7 > 0 determined below the space

X = C([0,7/e], W) x ... x C([0,7/<], W).

The corresponding norm is given by

lola = sup [o(®lw = sup D7 Joi(t)]w-

tel0,7 /e te|0,7/e jeJ

Now, we fix u(; = v;(0) € W and define the map

x—x -,

new
Jmax

where for t € [0, 7/¢]

U;’Lew@) _tA]u +e Z J- o= t)AJT(Ujl’Uﬂ?vJs)(U) do.
#J= JO

By definition of the Wiener algebra, the isometry property of the group operator e and (3.23) we

obtain

oyl < il +¢ f w5000, @)y o= [l & fHT @], do
#J= ]0 #J= ]0

With the estimate (3.32) it follows that

[@()|x = sup > [0 (®)lw < 2[plw e _up 2 f‘|TU]17U32vU]3 )2 do

te[0,7/¢] je 7 €l0,7/e] jeg 4J= =iy

<2|plw + Cre sip JHU )i do < 2[plw +Crr sup  [o(o)|y
te[0,7/e] o€l0,7/¢e]

=2|plw + Crrvl%.
Now we choose a parameter p > 0 and fix 7 = 1 4+ p. We define the closed ball with radius r as
r)={veX: |v|x <7}
Then, for every p € W with |p|w < § we estimate with v € B(r)
|@(v)|x < p+ Crr.
Under the condition that 7 < 1/(C7r3) we obtain

[e(@)|x <p+1=r,
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which means that ® maps the closed ball onto itself. Next, we show the contraction property of @ for
any v, w € B(r). It follows from (3.33) that

H(I)(U) ( )HX_E sup Z Z ‘[H v]nvjzvng,)(o')_T(wjlijwsz)(a)”w do

tEOT/E jeT #J= ]0

=3Crr’e sup JH’U o)lw do < 3Crr%7|v — w| x.
te[0,7/¢]
Under the condition that 7 < 1/(6C77?) we have that ® is Lipschitz on the closed ball B(r) with a

Lipschitz constant smaller than or equal to % In total, if we choose
7 =min {1/(Crr?®),1/(6C7r?)}, (3.38)

then ® : B(r) — B(r) is a contraction, and by Banach’s fixed point theorem, there is a unique fixed
point u € B(r) of ®. We emphasize that by the choice (3.38) the number 7 is independent of . By
construction, this fixed point « is a mild solution of the system (3.16) with initial data (3.18). In other
words, for fixed € € (0, 1] and for ¢ € [0, 7/¢] we have

uj(t) = e ip; + ¢ Z J AT (uy, gy, uj,) (o) do.
#J=3 0
We remark that at this point the proof only gives a conditional uniqueness result among functions

belonging to a certain ball.

Step 3. In order to derive unconditional uniqueness we have to use the standard argument that we can
glue and shift solutions. Thus, we glue together each local solution for short time intervals to cover any
time interval which is not larger than the maximal existence time which we denote by 7+ (g)/e. We refer

to Theorem 1.4 and its proof in [36, Chapter 6] for more information. Therefore, the solution can be

extended to the maximal time interval [0, 77 (¢)/e), and we define
t* = inf 77(e) =7 >0.

e€(0,1]

With this construction t*

* o i1s uniformly bounded from below and, thus, independent of ¢. This proves

part (i).
Next, we prove part (ii).

Step 4. We aim to apply [36, Chapter 6, Theorem 1.5]. For this purpose we have to show that the
nonlinearity T : W x W x W is continuously differentiable and locally Lipschitz continuous. First, we
note that for (wq, wa,ws), (h1,ha, hs) € W x W x W the trilinearity leads to

(T(’Ll)l + hl,’wz + hQ,’wg + h3) — T(wl,wg, ’wg)) — (T(’Ujl, wa, h3) + T(wl, hg,wg) + T(hl,’(UQ,U)g))
= T(wl, hQ, h3) -+ T(hh w2, hg) + T(hl, h2, ’lUg) + T(hl, hg, hg)

Furthermore, we have with h = (hy, ha, h3)

[hillf < Mhalify + Ihalf + (sl = (815w xw, i =1,2,3.
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Together with the fact that W is an algebra, we obtain

|T (w1, ha, hs) + T(h1, wa, hg) + T(h1, ha,ws) + T(hy, ho, hs
< [T (w1, ho, hs + | T(hy, we, hs + | T(hy, b, ws

w

[T (R, bz o)y

Nw Nw w
< Or(|willw [ hallwhallw + [ w w2 w s lw

+ |hallwlhellw lws|w + [Balw Bz lw s ]w)
< Or|hlfy w w (lwrlw + [wellw + [ws|w + [hlwwxw)

= O(HhH‘Q/VXWXW)

Therefore, the Fréchet derivative is given by the linear map
(h1, ha, hg) — T(w1,wa, hz) + T(w1, ha, w3) + T (hy, wa, w3),
which is bounded because of (3.28) and

sup HT(wl, wa, hg) + T(w1, ho,w3) + T'(hy,ws, w3

L M

< Jwrllw wallw + wifwlwslw + [we|lwws|w < C.

In summary the nonlinearity T : W x W x W is Fréchet differentiable on W x W x W and the continuity
of the Fréchet derivative in every (wq,ws,ws) € W x W x W is shown analogously. In addition, local
Lipschitz continuity of T follows by (3.33).

Next, if p € W1, we then have by definition (u{,... 7u?mx) = (p,0,...,0) € D(A). Now, all the re-
quirements are fulfilled to prove part (ii). With [36, Chapter 6, Theorem 1.5] it follows that for every
tena < t7,, where t,.4 is independent of ¢, the mild solution is in fact a classical solution on [0,%,.4/].
This proves part (ii).

Step 5. For the part (iii) of the lemma, we set v’ = (uj,...,u} ) with u; = dyu; and formally
differentiate both sides of (3.37) with respect to t. This yields

atu;‘ + AJU; =€ Z (T(u;d » Uja s ujs) + T(ujl ’ U;Q ) ujs) + T(ujl » Uga s Ugs))
#J=j

with initial data

wf(0) = —Ajud +e Y T(ul),ud,,ul). (3.39a)
#J=j

Next, let v = (u1,...,u;,,,.) be the classical solution constructed in part (ii) of this lemma. Then, we
consider the linear problem
opu; + Ajuly = eBj(t,u'), (3.40a)

Bitu) = (T, (8), s (010, (1)) + Toaz, (8), 1), (8), 030 () + T (0, i, (1), 05, () )
#J=j

with initial data (3.39a). Since we know by part (ii) that u; € C([0, tena/c], W) N C([0, tena/c], W), the
mapping

(t) > Bi(t'),  Bj:i[0,tuafe] x (W x ... x W) —> W
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is continuously differentiable and locally Lipschitz continuous. This follows again by (3.28). If p € W?2,
then (uj(0),...,u}  (0)) € D(A) due to (3.28). With the same justification as in part (ii) of the proof,

the mild solution v’ = dyu of (3.40a) with initial data (3.39a) is in fact a classical solution according to
[36, Chapter 6, Theorem 1.5]. Thus, part (iii) is shown. [

We conclude this section with a brief remark on the local well-posedness of (1.4) in the Wiener al-
gebra on long time intervals [0,¢.,q/¢] for some t., > 0 independent of €. By adapting the proof of
Lemma 3.6.1 we are also able to show local well-posedness of the original problem (1.4) in the Wiener
algebra. The reason is that the operator A(0) + %E has the same group properties as the operator A
defined in the proof of Lemma 3.6.1. By definition of the Wiener algebra and the isometry property
of the group operator exp (t [A((?) + éE]) we can prove local well-posedness of (1.4) via Banach’s fixed

point argument.

3.7 Transformation to smoother variables

In order to analyze the accuracy of the approximation (3.15), the estimates (3.34) and (3.35) have to be
refined. In Section 4.4.1 with j,.. = 3 we will show that if the system (3.16) is considered with initial

data (3.18), then for example the function us stays small on long time intervals, i.e.

sup  |us(t)|wr < Ce?
te[0,tenda/e]
A similar refined estimate of order O(e) will be shown for a certain “part” of u; to be specified later in
(4.10).
We first demonstrate that standard proof techniques do not help us to show this improved estimation.
For a better explanation, we illustrate the problems that occur with an example, and consider (3.24) with
Jmax = 3. In the following all calculations are formal. Applying Duhamels formula to (3.24) with j = 3
yields

As(t k) = exp (f@@k)) As(0,k) +2 Y f exp (i(“ —?) Eg(&tk‘)) T(@,,8,,,8,,)(0) do
0

#J=3 €

= sfexp (1(05_ 2 Eg(Sk)) T (4y,11,U1)(0) do + other terms,

since u3(0,k) = 0. However, T (Uy,U1,u1)(0) is formally O(1) and the factor ¢ in front of the integral
counterbalances the long time interval ¢ € [0, t..4/€]. Therefore, this integral term is O(1). However, we
aim to show supyeq 1., /e1 14 (t) 2 < Ce?. In order to gain one factor of ¢ from the oscillatory behavior
of the integrand, we want to apply integration by parts, which leads to two problems. First, we have to
ensure that Az(ek) and thus L£3(ck) is invertible for every k € R%. However, this statement is not valid
for general k € R%. As an illustrative example, consider the eigenvalues of the matrix £3(6), cf. (3.22),
for 6 € R in the one-dimensional case of the Klein-Gordon system (1.3) in Figure 3.2. First, we observe

that the eigenvalue A\35 is bounded away from zero for all § € R. The eigenvalue A31, however, has two
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intersections with the x-axis. Hence, the matrix £3(6) is not invertible for all # € R. We only know that
L3(0) is invertible for § = ek = 0 because of Assumption 3.2.6 and £3(0) = L(3w, 3k).

—10

-10 -8 —6 —4 -2 0 2

Figure 3.2: Eigenvalues Az, (0) of the matrix £3(0) of the one-dimensional Klein-Gordon system with

v =0.7, k=12 and w = max{w; (k),w2(K)}, where wy, is the m-th eigenvalue of £(0, ).

In the resulting term, after integration by parts the next problem occurs. Under the assumption that

L3(ck) is invertible for every k € R%, we obtain

c f exp (i("; 2 cg(gk)) T(an, 2, 1) (o) do
0

i(o—1) '

— &2 (iLs(ek)) ™" [exp < £3(5k)> T (@, 0y, ﬁl)(a)]

o=0

t
— 2 (il (k) ! J exp (l("; ) ,cg(gk)) 6, T (@, 01, 1) (o) do.

0
The first term is formally O(g?), however, the integral term is again only O(1), since 0;T (41, 11,1 )(0),
cf. (3.24) with j = 1, and the length of the time interval are both O(¢~!). Thus, with this approach, the
improved estimation cannot be shown.
In order to formulate and prove these refined estimates, it is very useful to consider a transformation of
u; which we introduce in the following. This transformation remedies the problems encountered when
using standard proof techniques.

For j € J; and every 6 € R? the Hermitian matrix £;(0) = L(jw, jk + 6) defined in (3.22) has an

eigendecomposition
L£;(0) = W;(0)A;(0)¥5(0) (3.41)

with a unitary matrix ¥;(§) € C°*° and a real diagonal matrix A;(#) € R®*° containing the eigenvalues

of £;(0).
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We have the following relation of the unitary matrix ¥;(¢) and the diagonal matrix A;(6) for positive

and negative numbers j. It follows from (3.27) that
U_;(0) = —V;(-0)
and A,j(e) = —Aj(—9) = —Aj(—tg), (342)

since A;(0) is real for every § € R%. Throughout this section we denote by 1, (6) € C* the m-th column
of ¥;(0), and by A, (6) € R the m-th eigenvalue. Thus, for m,f = 1,...,s the relations

if m=1¢,
£5(0)5m(8) = Ay (6)ym (6), bim(®) - 030(0) = | (3.43)

0 else

hold.
We know that the eigenvalues of L(a, 8) are the eigenvalues of £(0, ) shifted by —«. Thus, the general

form of the eigenvalues A, () is given by
Ajm(0) = —jw + wm (jk + 0), (3.44)
where w,, () is the m-th eigenvalue of £(0, 3) with 8 € R?\{0}. Furthermore, (3.42) implies
Ajm(0) = =Ajm(—0) = jw — wy,(jr —0).

By Remark 3.2.5 the eigenvalues have the smoothness specified in Assumption 3.2.2. We know that for
the Klein-Gordon system the matrix £1(0) = £(w, k) has a one-dimensional kernel since the eigenvalues,
which are not constantly equal to zero, have algebraic multiplicity one. For the Maxwell-Lorentz system
the matrix £;(0) can have a one-dimensional or a two-dimensional kernel depending on the choice of w.
Hence, we introduce the parameter m, € {1,2} such that £;(0) has an m,-dimensional kernel. Then,
the enumeration of the eigenvalues is chosen in such a way that A\11(0) = A1, (0) = 0. It follows
that the kernel of £1(0) is spanned by 111(0) and 1., (0). This fact is important in the context of
Assumption 3.2.1 as we will see below when we consider the initial data. Furthermore, the evaluation of
the eigenvalues at § = 0 plays an important role later on.

Next, we define for every j e J,, € > 0,t >0 and k € R? the matrix
Sje(t, k) = exp (%AJ<E]€))\I/;<(E]€) = \If;‘ (ek) exp (%Ej (sk)) e C**s, (3.45)
For the last equality we use the relation
exp (i;t[,j (ek)) = U,(ck)exp (%Aj(sk))\ll;-‘(sk),

which we obtain with the diagonalization (3.41).

The new variables z; : R x R? — C?® are obtained by the transformation
Z](t,]f) = S],E(t,k)aj(tvk)v ] € j+a (346)

where Uy (¢, k), ..., ;.. (t, k) is the solution of (3.24). The matrix (3.45) is unitary for every j € Jy,
€>0,t>0and k € R? because by definition

Sj”jE(t, k)S;j-(t, k) = W;(ek) exp (—;—’;A]— (5k)) exp (E%Aj (5k)) \Il;l< (ek)
=W, (ek)V5(ek) = I = Sj(t,k)ST (t, k).
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Thus, the transformation (3.46) is unitary, and we have
|t;(t, k)2 = |z (t, k)|2, which implies by definition (3.19) ||T;(¢)|lzr = [2;(¢)]L:. (3.47)
Furthermore, for negative indices we set
S_je(t, k) :==8,(t,—k), z_j(t, k) = z;(t, —k),

which is in accordance with the convention @_;(t, k) = 4;(t, —k).

We note that the linear part of the system (3.24) could be solved exactly in Fourier space. Therefore,
the introduced transformation (3.46) can be interpreted as a transformation with the solution of this
linear part. The advantage of this transformation is shown by deriving the equations of motion for the
new variables.

We obtain for the time derivative of the matrix (3.45) for fixed k € R% and j € J,

6,553-75(15, k) = iAj(z’:‘ki)Sj,E(t,k‘) = éSj@(t,k‘)Ej(&k).

£
For the last equality we use the relation
éAj(skz)Sj,E(t, k) = \Il;" (Ek)\IJj(Ek)Aj(sk)\I/;’f(sk) exp (%Ej(skr)) = \I/;’.‘(Ek)ﬁj(skz) exp (%Ej(skr))

= 8;(t, k)L, (ck),

which we obtain with (3.45) and because A;(¢k) commutes with exp (£A;(ek)). Hence, taking the time
derivative of (3.46) and substituting (3.24) yields

012 (t, k) = (0:S;.e(t, k) u;(t, k) + S;o(t, k)oru;(t, k)
185t k)L, (ek)a;(t, k) — 18, c(t,k)L; (k)i (t, k) + S5 (6 k) > T (@, 0y, 1j,) (£, k)

#J=j
=eS;.(t, k) Z T (U, 0, U, ) (£, K).
#J=]
To obtain a more compact notation, we write
dzi(t) =e Y. Fe(t,@,J) (3.48)
#J=j

with © = (617 PN 7ﬁjmax) and

F.(t,4,J) = S; (0T (@,,4,,05) (1), j=+#J (3.49)

Comparing (3.24) with (3.48) shows that the dominating linear term
éﬁj(sk)@j(t, k)

in (3.24) is cancelled by the transformation. If we had no nonlinearity, which means 7(-,-,-) = 0, it
would follow from (3.48) and (3.49) that d,2z;(t) = 0. Hence, the coefficient function z;(t) = z;(0) would

be constant in time. Therefore, in the linear case the exact solution of (3.24) is then simply

uj(t, k) = S5_(t,k)S;(0,k)u;(0,k) = SF_(t, k)2 (0, k).
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This is a favourable property which does not cure the oscillatory behaviour completely in the general
(nonlinear) case. The right-hand side of the evolution equation (3.48) of z; is formally O(e), whereas the
right-hand side of (3.24) is O(1/¢). Hence, the entries of z; oscillate with a much smaller amplitude than
the entries of #;. This observation is our main motivation for considering transformed variables in the
proofs of our main results.

A closed system of evolution equations for z; with j € J; can be obtained by expressing the right-hand

side of (3.49) by z; via the inverse transformation
Uj(t, k) = S5t k)z(t, k). (3.50)

In order to do this, the nonlinearity 7 (aj,,j,, U ,) has to be expressed in terms of the new variables.
This leads to
atZJ =€ Z SJ € J1 EZJ1 ) S]Q 52323 533 szjs) (t)
#J=j

In order to gain insight into the interaction between the linear propagator S; . (¢) and the nonlinearity,
we have to consider single entries of the vectors @; = (ﬁjm)fnzl and z; = (zjm);=1, respectively. The
transformation (3.50) is equivalent to

ui(t, k) = S;-‘js(t, k)z;(t, k) = U,(eck) exp ( - i;tAj(ek))zj(t, k)

S

Z exp (— LXjm (ek)) zjm (t, k)Yjm (ek), (3.51)

m=1

where A, (¢k) € R, zjm(t, k) € C and 9., (ek) € C°. Together with (3.23) and the trilinearity we obtain

T(ajl ) ajé ) ajs)(ta k) = (27r)_d f T(ﬂ(t, k(l))v a(t, k(Q))v ﬁ(t, k(s))) dK

#K=k
—nY f exp (= LA (eK)) Zons (1, K)T (gar (e K) A
M gk
with summation over all M = (my,ma, m3) € {1,...,s}> and the notation
K = (kM k@) k®) e RY x R? x R?
3
A (EK) = Njymy (EKD) + Ny (6P)) + Njymy (€£P)) = DT Njm, (e6P) e R
i=1
Zin(t, K) = 2jimy (6 ED) 25, (6,53 2j5ms (8, 63) sz mi (kD) eC (3.52)
T (eK)) = T (g (KD), Brama (5P iy, (e 3>)) eC.
This yields the system of non-autonomous evolution equations
Orzj(t) = € Z F.(t,z,J), (3.53)
#J=j
where F. and its m-th entry are given by
F.(t,2,J) = ( Fam(t,2, D))
¥ ER)T (Y (eK))
Fen(t, 2, J)( Z f exp g Ajm (k) — A JM(EK)])Z (8, K) 2 G dK. (3.54)

M yg_g
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Since these are rather complicated formulas, we will avoid these whenever possible, for example in the

following lemma, which is helpful for the analysis in Chapter 4.

Lemma 3.7.1. If 9 = (01,...,0;,,) with 9; € L* and 0_;(k) = 0;(—k) for j € Jy, then for every
J = (j1, 2. j3) € T* the inequality

3
HFE (tv ﬁa J) HLl <Cr H HSjm5 (t)/l/}\ji HLl )
holds for allt =0

Proof. The definition (3.49), the inequality (3.28) of Lemma 3.5.1 and the fact that S; o(¢) is unitary for
all £ > 0 imply that

|F(t,8, ) 1 < IT @518, 03 11 < Ol N 107 2215 [ 20

Finally, the assertion follows from |0}, |11 = |5}, . (¢)0;, | 1. ]

For the rest of the chapter, we consider three issues related to the transformation. Furthermore, they

serve as preparation for the next chapter.

Resonances. For the analysis the crucial term in (3.54) is

i=1

3
exp (t [Ajm(gk) N N, (sk@'))D — exp ( [Ajm (k) — AJM(EK)]). (3.55)

depending on interaction of the eigenvalues. The eigenvalue Aj,,(¢k) comes from the transformation
(3.46), whereas the eigenvalues \;,,,(ek() come from the inverse transformation (3.50). The term
(3.55) leads to two problems, namely oscillations and resonances. To see the impact of the two effects,

we consider the highly oscillatory integral

t
f E AN mam(EREK) g, (3.56)
0
for fixed k, K, m, M, j and J, where
3
A)\jmJM(ga k, K) ]m 5k Z j,m, 5k 2) (357)

The integral (3.56) can be calculated explicitly. We distinguish two cases, where we obtain for ¢ € [0, ¢,,4/€]

§g1do =t, if ANjmnr(e,k, K) =0,

t
J ei?UAAjmJIW(E,k:,K) do
’ B (A/\jmJM(€ k K)) [ L ANjman(e,k,K) _ ]  else.

(3.58)

The difference AN sa(e, k, K)/e plays a key role in the analysis. If this term is large, then the inte-
grand of (3.56) will be highly oscillatory. In this case, the interaction between the eigenvalues \j,,(¢k),
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Ny (EED), Njyms (66P) and Aj,pm, (k) is non-resonant. The value of the integral will be rather
small. For example if AN, (e, k, K) = O(1), we obtain with (3.58)

t
J e'e ANmam (k. K) g5 — O(e) for t € [0, tena/c]-
0

However, if |A/\jmJM(5, k, K)/5| is equal or close to zero, the value of the integral will be large. The
case that AXjn,sn (e, k, K)/e is small means in our case that |AX;, (e, k, K)| « ¢ and, hence, the
term e (AX)"" in (3.58) is large. For the special case AXjmim (e, k, K) = 0 the integral (3.58) grows
with ¢, and thus for ¢ € [0, t..4/¢] the value is O(¢7!) in the worst case. In this case, there are resonant
interactions of the eigenvalues. It needs some effort to control these resonant interactions. An important
tool for controlling this resonant interactions is to impose that these interactions are fairly rare by means
of non-resonance conditions. However, in general those non-resonance conditions are not fulfilled for
every k, k) € R? and every combination j € J, m € {1,...,s}, J € J°> and M € {1,...,s}>. These
conditions mainly depend on the structure of the eigenvalues and this in turn depends on the data of
the underlying problem. Therefore, our idea is to use non-resonance conditions which are fulfilled for
a special value 0 = ek € R? to control the whole difference AXj,, 70 (e,k, K), or parts of it, for fixed
k, k) e R?. We illustrate this idea with an example. It turns out that for the problem settings we
consider the choice § = 0 is beneficial. One reason is that for § = 0 all eigenvalues, except A11(0) and
A1m, (0), are not equal to zero. Consequently, the inverses of all these nonzero eigenvalues exist and we
also know that A;(0) is invertible for all j > 1 because of Assumption 3.2.6. With the abbreviation
AXjmam (0) = AXjgm (z—:, 0, (0,0, O)) we assume that there exists a constant ¢..s > 0 such that

|A/\jmJM(O)| = |)\jm(0) = Aoy (0) - Ajams (0) - Ajams (0)] = cres
for fixed j € J, me {1,...,s}, Je J2 and M € {1,...,s}>. Then, we rewrite (3.56) as

t t
f e e AN mam ek K) 15 = J e € ANmam(0) o Z (AXjmam (€8, K)=AXNjmam (0) 14
0 0

and use integration by parts. This yields

t
J e &8N ERI) Ao — & (1A (0)) [ei?”A/\jmJM(svka)]t

0 o=0

t
— (AN (0) ™ (AN jmana (8, F, K) = AN (0)) J e e AN mm (SR K g
0
and for the absolute value we conclude

t
J B%A)\jm,]M(E,k,K) da,
0

< 260;,3; + tc;ei |A>\jmJM(€,k,K) — A)\jmJM(O)‘ .

At first glance, this does not look like an improvement, since the second term still grows with ¢t. However,
if we are able to gain an additional factor € by the difference |AN;msazr (e, ky K) — AXjmar(0)], we achieve
O(1) instead of O(e71) on long time intervals.

In order to be able to handle the difference |AN;,, 01 (¢, k, K) — AN 0 (0)| appropriately later, we make

an additional assumption.

Assumption 3.7.2.  The map B — wy,(B), where w,(8) is an eigenvalue of L(0, 3), is globally Lipschitz

continuous, i.e. there is a constant C such that

Wi (B) —wm(B)| <CIB—Bl1  forall §,BeR". (3.59)
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Remark 3.7.3. Because of the special form of the eigenvalues \jn,, (0) given in (3.44), Assumption 3.7.2
implies (3.59) also for every \jm(0) with j € J., me {1,...,s} and 6 € RY.

Hence, with the triangle inequality applied on the difference |[AN s (e, k, K) — AXjmaam (0)| and by

the Lipschitz continuity of every single eigenvalue, we obtain

t .
J el?A/\jm‘]M(E’k’K) do| < 2€Cr_ei + tcr_ei ‘A)\jmJM(E7 k’, K) — A)\jmJM(O)|

0
3 .
lkly + D] |k(1)|1].

i=1

—1 —1
< 26C;4¢ + €t C

Unfortunately, & and k() for i = 1,2,3 are not elements of a compact set later, but this problem is
compensated by the fact that we consider integrals of the form (3.56) where the integrand is additionally

multiplied by a function that decays faster than k and k(9 grow.

After deriving the equations of motion for the new variables z; and highlighting the challenge of

resonances, we now turn to the initial data for the new variables.

Initial data. The initial data for z; with j € J; are obtained from (3.25) and (3.46). More precisely,

the relation

2 (0.8) = 8,0, Ky (0.8) = | 1P =1 (3.60)

0 ifj>1
is valid. Since we know that ker(L(w, k)) = ker(£1(0)) = span{t11(0), 1, (0)} and the initial data p(k)
can be written as a linear combination of the vectors 11 (0) and 1, (0), it follows from Assumption 3.2.1
that ¥, (0)p(k) = 0 for all k and all m € {m, +1,...,s}. Hence, the result follows by the orthogonality
of the vectors ¢1,,,(0). However, this relation is in general not true for ¢f (ck)p(k). Indeed another
helpful result can be proven. It has been shown in [11, proof of Lemma 3] under Assumption 3.7.2 that

for initial data p € W' the estimate

[¥1m ()¢ (€)Pl 1 < Ce| Vpllw (3.61)
holds for every m € {m,+1,...,s}. Since the proof in [11, proof of Lemma 3] is very concise, we elaborate

it at this point.

Proof of (3.61): We know by Assumption 3.2.2 and the following remark that £;(6) has the same
eigenvectors as £(0, x + 0). Therefore, we also have the smoothness specified in Assumption 3.2.2. This

means that the eigenvectors have the properties
o |Y1m(0)]2 =1 for all # € R and all m,
e and vy, € C®(R¥\{—x},C"), since in this case 3 := k + 6 = 0 if § = —k.

In particular, we know that 1, is C® on the ball with center 0 and radius % which will be helpful

later.
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The first step is to rewrite for m € {m. +1,...,s}

1m (k)T (ER)P(K) = tim (€k) [, (k) — P10 ()] P(R) + Y1m (k)1 (0)P(K)
= Y1m(ek) [Y1m (€k) — ¢1,(0)] P(F),

since according to Assumption 3.2.1 we have ¢F_(0)p(k) =0 for all k and all m € {m. +1,...,s}.
In general the derivatives of 11, are not bounded near the vector —k, since 91, € C®(RN\{—x},C"),
and therefore, the term o, (¢k) — ¢F, (0) cannot be treated directly by means of a Taylor expansion.

Hence, we decompose the difference as

+ 1Z)lm(é‘k) [’d)i‘m(ek) - ¢Tm(0)] X{Elk‘1>%}’

where x is the characteristic function.

Let B(0, %) < R? be the closed ball with center 0 and radius ‘g‘;. Thus, we divide

[1m (e) 9T ()Pl 1 = JRd [V1m (k) [1 (k) — ©1, (0)] (R) |2 ke

- JB(O Lk

) 2e

o () [ ) ~ 0 O] ) k.
RNB(0,51)

: [V1m (k) [¥1,, (ek) — 1, (0)] P(K) |2 dk

For the first term we are now in the position to use Taylor expansion, since ¥1,, is C® on the ball with

the origin as the center and radius % Therefore, we obtain

JB(O o [1m (k) [, (k) — 95, (0)] (k)] dk < Ce JE o) k|1 [(K)|, dk < C<|[Vp]:.

For the second term we use the relation that for all & € R4\ B(0, %) we have €|k|; = %, which can be

written as 1 < 22%1 Hence, with ¥¥(0)p(k) = 0 it follows that

[kl -~

(o) 6, (<4) — 51,001 0 0 = [

N I COGMCHINZ IR
RAB(0,5)

J]Rd\B(O,;l)

Lo 0],k
RA\B(0,154)

2e

< [ kP ak < el
5[4 RNB(0, 5)

since |11,,(0)]2 = 1 for all § € RY. This yields (3.61). |

This estimate (3.61) has an impact on the initial data of the new variable. With (3.51) we obtain

z21m (0, k) = ¢F,, (ek)u1 (0, k) = ¥, (ek)p(k).

Expressed with the new variable 21, since [¢1,,(ek)|2 = 1 the estimate (3.61) and the definition of the
Wiener algebra lead to

[21m(0)| 22 < Ce|Vp|w forall me {m. +1,...,s}. (3.62)
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Consequently, we have a refined bound for certain parts of the initial data z;(0). In Chapter 4 we will show
that a similar refined estimate of O(e) holds for z1,,(t), m € {m, + 1,...,s}, for all times ¢ € [0, t..a/¢],

where in order to prove this estimate we need (3.62).

In view of Assumption 3.2.1 and its previously shown consequence (3.62) it is helpful to define the

following projections.

Projections. The special role of the first entry of z; for m, = 1 or the first two entries for m, = 2 can

be expressed with a slight abuse of notation for m, = 1 by means of the projection
P:C*—-C* (wi,...,w,) — (w1, wn,,0,...,0)". (3.63)

Furthermore, we define the projection P+ = (I — P) which sets the first m, entries of a vector to zero.
Then, Assumption 3.2.1 implies that |[P+21(0)|z: = O(e), because

|PL21(0)] 1 = fuﬂz1 (0,k)|2 dk < fuﬂz1 (0,k)|; dk = Z J|zlm (0, k)| dk

m= m*+1

S

= >z (0 < Cls =ma)e| Vplor < Cellpws (3.64)

m=my+1

due to (3.62). We also define the projection
D P,  Pe(R)D(E) = Y. Gim (k) e, (ck)D(k) (3.65)
m=1

which projects a vector-valued function @ : RY — C* pointwise into the first eigenspace of £;(ck). In
addition we define P+ = I — P, with

PLR)B(k) = Y, trm(ek) e, (k) D (k). (3.66)

m=my—+1

With these definitions it follows for the inverse transformation (3.50) with j = 1 that
Relation (3.67) holds because with the representation (3.51) for j = 1 and

Yim(ek), for m e {1, m.,},

Pe(k)1m (k) =
0, else,
we have
P (k)i (t, k) D exp (=LA (gk)) 21m (t, k) th1m (k)
m=1
Z BN (k) 21m (8, k) h1m (ek) = . exp (= LEX1 (ek)) yrm (£ k)1 (ck)
m=1 m=1

= ST (t,k) Pz (t, k),
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where
y1 = (211, 21m,,0,...,0) .
We recall that ST _(t, k) is unitary and thus, combining (3.47) with (3.67) and (3.63) yields
Pe(R)ur ()L = [Pz1(t)|Lr < [z2(8)]Lr = [ (®)] L2 (3.68)
Analogously we obtain
PL(k)a(t, k) = S§.(t, k) P21 (t, k), (3.69)

because

PH(k)ar(t k) = PL(k) Y exp (—LA1m(ek)) zum (t k) 1m(ek)

m=1
s

= Z exp (—%Alm(é‘k)) Zlm(t, k)'ll)lm(gk) = Sis(t’ k)PJ'Zl (t, k)
m=my—+1
The relation (3.69) is useful when we express the terms PX (k)i (¢, k) by Pz (t, k) later in the analysis.

Since SY _(t, k) is unitary we obtain the relation
I[Pt ()l = [Pz (t)] e (3.70)

As mentioned previously, the refined bound (3.64) is needed in order to show a refined bound for Pz (t)
for all t € [0, t..q/¢]. With relation (3.70) this refined bound also holds for P (¢).

We end the section with a brief summary. The bottom line is that the introduced transformation is
the crucial point to show the higher accuracy of the SVEA in Chapter 4. It leads to the two important
components of the error analysis. The first component is that we need suitable non-resonance conditions
in order to apply integration by parts. In addition, it will be helpful to split the coefficient u;(t) =
P11 (t) + P, (t) by means of the introduced projections (3.63) and (3.65). With (3.67) and (3.69) a
connection between the two terms of the splitting and the new variable is established. In summary, using
the definitions, assumptions, results, and formulas introduced in this chapter, the next step is to prove

the higher accuracy of the SVEA in the next chapter.
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CHAPTER 4

An improved error bound for the SVEA

In this chapter we present our first main results. We recall that for the SVEA the error bound (3.13)
was shown in [11, Theorem 1] under a number of assumptions. Adapted to our notation this means that
there is a t. € (0,¢.,4] independent of € such that for all € € (0,1]
sup Ju(t) — ﬁ(l)(t)HLco(Rd) < Ce, (4.1)
te[0,t, /e]
where (! denotes the approximation (3.15) with j,. = 1. In [4] we set j.. = 3 and prove under certain

assumptions the refined bounds

d
sup <7’§ﬂ1(t)|Ll + ), ||Du7’§771(f)||L1> < Ce, (4.2)
te[0,ts /c] =
sup Jus(t)|wr < Ce, (4.3)
te[0,t, /<]

cf. [4, Proposition 3.2 and Proposition 3.6]. The definitions of the Fourier multiplicator D,, and the
projection P+ are given at the end of Chapter 2 and in (3.66), respectively. Furthermore, we show in [4,
Theorem 4.2] the error bound

sup [u(t) — 6O (1) | o gy < C2. (4.4)

te[0,t, /€]

Now in this thesis, one of the main results is that the accuracy (4.1) of the SVEA can be improved by
one power with respect to €. This is not only an improvement on the result from [11], but also on the
result from [4], because already with ti(!) instead of Ui(®) an accuracy of (’)(52) is obtained. The chapter is
structured as follows. Following the main ideas in [4, Proposition 3.2 and Proposition 3.6], we prove refined
bounds for P1z;(t) and P14 in the L'-norm, as in (4.2). Roughly speaking, this part of the constructed
approximation i) (#) is of O(g) on long time intervals of length O(1/e). This statement is made precise
in Propositions 4.1.4 and 4.2.2. The main result is Theorem 4.3.4 which provides the improved error

bound for the approximation (3.15) with j,.. = 1. We recall that for j,.. = 1 we have J = {£1} and
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the sum of the right-hand side of (3.16) for j = 1 is taken over the set {(1,1,-1),(1,—1,1),(-1,1,1)},
cf. (3.17). Instead of the error bound (3.13), we are able to prove
sup [u(t) — ﬁ(l)(t)”LOO(]Rd) < Ce?
te[0,t4/e]
under a number of assumptions. These assumptions are similar to the assumptions which are made in [11,
Theorem 1], however, we assume slightly higher regularity of the initial data and additional non-resonance
assumptions. The proof relies on the important results in Propositions 4.1.4 and 4.2.2. Section 4.3 is
mostly devoted to the proof of this theorem. A possible extension to higher accuracy is discussed in the
last section. Instead of the refined bound (4.3) and the error bound (4.4), we show in Subsection 4.4.1
for j... = 3 how to proceed to show an improved refined bound
sup |uz(t)|wr < Ce?
te[0,t, /]
and under certain non-resonance conditions the improved estimate
sup [u(t) = 0P ()] L= ey < O
te[0,t, /]

We illustrate the analytical results by numerical experiments at the end of Section 4.3 and 4.4.

4.1 Refined bound

We recall that we introduced in Section 3.7 a parameter m, € {1, 2} such that £;(0) has an m,-dimensional
kernel. For the sake of simplicity we assume throughout the chapter that m, = 1. However, all the results
and proofs also work for m, = 2 at the cost of a more complicated notation. Thus, we state the following

assumption.
Assumption 4.1.1.  The kernel of L(w, k) is one-dimensional.

At the end of Chapter 3 we explained how to incorporate integration by parts in the error analysis. For
this purpose, let u; € C1([0,t.a/c], W) N C([0,tena/c], W) be a classical solution of (3.16) for j.. = 1
with initial data (3.18) for some p € W.

We observe that for f € C([0,t.ma/c], W) N C([0,tena/e], W) and A invertible, we obtain
t

—Ale Jexp (igA) 0,f (o) do, (4.5)

0

o=

o ()10 7 471 e () 0]

such that with [A7![; < C and ¢t < fed

0€[0,tena/c]

exp (ZA)f(0) do| <eC[lf(t)l2+ [f(0)l2] + teaC  sup  |0f(0)]a- (4.6)
J 2

In order to have a uniform bound in € of the left-hand side of (4.6), we need that f(¢) and 0, f(¢) are
uniformly bounded in e for all ¢ € [0, t..q/2].

As mentioned in Section 3.7, the ODE system (3.24) suggests that formally 0:u(t) = O(1/¢). The
following lemma shows, however, that d,P.u1(t) can be bounded independently of £ on long time intervals,
which is later useful for the proof of Proposition 4.1.4, where we bound terms of the form (4.6). The

lemma corresponds to [11, Lemma 2].
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Lemma 4.1.2. Under the assumptions of Lemma 3.6.1 (ii) with j,... = 1, Assumptions 3.7.2 and 4.1.1,

there is a constant C' such that

sup | 0rP:ur(t)]r < C.
te[0,tena/c]

C' depends on the constant Cy 1 from (3.34) and thus also on t,.., but not on e.

Proof. The proof is based on the definition of the projection P.(k), the dispersion relation (3.4), and the

Lipschitz continuity of the eigenvalues, cf. Assumption 3.7.2. We observe that
éPE(k)El(ak)al(t,k) — iwn(gk)w; (k) L1 (k)T (t, k) = i/\n(ek)ﬂ(k)ﬁl(z&, k) (4.7)

because of (3.65) and (3.43). By Assumption 3.7.2 the Lipschitz continuity of the eigenvalues and the
fact that A11(0) = 0 yield

|/\11(8k)‘ = |)\11(€k‘) — /\11(0)| < CE|]€|1 (48)

Hence, we obtain in the Euclidean norm
éPE(k:),Cl(sk)ﬂl(t,k) L= é\)\u(sk) — M1 (0)| [P (k)i (8, k)|, < Clkly [P (k) (t, k)|, (4.9)
Applying the projection P.(k) to (3.24) with j,.. = 1 yields

P (R)i (1K) =~ P.(R)Lx (R)n (1, ) + s#;lpe(k)T(ajl,an,ajs)(t, b,
Together with (4.9) and the inequality (3.28) of Lemma 3.5.1 this shows that P.0;u1 (¢, k) = 0, P:U1 (1, k)
is uniformly bounded by

sup Ha{PEal (t)HLl < Cu71 + 50’7’6’371.
te[0,tena /€]

Remark 4.1.3. Under the assumptions of Lemma 4.1.2 we have with (3.68) that

sup  |[Puy(t)|pr < sup  [uan ()| <C
te[0,t ena/e] te[0,t ena/e]

uniformly in €. Lemma 4.1.2 implies that formally the part P:-u1(t) of the classical solution uy is essen-
tially non-oscillatory on long time intervals of length O(1/e). Furthermore, the refined bound (4.10) for
Py means that Uy (t) = P.ay(t) + O(e). We interpret this in the sense that the “main part” of the
solution of (3.24) with j,.. =1 is P<u1(t). This favourable property will be useful later as we split uy (t)
into these two parts: the part P.ai1(t) which is O(1) but non-oscillatory and the part Py (t) which is
oscillatory but O(e).

The main goal in this section is to prove that under certain assumptions there is a t, € (0, 4]

independent of € such that for all € € (0, 1]

sup [P (8)]r: < Ce, (4.10)
te[0,t, /€]
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uniformly in e. With the relation (3.69) and since S (¢, k) is unitary, this bound is equivalent to

sup | Pz ()| < Ce, (4.11)
te[0,t4 /2]

for all € € (0, 1].
In order to prove (4.11) we define the scaled norm

2
llyllle = 2[Pys]Lr + gHPLyl Iz (4.12)

for all y = (y1,...,Yj...) With y; € LY(R?, C"). As before, we set y_1 = y7. The factor 2 is introduced
to take into account the terms with negative indices which appear due to the nonlinearity. By definition

of the L'-norm and the projection (3.63) we estimate
Iyl < [Pyilee + 1P ol < [Pyillee + 7 Pyl < llylle, (4.13)

which holds for all € € (0, 1]. This estimate will be used frequently. In summary the goal in the following

Proposition 4.1.4 is to prove that there is a constant C' independent of ¢ such that

sup |[l|z(t)[lle < C,
te[0,t4 /€]

for all € € (0,1]. This estimate implies the refined bound (4.11) and hence also (4.10).
Proposition 4.1.4. Let uy be the classical solution of (3.16) with jn... = 1 and initial data (3.18) for

some p € W'. Let z; be the transformed variable defined in (3.46). For every sufficiently large r > 0
there is a ty € (0,¢,,4] such that under the Assumptions 3.2.1, 4.1.1, 3.2.2, 3.7.2

sup  [lz)[le <r  foralle e (0,1].
te[0,t, /€]

The constant t. depends on t,,,, 7, Cy1, Cr, on the inverse of the nonzero eigenvalues of A1(0), and on

the Lipschitz constant in Assumption 3.7.2, but not on €.

“Sufficiently large” means that r must be larger than the constant C, which occurs in the proof. This

condition is required to ensure that ¢, defined in (4.21) is positive.

Proof. The proof of Proposition 4.1.4 is subdivided into two steps. In the first step we show the general
procedure to prove this proposition and in the second step we show that the estimates used in Step 1 are
actually fulfilled.

Step 1. Integrating the system of PDEs (3.48) with j = 1 from 0 to ¢ and applying the scaled norm
(4.12) leads to

2@l < 1=(0) flle + [l JO%Z(U) do||lc
0

< =) - +2 Y. stPFE(a,ﬁ, J) daHLl n HfPlFs(a,a, J) doHLl (4.14)
#J=1 0 0
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with F. defined in (3.49) and P defined in (3.63). The first term of (4.14) is given by (4.12) as
1z(0)llle = 2[Pz1(0)] 2+ + SHPLA(O)HLI-
With (3.60) this term is uniformly bounded by
=)l < C(lplw), (4.15)
because of | P121(0)|r: < Ce|p|w: due to the estimate (3.64). Next, we define
alt) i= [Poy @)l + e P21 (0 oo (4.16)
According to (4.12) it follows that
2a(t) = [[|2(t) [ll- - (4.17)

The goal is to prove that there are constants C, and C such that

gH jPFE(a, a,J) doHLl + H fPLFE(a, 4,J) do
0 0

t
o < C, + éafa‘%a) do (4.18)
0

holds for all ¢ € [0, t..q/¢] and for every J = (j1, jo2,j3) € J° with #.J = 1. If the estimate (4.18) is true,
then substituting into the initial estimate (4.14) yields

t

llz®)lle < Co+2Ce ). JaB(a) do < C, + Ce
#J=17

o

3 ~ ( 3
(mm)w=a+&pM@Md-

For the last equality we use (4.17). The constant Co depends on |p|ly1 from the estimate (4.15), a
constant C,, which is determined below, and the (finite) number of multi-indices J € J2 with #.J = 1
which are in this case (1,1,—1), (1,—1,1) and (—1,1,1). Next, we set

p=(t) := sup [[z(0)[lc =2 sup a(o),

oel0,t oel0,t

which is a monotonically increasing function in ¢. Furthermore, we obtain
t
pe(t) < Co + éef ll2(a) I do < Co + Cetpl(t). (4.19)
0

We set r > C,. If we now choose ¢, in such a way that
Co+ Ctyp(t,) <, (4.20)

then (4.19) and the fact that p. is monotonically increasing implies that p.(t) < r for all ¢ € [0, /e]. We

choose
ty = ——, (4.21)

so that the condition (4.20) holds. The choice (4.21) is a worst-case estimate and in most cases too

pessimistic. The important aspect is that t, depends on C,, 7, and 6’, but not on &.
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Step 2. The remaining main part of the proof is to show the inequality (4.18). We consider multi-
indices J € J3 with #J = 1. By means of Lemma 3.7.1 the first term on the left-hand side of (4.18) is

estimated in a straightforward way. We obtain

t t

t
3
o < EJHFE(U, u, J)HL1 do < CTEJH |z, (o) |2 do < Cnga‘?(U) do, (4.22)
0 o =1 0

EH JtPFg(cn a,J) do’
0

because by definition (4.16) and the estimate (4.13) we have that ||z, (¢)||z1 < a(0). The inequality (4.22)
is indeed an estimate of the form (4.18) with C, = 0. The main difficulty is to prove a bound for the

term

t
” JPLFE(U, a,J) da‘ .
0
for all J € J3 with #.J = 1. We aim to gain one power of ¢ from the oscillatory behavior of P*F. (o, 4, J).
There are three multi-indices J € J2 with #.J = 1. As an example we consider J = (1,1, —1), because
the other two permutations can be treated in the same way.
We use the definition (3.49) to obtain

t t
| JPLFE(J, 8,7)dof =] prsl,s(a)T(al,al, i_1)(0) do]
0 0

A

First, the nonlinearity is split into eight parts. With @y = P.4; + P, and 41 = P.ii_q + ’Pig-ﬁfl we

have

T (1,41, 4-1) = T (Pdin, Petiy, Petioy) + T (Petin, Peli, PRa—1) + T (Petin, P a1, Peiio1)
+ T (P2, Petia, Petioy) + T (Pein, Py, P, (4.23)
+ T(Pjﬂl,Pgal,Pjiﬁ,l) + T(Pjﬂl,Pjﬁl,Ptﬁ,l) + T(Pjﬂl,Pjﬁl,Ptia,l).

All nonlinearities where the term Pjﬁil appears in at least one of the three arguments are easy to treat.

Since S1,(0) is unitary and with (3.28) and (3.47), we obtain for example

t t
| f $16(0)T (PEitn, Peiin, Peiia) (0) do| | < f\\T(Pgal,Pgal,ﬁa_l)(o)l\y do
0 0

< Cre | (UPL ()| 1P (@)1 [P (0)] 1) do

= Cre | (HIP 210l IP(0) |11 P21 ()] ) do

I
I

<Cre f a®(o) do.
0

For the last inequality, we use the fact that the definition (4.16) implies that |Pzi(c)|r: < a(o) and

e |P+21(0)|1: < a(o). For all the other terms in (4.23), except T (Pely, P-U1, P-li—1), We obtain an
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estimate of the form (4.18) with C, = 0 and C' = Cr.

The main difficulty is to prove that the only remaining term

H JPLSLE(U)T(Paala ,Pealaﬁa—l) (U) do

. (4.24)
is uniformly bounded in ¢ in spite of the integration over a possibly long time interval [0,¢..4/c]. As
mentioned previously, the idea is to gain one factor € from the oscillatory behavior of the term under the
integral. Since P.u;(0) is essentially non-oscillatory on long time intervals of length (9(6*1), we consider
the oscillatory transformation Sy c(co). The first idea is to rewrite the transformation in a suitable way.
In the following we define A;(ek) := Aj(ek) — A1(0). By means of (3.45) we obtain

PS8 (0,k) = Ptexp (12A1(0)) exp (= 2A1(0)) S1.c(0, k) = exp (%"A]L(O))Pl exp (12A1(ek)) VT (ek),

because the projection P commutes with every diagonal matrix. Hence, the remaining term (4.24) can
be expressed as

¢

H J exp (A1 (0)P1fo(0) do| - with  fa(t k) = exp (L1 (ek)) WF (k)T (Peiiy, Peiiy, Poii—1) ¢, ).

0
In order to gain the missing factor € we want to integrate by parts. We recall that A11(0) = 0 (cf. Sec-
tion 3.7), because of the dispersion relation (3.4) combined with Assumption 4.1.1. Therefore, the diag-
onal matrix A1(0) = diag(A11(0),...,A1,(0)) is not invertible. Fortunately, this problem is compensated
by the projection Pt which sets by definition the first entry of a vector to zero. Hence, we simply
replace the eigenvalue A11(0) by 1 or any other nonzero number and consider a new diagonal matrix
/~\1(O) = diag(1,A12(0),...,A15(0)) instead of A;(0). Next, we estimate the new term which contains
/N\l(())‘ Therefore, the goal is to show

¢ ¢

| [exp (200) P fet0) do] |, = | [ex0 (22:0) P4 1e(0) do

0 0

1<C’

since this is an estimate of the form (4.18) with C = 0. The advantage is that now the modified matrix
/~\1(0) is invertible because A1, (0) # 0 for m > 1 by the dispersion relation (3.4) and Assumption 4.1.1.

Thus, we integrate by parts and obtain

L1

t
A [ (R )P o) ao]
0

< Ce(1£0) + 10l ) +Cz [ [ofu(o)] 1 do (4.25)
0

with a constant which depends on the inverse of the nonzero eigenvalues of A;1(0). With |S1 c(0,k)|2 = 1,
(3.28), and (3.34) it follows that for all ¢ € [0, t..q/¢]

[f-@) 22 = [T (Petan, Petin, Petioa ) (1)] 11 < OF [P (t)]7: < C,
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where C' depends on C'7 and the constant C, 1 from (3.34). Therefore, the first two terms of (4.25) are
bounded and in fact the factor € is not needed. In contrast, we need the gained factor e for the integral

term in (4.25) to compensate for the long time interval. Next, with the product rule we have

Orfe(o, k) = %Al(ek‘) exp (%’Al(ak))\ll’f(ek)T(Pgﬂl, Pgﬁl,ﬁﬁ_l) (0, k)
+ exp (%’Al (Ek))\I/’f(Ek)é’tT(Pgﬂh P, iﬁ,l) (0, k). (4.26)

By Assumption 3.7.2 we know that A; is globally Lipschitz continuous. Thus, we estimate the difference
Aq(ek) in the Euclidean norm by

[LA1(ek)|2 = L[A1(ek) — A1(0)]2 < Cl|s, (4.27)

where the constant C' does not depend on & and k. Substituting (4.26) and (4.27) into the remaining
term of (4.25) yields for ¢ € [0, t.,q/¢]

0€|0,tenda/e

¢
af”@,gfa(a)HLl do <t.,. sup ]Hath(U)HLl
0

0€[0,tena/e

< thnd sSup : J |k|1 ’T(Psalapsalaﬁa—l)(ga k)‘g dk
Rd

0€[0,tena/e

+Cto,  sup f 0T (Poty, Poty, P ) (o, k), b
]
]Rd

< CO7toy (C+C2y sup [P (0)]ns )
0€[0,tena/e]
For the last estimate we use (3.28) and (3.34). Furthermore, according to Lemma 4.1.2 the term
SUPge[0,tna/z] |0t Petin (0)| L1 is uniformly bounded. Thus, it follows that the remaining term of (4.25)
is bounded by a constant which does not depend on . Overall, this shows that (4.24) is uniformly
bounded of the form (4.18) with C=0. Together with the other considerations, this proves the inequal-
ity (4.18) in Step 1, and completes the proof of Proposition 4.1.4. [ ]

In the next section, we show that under higher regularity assumptions, the refined bound for Ptz (t)

also holds in a stronger norm.

4.2 Extension to a stronger norm

As introduced in Chapter 2 we denote by D,, the Fourier multiplicator (D,w)(k) = ik,@w(k) for u €
{1,...d}. If uy is the classical solution of (3.16) with j,.., = 1 and initial data (3.18), then by multiplying
(3.50) with D,, it follows that

D,y (t, k) = S;’js(t, k)D, .z (t, k)

is the Fourier transform of d,u;(t,x), because the scalar multiplicator D, commutes with the matrix
S§.(t, k) for every t € R and k € R%.
Next, we need a similar result as Lemma 4.1.2. However, now we prove that 0;D,P.u1(t) can be

bounded independently of £ on long time intervals.
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Lemma 4.2.1. Under the assumptions of Lemma 3.6.1 (iii) with j,.. = 1, Assumptions 3.7.2 and 4.1.1,

there is a constant C' such that

sup  [0: D, P-ui ()| < C.
te[0,tena/e]

The constant C depends on the constant Cy, o from (3.35) and thus on t,,,, but not on e.

Proof. The proof is similar to the proof of Lemma 4.1.2. Applying the operator D,, to both sides of (4.7)
yields

éDHPE(k)ﬁl(ek)ﬂl(t, k) = é/\ll(sk)Dupg(k)ﬂl(t, k).
With (4.8) and |D,| = |k,| < |k|1, we obtain
éDuPa(k)El(ak)ﬁl(uk)’z < Clk|y [ Dy P-(kyas (£, F)|, = Clk]s [k [P (k) (8, )|,
< Clk[3 [P=(k)uy (t, k)|, (4.28)
Next, we consider D,, applied to the nonlinear part. By definition (3.49) with #J = 1 we have
D, F.(t, 0, J) = S1.c(t) DT (s, 0y, Uy ) (1), (4.29)

since the multiplicator D,, commutes with the matrix S; .(¢). Furthermore, the definition (3.23) of T

implies that
D, T (@,,15,,05,) = T (Duty,, Ujy, U, ) + T (Ujy, Dylijy, 05,) + T (g, Uy, Dy, ) s (4.30)
which corresponds to the product rule. It follows from (4.29) and (4.30) that
| DuFe(t @ T o = [ DT (@1 gz 30 ()] s
< AT (D, o i, ) )22 + 1T (@, Dutie g, ) )22 + [T (@, 8o Dty ) ()2

since 57 (t) is unitary. Next, we apply the inequality (3.28) from Lemma 3.5.1 to every term and obtain
for all ¢ € [0, t,nq/c] that
| DuFe(t, @, T)| o < NT (D, gy s ) (Ol + 1T (@55 Dyt Ug) (W) 2r + T (85, W, Dpatis) (8)] 20
< C’r(HDu% Oz, (O Lz, @)l e + 2, (O] Lo | Dptig, @) L[, (6] 1
i Ol 15 (Ol | Dty (8)] 22
< CrCi . (4.31)

Together with (3.24) and the inequality (4.28) this shows that D, P.(k)d,u1 (¢, k) = 0,.D,P-(k)u1(t, k) is

uniformly bounded. [ |

For the approximation error of the SVEA which we consider in Section 4.3 we need the following version
of Proposition 4.1.4, where z(t) is replaced by D,z(t). The reason is that in the proof of Theorem 4.3.4

we need the refined bound of Ptz in a stronger norm.
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Therefore, the goal is to prove that there is a t, € (0, t.,4] and a constant C' such that

sup || Dpz(@)||]: <C for all € € (0,1].
te[0,t4 /¢]

This bound implies by definition of the scaled norm

sup ||D, Ptz (t)|pr < Ce, (4.32)
te[0,t /€]

for all € € (0,1]. With the relation (3.69) and since Sf_(#) is unitary and commutes with D,,, the bound
(4.32) is equivalent to

sup  ||D,PLiy ()] 1 < Ce, (4.33)
te[0,t4 /c]

for all € € (0, 1].

Proposition 4.2.2. Let uy be the classical solution of (3.16) with j,.. = 1 and initial data (3.18) for
some p € W2. Let z1 be the transformed variables defined in (3.46), and let p € {1,...,d}. Under the

assumptions of Proposition 4.1.4 there is a constant C' such that

sup |[|[Dpz(t)|le <C for all e € (0,1]
te[0,t4 /e]
with t. from Proposition 4.1.4. The constant C' depends on |p|lwz, Cuz2 from (3.35), and on r from

Proposition 4.1.4, but not on €.

Proof. Proposition 4.1.4 is crucial for the proof of the theorem because it yields the refined bound (4.10).
Therefore, all of the assumptions of Theorem 4.2.2 serve the purpose that we can apply this proposition
with the same initial data p € W2 < W' and the same t,.

Similarly as the proof of Proposition 4.1.4, this proof is subdivided into two steps. In Step 1 the general
procedure is shown which differs from the proof of Proposition 4.1.4. The required estimates used in Step

1 are proven in Step 2.

Step 1. In the following let 1 € {1,...,d} be fixed. Applying the operator D,, to both sides of (3.48)

gives
ODuz(t) = Y DyFc(t,4,.J)(). (4.34)
#J=1

According to (4.34) and the definition of the scaled norm (4.12) we have

t
[1Dpz®)lle < [[[Dpz(0) [ll= + JatDuZ(U) dolle < 1Duz(0) e +2 > filt,e,@,.J)
5 #J=1
with
t t
Filtea,J) = sH JPDuFE(U, a,J) dcrHLl ¥ H JPLD#FE(U, a,.J) da‘
0 0

28
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The term
2
[1Dpz(0)[lle = 2[DypPz1(0)|rr + gHDuPLzl(U)IlLl

is uniformly bounded with a constant which depends on ||p|y 2. For the first term it follows with (3.60)
that

|DuPz1(0)|r < |Dpz1(0)lzr = IDuplr < lplwr < C
by assumption on the initial data. Secondly, we have a similar estimate as (3.64), however, now we obtain
| PADyuz1(0)] o1 < Celplwe-

The overall goal is to prove that there are constants C; and Cy such that the inequality
t
filt,e,u,J) < Cy + C’zgf IDpz(0) |||e do (4.35)
0

holds for all J € J3 with #J = 1. In order to show (4.35) we investigate the term D, F.(¢,4,J), which
appears in fi(t,e,u,J). Together with (4.29) we observe that if we consider #; as given, then (4.30) is
linear with respect to D, u; = St .Dyz1. In comparison to the proof of Proposition 4.1.4, this is the
reason why we can use Gronwall’s lemma to prove boundedness of |||D,,z(t)]|-.

If (4.35) is true, then it follows with the uniform bound of |||D,z(0)|||c that

t
1D, 2()]lle < 1 + 02€J|||DMZ(U) lle do,
0

where the constant ¢; includes C; and a constant which depends on ||p|w2. Therefore, applying Gronwall’s

lemma (cf. Lemma A.1.1) yields

sup || Dz ()| < cre',
te[0,t, /€]

which proves the assertion.

The main part of the proof is to show (4.35). This is done in the next step.

Step 2. We analyze the terms PD,F.(t,4,J) and P-D,F.(t, 4, J), which appear in fi(t,e,1,J) sep-
arately. Since both terms contain the expression D,F.(t,u, J) we consider it in more detail. From the
proof of Lemma 4.2.1 we have (4.30).

Similarly to the proof of Lemma 4.2.1 we obtain (4.31) for all ¢ € [0,t./e]. Therefore, the first term of
fi(t,e,u,J) is bounded with (4.31) and the definition of the scaled norm (4.12) by

te[0,t /€]

t t
e JPDMFE(J, i.J)do|  <e J |DuFe(o,, )|, do <t. sup |DuFo(t, @, )], < t.CrC3,,
0 0

which is a bound of the type (4.35) with Cy = 0.
The main difficulty is to show the boundedness of the second part of fi(t,e,u,J). Fortunately, this
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boundedness can be shown by adapting the procedure from Step 2 of the proof of Proposition 4.1.4.
With (4.30) we obtain

t t
| J PD,F.(0,3,]) do| | <| J P81 (0)T Dyt s ) () do|
0 0
t

+| J PL81 ()T (8, Dyl ) (0) dof|
0

t
+| J PL81 ()T (81, 8y, Daf) 0) dof|
0

As an example we consider for J = (1,1, —1) the term

t
| prsl,s(o)T(Dﬂal, 81,8.)(0) do] .
0

Similarly to (4.23) we split the nonlinearity into eight parts. For all terms containing P2, or PLd_y, but
excluding D, P11, or D#@ﬁ_l, we obtain a bound of the type (4.35) with C; = 0, since Proposition 4.1.4
implies (4.10), which provides the required factor . For terms containing D#Pjﬂl we also have a bound
of the type (4.35) with C; = 0. Here, the required factor ¢ is obtained by the definition of the scaled

norm (4.12). More precisely, with (3.69) and since S¥ (o) is unitary, we estimate
1 o 1 N
ZIDuPen (o) = Z[DuP 21 (0) |22 < I1Dwz(o) |lle -

The only remaining term

(4.36)

1

t
H f PL81,2(0)T (D, Poiiy, Pufiy, Padl 1) (o) do|
0
has to be treated in a similar way as (4.24). For this purpose, we express the term (4.36) as
t
| [exp (2R P o) o o Foltsh) = exp (E80(6R) VT ()T (D, P, Pt Prita) (1),
0

where /~\1(0) and Aj(ek) are defined as in the proof of Proposition 4.1.4. We integrate by parts and

bound with the same reasoning as in the proof of Proposition 4.1.4 for all ¢ € [0, t../¢]

Ife@)lr < C,

where C' depends on C7 and the constant C,, o from (3.35). Furthermore, we bound for ¢ € [0, t,/¢] with
the product rule

t

: [1octt0)]y do < COrt (G4 €2y sup[OD,PAL o)1)
5 o€[0,t./e]

t
+e2CCr (0572 +Cy2 sup ||(7t775ﬁ1(0)|\p) JHD#PEQ (0)] . do.
oe[0,t. /€] ) L
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Additionally to Lemma 4.1.2, we have to use Lemma 4.2.1 which yields that

sup ||0:D, P11 (0)|r < C
se[0,t, /€]
with C' independent of €. This leads to (4.35) with constants Cy and Cy which depend on C,, 2.
In a last step we adapt the procedure for the other two multi-indices J with #J = 1 which completes

the proof. ]

In the next section we consider the error bound for the approximation of tiUmax) defined in (3.15) with

jmax = 1

4.3 Error bound for the approximation

In this section we state the main result of this chapter. Instead of the error bound (3.13) (cf. [11, Theorem
1]), we show an accuracy of the SVEA of O(g?). Here, the previously shown results of Section 4.1 and
Section 4.2 play an important role for the proof of the error bound. We suppose in the following that u;
is the solution of (3.16) for j.. = 1 with initial data (3.18). Furthermore, we assume that a unique mild
solution of (1.4) exists on the long time interval [0, t./e] with the constant ¢, from Proposition 4.1.4, and

that there exists a constant C\, uniformly in €, such that

Cy:=max{ sup |u(®)|w, sup Hﬁ(l)(t)HW}. (4.37)

te[0,t, /e] te[0,t. /€]
In consequence of the approach (3.15), (M) provides an approximation to the exact solution u of the
original problem (1.4). The goal is to prove an error bound for this approximation of O(¢?). This error
bound requires some preparatory work. We start with an additional non-resonance assumption on the

eigenvalues.

Assumption 4.3.1 (Non-resonance condition). The matrices L£3(0) = L(3w,3k) and £1(0) = L(w, k)

have no common eigenvalues, i.e. A3m(0) # A1, (0) for allm,my =1,...s.

Remark 4.3.2. Since we know explicitly the eigenvalues of the matriz L£(0, ) for the Klein—-Gordon and
the Mazwell-Lorentz system, see Example 3.2.3 and 3.2.4, Assumption 4.3.1 can be verified with (3.44)

if the corresponding eigenvalue wi(B) from the dispersion relation (3.4) is not constant in (.

Similarly to Section 4.1 one component of the error analysis is to apply integration by parts. We
observe that for f € C?([0,t.ma/c],W) n CL([0,tena/c], W) N C([0,tema/c], W?) and A invertible, we

obtain (4.5). If we again apply integration by parts, we obtain

t t

o + A2:2 [ exp (%A) atf(a)]a:()

Jexp (fA)f(J) do = Afl%[exp (f/\)f(o)]
0

— A72e? Jexp (f/\) 0?2 f(0) do,

0
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such that with [A7![; < C and t < fed

| [exw (28)1(0) o], < cCTf O] + 10)1a] + SCASOL + [0 O)l] + 2t sup [0l

0€[0,tena/c]

(4.38)

In order to have a bound of O(e) of the left-hand side of (4.38), we need that f(t), d,f(t) and 02 f(t) are
bounded with the right order in ¢ for all ¢ € [0, t..q/¢]. For this purpose, we state and prove the following

lemma.

Lemma 4.3.3. Under the assumptions of Lemma 3.6.1 (iii), Assumptions 3.7.2 and 4.1.1, there is a

constant C such that

sup  [07P-a(t)| 2 < C.

tE[O,tend/E]

The constant C depends on the constant Cy 2 from (3.35) and thus also on t,,,, but not on €.

Proof. The proof is similar to the proof of Lemma 4.1.2. We observe that equally to (4.30), we obtain

for the time derivative that
T (g, gy, Ugy ) (8) = T (Qriy, Uy, sy ) (8) + T (U, Oy, Uy ) (8) + T (g, 5 Uy, Oy ) (8). (4.39)
Analogously, we have
E&tPsﬁl(sk)ﬁl(t, k:)’z < Clk|y [0P-a (1K),
Together with (3.24), P.0711 (¢, k) = 07P.t1(t, k), (4.39) and Lemma 4.2.1 this shows

|02 Petia ()20 < CJ |Kl1 0Pt (t, k)|, dk + 92Cr || dptia (8)] o1 ()72 < C,

where the constant depends on C, 2 and we use the fact that |01 (t)]p: < Ce™. |

As mentioned in Section 3.7 we also take advantage of the fact that the entries of z; oscillate with a

much smaller amplitude than the entries of %;. Lemma 3.7.1 together with (3.48) and (4.11) yield

sup [z ()| <e sup Y] [Fe(t@,J) ()] < Ce. (4.40)
te[0,t. /] te0,t. /€] 4721
Proposition 4.1.4 and 4.2.2 are crucial for the proof of the following theorem. Therefore, part of the
assumptions of Theorem 4.3.4 serve the purpose that we can apply those two propositions. The crucial
point is that Proposition 4.1.4 and 4.2.2 yield the bounds (4.10), (4.11), (4.32), (4.33) in addition to
(3.35). We observe that combining (4.10) and (4.33) yields in particular that

d
[Pz () + D) 1DuP ()] 21 < Ce. (4.41)
pn=1

This bound will be helpful in the proof of Theorem 4.3.4. Now we state the first main result of this thesis.
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Theorem 4.3.4. Let p e W2 and let u be the solution of (1.4). Let uy be the classical solution of (3.16)
With j,.. = 1 established in part (iii) of Lemma 3.6.1, and let iV be the approzimation defined in (3.15)
WIth Joe = 1. Under Assumptions 3.2.1, 4.1.1, 3.2.2, 3.2.6, 3.7.2, and 4.3.1 there is a constant such that

sup  Ju(t) — a® (@) |w < Ce?, (4.42)
te[0,tx /]

sup  [u(t) — aM(#)|p» < Ce2. (4.43)
te[0,t, /€]

Proof. We only have to show (4.42). The second bound (4.43) of this theorem is an immediate consequence
of the embedding W (R?) < L*(R?). Since the proof of Theorem 4.3.4 is rather lengthy, we subdivide
it into several steps. In the first two steps we derive an error equation and reduce the problem to the
crucial term for the error bound. The remaining steps deal with the elaborate part of the proof. Here,

the required estimates are proven.

Step 1. In the following we denote the error between the exact solution u and the approximation by
8 =u—uWY. The first goal is to derive an evolution equation for the error § and its Fourier transform
which will be used to apply Gronwall’s lemma in Step 2. The approximation ti(!), given in (3.15) with

Jmax = 1, solves the semilinear hyperbolic system (1.4) up to the residual
1
R(t,z) = 7@, 7D, 50 (t, z) — (atﬁ<1>(t,a;) + A@FDV (¢, 2) + 7Eﬁ(1)(t,x)). (4.44)
€

In order to derive a more useful and compact expression for R, we consider the two parts of (4.44)

separately. First, we note that substituting the approximation U") into the left-hand side of (1.4) yields
1
oM (t, ) + AN (¢, x) + gEﬁ<1>(t,gc)
= 2 el (ra—wt)/e ((’7’tuj(t,w) + 1L (jw, jr)u;(t, ) + A(O)u; (t,:):))
JeT
=¢ Z 2 eij(m-aszt)/ET(Ujl s Ujy, ujs)(t, x), (445)
JET #J=j

where for the last equality we use (3.16) for |j| = 1. In contrast to (4.45), substituting the approximation
i) into the right-hand side of (1.4) yields

eT@W, 4, aM)(t,z) = Y #/ETNED (0 g, ) (¢ )
JeJ3

—¢ Z Z TS (g, gy ) (t, ). (4.46)

j odd #J=j
l71<3

The difference is that (4.46) includes summands with |j| = 3, whereas j € J with j,.. = 1 implies that
|7] = 1 in (4.45). These additional summands are exactly the same higher harmonics which are omitted
in the SVEA approach. Hence, inserting both expressions (4.45) and (4.46) into (4.44) yields for the
residual
R(ta Z‘) =€ Z Z eij(ﬁim_wt)/ET(ujuujwu]'s)(tvx)a
ljl=3#J=j

which is a more compact expression. Next, we write (4.44) as

oM (t,z) = —A(@)uY (¢, 2) — 1Eﬁ<1>(t, z) +eT @MW, a, aW) (¢, z) — R(t, x).
g

)
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We subtract this equation from (1.4). This shows that the error § = u—1u") solves the evolution equation
1
06 = —A(@)3 — ~Eb +< [T(u, w,u) — TED, &7, ﬁ<1>)] +R (4.47)

with initial data §(0) = 0. In order to derive a bound for the error ¢ in | - ||y, we apply the Fourier

transform to (4.47). Thus, we obtain for § = F¥& the evolution equation
2,:0(t, k) = —(1A(k) + LE)3(t, k) + G (Fu, FaV) (¢, k) + R(t, k)
with

G(Fu, FaW) = T(Fu, Fu, Fu) — T(FaW, Fa®, ral)

and f{(t’ k)=e Z Z v (T(ujuujz?ujs)eijﬁlm/s) (t, k)e_ijm/s
lj|=3 #J=3
=€ Z Z T(ajl ’ ajzvajg)(ta k— j?ﬁ)e_ijwt/s, (4.48)
|7|=3 #J=j

where the definition of 7 is given by (3.23). For the Fourier transform of the initial data we have 5 (0) =0.

Step 2. In this step we aim for the estimate

sup  [3(t)] 2 < C<?
te[0,t, /]

by means of Gronwall’s lemma.

Expressing the Fourier transform of the error g(t, k) by the variation-of-constants formula yields with

~

3(0,k) =0

S(tk) — e f exp (0 — ) (IA(K) + L E))G(Fu(o), FaW (o)) (k) do
0

(4.49)

+ Jexp ((6 —t)(iA(k) + LE))R(0, k) do.
0

Next, we consider both integrals separately.

Since the matrix A(k) is symmetric for every k and the matrix E is skew-symmetric, we observe that
(1A(k) + LB)" = —AT(k) + LET = — (1A(k) + LE).

This means that the matrix iA(k) + %E is skew-hermitian for every k£ which implies that the matrix

exponential exp (t (iA(k) + éE)) is unitary for every t € R.
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Furthermore, due to (3.33) we estimate

|G(Fu(o), FiM (0))] ., = [T (Fu, Fu, Fu) - T(Fa®, 7oL, 7aM)(0)]
< Crls(o)] (Hfuw)l\il + [FaD ()| . [ Fulo)] . + Hfﬁ‘%)Hil)
= 73] 1 (Ju@) 3y + 50 @) |y Ja(@)] 2 + [0 @5,

<3C2Cr[5(0)] .,

where C|, is the constant defined in (4.37). For this reason the first term on the right-hand side of (4.49)
can be bounded in L' by

t

sj f lexp ((0 — t) (1A(k) + LE))|, |G (Fu(o), FaM (o)) ()], dk do
0 R4

= u(o), FuV (o o
sJﬂg(f (0), Ful (o)) (k)|, dk d

0 Rd

t
= EJHQ(}"u(J),}'ﬁ(l)(U)) |, do
0
t
< 307C2 sJ 16()]| 2 do. (4.50)
0

The laborious part of the proof is to show that the remaining term of (4.49) can be estimated in L! by

t

Jexp (0 —t)(1A() + %E))]/%(O') dcr‘ < Ce? (4.51)
0

sup
te[0,t. /€]

Lt

with a constant C' which does not depend on e. If we are able to show the estimate (4.51), then in

combination with (4.50) we have all the required bounds. Together with (4.49) it follows that
t
3(0)l2: < CC% e [ 13(@) 111 do + Ce2
0

and applying Gronwall’s lemma yields the desired bound

sup  Ju(t) =iV (&)|w = sup [3(t)] < Ce2et
te[0,t, /] te[0,t, /€]

with v = CC2, which proves (4.42). For the rest of the proof we aim to show (4.51).

Step 3. The goal of this step is to reformulate the integral term of (4.51) in an appropriate way. For

this purpose we introduce the change of variables k' = k— 2%, ek = jrk+¢ek’. Together with the definitions

g
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(3.3), (3.22) and the representation (4.48), we obtain

fexp (o —t)(1A(k) + %E))I?Z(a, k) do

t
= gfexp ((O‘—t)( Z Z T( U317U327U33)(U k— 7) —ljwo/e 4,
0

je{£3} #J=j

t
=c Z Z J-exp (0 —1t) (— Jjw + A(ek) — 1E)) e_ij‘”t/ET(@jl,ﬂjzﬁjg)(a, k— %) do
0

je{x3} #J=j

5 Z Z J-exp Lo —t)L(jw,ek)) e_ijwt/ET(ﬂjl,ﬂjz,ﬁjs)(a,k — %) do

Je{x3} #J=ip
t
— et/ Y f exp (1(0 — 1)L, (k) T(@y0, g, y3) (0, k) o
je(E3} #I=jp

For the sake of simplicity we omit in the following the dash and write again k instead of k’. By considering
the L'-norm later, we integrate over k and, thus the difference does not matter. By means of the
definitions (3.45) and (3.49) we conclude

exp (L(o —t)L;(ek)) T (tj,, 05,05, ) (0, k) = exp (L (0 —t)L;(ck)) S¥ (o, k)
= oxp (L, (ck)) U (ch)Fe (0,7, J) (K
= S]’-‘je(t, k)F.(o,u,J)(k).
With [e«/] = 1 and since S¥_(t) is unitary, this yields the bound

¢
JFE (o,u,J) do

H Jexp ((0’ —t) (iA(~) + %E)) daH
0

je{+3} #J= o Lt
=€ Z Z HJ (o,u,J) do . (4.52)
je{x3} #J=j
This representation for the term (4.51) is more favourable, as we will see in the next steps.
Step 4. We now have reduced the required estimate (4.51) to
Z Z HJ (o,a,J) do‘ s Ce (4.53)

Jje{£3} #J=J

The next goal in this and the following steps is to prove (4.53). If we combine this estimate with (4.52),
we obtain the desired bound (4.51). We note that there is an extra factor € on the right-hand side of
(4.52) which together with the factor € from the estimate (4.53) gives the required O(g?).

Now, we consider multi-indices J € J3 with #.J = j, where j € {£3}. The situation |J|; = |j| = 3
appears only if J is (1,1,1) or J = (=1, —1,—1). Hence, for j = 3, we have

F.(t,4,J) = S5.(6)T (41, U1, G1) (t).
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In order to take advantage of (4.10), we decompose

T (@1, 1, 161) = T (Petin, Petiy, Petin) + T (Petin, Py, Prtty) + T (Petiy, P2y, Peiin)
+ T(,PeLala ,Psala Peal) + T(Pgal, ,PgLﬁla Pjﬁl) + T(Péﬁl,’]?sah 'P;ﬁl)
+ T(PLan, PRy, Petn) + T(PHan, PRy, P,

similarly to the proof of Proposition 4.1.4. Now, all nonlinear terms 7 involving at least two terms Pjﬁl
can be treated in a straightforward way because of Proposition 4.1.4 and the implied estimate (4.10). We
obtain for example
t t
| fsg,gw)’r(?%alﬂ%al,%)(a) do| < Cre? f (2IPEi (@)1 LIPL i (@)]2 [Pein ()12 ) do
0 0
<eCrt.Cy,.

The remaining nonlinearities contain one or zero terms P-4;. Therefore, the main difficulty is to prove

H ngyg(a)’T(Pjﬂl,Psﬁth@l)(o) doHLl < Ce (4.54)
0
and
H ftsg’gw)fr(nal,Pgal,nal)(a) da”Ll < Ce. (4.55)
0

The other two possible combinations T(Psﬁl,’Pj-ﬁl,Peﬂl) and T(Psﬁl,Peﬁl,Pjﬂl) of (4.54) can be
treated in the same way. For this reason we consider (4.54) as an example.
To prove the bounds (4.54) and (4.55), we use that (3.67) and (3.69) in addition to (3.46) and (3.45),

yield the representations

Pty (t, k) = ST (t, k) Pz (t, k) = Uy (ek) exp (— LAy (ek)) Pz (2, k)
= exp ( — %)\11(6](3))211(@ k)w11(€k‘) (456)

and

Pt k) = ST (t,k)Prz1(t, k) = Uy(ek) exp (— LA (k) Pz (L, k)

= >0 exp (= Ly, (€K)) 21m, (E F)1m, (k). (4.57)

m1=2

The next two steps involve proving the bound (4.54). In the last step of this proof we show (4.55) and
combine all the bounds to finish the proof.

Step 5. Combining the representations (4.56) and (4.57) with (3.23) and using

S

U3 (ek) = ) emthh, (ck),

m=1

where e,,, denotes the m-th unit vector, yields

Ss,6(0)T (Piiy, Peliy, Petir) (0) = F(o, 2). (4.58)
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Here F. and its m-th entry are defined by
Fu(t,2) = (Fem(t2)) ;

Fe(t,2)(k) = Y] J exp(gmgmw(e,k,K))Zw(t,K)cmml(s,k,K) dK,
mi1=2
#K=k

where we have 1 = (1,1,1), M = (mq,1,1) and the notation (cf. (3.52) in Section 3.7)

K = (k(l)7 k@) k(?’)),
AXzmani (8, k, K) = A (ek) — Ay (e61) = Ai1 (e8@) — Mgy (e6®),

Zuat (8. 1) = 21 (1K) 1 (1,62 1 (1),
1
Cmm, (6’ k’ K) = Ww;’fm (Ek)T(¢1m1 (6k(1)) ) ¢11 (5]4}(2)), wll (ﬁk(g))) .

We note that by definition 1, (¢k) is the m-th column of the unitary matrix ¥;(ek). Hence, it follows
with (2.5) and C = Cp (27)" % that

|Cm, (6, k, K)| < Cr  forall ¢k, K.
Together with the representation (4.58) and the definition of the L!-norm we bound the left-hand side of

(4.54) by

t
H f S, (0)T (P, P, Pen) () do| |
0

_ ﬂfFE(a,z)(k-) da]2 dk < Z “Jth,m(a,z)(k) do‘ dk
Rd 0 m=lps 0

t
S Z 2 f‘ f JeXP(i?oA)\SmﬂM(&kaK))ZnM(U,K) do ¢rmm, (e, k, K) dK| dk

m=lmi=2ga 4K=k 0

t
<3N J ”exp (%’AAgmﬂM(ak,K))Z]lM(o, K) da‘ e, (£, k, K)| dK dk
m:1m1:2Rd#K=k 0

t
<cr Y ) f J ”exp (igmgmw(g,k,f())zw(a, K) da‘ dK dk. (4.59)
m:1m1:2Rd#K=k 0

The crucial term which we have to bound by O(e) is the highly oscillatory integral in (4.59) for all
m,mq, K and k = #K. We have already discussed the challenge of this type of terms in Section 3.7.
The next sub-goal in this step is to prove that we can bound the highly oscillatory integral by

t
‘ Jexp (igmgmw(e, k, K))ZHM(U, K) da‘ (4.60)
0

3 t t
< Cs(|zw(t, K)|+ ) k9] f |Zypi (0, K)| do + J |0: Za s (0, K| da)
0 0

i=1
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for all m,my, K and k = #K. For the rest of this step m,m, k, K are considered to be fized. For this

reason we simplify notation by setting
AXE) = Agman (€, k, K) = Mg (ek) — A, (KD) = A1 (e6P)) — Ai1 (ek®),
Z(O’) = ZﬂM(aa K) = Z1m, (Ua ]{1(1))211 (O', k<2))2’11 (0', k(g)) .

As mentioned in Section 3.7 the idea is to expand the highly oscillatory term exp (%"A)\(E)) in a suitable
way. We underline that by Assumption 4.3.1 and since A\11(0) = 0 , we know

ANO) = A3 (0) — A, (0) # 0.

Furthermore, we define

Y(o )—exp( [ANE) — AA(O)])Z(J).

With this extension we are able to integrate by parts in order to generate one additional power of e.
Since | exp (fA)\(O))| = 1 we obtain for the left-hand side of (4.60)

t

Uexp (2are)z Uexp (2870))¥(0) do| < C2(120)] + |(0))) +CaJ|&tY(0)\ do.

0

The initial conditions (3.25) imply that z1,,, (0, k) = 0 for all my # 1 and hence that Z(0) = Z1 (0, K) =

0. By means of the product rule we have

2Y (o) = L[ANE) = ANO)]Y (0) + exp (2[AN(E) = AX(0)] )22 (o).

Hence, for the integral term, we obtain
t

f\&t o)l do < J‘[A)\( —AXO ’ |Z(0)| do + f |0:Z(0)| do. (4.61)
0

Next, we take advantage of the Lipschitz continuity of the eigenvalues. For the difference

A/\(E) — A/\(O) = A)\gm]lM(E) — A)\3m]11\/[(0)
= (Nsm(ek) = A3m(0)) = (Aim, (EED) = Aipm, (0))
— ()\11 (Ek‘(2)> — )\11(0)) — ()\11 (61{3(3)) — )\11(0))

the Assumption 3.7.2 and the identity k¥ = #K = k() + k) + k®) yield the inequality

3 3

i=1
In this way, we gain an additional factor ¢ which counterbalances the factor 1/¢ in front of the first term
on the right-hand side of (4.61). All in all, this yields the bound

Uexp(igm(g))zm ]\ (\Z \+2\k |1J|Z |da+f|at \da
0

where the constant C' depends on the inverse of AA(0) and on the Lipschitz constant in Assumption 3.7.2,

but not on e. This proves the estimate (4.60).
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Step 6. In the last step of proving the bound (4.54) we make our way back to the beginning. We
substitute (4.60) into (4.59) and obtain

<or Y S tex % Mg ni (6, k, K) ) Zas (0, K) do| dK dk
Tzzl ZJ J ‘Of P( 3m1M (€ ) M
<eCrs (X1 (1) + Xot) + X3 (t)).

The factor s results from the fact that every term X, (t), i = 1,2, 3, is independent of m, where we use

the short-hand notation

Xi(t) = ) J |Zum (t, K)| dKdk,

mi=2pa g —p
3 s t

0= 3 [ [ WO [|zusslo. 5] do arcan
i=lma=200 2y 5

Xs3(t) = Z J f f|8tZﬂM(U,K)do dKdk.

mi=2pa wK—F 0

To conclude the bound (4.54), it has to be shown that X;(¢) < C for i = 1,2,3 and for all ¢ € [0, t./e]
with a constant C' which is independent of .

Before bounding each term separately, we provide the estimate

3 1Zuas ) = (D) v (K)o (0 5O)] o (1.6
m1=2 m1=2

= |PLa(t kD) o (8 6P| |2 (£ 7))
SVs— 1|Pl21 (t’ k(l))|2 |P21 (t7 ]{;(2))}2 |PZ1 (t’k(g))‘Q
< Vs = 1| (8 KD, [ (8 52) |, [ (£ 52) ],

which follows from the definition of Zj, (2.1) and (3.47).
Now we consider X (t). Together with the previous estimate, this leads to

Xi(t) = ) J | Zine(t, K)| dK dk

m=2pa u K=k

SV T [ [ PR (K a0 (), aak

Rd #K =k
= Vs — 1P (t)] 2 [a ()7 < C.

We remark that in fact, it even follows that X;(¢) < Ce according to (4.10). Next, in order to bound
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X (t) we write
S

3
2 % WOhizu (e 5|

= Vo = T(IOh [P (1 KD 1 (1K) i (159,

[P (6 KOy [ [ (1K) [0 (k) + [0 (0K 5[ (15 | )
and by the definition of the Wiener algebra

f KOy [, (£, KDY ], kD < [, (8)]10 + f O] [, (£ KDY ], dED = g, (8)],y-
Rd Rd

for i € {1,2,3} and J = (ji1,42,73) = (1,1,1). In a similar way as before it follows with these bounds that

Z Z f J Ik“\lflzw(a K)| do dKdk

i=1mi= Q]Rd HK=k
t d d 2
< CJ (IIPéﬁl(U)ILl + ID/ﬂ’iﬁl(U)llLl> <||ﬁ1(0) [z + ) 1Dyt (o) |L1> do
0 p=1 p=1

d
< Ct. sup le‘l (IIPéﬁl (@) + ), IDMPfi%(U)IILl) |u1(e) I%w]

O'G[O,t,,/E] p=1

<C

due to (4.41) and (3.35). Finally, we consider X5(¢). Again due to the definition of Zy,; and (2.1) it
follows with the product rule that

Z 10+ Zam (8, K)| < /s — 1(|atPLzl (t’k(l))|2 |le (t7k(2))|2 |P21 (t7k(3)>|2

m1=2

[P (6 RD) [Pz (8 D) | P21 (6 D) |, + [Po (8 6D)] 0P (8,52) | |).

Together with (4.11) and (4.40) we obtain

Zf f J|8tZﬂMUK\dJ dK dk

m=lpi ug—k 0

t
<c[ (1P @)@l +2AP-a)], 2@l laa@)) do

t 2
<SC%(e+2%) < C.

Thus, all terms X;(t) for ¢« = 1,2,3 and ¢ € [0,t./¢] are uniformly bounded. This implies the bound
(4.54).

Step 7. The main goal in this step is to prove (4.55) uniformly in € in spite of the integration over a
possibly long time interval which finally leads to (4.51). The technique differs from the proof of (4.54),

since we do not use the notation (3.52). The ideas are similar to those in the proof of Proposition 4.1.4
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Step 2, where we bound (4.24). However, there is one crucial difference. We have to apply integration
by parts twice to obtain the required factors of . Again the idea is to expand the highly oscillatory part
of the integral

t
J 5376(0—)7-(7)8@13 P, Pgal) (CT) do
0

in a suitable way. Since every term P.u (o) is essentially non-oscillatory, the whole nonlinearity
T(Pgal, Py, 738@1) (o) is non-oscillatory on the time intervals of length O(s_l). Thus, the term
Ss (0, k) is the only highly oscillatory part in (4.55). In the following we define As(ek) = As(ek) — A3(0)
and by definition (3.45) we have

S3.(0, k) = exp (12A3(0)) exp (— 2A3(0))S3.c(0, k) = exp (12A3(0)) exp (2 Az(ck)) U5 (ek).

Hence, the left-hand side of (4.54) can be expressed as

t

H J exp (12A5(0)) f-(0) daHLl, Fo(t, k) = exp (LAs(ek)) Uk (k) T (Peiiy, Petiy, Pt ) (1, k).
0

In order to gain a factor € we integrate by parts. This is possible since the matrix £3(0) = £L(3w, 3k) is

invertible by Assumption 3.2.6. Thus, we obtain

| [[exp (20000 200 do] |, < C (1Ol + 1100 ) + =] [ exp (ZRs(0)2ufelo) do] .
0 0

We note that the constant depends on the inverse of the eigenvalues of A3(0). Next, we consider each
term separately. With |Ss . (0, k)|2 = 1, (3.28), and (3.34) it follows that for all ¢ € [0, ¢, /¢]

[ £ pr = |T (Petin, Petin, Petin) ()|, < Cr|[Petn(8)]7. < © (4.62)

with a constant which depends on C7 and the constant C,, o from (3.35).

Furthermore, we write

Opfo(t) = 0y (exp (L As(ek)) Ui (k)T (Petiy, Peliy, Petir) (¢, k))
= 1Ay(ek) exp (L A3(ek)) U5 (k)T (P-ay, Petiy, Pelin) (L, k)

+exp (LAz(ck)) U3 (ek)d, T (Peiiy, Peiy, Pella) (¢, k)
= g1(t) + ga(t).

At this point it is crucial to not take the norm under the integral and to bound 0, f. straightforwardly.

The reason is that we have

lg1(@®)][zr = O1) and  |ga(t)| L1 = O1).

These statements will be shown later. The long time interval counterbalances the factor & which we
gained by integration by parts and the factor e is missing on the right-hand side of (4.55). Therefore,
the idea is to apply again integration by parts on each integral term of g; and go. Thus, we consider

¢ ¢ ¢

jexp (12A5(0)) ¢ f-(0) do = Jexp (12A5(0))g1(0) do + Jexp (12A5(0)) g2(0) do.

0 0 0
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In a first step we treat these integral terms in general. Since the matrix £3(0) = £(3w, 3k) is invertible

by Assumption 3.2.6, we again integrate by parts and obtain for ¢ = 1,2

| [[exp (2s(0)git) do] | < Ce(lgnO)ler + ls)]) + Ce] [ exp (280(0)ugn(o) do]
0 0

Recall that Ag is globally Lipschitz continuous by Assumption 3.7.2, which means

[1A3(ck)|2 = 2|As(ek) — A3(0)|2 < Clk[y

with a constant C' which does not depend on ¢ and k. With |S5 c(0,k)]2 = 1, (3.28), and (3.34) it follows
for t € [0, t..a/c] that

lgr(t)] 22 = e | As(er) exp (LAs(er)) WE (e) T (Pdly, Petiy, Petin) (t)]

CJ k|1 | T (Petin, Petiy, Peiin) (8, k)|, dk < CCrC3 4

and with the product rule (4.39) that

Hg2 (t) HLI = H exXp (%Ag (E))\I/ék (5-)6757'(735171, 7?5@1, 735171) (t)HLl = Hé’tT(Pgﬁl, Peﬁl, 735’;1,\1) (t>||L1

< 3CT|eP-a (t)] . 1P |70 < C,
where the constant depends on (), ; because of Lemma 4.1.2. Furthermore, we write

0y (L A5(ek) exp (LAs(ck)) Uk (k) T (Potiy, Py, Pty ) (1, k)

Org1(t) =
(P ala Pealy Psal) (ta k)

= — L A3(ek) exp (LAs(ek)) Ui (k)T
lAg(Ek‘) exp (ltAg Ek‘ )\IJ* Ek‘ (975 (Pgﬂl,’/)gal,PEﬂl)(t,k)

= h1( ) + ho(t)

and
01g2(t) = 01 (exp (L As(ck)) W5 ()0, T (Petiy, Potiy, Petin) (t))
= L1 A;3(ck) exp (LA3(ck)) Wk (ek) 0y T (Peiiy, Peiin, Peiin) ()
+exp (LAs(ck)) V3 (ek) O T (Petin, Peiin, Pelin) (1)

= ho(t) + ha(t).

If we are able to show that

lho(@)][Lr + A1 (®)][ s + [h2(B)] 1 = O(1),

then the integral terms can be estimated in a straightforward way. We note that by

t

5” JeXp (*2A3(0))hi(0) dUHLl S tena Sup ] [hi(@)] 11

0 O'E[O, end/€
H ;1 uniformly for ¢ = 0,1,2. The long time interval counterbal-

it remains to bound sup,e(q 4,,4/e] |Ri(o)
ances the factor e which we gained by the second integration by parts. However, the factor e which we
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gained by the first integration by parts provides the required factor € on the right-hand side of (4.55).
Again with the Lipschitz continuity of As, [S5 (0, k)]2 = 1, (3.28), and (3.35) it follows that

0€[0,tena/e] 0€[0,tena/e]

Sup th (U)HLI < sSup f |k"|% |T<P€a17 Psaly Psal) (07 k)|2 dk < CCTCS’Q
Rd
and

sup |ho(o)],, < sup J k|1 |0:T (Petiy, Petia, Petin) (0, k)|, dk < COTC3
O'G[O,tend/a] O'E[O,tend/E]Rd

where again we use Lemma 4.1.2 and Lemma 4.2.1. For the remaining term we estimate

0€[0,tena/c] 0€[0,tena/e]

sup  ha(0)],, <C sup j (BT (P-ity, Pefty, Ptia) (0, k)], dk < COTC2,
R4

where we use Lemma 4.3.3.
All in all this proves the inequality (4.55). Combining all the results implies (4.51) and completes the
proof of Theorem 4.3.4. [ ]

Remark 4.3.5. The natural question is why the accuracy of the SVEA cannot be even better than O(g?)
for the SVEA. The limiting term in the analysis is (4.62), which is of order O(1). There is no possibilty
to gain a factor € for this term and we cannot improve the estimate (4.55). Thus, we cannot be better
than
t
H fsg,e(a)T(Peal, Peiiy, Petiy) (o) dg(
0

< Ce.

Our theoretical considerations are confirmed by the following numerical example.

Numerical experiment

We conclude this section with a numerical experiment to illustrate Theorem 4.3.4. In the follow-
ing we consider the one-dimensional Klein—Gordon system (1.3) with x = 1.2, v = 0.7, M = E,
w = max{w;(k),ws2(k)}, where w,, is the m-th eigenvalue of L£(0,x), and with initial data p(z) =
Y11(0) exp (—(z — 0.5)). We set t.,q = 1 and consider 2 equidistant grid points in the interval [—64, 64]
with periodic boundary conditions. The reference solution is computed by the approximation (3.15) with
Jmax = D. At the moment, it is not clear why this choice is a reasonable reference solution. The justifica-
tion why we can use 1i(®) as the reference solution in this numerical experiment is given in the following
section in Remark 4.4.1. The code to reproduce the plots in this and the next section is available on
https://www.doi.org/10.5445/IR/1000149721.

Figure 4.1 shows the accuracy of the SVEA compared to the reference solution considered with different
values of £. We observe that the accuracy improves quadratically in accordance with Theorem 4.3.4. The
solutions of (3.16) with j,.. = 1 and j,... = 5 are approximated by the Strang splitting method with
N = 10° time-steps. We remark that the number of time-steps is chosen large enough in comparison to
the choice of &, which we consider, so that €2N > 1 holds. The dashed red line is a reference line for

order two.
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Figure 4.1: Accuracy of the SVEA for different values of ¢ in blue. The dashed red line is a reference line

for order two.

Strang splitting. For the Strang splitting method we split the PDE (3.16) with j,.. € {1,5} into the

linear and the nonlinear part. Thus, we have the linear subproblem

drui (t) = —Ajuj(t) with given u(0), for j e Jy, (4.63)

where A, is defined in (3.36) and the nonlinear subproblem

druit =€ Z T(u3y,uly, uls) with given u}®(0) for j e J,. (4.64)
#J=j

The operator A; generates a strongly continuous group on W (R%). Thus, for ¢ > 0 we obtain a solution

of the linear subproblem via

ui(t) = e_tAJ'u; (0) (4.65)

and, hence, (4.63) can be solved exactly in Fourier space. Since we cannot solve the nonlinear subproblem
(4.64) exactly, we approximate the solution with Heun’s method which is a Runge-Kutta method of order
two.

In total we obtain for j € J; an approximation u} ~ wu;(t,) recursively, meaning by solving the sub-

J
problems (4.63) and (4.64) in alternating fashion. In order to calculate u}”l we first approximate the
solution of (4.64) via Heun’s method with one half time-step % and initial data u} which yields u?“

Next, we compute u?H’J“ by taking a full time-step 7 of the exact solution (4.65), where now u?“’_ is

the initial data. Finally, we approximate the solution of (4.64) via Heun’s method again with one half

time-step and initial data u?+1’+ which yields the approximation u

,—

n+1
i .

After proving this improved error bound for the SVEA and observing the accuracy numerically, we
discuss an extension for higher accuracies in the last section of this chapter. The natural question that

arises is what happens for higher j,.. > 17
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4.4 Extension to approximations with higher accuracy

We start this section by considering the same one-dimensional setting for the KG system (1.3) as above

numerically. However, now we set j,.. = 3 in the ansatz (3.15).

Lot

H
b
&)
—
i
1

3

Figure 4.2: Accuracy of u®) for different values of ¢ in blue. The dashed red line is a reference line for

order four.

Figure 4.2 shows the accuracy of i(®) compared to the reference solution considered with different
values of €. The dashed red line is a reference line for order four. As before, we take as a reference solution
11(®). For justification see Remark 4.4.1 below. The solutions of (3.16) with j,.. = 3 and j,., = 5 are
approximated by the Strang splitting method with N = 10° time steps. We observe that the accuracy
improves quartically. Therefore, we conjecture that if we include more coefficients in the ansatz (3.15),
we will also obtain better accuracy for the associated approximation.

Next, we set j,.. = 5 in (3.15) and consider the corresponding coefficients u; for j € 7.

Figure 4.3: Tllustration that the coefficients ug(t) and wus(t) remain small with respect to € on long time
intervals in red and black. The dashed red line is a reference line for order two, whereas the dashed black
line is a reference line for order four. The coefficient u;(¢) and a reference line for order zero is given in

blue and dashed blue, respectively.
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Figure 4.3 illustrates an important property of the coefficients ug(t) and us(t) for different values of e
on long time intervals. We observe that the coefficients u,;(¢) for j > 1 stay small on long time intervals.
We suspect that this behavior of the coefficients is crucial in order to prove error bounds for U=s) with

Jmax > 1. Based on the numerical experiments, the following question arises.

Question. Under which conditions does a constant C' > 0 exist such that

swp () < C, forje g, (4.66)
te[0,t4 /c]
and
sup  [u(t) — aUme) (1)]yy < Cedmaxt! (4.67)
te[0,t. /c]
hold?

General procedure. In order to prove (4.66) for j,.. > 1 we define the scaled norm

2
llyllle = 2[ Py + *IIPLyll\Ll + ) S lyile (4.68)

jeg\{1}
for all y = (y1,...,Yj...) with y; € L*(R%,C"). For comparison the definitions (4.68) and (4.12) are
equal for j,.. = 1. As before, we set y_; = 7;. Analogously to Section 4.1, the first goal is to prove
(4.66) or equivalently that there is a constant C' such that

sup |[l|z(t)[le < C,
te[0,t4 /€]

for all € € (0,1]. To this end, we investigate every term on the right-hand side of

lz@)lle < [l12(0) e + I f@z(a) do||le
0

t

t
S FOIEERY EMPFE(U,Q, J)ydo| HJPLFE(U,a, J) do|
#J=1 0 0

Lt

v

DYDY EMHJ (0,8, dof

jeg \{1} #J=j

By definition of F. we have to estimate terms of the form

Lt

t
H JSj’E (U)T(a’jl ) ajz ) ajg) (o) da‘
0

for 1 < j < Juax- At this point we note that in the proof of the approximation error in Section 4.3 we have
already handled terms of this form, see for example (4.54) and (4.55). However, for the approximation
error we consider those terms with j > j.... We express the procedure that we have seen for the case
Jmax = 1 in Section 4.1-4.3 in generalized terms:
The goal is to establish
Coel=2 4 Cel™1 E]—[f’:l aj,(c)do  for 1 < j < juu,
. < ' 0 (4.69)
Cel=2 for j > Juax

H J uj17uj2vujs)(g) do—‘
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for all t € [0,t,/¢] and for every J = (j1,ja,73) € J°> with #J = j. In contrast to definition (4.16), we

now define

Pz (t + e | Pla(t if j = +1,
- 1Pz1(t)] 1 1P~z (8) | if (4.70)

e 1l 2 (1)) o if [j] > 1,

which according to (4.68) means that

Yait) =2 3 a;(t) = llI20) |- -

JjegT JET+

In order to show (4.69), we distinguish two cases, which have to be treated separately.

Case 1: |J|; > j. In this case we have |J|; = j+ 2 because |J|; is odd. Lemma 3.7.1 and the fact that

3
€\J|1—3H51—Ui| =0 =
i=1

yields

t t

3 3
e b I D (G
0 0

i=1

H JSj,e(a)T(ajl,an,am)(a) do‘ )HL1> o
0

because el/1=3 < £9=1 and e!7Vil|z;, (o)1 < aj,(0) by definition (4.70). This yields an estimate of the
form (4.69) with C, = 0 and C = C7-.

Case 2: |J|1 = j. In thissituation, the simple argument from Case 1 is not enough to prove the desired
bound, because now el/'=3 = ¢7=3_ As an example, this case appears for j = 3 only if J = (1,1, 1).

As in the proofs of Section 4.1-4.3 we treat the coefficent 4; in a special way. If one of the coefficients
@, in the nonlinearity has an index j; = 1, we split this term into u; = P.uy + Pl

This decomposition helps us because all terms where P2, appears in at least two of the three arguments
can be estimated as in Case 1, but now with e '|P+21,(0)|z1 < as1(0). For the remaining terms we
aim to gain additional factors of ¢ from the oscillatory behavior of F. (o, «, J) by means of integration by

parts. These remaining terms, exemplary for j € {3, 5}, are
e for j = 3: the term on the left-hand side of (4.54) plus its permutations, and (4.55),

e for j =5:

H JSE”E (0)T (@3, Petiy, Pely) (o) dUHL1 + permutations (4.71)

and H JSE’»E(U)T(Q&Pj@hpe%)(a) dUHL1 + permutations. (4.72)
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Using Step 5 in the proof of Theorem 4.3.4 as an example, the idea is to rewrite the integrand by means of
the representations (4.56), (4.57), whereas in the case where j; # 1 we use (3.51) for ¢ = 1,2, 3. Together
with U¥(ek) = 37 _; emt},, (ek) this leads to a function F.(c,z) given by

F.(t,z) = (Fg,m(t, z)) ;zl,

Fom(t,2)(k) = Y f exp (gmjmm(e, k, K))ZJM(t, K)¢jmuni(e, b, K) dK, (4.73)
My gk
where we use the notations (3.52), (3.57) and
1
(2m)

In the following we will see that there are restrictions and that, in general, the bound (4.66) is only true

dw]’?‘m(ak)T(z/)JM (EK)).

cjmJM(evkaK) =

for ju.x € {1,3}, whereas the error bound (4.67) is only true for j,., = 1.

Restrictions. The crucial term in (4.73) which leads to restrictions is
exp (gAAjm,,M(s, k, K)), (4.74)

where the definition of AX;n, (e, k, K) is given by (3.57). We have to assume A)jp,7a(€,0,0) # 0 in
order to apply integration by parts. However, if one eigenvalue of the matrix £(0, 3) is constantly equal
to 0 for all 3 € RN\{0}, i.e. w,,(B) =0 with m # 1, and there exists an eigenvalue w,,,(3) = —w; (8) with
1 # mg # m such that wy,, (k) = —wi (k) = —w, then the assumption AX;,7a(g,0,0) # 0 is not fulfilled
anymore for every j, m, J and M. As an example for the reader we consider the term (4.72). In this case
we have with (3.44) and fixed m = my # 1 with w,,(8) = 0 and fixed ms # 1 with w,,,(8) = —w;(8) for

example

AXsmgm(€,0,0) = A5m (0) = Azm (0) = A1m, (0)
= —bw + Wi (5K) + 3w — W (3K) + W — W, (k) = —w + wi(k) = 0.

There are more of such combinations also for j > 5. If there are eigenvalues of the matrix £(0, )
which are constant in (3, there is always the possibility to have resonances. For this example we can-
not apply integration by parts for every j, m, J and M. Thus, if sup,, /] [ts(t)|r < Ce? and

SUPye(0,¢, /e] |PL4; ()| < Ce hold, we can only show with the straightforward argument of Case 1
t
H JS&s(U)T(ﬁg,Pj‘ﬁl,Psﬁl)(a) do| < ce
0

and not O(e?) as required in (4.69).

In summary, the required non-resonance conditions are a limitation for this technique of proof. For j > 3,
these are generally no longer satisfied for the Klein-Gordon system with d > 1 and the Maxwell-Lorentz
system. This can be verified since we know explicitly the eigenvalues of the matrix £(0, k) for the Klein—
Gordon and the Maxwell-Lorentz system, see Example 3.2.3 and 3.2.4. Hence, in general the bound
(4.66) is only true for j,.. € {1,3} and (4.67) is only true for j,.. = 1, because for j,.. = 3 we would

need for the error approximation

| Jtsg,,a(o)’r (s, P01, Pl (o) do| | < O
0
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Remark 4.4.1. The Klein—Gordon system with d = 1 is a special case. Here, these non-resonance
conditions are satisfied, since there is no constant eigenvalue in 8 € R\{0} (see Example 3.2.3). Therefore,
we suspect that (4.66) and (4.67) can also be shown for higher j,... This conjecture is reinforced by the
numerical experiments above, illustrated in Figure 4.2 and 4.3. This is also the reason why we have used

1®) as the reference solution in all the numerical experiments in this chapter.

Therefore, for d > 1 we show a weaker error bound for the approximation (3.15) with j,., = 3 than
(4.67) in the next subsection.

4.4.1 The case j,.. =3 with d>1

The first part of this subsection is based on [4], where we prove the error bound (cf. [4, Theorem 4.2])

sup  |u(t) —u® @) |w < Ce2.
te[0,t4 /€]

However, under slightly stronger assumptions we can prove an improved error approximation of the form

sup  [u(t) —a® (t)|w < Ce®. (4.75)
te[0,t4 /€]

We list the following points, which must be shown one after the other in order to be able to establish a

theorem for the error approximation for (3.15) with j,.. = 3 which fulfills (4.75). The first two points
are adopted from [4].

e In [4, Proposition 3.2] we prove under Assumptions 3.2.1, 4.1.1, 3.2.2, 3.2.6, 3.7.2 and with initial
data p e W that there exists a t, € (0, t..q] and a sufficiently large r > 0 such that

sup  [lz(B)lleq <7 for all € € (0,1],
te[0,t. /€]

where

2 2
e1 =2|Py|zr + EHPLylnLl + EHZ/BHLl

llyl

for all y = (y1,y3) with y; € L' (R%,C™). We note that ||| - [||c,1 denotes a weaker scaled norm which

at first implies for j = 3 only the weaker bound

sup [us(t)| 2 < Ce.
te[0,t, /]

e In [4, Proposition 3.6] we show under the same assumptions but with initial data p € W? that there

is a constant C' which does not depend on ¢ such that

sup || Dpz(t)|le1 < C for all € € (0, 1].

te[0,t, /c]
The following parts are not included in [4].

e Under the same assumptions as in [4, Proposition 3.6] and Assumption 4.3.1 we can proceed as in
the proof of Theorem 4.3.4 Steps 4-7 to prove that there exists a ¢, € (0, t.,4] and a sufficiently large
r > 0 such that

sup |[lz@)|lle < r for all € € (0, 1].
te[0,t. /€]
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By definition (4.68) this boundedness implies the refined bounds

sup  [Pa(t)|;r < Ce  and sup  |ds(t)||p < Ce2. (4.76)
te[0,t, /€] te[0,ty /€]

We omit the detailed steps, as these are very similar to [4, Proof of Proposition 3.6] combined with
the techniques of the Steps 4-7 of Theorem 4.3.4.

In order to prove the approximation error (4.75) we need the refined bounds (4.76) in a stronger

norm, meaning

sup  |D,Pray(t)| < Ce  and sup | D, dis(t)| g1 < Ce. (4.77)
te[0,t, /e] te[0,t4 /¢]

To show (4.77), it is sufficient to prove

sup || Dpz(@®)|l: < C for all € € (0,1]

te[0,t, /<]

under the additional assumption p € W3. To this end, we need a similar lemma as Lemma 4.3.3

which ensures that there exists a constant C' such that

sup | D,0?Pa ()| < C.

t€[0,tena /€]

Next, we investigate for the error bound the terms (4.71) and (4.72). Since, we already know that
we cannot apply integration by parts to (4.72), we obtain by means of the refined bounds (4.76)

N

< Ort sup ([as(®)]n [P ()] [P (1) 1)
L te[0,ty /€]

t
” f §5,+(0)T (5, P21, Py ) (o) do|
0

< Ce2 (4.78)

In order to bound the terms in (4.71) we need an additional non-resonance assumption which can

be verified with the same reasoning as in Remark 4.3.2.

Assumption 4.4.2. The matrices L5(0) = L(5w,bk) and L3(0) = L(3w,3k) have no common

eigenvalues, i.e. A5y (0) # Agm, (0) for all mymy =1,...,s.

Now the preliminary work with all the important requirements and estimates is done and we state

the following theorem:

Theorem 4.4.3. Let pe W3 and let u be the solution of (1.4). Let u = (uy,u3) with

u; € C%([0,t,.4/e], W) n CL([0, t,,.4/e], W?) A C([0, t,.4/c], W3) be the classical solution of (3.16), and let
B be the approzimation defined in (3.15) with j,.. = 3. Under Assumptions 3.2.1, /.1.1, 3.2.2, 3.2.6,
3.7.2, 4.3.1 and 4.4.2, there is a constant such that

supJu(t) — () | < C=,
te[0,t, /€]

sup  u(t) — A ()] 1= < CE™.
te[0,ty /€]
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Proof. The proof is similar to [4, Proof of Theorem 4.2]. Step 1 to Step 4 can be adopted with the slightly

difference that the goal is to show
t

5. | 55076 )

l71e{5,7,9} #J=7

1<C’62
L

with a constant C' which does not depend on e, whereas in [4] we have on the right-hand side €. Analogous
to [4], in Step 4 we make a distinction between the possible combinations of multi-indices J in two cases.
At the beginning of Section 4.4 we already outline the cases |J|; > j and |J|; = j, which can be directly
transferred to the setting j = 5. Additionally, by means of the refined bounds (4.76) we already showed
(4.78). The main difficulty is to prove that

H fsg,,g(a)T(ag,Peal,paal)(a) do| <0 (4.79)
0

At this point we note that formally the order of the integrand is O(e?). At first we might think we
only have to apply integration by parts once, which provides an additional factor €, to show (4.71), but
unfortunately this is not correct. This becomes clearer after adopting Step 5 of the proof for (4.71) and
integrating by parts. For J = (3,1,1), M = (mq,1,1) and fixed m, my, k and K in (4.73) we set

A)\(E) = A/\5mJM(€, k,K),
Z(O’) = ZJM(O', K) = Z3,m, (O’, ]{i(l))ZLl(O', k‘(Q))ZLl(O', kj(g)),
Y (o) = exp (ig[m(s) - A/\(O)DZ(U). (4.80)

As mentioned in Section 3.7 the idea is to expand the highly oscillatory term (4.74) in a suitable way.
By Assumption 4.4.2, (4.80) and integration by parts we obtain

Uexp (igm(g))Z(a) do’ - Uexp (igAA(O))Y(a) da‘
0 0

t

< m‘[exp (earo)v)] |+ IA;W‘ Oj exp (2AX(0))2Y (0) do]

— AXN0)]

cg(|Z(t)\ + |Z(0)\) +CEU [A2¢) exp (igm(()))y(a) da‘

¢ (4.81)
+ Ca] fexp (2aME)) 0z () do’.

For t € [0,t./e] and Z,,(t) = Z(t), we estimate

Z f f m(t K| AR dk < \fJ f (8 KDY, [ (8 k), [ (8, 6) |, dE dk

“lRa gRK=k Rd # K=k
= Vslus(®)]yy, Jua (®) [y < Ce?

by means of the refined bound (4.76) for @s. Furthermore, with

t _ 3 t
” [AAE) - ANO)] exp (igm(()))y(a) da( <o) f k1| Z(0)| do < Ct, Z sup (e k1 |2(0))) ,
0 =17

i= 10‘€
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and the refined bound (4.76) for @iz we obtain

3 s t t
Z > J J |k(i)|1J|Zm(cr,K)| do dK dk<0f|\U3(a)|}W1 |y (o) do
= 0 0

o 2
D (s @]y 1 @) iy) < Ce.

For the last term of (4.81) we distinguish two cases. With the product rule we have

01 Zm (t, ) = Opz3m (t, kM) 211 (8, kD) 211 (¢, kB))
+ ng(t,k(l)) (atZu(t,k(Q))Zu( ]{3( )) + le(t k )atzu( 7]{3(3))) .

Firstly, the refined bound (4.76) for i3 combined with (4.40) yields

J f J‘?@,m o, k(1 8tz11(a,k(2))211(a, k(S)) + 211 (o, k2 ))6,52’11(0 kG ) ‘ do dK dk
=lga 4R =1 0

Mﬂzg o 2@l [z @l do < €2 sup (Jz()] 1 21Ol [0z (1)) < =2

€ tefo,t, /e]

Next, since (4.40) holds also for j = 3, we aim to gain again an additional factor € by integration by

parts. However, first we insert the evolution equation (3.53) combined with (3.54) for d;zs,,,. This yields

t
5‘fexp “’A)\ )6t23m1(071{?(1)>211(0’,k(Q))le(U,k(?))) da‘
0

#J1=3

=¢ ‘Jexp I?OA)\(E)) Z exp (i?”)\gm (ekt ))w (Ek‘(l)>
0
X T (@105 s i) (0, KD ) 201 (0, K ) 211 (0, K)o
t
— | J exp (12 AX()) ¥, (k)T (Peiin, Peiin, Peiin) (0, kM) 211 (0,62 201 (0, kD) do| (4.82)
0
+0(e%),
where
AX(E) = Asm(ek) — A1 (k@) = A1 (ek®)).

In order to apply again integration by parts, it is sufficient to assume As,,(0) # 0 for all m = 1,... s
Fortunately, this condition is satisfied because of Assumption 3.2.6. Applying integration by parts to
(4.82) and estimating every single term similarly to [4, Proof of Theorem 4.2, Step 7] yields (4.79) and
completes the proof. [
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4.4.2 The case j,.. >3 with d > 1

Based on the insights of Subsection 4.4.1, we conjecture that under slightly higher regularity assumptions

and under additional non-resonance assumptions there exists a constant C' > 0 such that

sup u; (t)|Jw < CeWFD2 1 for j e T\{£1}, (4.83)
te[0,t./e]
and
sup |Jlu(t) — ﬁ(j‘“a")(t)HW < Cglmaxt3)/2 for 7. > 3, (4.84)
te[0,t, /]

hold. For j,.. = 3, the error bound (4.84) coincides with Theorem 4.4.3. We emphasize that we do not
present a rigorous proof of the estimates (4.83) and (4.84) in this subsection. Rather, we only outline the
main steps and ideas required to do so.

The general procedure in this subsection is similar to the procedure at the beginning of Section 4.4,

except that the scaling changes.

General procedure. In order to prove (4.83) for j... > 3 and d > 1 we define the scaled norm

2
llyllle = 2[Pysfr + *HPLylllLl + ) “Geop vl (4.85)

JeT\{1}
for all y = (y1,...,Yj...) With y; € LY(R% C"). In comparison to the definition (4.68) the scaling for
j > 3 is different. As before, we set y_; = 7; and the first goal is to prove (4.83) or equivalently that
there is a constant C' such that
o llz@®llle < C,

for all € € (0,1]. To this end, we investigate every term on the right-hand side of

Lt

t i
=)l < 20 [l +2 3] EHJPFE(U,Q,J) do| + MPLFE(U, ,.J) do|
#J=1 0

2 0 X e 1/2HJ (0,10, J) d")

JjeT\{1} #J=

L
In contrast to (4.69), the goal is to establish

J . ~ . t
C,eli=1/2 4 CeUtDR (T2 a),(0) do for 1 < j < Juns

[ st <4 in

i Cebmr for 5> o

(4.86)

for all t € [0,t,/e] and for every J = (j1, jo,j3) € J°> with #J = j, and in comparison to definition (4.70),

we now define

Pzi(t)|pr + e Y|Pz (t)|| if j = +1,
o [P0k PO it )
™ HID2 25 (2) | o if [j| =3
As before, we distinguish two cases to show (4.86). However, the procedure in both cases is a little

different than before because of the different scaling.
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Case 1: |J|; > j. In this case we have |J|; > j+ 2 because |J|; is odd. Lemma 3.7.1 and the fact that

3
c(1711+3)/2 n A+17:D/2 = 0 = 1
=1

yields
¢

H Jsj’E(J)T(ajl ) ah?ajs) (o) do

0

t
3
< OTJHHZL )22 do
=1

3
= Celh/2 [ TT (=002 2 (0)] 11 ) do

i=1

[T (=052}, ()12 ) o

i=1

< CT€(j+1 /252

o%“ o%“

(4.88)

i

:w

aj, (

< CTe(jJrl /2J
0

—

i=

since e/ +3)/2 < ¢U+5)/2 = (G+1/222 Tn addition, the estimate (4.88) is valid due to e'~(1+15:D/2 =

5(1_‘ji‘)/2 and

eIz (o) |1r = 2 (o)l S aji0)  for [i] = 1,

em D22 (o) 12 < aj (o) for [5;] =3

by definition (4.87). We remark that in this case at most two components of J can be |j;| = 1, and we
need one factor € of 7+1)/2£2 to obtain the correct scaling for =1 z41(c)| 1. This yields an estimate of
the form (4.86) with C, = 0 and C' = C7-.

Case 2: |J|1 = j. In thissituation, the simple argument from Case 1 is not enough to prove the desired
bound for all possible multi-indices J, because now e(71+3)/2 — ¢(+3)/2 — c(G+1)/2¢ In comparison to

Case 1, the additional factor € is only enough to estimate

t

t
H JSJ7€ (U)T(ﬁ’jl ) ajz ) a]s) (U) dUHLl < CTg(j+1)/2 J H aj; (U) do
0 0

i=1
if at most one component of J is equal to 1. For all multi-indices J with two or three components equal
to 1, we proceed as follows. We note that this case appears for j = 3 only if J = (j — 2,1,1) and for its
permutations.

We treat the coefficent @ in a special way and split this term into @1 = Py + PL4;.

All terms where P2, appears in at least once of the arguments can be estimated as in Case 1, but now
with e |P1241(0)| 1 < ax1(0). We aim to gain additional factors of ¢ from the oscillatory behavior of

F.(o,u,J) by means of integration by parts for the remaining terms, which, exemplary for j € {5, 7}, are
e for j = 5: the term on the left-hand side of (4.79) plus its permutations,

o for j=T:

” Jst (U)’T(ﬁg,, Py, 775171)(0) dUHL1 + permutations.
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To apply integration by parts, we require the following non-resonance assumption in accordance to As-

sumptions 4.3.1 and 4.4.2.

Assumption 4.4.4. The matrices Lj12(0) and L;(0) have no common eigenvalues, i.e. A(j12)m(0) #

Ajmy (0) for allm,mi =1,...,s and je J;.

The difficulty which we have already seen in Subsection 4.4.1 is that we cannot show (4.86) for
1 < j < Jmax directly. The reason is that as soon as we apply integration by parts we obtain by the
Lipschitz continuity factors |k;|1. Hence, we would need the bounds (4.83) in the stronger norm as well.
However, this is not yet given at the beginning and has to be shown first. Similarly to Subsection 4.4.1,
we list the following points, which must be shown one after the other in order to be able to establish
(4.86) for 1 < j < Jmax, which implies (4.83).

o We start with the weaker scaled norm

2 2
lyllle, = 21Pysllzr + Z1P e + 2 > lyile
jeT+\{1}

forally = (y1,...,Yju.) Withy; € L1(RY, C™). If we are able to show that there exists a t, € (0,,,4]

and a sufficiently large r > 0 such that

sup  |lz@)lex <7 for all € € (0,1],
1€[0,t4 /e]

this result implies for 7 > 3 only the weaker bound

sup |, ()| < Ce.
te[0,t. /¢]

e In the next step we show this weaker bounds in the stronger norm as in Proposition 4.2.2.

e With this result of weaker bounds in the stronger norm, we can proceed as in the proof of Theorem

4.3.4 Steps 4-7 to prove that there exists a ¢, € (0,t.,4] and a sufficiently large r > 0 such that

2 2
sup  |1z®)|lle.2 = 2|Pz1(t)|zr + =[Pz ()] 21 + - Z |z ()|l <7 for all € € (0,1].
te[0,ty /€] € < JeT+\{1}
For j = 3 this estimate yields

sup ()] < C
te[0,t. /€]

e Again this weaker refined bounds can be shown in the stronger norm and so on.
Remark 4.4.5.

(i) With this procedure, we gradually increase the power of € on the right side of the weaker norms up
to the required scaled norm (4.85). Similarly to the proof of Theorem J.4.3, to increase the power
in some cases we have to apply integration by parts more than once to gain the required factors
of €. Hence, we need the refined bounds in even stronger norms. Consequently, this increases the

reqularity assumption on the initial data.
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(i) We note that if we apply integration by parts to an integral term with 012j,m, (o), we first substitute
the evolution equation for 01zjm,(c) in order to avoid terms of the form 0?zj,m,(c) or higher

derivatives in time for j; # 1. As an example we refer to the proof of Theorem 4.4.3.

Finally, to prove the error bound (4.84) we proceed similarly to the proof of Theorem 4.4.3. The difference
is that we apply the Cases 1 and 2 described above to show (4.86) for j > j,ax-
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CHAPTER D

Numerical methods

In addition to the analytical study of the exact solution of the system (3.16) with j... = 1, we are also
interested in approximations of the exact solution u; by numerical computations. From a numerical
point of view the advantage of considering the evolution equation of u; compared to the full system
(1.4) is that in system (3.16) with j,.. = 1 there are no more spatial oscillations caused by . However,
the coefficient u; still oscillates in time which causes difficulties for standard numerical methods. The
overall goal is to achieve an approximation for the semilinear hyperbolic system (1.4) by the analytical
approximation (3.15) with j,.. = 1 in combination with numerical computations. Thus, the error of
the overall approximation consists of two parts. The first approximation is given by the analytical
approximation and, therefore, the first approximation error depends only on the smallness parameter
€. The second approximation error is made by solving the transformed system (3.53) for j = 1 with
a numerical time integrator. This error mainly depends on the choice of the step-size 7. In general
the power of 7 depends on the numerical time integrator which is used. According to Theorem 4.3.4,
the accuracy of the SVEA is of order O(¢2?) and, hence, for a method of order p the accuracy is in
O(max{sQ, Tp}), if the error constants of both approximations are similar. Consequently, for 7 < 7 the
accuracy is limited by the analytical approximation. This has the following implications for the choice
of step-sizes of the numerical method. For a first-order method, it is reasonable to use step-sizes in the

regime &2

< 7, whereas for a second-order method, it is only useful to choose step-sizes with ¢ < 7. Of
course we can use step-sizes smaller than the restriction, although, computing a numerical approximation
finer than (9(52) gives no advantage because we are limited by the analytical approximation error. The
chapter is structured as follows.

After transforming the general system (3.16) in Section 5.1, we will first construct a one-step method
and prove that this method converges with order 1 uniformly in €. First-order methods as the one-step
method in Section 5.2 are certainly not satisfactory to approximate solutions. However, studying this
method permits valuable insight for the construction and the analysis of more elaborate methods.

After the investigation of the one-step method, we aim to construct a method with higher accuracy.
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Instead of investigating a one-step method of order two, we extend our approach and consider a two-step
method. We provide the rationale in Subsection 5.2.3. The goal is to prove that the two-step method has
a higher accuracy. The majority of this chapter is devoted to error analysis. For this purpose we have
to rewrite the two-step method into an equivalent one-step method as a first step in order to be able to
apply the typical strategy that stability combined with the local error bound leads to the global error
bound. Section 5.3 contains two different global error estimates. These are dependent on the associated
assumptions we make. Additional assumptions improve the error estimate of the local error. Here, the
bounds of the coefficients (shown in Chapter 4) and the associated assumptions play a major role again.
They are crucial to improve the error estimates. It is important to emphasize that the bound of the
coefficients alone is not sufficient to improve the error estimate. However, similar ideas and techniques
are used as in Chapter 4.

Since the constructed numerical methods are costly due to the fact that each time-step requires the
computation of nested multiple sums, we end this chapter by reducing the computational workload in a

suitable way. We start this chapter by transforming the system (1.4).

5.1 Transformation of the system

5.1.1 Co-moving coordinate system and rescaling of time

We know that the solution of the system (1.4) propagates in time. Consequently, the computational
domain in space has to be large enough such that the solution does not leave this domain. In order to
avoid a large finite space domain we introduce a time dependent shift in the spatial coordinate to go into
a co-moving coordinate system. In Remark 4.1.3 we interpret the non-oscillatory part of 7, as the main
part of the solution. This main part travels with the group velocity ¢, = ¢4(k), cf. (3.5). If we define
t' = et, the time dependent spatial shift 2’ = z — tc, and the new variable

/ /

t t
v(t',2') :=u (,x’ + cg> , equivalently v(et,z —tcy) = u(t, z),
5 €
then we obtain via the chain rule

onu(t,z) = ov(t',a') = edpv(t',2") — ey - Vuv(t',2'),
A(O)u(t,z) = A(0p)v(t',x").

Thus, the change of variables turns the original problem (1.4) into

1 1
v + EB(OI/)V + 6—2EV =T(v,v,V), 2 eRY € (0t (5.1)
where we define
40
B(dy) = ). Busoy  Bu=Au- (co)ul (5.2)



5.1. Transformation of the system 85

Next, we set v;(t',2") = u;(t, x) such that the change of variables turns the left-hand side of the system
of PDEs (3.16) into

dyu;(t, z) + éﬁ(jw, R)uy(t, ) + A(0p)u; (t, )
= copv;(t,2') — ¢g - Vv (¢, 7)) + éﬁ(jw, ) (¢ 7)) + A6y ) (¢, 7))
=cdpv;(t',2") + é[l(jw,jn)vj(t’,x’) + B(0y)v; (', 2").

Remark 5.1.1. For the sake of simplicity we omit in the following the prime and write again t and x
instead of t' and x', respectively. We explicitly note that the variables t and x in the rest of the chapter

are different variables than in the previous chapters.

With the abbreviations vy = (vj,,vj,,vj,) and B(0) = B(d,) we obtain the system

Orvj + E%,C(jw,j/i)’l}j + éB(&)vj = > T(vy), jeTp, te(0t,], zeR™ (5.3)
#J=j

The sum on the right-hand side is taken over the set (3.17). Analogously to (3.16), the PDE (5.3) is
compatible with the condition that v_; = 7;. In the new variables the approximation defined in (3.15)

reads
v(t,z) ~ Z eij”'w/aeij(“'cg*“’)t/gvj(t,:E), v_j = Tj. (5.4)

jeT

In principle, splitting methods could be used as numerical integrators for solving the system (5.3).
However, numerical experiments illustrate that these methods are not suitable for highly-oscillatory
problems because of step-size restrictions, which will be seen in Section 5.6. Furthermore, we do not
directly apply exponential integrators to the system (5.3). The reason is that the techniques in the
error analysis always use Taylor expansion of the exact solution. However, those Taylor expansions are
no longer applicable since higher-order time derivatives of v; will have large norms because of the factor

E%E( jw, jk). Therefore, we transform the system (5.3) similarly to Chapter 3 and construct new methods.

5.1.2 Evolution equations on T¢

In order to do numerical simulations we have to truncate the full space R?. Therefore, we replace for
simplicity R? by T? in (5.3), where T = R/27Z means [, 7| with periodic boundary conditions. Of
course, periodic boundary conditions are a simplification, however, we will ignore this for the time being.
First, we derive the evolution equations on the torus and then we end this subsection with an estimate

important for the later analysis.

For the rest of the chapter we use the same letter v; as in (5.3) but now for the variable on the torus.

Formally the solutions v;, after transformation in space and time, of the system

i 1
Oy + =5 L(w, jr)v; + =B@; = ) T(vs), zeT% e (0t (5.5)
€ € oyl
can be represented by the semidiscrete Fourier transform

vi(t,z) = Y, Bt k)e* T (5.6)
kezd
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with Fourier coefficients

0;(t, k) = (zw)—df vi(t,x)e Frd, keZd (5.7)
Td
If v is sufficiently smooth, then the derivatives in space for p € {1,...,d} are given by
Oz, v(t,z) = Z (k)" 0;(t, k)e* ™
kezd

such that space derivatives correspond to multiplications of the Fourier coefficients. Differentiating (5.6)

formally gives

0rv;(t, x) Z 0:0;(t, ke (5.8)
kezd
and
d .
B(0)v,(t, ) (2 B, (ik,.) )Uj(t k)elt ™ = 3 iB (k)0 (t k)e* (5.9)
keZd 1 kezd
Therefore, we obtain by inserting (5.8) and (5.9) into the left-hand side of the system (5.5)

| I RPN RS W
(?tijrg—QE(jw,]n)ijrgB(&)vj = Z <(}t?)j(t,k)+Egﬁ(jw,jli)’l}j(t,k)+€B(]€)’Uj(t,k))ek .

kezd

Since for m € Z¢

) 1, ifm=k,
(2m)~@ J elm=k) qg — (5.10)
T 0, else,
applying the Fourier transform gives
i L. 1
F (s + LG, jr)e; + ~B@); ) (k)
=) (2w)*df elF=h)-e gy (ataj(t,%) + S L(jw, jr)B; (L k) + = B(R)B; (¢, 75))
kezd B c c
~ i~ ~
= é’tvj (t, k‘) + ?Ej (ek:)vj (t, k?)
with the shorthand notation
L;(0) := —jwl —cy- 0+ A(jr + 0) — iE. (5.11)

We note here the difference to the definition of £; in Section 3.5, cf. (3.22). Because of the co-moving
coordinate system we obtain the additional term —c, - 0. We emphasize that by Remark 3.2.5 the
smoothness property from Assumption 3.2.2 also holds for the matrix Ej (0) with 6 € R4\{0}.

Next, we derive the Fourier transform of the nonlinearity 7', where in comparison to Section 3.5 we have
the notation K = (k(l),k@),k(?’)) € Z4 x 7% x 724, #K = kM + k@) + kG ¢ Z¢ and sums instead of
integrals. The trilinear nonlinearity of (5.5) for functions (5.6) is given by

RN (R YD YD VI A A CR D RN R )
k(Wezd k(2)ezd k(3 ezd

= 2 > ST (55 (W), 85, (k) B, (kD).
#KeZd k(1)+k(2)+k(3)=#K
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With (5.10) we obtain

F(T (050,052 03) ) () CEURIEDIEDY j R 4y (55, (K1), B3, (K2), By, ()

Mezd k(2ezd k(3 ez

S T (0, (KV), 5, (59), 55, (k)
# K=k

=: T(i}\jwﬁjwﬁjz) (k). (5.12)
Thus, we have for every j € J. a system with infinitely many ODEs
~ iy ~ PO .
atvj (t7 k) + ?LJ (sk)vj (tﬂ k) = Z T(Uﬁ y Usas Ujs) (tv k)» JE€E j—‘r? te (Oﬂ tend]v ke Zd (513)
#J=j

by equating coeflicients for fixed k. We note that the convention v_; = v; implies that
v_j(t, k) =v;(t, k). (5.14)

Hence, a family of functions v; solves the system (5.5) if and only if their Fourier transforms v; solve the

system (5.13) with initial data

p=2(0) = (4;(0)) e, -

We end this section with an observation on the eigenvalues of the matrix El(sk). In comparison to

(3.44), now the general structure of the eigenvalues Ay is
Me(0) = —(w+cg(k)-0) +we(k+0).

We already know that because of the dispersion relation (3.4) and Assumption 4.1.1 the eigenvalue

As11 is a special case. The enumeration is chosen in such a way that w = wy (k) and
)\11(0) = —Ww+ wl(n) =0=w-— wl(n) = )\_11(0).

Furthermore, the co-moving coordinate system results in the feature VA411(0) = 0. The fact that A111(0)
and VA;11(0) are zero will be used in a Taylor expansion. For this purpose, we calculate the gradient of

the eigenvalues A\41; with respect to . With ¥ := x + 6 € R? it follows that

29,
20,
=1
Wy
26,

——
=—1

09, M1(0) = —{cg(K)}y + 09, w1 (kK +0)

o, A-11(0) = —{cg(K)}y = Oy, w1 (k= 0) = —{eg(R)}u + 09,01 (k= 0),

where {cq(x)}, denotes the p-th entry of the vector ¢,(x). Thus, we obtain
VA+11(0) = —c4(k) + Vwi (k £ 6) .
Furthermore, by definition (3.5) we have ¢4(k) = Vw(k) = Vws (k) and, thus, for § =0

V/\U(O) = *Cg(lﬁ) + Vwy (H) =0= V)\_ll(O).
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Moreover, the second derivative yields
06,00, A+11(0) = +0g,09, w1 (k + 0)
and we obtain
VAA411(0) = £V2w; (k£ 6) .

One of the techniques which we use later on is a formal Taylor expansion for the eigenvalue Ai11(ek) for

ek € R? and, for this reason we write

1
Ai11(ek) = A411(0) + ek TV AL11(0) + €2 J (1 = NkTV2Ag11 (Vek)k do.
0

Thus, with A411(0) = 0 and VA111(0) = 0 we conclude
1

Ai11(ek) = €2 f (1 — DETV2A411 (9ek)k 9. (5.15)
0

With the Assumptions 3.2.2 and 3.7.2 we obtain for all ek € R?

1
D SPen(Ek) <C LI (5.16)
kezd kez
Proof of (5.16). We note that because of Assumption 3.2.2, in general the derivatives of Ay1; are not

bounded near the vector Fx. Hence, we decompose

1 1 1
> 2 Aen(ek)l = > 2 Aen(ek)l + > A (ek)].
kezd kez? kez?

k|1 < gl [y >l

For the first term we now use Taylor expansion and obtain with (5.15)

> shenERli= Y

1
f (1 — ﬁ)kTv2>\i11(’L9€k)k dﬂ‘ < Z sup |V2w1 (KJ + 19€/<J)|2 |]€‘%
C

kez? kez? ) kez? 9e(0,1)
k| <5l [k, <15l k|, <5l
<C Y [|ki<cC )KL
keZ® kezd
|k|1<\'<|1

2e

For the second term it follows with 1 < 2%k A+11(0) = 0 and Assumption 3.7.2 that

[kl1

1 1 1 2
> 2 Aen(ek)l = > 2 Aeni(ek) = A () < € > g|k‘\1<m0 DL

kez? | keZld kezd kez? |
Ikl > £ Ikl > £l |kl1> g k|1 >l
<C K.
kezd

Combining the two estimates yield (5.16). [ |
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5.1.3 Transformation to smoother variables on T¢

Since the matrix (5.11) is Hermitian, a similar eigendecomposition as (3.41) exists where now ¥;(6)
denotes a unitary matrix and A;(6) is a real diagonal matrix containing the eigenvalues of Zj (0). As in
Chapter 3 the eigenvectors 1, (#) are orthonormal and the enumeration is chosen in such a way that
A11(0) = 0. We emphasize that we use the same letter z for the transformed variable as in Section 3.7,
however the definition is different. The variables z; : R x 74 — C* are obtained by the transformation

zi(t, k) = S;o(t, k)0 (t, k),

where we define for every e > 0, t > 0 and k € Z¢ the matrix

Sje(t k) = exp (L A;(ck)) Uk (ek). (5.17)

We note the difference to Chapter 3, where we have % instead of 1% in (3.45). In accordance with (3.45)

the matrix §j,5 (t,k) € C*** is unitary for every t € R and k € Z?. Next, we derive equations of motion

for the transformed variables. Analogously to Section 3.7 the dominating term vanishes and we obtain

dzj(tk) = > Fe(t,z,J)(k), jeTy, te(0tund, keZd, (5.18)
#J=j
where
Fu(t, 2, D) (k) = S50(6 )T (8% 250, 8% 2, 8 o2 ) (1K) (5.19)
= S, (t, k)T (0),,0;,,0;,) (£, k). (5.20)

As we will see later, we need both notations (5.19) and (5.20), depending on what we are looking at. The
difference to Section 3.7 is that because of the transformation in time the € in front of the nonlinear part
vanishes. The entries of z; still oscillate with a much smaller amplitude than the entries of ¥, since the
right-hand side of (5.18) is formally O(1) instead of O(¢72) in (5.13). This fact is our main motivation

for considering the transformed variables, and it will be very advantageous in our analysis below.

5.1.4 Analytical setting on T¢

So far, we have performed several transformations to obtain the system (5.18). With regard to the anal-
ysis of the system (5.18) and to the investigation of the error behavior of the numerical methods, which
we introduce in this thesis, we establish a suitable analytic setting in this section.

In Section 5.1.2, we truncated the full space R¢ and replaced for simplicity R? by T¢. Hence, we adapt

the Wiener algebra introduced in Section 3.4.

Let W (’]I‘d) denote the Wiener algebra on T¢, which is defined as the set of all functions whose Fourier

series converge absolutely, i.e.

few (1) < Jfel(z) < > |fk)|<x
keZd
with norm

| Flw ey = [ Fler@ey = X5 178,

kezd
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where the k-th Fourier coefficient of f is given by (5.7). Then, for r € N and with the definitions (2.7)
and (2.8), we define the spaces

W (T%)
[l

{fe W(T?) : 0%f € W(T?) for all a € N&, |a|; < r},
2 0 flweay = 35 1D Fle

lali<r lali<r

with
0 f(a) = D (k)™ o (ko)™ f(R)e = D ilhke fR)e = 37 D f(k)e,

kezd kezd kezd

such that f is in W7 (T?) if and only if for all |a|; < r

(e ), =0 @9

Furthermore, we define the norm

£l =Y, 1D%fe,

lafa<r

and the corresponding Banach space
0 = {zeC: |zjller < o0}

In the following we write for simplicity | - ||y instead of |- |y (re). However, the same properties as for
the Wiener algebra on the full space hold (cf. [7]). This means: the space (W (T?), |- |w) is a Banach
algebra and the Wiener algebra W (T?) is continuously embedded in L* (Td).

Since we consider vectors of length s, we introduce vector-valued versions of the function spaces.
Therefore, we replace in the definitions W (T9) by W7 (T4)* for r € N and ¢! (Z%) by ¢* (24)°. The
corresponding norm is now given by

HfHél(Z'i)s = H|J?|2H€1(Zd) = Z |F (k)2 fedt (2%,
kezd

where | - |2 describes the Euclidean vector norm.

Remark 5.1.2.

(i) For simplicity we write throughout the sections W (T4) or W instead of W (T%)* and (' instead of
o (Zd)s, Nevertheless, the quantities of the spaces are still C®-valued.

(ii) We have for the initial data

2(0)ell <= pell

5.1.5 Preliminary considerations

Until the end of Chapter 5 we set j... = 1. We will derive error bounds for different step-sizes for a

one-step and a two-step method as an integrator of our system

da(k)= Y, Fe(t,z, ) k),  te(0,tw, keZ’
#J=1
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In the case where one component of J = (jy, jo, j3) is negative we know that z_; (¢, k) = 21 (¢, —k). In the

following, we define the abbreviation z(¢, k) = z1(¢, k). The initial data is given by
z(0) = Wi (ek)p(k).

We recall that in Chapter 3 we showed local well-posedness of the coefficients u; in Lemma 3.6.1.
Careful inspections of the proofs in Chapter 3 show that all arguments are still true after a transformation

in space and time and if we replace R? by T¢. Therefore, we assume on the torus:

Assumption 5.1.3. Ifpe WT(Td), r = 1,2, then there exist a time t,,, > 0 independent of € such that

the system (5.3) with j,... = 1 has a unique classical solution

V1 € h CZ([O, tcnd]a eri(r]rd))'

1=0

We conclude by continuity that there exist a constant C, such that

.= 51O = Dy < C,. 5.21
e v () [w e [01(2)ex X lz1()le < Cr (5.21)

The constant C.. for r = 1,2, depends only on t,.,, Cr and on ||p|wr, but not on €.

Next, we state the helpful results needed for the error analysis later, without proving them again. In
comparison to Chapter 3 the difference in the proofs is that instead of the L'-norm we now consider the
¢'-norm and thus, roughly speaking, we have to replace the integrals in the proofs by sums.

As in Section 5.1.3 let ¥; be the function obtained by applying the inverse transformation S . to 21,

meaning
Di(t,k) = SE_(t, k)= (¢, k), (5.22)
where 77 solves the evolution equation
O (t k) + Ll(sk)vl (k) = D) Ty, 05, 05) (8, k), te[0,tna], keZ. (5.23)

#J=1

The inverse transformation (5.22) is equivalent to

S

Dt k) = ) exp (=5 Aim (k) z1m (t, k) him (2k). (5.24)

m=1
Moreover, (5.24) together with the definition (5.12) of T yield
T (05, 0jar 0jy) (6 5) = >0 > exp (=5 u(eK)) Zyna(t, K)T (V500 (eK)
M #K=k
with summation over all M = (mq,m2, m3) and the notation (3.52). The difference is that now we have
K = (kW k® k) e 28 x 7 x 7.

We start this section with some helpful (in)equalities.

Equivalences. Since S]’-l< . is unitary the relation

150 = D) 1S5 (k)25 (k)2 = D) 12t k)2 = 2(8) (5.25)
kezZd kezd

is satisfied.
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Estimates. Estimating products of infinite vector-sequences plays an important role in this section. In
these estimates, we frequently employ the Banach algebra structure of £1.

Since the proofs of the following estimates are analogous to the proofs in Chapter 3, we give only the
results. The minor difference is the norm in which we prove these results, where in comparison to
Chapter 3, we have to replace integrals with sums. The following bounds for the trilinear nonlinearity 7T

are analogous to Lemma 3.5.1.

Lemma 5.1.4. For fi, fo, f3 € W"(T%) we have

3
HT(fthafS)Hg}‘ < CTH“f’LHZ}J (526)
i=1

where Cr is the constant defined in (2.5).
If additionally g1, g2, 95 € W™(T?) and if || fi|w~, |gi|wr < C for some C > 0, it follows that

3
HT(flvaa f3) - T(./g\15§25§3)H@}. < CT02 Z Hfz - azHé} (527)
=1

Since §175 is unitary, the definition (5.19) of F. and (5.26) imply the following lemma, which is

analogous to Lemma 3.7.1.

Lemma 5.1.5. Let be z € £} and J € J3, then we obtain for allt >0

|1 Fe(t, 2, J)]er < CTHHZJL e

With the estimate from Lemma 5.1.5 we conclude the following bound for the time-derivative of z;.
Lemma 5.1.6. Let z be the solution of (5.18) with initial data z(0) € £} , vy = max{l,r}, r € Ny.
Then, we have for all t € [0,t.,4]

|0ez()]er < C, (5.28)
where C' depends on Cr and C,., bul not on ¢.

Proof. We immediately obtain with Lemma 5.1.5 the estimate

iz®ll; = | 3 Rtz < 3 IR Tl < Cr 3 [Thss 0l

#J=1 #J= #J=11i=1

Thus, with (5.21) the claim follows directly. |

Remark 5.1.7. Lemma 5.1.6 shows the advantage in considering the smooth variables z1 instead of vy .
By Assumption 5.1.3 adapted to the transformed system (5.5) it follows that 1(t) € 3 and 0,0, (t) € 01
for t € [0,t,..] under the condition that p € 3. Under the same condition, however, we even have that
21(t) and 021 (t) € 3 for t € [0,t,.4].

In the following sections we consider two numerical methods. We start with an explicit one-step

method and afterwards we extend the explicit one-step method into an explicit two-step method.
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5.2 One-step method

In this section, we consider an explicit one-step method as a first integrator of the system (5.18). First,
we explain how we construct the one-step method in Subsection 5.2.1. Then, in Subsection 5.2.2 we state
the results regarding the error bounds of the one-step method. We prove in Theorem 5.2.1 that the one-
step method is a first-order method. As previously mentioned first-order methods are not satisfactory,
however, they often permit valuable insight. At the end of the chapter we illustrate the behavior of the

method by numerical examples in Section 5.6.

5.2.1 Construction of the one-step method

The solution of the equation (5.18) at time t,41 = t, + 7, to = 0, n = 0,1, ... with time-step-size 7 is

given by the fundamental theorem of calculus

tnin, k) = (b, k) + Y JW F.(0,2(0), J)(k) do. (5.29)
#J=1"tn

Since the solution is highly oscillatory in time it is not practicable to use a standard explicit method
where one uses a quadrature formula on the whole integrand. Therefore, the key idea is to retain the
integral in (5.29) over the highly oscillatory phases which are hidden in gl,s (o) and §ﬁ75(0) fori=1,2,3,
of. (5.19).

Hence, to obtain a first-order method we freeze z(o) in the nonlinearity (5.19) in (5.29) at o = t,,

meaning
tnt1 ~ ~ ~ ~
cAtwrs D)~ k) 4+ Y [ Sl k)T (35,02, () 35, o020 00), 85, (0133, (12)) () dor
#J=1"in
This motivates the one-step method
tn41
k) = 2"(k) + ) J F.(0,2",J)(k)do. (5.30)
#J=1"tn

In comparison to Lawson methods, cf. [20], which are a variant of exponential integrators only the term

zj,(0) is frozen at time o = ¢,, in the nonlinearity 7, and not the whole expression §;75(0)Zji (o) = vj,(0)

for ¢ = 1,2,3. The next goal is to state an error bound for the constructed method (5.30).

5.2.2 Error analysis for the one-step method
The global error of the first-order method applied to the our system satisfies the following bound.

Theorem 5.2.1. Let z € CH([0,t,..]; ) n C([0,t..4]; €1) be the solution of (5.18), then for sufficiently

small step-sizes T the global error of the scheme (5.30) is bounded by
[z" — z(tn)[l < C'T, TN < topa

where C' depends on t..., Cr and ||z(0)] a2 but not on e.

Remark 5.2.2. In Theorem 5.2.1 and in all subsequent theorems, where we state the global errors,
we require “sufficiently small step-sizes”. The reason is that in order to ensure the boundedness of the

numerical solutions in €* (cf. Proposition 5.2.6), we have this restriction on the step-size T.
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In order to prove Theorem 5.2.1, first, we state an error estimate for the local error. We consider the
stability and the proof for the global error afterwards. However, before we consider the error estimate of
the local error, we require some preliminary work. In comparison to F.(o,z(0),J) = F.(o, z,J) which is

defined in (5.19), the nonlinearity evaluated at a constant vector z(t,) is given by
F.(t,2(tn), J) = S1.. ()T (5;;75@2]41 (tn), SE ()25, (tn), SE L(£) 2, (tn)> . (5.31)
As a final preparation, we investigate the difference
F.(o,2(0),J) — F.(0,2(tn), J).

By means of the formulations (5.19) and (5.31), we extend the difference by adding suitable terms similarly

to (2.4) and use the fundamental theorem of calculus
zj, (o) = zj, (tn) + f 01z, (1) d, for i =1,2,3. (5.32)
tn
Hence, we obtain

F(0,2(0),J) — Fx(0, 2(tn), J) = S1..(0)T (§;;7€zjl,§;;,szj2, §j*z]) (0)

= 51 0)T (85,0(0)24: (40). 55, e (0)21(80), 85, (024 (1))

= 31.(0) (T (55 -(0) (31 0) = 21, (ta)) . 85, 20212 (0). 85, (0)244 () )
+ T (85,.2(0)2, (00), 85, 2(0) (232(0) = 232(t)) , S5, (0234 (0))
T (85,2(0)25, (00), S 2(0)2 (1), 85, 2(0) (240 (0) = 24 () ) )

= 50) (7 (35000 [ 22 0.5
+T (§;‘1,5(0)sz (tn), 5% (o) L 0 0vzj, (1) dps, B, (a)> (5.33)
7 (35,0002, (). 35,50, 85,.00) [ 0z ).

where for (5.33) we substitute the definition of vj, (o), cf. (5.22).
In order to prove first-order convergence uniformly in €, we follow the classical concept of “stability

and consistency yields convergence”. Inserting the exact solution value z(t,, k) into the numerical scheme

(5.30) and subtracting from the exact solution at time ¢, (5.29) yields the local error (consistency)

S R) = 2ty + k) — (b k) — Y f " Fo,2(tn), T)(k) do
#I=1tn

_ #JZ: 1 J + [FE(U, (o), ) (k) — Fo(o, 2(t,), J)(k;)] do.

Now, we state and prove the local error bound of the one-step method.
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Proposition 5.2.3 (Local error). If z(0) € (3, then the local error of the one-step method applied to
(5.18) satisfies

|67+ < T2, (n 4+ 1T < e
where C depends on Cr, [2(0)|la, but not on e.

By definition of the local error we estimate

6" < > | Jtm +0), ) = Fo(o, 2(tn), J) do

#J=1 n

o’
Hence, in order to prove the bound of the local error it is sufficient to show the following lemma.

Lemma 5.2.4. Let be z the exact solution of (5.18) with initial data z(0) € £1 and J € J3 with #J = 1.

Then, we have

" < 720, (n+ 171 < tos

tni1
[ (o)) = Felorattn). ) do
tn
where the constant C' depends on Cr and C| but not on €.

Proof. We define the short-hand notation I'), := [t,,tn4+1]. Let 97 be defined as in (5.22), whereas for

ji = —1 we use the convention (5.14). Since §175 is unitary, it follows with (5.33) that

H J-tn+1 (F.(0,2(0),J) — F.(0, 2(t,),J)) do

n

< j (3.0 f 0123 0) 0 3 0).040)

nfr<§;;g<a>zﬁ<t ) 810 || Pl 50

2t

yat

+

,
|7 (380120 (0038, 012500, 85000 [ 0rzi i) |

Using the bound for the trilinearity (5.26) for every term, we obtain

H Jtiwl (Fe(o,2(0),J) — F(o,2(ty),J)) do

tn41
<CT J f athl

+ szl (tn) Hel szz (t”) Hél

/1

o 82 (@) | [ (@)1 + 52 (B0 %5 (@)]

ftn Ot2j, (1) duHe1 da]

[ rtnt1 o
<Cr| Ln L @025, ()] dpa e 35, () max 354 ()]

f atzh

Lol [ il eggrnol + bl J[ 165,001 e

n n

n

tnt1 3
< CTJ lo —t,|do E max [0:2;,, (o) ex | | max ||zJ Y| ex
g n
m=1 z;ﬁm

3

2

32 max |0;z,, (o \zlnmaXHZJq e,
m=1 z;ém
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where we use the fact that

tnt1 tnt1 1 5 tnt1 1
[To-tlar= [T et ao = je-0| T -5
¢ t 2 2

n n tn

relation (5.25) and | z;, (t,)]le < max ||z] (0)]er. As a last step, we only substitute the bounds

max |z(t)|o < C, and (5.28)7 Wthh means max | 0;z(t)|n < C, where C is the constant from
te[oatend] te[oytend]

Lemma 5.1.6. Therefore, the estimate follows directly. ]

With the result from Lemma 5.2.4, Proposition 5.2.3 follows directly. Before we state and prove the
proposition concerning the stability of the one-step method, we make a few preparations. We denote by
or,

initial data f. If n = 1, we simply write ®.,, (f) instead of ®1, (f). Moreover, for n, and n in N the

(f) the result of n € N steps of the numerical method (5.30) with step-size 7 starting at time ¢, with

relations
00, (f)=f and @2, ()= Prp,, (@21 (1)
follow directly from this definition.

Proposition 5.2.5 (Stability). Let n € N with t,41 = t, +7 < t,.. For f and g in (* with C :=

max{| fller, |gler}, the numerical method satisfies
[@rt () = Prt (9)ler < €™ F = gl
where C' depends on Cr and C.

Proof. Inserting f and ¢ in the numerical method yields

P, (f) = Prr,(9)=f—g+ ZJ ,J) = F.(0,9,J)] do.

#J=1

In the following we set f; = f and f_; = f. The same notation holds for g. Let fl be the function

obtained by applying the inverse transformation §1,5 to f1,i.e.

Fi(t k) = Wi (ek) exp (— & A1 (ek)) f1(k)

with the relation Hfl(t)Hp = || f1]le because §i“€ is unitary. Then, it follows with (2.4) similarly to the
proof of (5.27) that

n+1
“ Foo,f,]) — Fo(a,g,J daH < rmax | Fu(0,f.7) = Fe(,9.7) |
< TcT[ml gl el + 15 — gilelgglelfile

I ul].

In total we estimate

|97t (F) = Prp (@er < If =gl + ) f |Fe(o, f, J) = Fe(o,g,J)|er do
#J=1

3
<If —glo + 3rcTc2[2 55 — 93 w]

i=1

<|f = gle +97CrC?| f — gl
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With the relation 1 + x < e® we can rewrite this to

|72, (f) = @7, (9)|er < ™| f = gllor,

and the claim follows. [ |

A crucial ingredient for the error analysis of the first-order numerical method is the boundedness of the
numerical scheme in ¢!. We state and prove a proposition ensuring this boundedness under suitable

conditions.

Proposition 5.2.6. If 2(0) € ¢ and if z is a solution of (5.18) with initial data z(0). Then, for
sufficiently small step-sizes T € (0,79], where 79 € (0,t,,4], the numerical solution z™ stays bounded in o

forn e N with Tn < t,,,.

Proof. We show this proposition by an induction argument. First, we choose a constant C, > C :=

max | z(¢)|q. Clearly, the bound
tG[O,tcnd]

|82 4, (2(0) e = [2(0)[r < C.
follows. Now, we assume that
@7, (z(te))]er <Ci forall £eNp, n,=0,..,n—1, L+n,<N.
For the induction step, we will prove that if the step-size 7 is sufficiently small, then
|07, (2(te))ler <Co forall LeNg, £+n<N. (5.34)

Since the argument holds for arbitrary starting times ¢y, we assume that ¢ = 0 with no loss of generality.

Representing @7, (2(0)) by the telescoping sum

o7, (2(0)) 2 (@2 (b)) = @25 (b)) )
allows us to estimate
197 4, (2(0)) [er < [2(tn)]er + Z [ @75 (2(tm)) — B2 (2(tmr1)) ler-

According to the assumption |®7%, (2(t¢))]er < Cs, we now apply the stability result, Proposition 5.2.5, of

the first-order numerical method to each summand in the previous equation and obtain forn—m—1>1
9257 (2(tm)) = a5t (2(tms1)) Lo = [Drty (P27 (2(Um)) = Prtyy (22752 (2(tms1)))
<O (2(tn)) — B2 (2(tmsn)) [
Applying this procedure recursively, we obtain

2
|87 (2(tm)) — @7 (2(tmsn) o < IO DL (2(tn) = 2(Emgd)
_ 6(nfmfl)'rCTCf H5m+1‘|€1 < ete,,dCTCf H5m+1‘|51a
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where we used (n —m — 1)7 < t,,4 for all n, m.

Using the bound of the local error yields

—— .
(R tm (z(tm)) — @7 1 (2(tmi1)) | < ete“dCTc*7-2C’,

Tybm41

where C is the constant in the local error bound from the Proposition 5.2.3.
So the estimate of the numerical method after n steps with step-size 7 at time ¢y = 0 with initial data

z(0) can be written as

[@7 1, ((0)) [er < [2(tn)n + metenaCrCar2C < € 4 eleraCrCert,,, L,

since nt < t

end*

Hence, if 7 is so small that it satisfies the inequality

C.-¢C 2
T g e_tendCTc* — ,7—0’

endC

then we obtain |®7, (2(0)) [+ < Cx as desired. [

With these preparations, we are now in a position to show the global error bound by combining the sta-
bility result and the local error bound with the classical telescoping sum argument of Lady Windermere’s
fan.

Proof of Theorem 5.2.1. The first-order bound for the global error in ¢! follows with the telescoping

sum

[2" = 2(tn)ller = 974, (2(0)) = 2(ta)]er < Z |97 (2(tm)) — 757" (2(tm+1)) ler-

m=0
Thanks to (5.34) the stability result (Proposition 5.2.5) can be applied repeatedly, which yields

n—1

2
|27 = 2(ta) e < €T N @7y, (2(Em)) = 2(Ems1)er-

m=0
Finally, we obtain with the local error result (Proposition 5.2.3)

[2" = 2(tn) |1 < neteraCrCir20 g elenaCrling O,

where C is the constant from the local error. [ |

5.2.3 A naive approach towards second-order methods

The next goal is to construct higher order methods. As mentioned before, to obtain for example a
second-order method, it is crucial not to approximate the highly oscillatory integral in (5.29) naively by
a quadrature formula like the explicit midpoint method.

If we extend our approach to higher-order methods, we have to expand the exact solution by applying
the variation of constants formula or fundamental theorem of calculus recursively. The drawback of this

procedure will be seen next.



5.3. Two-step method 99

To obtain a second-order one-step method, the first idea would be not to freeze the nonlinearity in
(5.29) under the integral but to use again the fundamental theorem of calculus for each component of the
nonlinearity. With the exact solution zj, (o) be written as (5.32) we would obtain for the exact solution

at time t,,41 in (5.29)

tn+1

2(tnt1, k) = 2(tn, (0),J)(k)do

) f
#J 1
tnt1
tn, k) + J s( J Orz(p) dp, )(k‘)d
#J=1

o [ (b), TY(K) + FX (0, tn, 2, T) (k) +h.o.t.] do,

= 2(
= z(tn, k)

where

F;<a,tn,z7J>—§1,E<o>[7(§;,e<o—> > ngew, 2(00), 1) it 85, 1 (0)23(80), S, - (0) 23, (1) )
#J1=j1 "

S8 0020 000, 850(0) D) [ Flin 200, J2) A 33, (025, 00)

+ (82, 2(0)24, (00), 85, (0)23, (1), 8 o) Y j FL(p, (1), 1) du)].
Next, we would freeze z(y) in the nonlinearity at yu = t,, in the term F!(o,t,,z,J) and omit the higher

order terms. This would yield

SR = )+ Y f"“ [Fs(a, 2 (k) + FMo, 2", 27, J)(k)] do.
#J=1Y1

However, in order to compute the term F! (o, 2", 2", .J), we would have to evaluate an additional nonlin-
earity in each step.

Because evaluating the right-hand side of the system (5.18) is rather expensive due to the multiple sum
structure, we restrict ourselves to one evaluation in each time-step. This leads towards a two-step method.
In the next section, we explain how we construct the two-step method. Following the construction, we
state the results of the error bounds of this numerical method. It turns out that our approach does not
give a “classical” second-order method. Instead, the error behaviour is special in the sense that we obtain
various levels of accuracy for different ranges of the step-size. However, for step-sizes 7 > ¢ we have the

“classical” second-order convergence.

5.3 Two-step method

In this section, we consider an explicit two-step method as an extension to the one-step method investi-
gated in Section 5.2. The two-step method is constructed in Subsection 5.3.1. Then, in the next section
we rewrite the introduced two-step method into an equivalent one-step method. In Subsection 5.3.2 we
state the results of the error analysis of the two-step method. We prove in Theorem 5.3.2 two different
bounds depending on the assumptions. At the end of the chapter we illustrate the behavior of the method

by numerical examples in Section 5.6.
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5.3.1 Construction of the two-step method

Recall that the solution of the equation (5.18) at time ¢,4+1 with step-size 7 is given by (5.29). To obtain
a two-step method, we use the same approach as for the one-step method, but now at time ¢,,. Thus, we

have for the exact solution at time t,,

St k) = 2t 1, k) + Y f " Fao, 2(0), J) (k) do. (5.35)
#J=1"t

n—1

Inserting equation (5.35) for z(¢,) into (5.29) yields the following two-step equation for the exact solution

at time ¢, 41

2(tny1, k) = 2(tn—1,k) + Z J/HH F.(o,2(0),J)(k)do. (5.36)
#J=1"t

n—1
An approximation for the exact solution at time ¢,,.1 can be obtained by
tnt1
St k) ~ 2t i, B)+ Y f Fu(o, 2(t,), J) (k) do,
#J=1Ytn—1
where we freeze z(o) in the nonlinearity at the midpoint ¢ = t,. This yields the following two-step

method for n > 1

k) = 2" k) + ), J+ F.(o,2",J)(k)do, (5.37)
#J=1"t

n—1

where for the starting step, i.e n = 0, we use the one-step method, see (5.30),

2y =20(k) + )] F F.(0,2°, J)(k)do.
#J=1"1o

5.3.2 Equivalent one-step method

In order to state a rigorous error analysis we reformulate the two-step method (5.37) as a one-step method.
This allows us to apply the typical strategy “stability and consistency yields convergence”, which we

already used for the one-step method in Section 5.2.2. Therefore, we obtain with the abbreviations

e <zzn(k) ) Rt (k) = (StTi Fu(o.2" ) (k) d”) 7

(k) 0
| ztask) _(§ Fu(o,2(0), J) (k) do (o 1
a{tn, k) = <z(tn17k)>’ Bt D)) = ( 0 ) - M= (I o> ’

the one-step formulation

and the exact solution

2(tni1, k) = Mz(tn, k) + Y. F(z,t,,J)(k).
#J=1
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We note that the first argument of F(z, t,,, J) is a time-dependent function, whereas the first argument of
F(z",t,,J) is a constant vector. We interpret z" and later z(¢,) as functions which are constant in time.
Inserting the exact solution z(t,, k) into the numerical scheme and subtracting from the exact solution

at time t,, 1 yields

Z(tn+1,/€)—MZ(tn,k)— 2 F(Z(tn)vtnﬂj)(k) = Z (F(ZatnaJ) _F(z(tn)vtnv‘]»(k)

#J=1 #J=1
¥ (gj:f (F.(0,2(0),J) — F(a,2(t,), J)) (k) da>
#J=1 0
Therefore, we define the local error for n > 1
d™H (k) = ) (F(z,tn,J) = F(z(tn), tn, ) (k). (5.38)

#J=1

Remark 5.3.1. For the starting step n = 0 we have

F(z(to), to, J) (k) = < o FE(Uyz(go),J)(k) dg) |

5.3.3 Error analysis for the two-step method

The goal of this section is to formulate a theorem for the global error of the numerical scheme. We
consider two error estimates: the first error estimate requires the same assumptions as for the one-step
method in Section 5.2, however, the order of the accuracy is the same as for the one-step method. For
the second error estimate, we need additional assumptions, which lead to the fact that we can increase
the accuracy for step-sizes 7 > €. The price we have to pay for this improvement is a more complicated
and more elaborate error analysis. This leads to two different error estimates for the local error, which
we consider separately.

The global error of the two-step method applied to the system (5.18) satisfies the following bounds.

Theorem 5.3.2.

a) Let z.€ CH([0,t.,4];61) nC([0,t..4]; £3) be the solution of (5.18), then for sufficiently small step-sizes
7 the global error of the scheme (5.37) is bounded by

[z" — z(tp)|l < 7C, ™ < o, for T >0,
where C depends on t,.., Cr and HZ(O)HQ, but not on €.

b) Let z € C?([0,t,..]; 0*) n CL([0,t...]; 62) N C([0,t..4]; €3) be the solution of (5.18). If Assumptions
3.2.1, 4.1.1, 3.2.2, 3.2.6, 3.7.2, and 4.3.1 hold, then for sufficiently small step-sizes T the global
error of the scheme (5.37) is bounded by

|z" = z(tn) | < (72 +€2) C,

where C' depends on t,.q, Cr, [2(0)] s, on the inverse of the nonzero eigenvalues of A1(0), and on

the Lipschitz constant in Assumption 3.7.2, but not on €.

First, we investigate part a) of the global error result. Part b) is elaborate and we postpone the

investigation to Section 5.4.
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Global error result part a)

We observe that we make no further assumptions for part a) of the global error result, in contrast to
part b). The local error bound is of order 72. This is exactly the same order as the one-step method we
analyzed in Section 5.2. The reason is that the proofs in this subsection are the same with the minor
difference that now we have the integral over [t,_1,%,+1] instead of [t,, tn41].

We define the following short-hand notation

to, t1], for n =0,
r,: = [to: ]
[tn—1,tn+1], forn > 1.
Proposition 5.3.3 (Local error of order 2). If z(0) € 7, then the local error of the equivalent one-step
method applied to (5.18) satisfies
|d" Y < 720, (n+ 171 < tos

where C' depends on Cr, |z(0)|p1, but not on e.
Proof. We set b = t, 1 and

to, forn =0,
a =
tn_1, forn>1.

Then, we obtain with (5.38) and Remark 5.3.1 for n > 0

b
f F.(0,2(0),J) — F.(0,2(tn),J)do

4o < Y [F(zita, J) = Flalta),tos D = Y, |

#J=1 #JI=1

o

Analogously to the proof of Lemma 5.2.4, with the minor difference that now we have the integral over

[tn—1,tn+1] instead of [t,,tny1] for n = 1, we bound

2 |

#J=1

b
JFE(U,Z(J),J)—F(J 2ty daH <Crr? Y] Z max 2,25, (o) HmaXHzJ e
a #JIJ=1m z;ém

< 720,

where the constant C' depends on Cr and Cj. [ |

From the error analysis of the one-step method in Section 5.2 we already know that this local error result
of Proposition 5.3.3 combined with a stability result only leads to first-order convergence of the time

integration scheme with a constant independent of e.

We state two propositions concerning the stability of the two-step method and the boundedness of

the numerical scheme in ¢! without proving them in detail.

Proposition 5.3.4 (Stability). Let n € Ng with t,.1 = t, + 7 < t.... For f and g € ¢* and with

C := max{|f|,,||gle}, the numerical method satisfies

|®r.2, (£) = @7, (&) o2 < ™I — gln,

where C' depends on Cr and C.



5.3. Two-step method 103

Proof. The proof of Proposition 5.2.5 can be adopted to prove stability of the two-step method written
as an equivalent one-step method. We note that |[M|y = 1, such that |[M(f —g)|, = ||f — gl holds for
f, gell [ |

Proposition 5.3.5. If z(0) € /' and if z is a solution of the system of envelope equations with initial
data z(0), then for sufficiently small step-size T the numerical solution z" stays bounded in (' for n € N

with Tn < t

end*

The proof for the boundedness of the numerical solution is analogous to the proof of Proposition 5.2.6
with the difference that we apply Proposition 5.3.3 instead of Proposition 5.2.3. Therefore, we omit the

details at this point.

Equipped with the results for the local error, the stability and the boundedness of the two-step method,

we prove Theorem 5.3.2 a).

Proof of Theorem 5.3.2 a).
The bound for the global error in ¢! follows from the fact that we can play back the global error from
the equivalent one-step method in the larger space to the global error of the two-step method. With the

telescoping sum we obtain
|2" = 2(tn)er < 2" = z(tn)]er = |97 4, (2(0)) — 2(tn)] 2

n—1
< D08 (2(tm) — B7 " (2(tms)) [on-
m=0
Thanks to the boundedness of the numerical solution

[, (z(te))]|r <Cu forall Le Ny, £+n<N,

T,te

the stability result (Proposition 5.3.4) can be applied repeatedly, which yields

n—1
2
2" = z(tn)ller < €T Y [Py, (2(tm) = 2(tmes) e

m=0

n—1
2
= lena €T (Z |®r.t,. (Z(tm)) = Z(tmr1) e + dwl) .
m=1

Finally, we obtain with the local error result (Proposition 5.3.3) and the fact that nT < t..q

|2 — a(tn)| o < €97 ((n —1)72C + 72C)

2 ~
< eleraCrCirt O
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5.4 Proof of part b) of Theorem 5.3.2

For part b) of the global error result we make additional assumptions which allow us to use the techniques
of proof from Chapter 4.

Before we state and prove an improved local error result, we make some preconsiderations and recall
the results from the analysis part. For the rest of this chapter, we suppose that the Assumptions 3.2.1,
4.1.1, 3.2.2, 3.2.6, 3.7.2, and 4.3.1 are valid. Under these assumptions we proved in Chapter 4 bounds
for the coefficient u; in Proposition 4.1.4 and 4.2.2, and an error bound for the approximation ") in
Theorem 4.3.4. Careful inspections of the proofs in Chapter 4 show that all arguments are still true after
a transformation in space and time and if we replace R? by T¢. Therefore, we assume the following on

the torus.

Assumption 5.4.1.

(i) The time interval [0, ], where the following bounds in (ii) hold, could, in principle, be smaller than

the interval [0,t.,,], but for the sake of simplicity we assume that t, =t,,,.
(ii) If z(0) € €%, then we have for r = 1,2

max [Pai()]g < max (0] <C,,

t€[0,t cnd) te[0,tenal
max |[PLz(t)|p <eC, (5.39)
te[0,tenal r—1

where C > 0 is a constant which is independent of € and C, the constant from Assumption 5.1.3.

The estimate (5.39) is equivalent to

PLoi(t)|p < eC. 5.40
e P01l <€ (5.40)

Assumption 5.4.1 (ii) motivates the definition

Cr := max ]{HZl(t)Hg?lﬂ,871”Pl2’1(t)”51}.

te [O,tend

Analogously to (3.65) we define the projection which projects a vector-valued function pointwise into the

first eigenspace of Ly (ek). For later use we also need the decompositions

Pe(k)0r(t, k) + P (k)01 (t, k),

Oi1(t, k) = Pobgr (6, k) + Prog(Lk) =4 "~ RO (5.41)
P-(—k)o_1(t, k) + PL(—k)o_1(t, k),
Zil(t, k‘) = Pzil(t, k’) + PJ‘ZJ_rl(t, k‘), (542)
where the definition of P is given by (3.63). Analogous to (3.67) and (3.69), we also write
P.(k)or(t, k) = S§.(t,k)Pzi(t,k)  and  PH(k)oi(tk) = SE.(t, k) Pz (¢, k).
Since 5175 is unitary, we obtain
[Pevr(t)]er = [|1P21(2)llex, (5.43)

[P0 () ex = | P21 (8) s (5.44)
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Furthermore, with the decomposition (5.41) we obtain for (5.20) in general by the trilinearity of the

nonlinearity

S1e()T (05, (£), 65 (£), 05,(1) = S1.e(OT (Pby, (£), Pebyy (£), Py, (1) + N (8,5, J) + N5 (£,5,.7),
(5.45)

where

./\fl(t v,J) = Sy (1) T(,Pfﬁjl(t)77)5/a]2( )s PLUJ%( ))

+T (P‘Sah (t)v ,Pslﬁjz (t)a ’Pc‘ﬁjs (t)) +T (,PLvh ( )v P€6j2 (t)7 Pﬁi}js (t)) ] )

N;‘(t,ﬁ, J) = §1,E(t) T(’Pfﬁjl (t)7pjﬁj2(t)7pelaj3( )) + T(,PJ_’UJl( )7P61’}\j2( ) ,PLUJS( ))

+T (,Plv.h( )7Peslaj2 (t)7rpfﬁj3 (t)) +T (,Plvjl( )’Palfu\jz (t)’PsLﬁjS (t)) ]

A similar relation holds for (5.19) with the decomposition (5.42). These splittings of the nonlinearity will
be helpful later on.

Since S is unitary, the estimate (5.26) combined with (5.43), (5.44) and the bounds (5.39), (5.40)
directly yield

INT (8,3, Nl < 30T Par ()| [PH21(t)]er < eC(Cr, ), (5.46)
ING (8.3, )l < Cr [BIPza (D [ P21 (D7 + [P21(0)]7] < £2C(Cr, GF). (5.47)

Moreover, we state and prove the following useful result which corresponds to Lemma 4.1.2.
Lemma 5.4.2. Under the Assumptions 3.2.2 and 3.7.2 we have the following two bounds.

a) For p e (1 there is a constant C such that

max ||0;P.0,(t)|p < e 1C, (5.48)

te[0,tenal

where C depends on Cy, Cp and t,.,, and on the Lipschitz constant in Assumption 3.7.2, but not

on €.
b) Furthermore, for p € (3, there is a constant such that

0 1 < C,
e 10: P01 (t) ] 6

where C' depends on Co, Cr and t.,,, but not on €.
Proof. The evolution equation (5.23) implies for j = 1 that

O POt k) = =5 P.Ly(k)or(t k) + D) PT (8,05, 0j,) (£, k)
#J=1

and since P.Lq(ek) is the projection into the first eigenspace of L£;(ek), we obtain with the definition
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(5.22) of Ty

L1(ek)01(t, k) = W1 (ek)A1(ek) VT (k) Uy (ek) exp (—15Aq (ek)) 21(t, k)
A11(ek) exp (—6%)\11(6/6)) z11(t, k)
= U, (ck) :
A1s(ek) exp (—Ei—g)\ls(ak)) z15(t, k)

= Z Ae(ek) exp (— % A1g(ek)) z1e(t, k)h1e(ek),
=1
such that

SP-(k)L1(ek)0r(t, k) = S (ek)vf (ek) Zsl Ae(ek) exp (— % Aig(ek)) z1e(t, k)h1e(ek)
=1

= S (ek) (k) exp (— A (ek)) 2 (t, k)
= S\ (ek)P (k)01 (L, k).

a) Since by definition A11(0) = 0, the Lipschitz continuity of the eigenvalues 3.7.2 implies that

E%|)\11(6]€)| = E%‘/\H(Ek) — )\11(0)| < éCUCh (549)

1

Hence, one factor ¢+ is exchanged for a factor |k|;. The nonlinear term is bounded by (5.26).

Thus, we have with

d d
DR E R, = X0 DMkl [Pk, = D Y ki (R)], < D1

kezd kezd i=1 i=1kezd

that

. Co S
|0: P01 ()] < ;I\Pavl(t)l\q + Cr Z Hl\vji(t)\lel
#J=1i=1

and the claimed estimate follows.

b) Assumptions 3.2.2 and 3.7.2 imply (5.16) instead of (5.49), and hence, two factors ¢! are exchanged

for two factors |k|;. The nonlinear term is bounded by (5.26) as before and we use

SRk, <2 Y Y R mml, =2 Y [k kG (k)] < 20dilly  (5.50)

keza keZd |a|=2 || =2 keza

to prove the assertion. [

Remark 5.4.3. As already indicated in the lemma, the difference of both estimates is the regularity
assumptions that are made. At first glance, the estimate in a) looks unfavorable, due to the factor e=* on
the right-hand side of (5.48). But we will see later that this factor is not critical in some cases and the

advantage is the lower regularity assumption.

Furthermore, we state a lemma where we bound the difference P (0;21(p) — 0pz1(tn)), p € I'y, in a

suitable way, where P is the projection (3.63) which sets the first entry of a vector to zero.
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Lemma 5.4.4. Let be z the solution of (5.18) with initial data z(0) € 3 and J € J*. Under the
Assumptions 3.2.1, 4.1.1, 3.2.2 and 3.7.2, we have for all p e T,

[P (021 (1) = Gez1(tn))er < (I —ta| + ) C
where C' depends on Cr and C§, but not on €.
Proof. By (5.18) it follows that

O Pz(t) = ), PF(tzJ)
#J=1

and, thus, by definition of the ¢'-norm we consider the formulation

|P(0ez1 (i) = 21 (tn)) o0 < ) |PFep,2,J) = PF(ty, 2(tn), J)| -
#J=1
By definition (5.20) combined with the decomposition (5.41) we obtain (5.45). Furthermore, for
F.(ty,2(t,),J) we have by definition (5.31) and the decomposition zj,(t,) = Pzj,(t,) + Ptz (t,) a

similar relation. This yields

3 PP, 2, J) = PPty 2(tn), J
#J=1
< ) [HPFE(M,PZ,J) PF.(tn, Pz(tn), J)| ;1 + [N (1, 0, b, 2(t0) J)Hll]
#J=1

e

| f OPF.(v. Pz J)dv|  + HN(“ﬁ’t"’Z(t”)’J)H”]’
#I=1 " n

where
N, B, tn, 2(t), J) = PNT- (1,8, J) + PN (11,0, J) = PN (t, 2(tn), J) — PN3 (tn, 2(ty), J).

Every nonlinear term 7~ containing P14, (v) or P1z;, (t,) is collected in the terms Ni- and N3, cf. (5.43)
and (5.44). These terms can be estimated straightforwardly by (5.46) and (5.47), such that

[N (1,0, b, 2(E0), I e < PN (1,0, ) e+ |PNG (1,0, )|
+ [ PN (s 2(tn), Tl + | PN (tn, 2(tn), J)
< eC(Cr, C5).

Therefore, so far we have shown the bound

[P (021 (1) — ez (tn)) | < Z M 0, PF.(v, Pz, J) duH +eC, (5.51)
where C' depends on C5.

Taking the time-derivative of (5.20) for j = 1 yields

OuF-(t, P2(t), J) = S A1(ek)S1 o (8, k)T (Peby,, Peby,, Po0j,) (t, k)
+ §1,€(t7 k)atT (Psﬁjl ) ,Peﬁjza ’Pt‘ajs) (tv k)
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Thus, we have to bound
| L " OPF.(v, P2 ) ar,, <| f £ )PBL )T (P2 Pety, Py ) ] | (5.52)
+] L Py c(0)aT (b, Py, POy (W) v,
Assumptions 3.2.2 and 3.7.2 imply (5.16) and together with (2.2) we have

D EMERPS, = D | E ek fi] < D) ClEITIPS, (5.53)

kezd kezZd kezd

since | f1| = |Pf|2. With (5.50) it follows for the first term of (5.52) that
M ) PB ()T (Pety,, Pelyy, Pty () ||

< J Hg%Al(g')Pgl,e(V)T('Psﬁjl’Psﬁj27psﬁj3) (V)Hfl dv
tn

3

< cenlin =t [ 1P 0l

< |,u—tn|C'(C'T,C'2). (554)
The second term of (5.52) is bounded with Lemma 5.4.2 b) by

H ~
| j P3y()AT (P20, Petyy Poty)) ) |, < [ [PBLcOT (Pt Pet Pt ()] v
tn

3
< Orlp — tn| max Z‘i [0:P=5j, (v) e | P01 (1) 4
im
< |p—=1ta|C(Cr, C2). (5.55)
Combining the bounds (5.51), (5.54) and (5.55) yield the asserted estimate. [ |

The hope is that with the bounds (5.39), (5.40) and the techniques within their proofs, we can improve

Proposition 5.3.3 for step-sizes 7 > ¢. We aim for a local error of O(7e? + 72 + 73).

Proposition 5.4.5 (Refined local error). If z(0) € £3 and the Assumptions 3.2.1, 4.1.1, 3.2.2 and 3.7.2
hold, then the local error of the equivalent one-step method applied to (5.18) satisfies

|[d" o < (P74 7% +7°)C, (n+ 17T <t  neN,

where C depends on Cr,

12(0)|ley; on the inverse of the nonzero eigenvalues of A1(0), and on the Lipschitz
constant in Assumption 3.7.2, but not on €.

For n =0 we have

|d'e < 72C,

where C' is the constant from Proposition 5.3.5.

Remark 5.4.6. In comparison to Proposition 5.3.3 the local error estimate is refined in the sense that

now the estimate |d" 1|, < 73C holds for large step-sizes 7 > € and n € N.
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From the proof of the local error bound of order 2 (Proposition 5.3.3) we know that it is sufficient to

show

tni1
f Fu(0,2(0), 7) = Fulo, tn), D) o] | < (7 + 7% +7¢%) €. (5.56)
t

n—1

#J=1

Since the proof of Proposition 5.4.5 is rather lengthy, we subdivide it into several lemmata. The idea is to
decompose the difference in (5.56) into several subterms and to investigate them separately. Combining

all the corresponding lemmata at the end proves the assertion.

First, we start to reformulate the difference in (5.56). Recall that we have for J € J3 with #J = 1
the formulation (5.33). We have that all components of the multi-index satisfy |j;| = 1 for i = 1,2, 3.
We consider as an example the second term of (5.33). The idea is to apply the decompositions (5.41)
and (5.42) to the first and third argument of the nonlinearity 7. The second argument containing the

integral remains unchanged which yields
31017 (35,0002 (6):35,00) [ 05320 4004 () = B1c0) [t 2. ) + Ra. 2,7
where for #J =1
Go(0, 1, 2, J) =T(S]*15( VP2, (), 5% . ( J Oz, (1) A Py, (0 )), (5.57)
RQ(a,tn,z,J)—T(S;"le( VP2, (t), 5% f 2z, () du, PBy, (0 ))
+7'( 5% (0)Pz (tn), 5% . f Oz, (1) A P50 )> (5.58)
+T( jlg( )Pszl(t ), ]25 f 012, ( )du,P Vj, (0 ))

The decomposition into G, and R, is convenient because in Lemma 5.4.7 we will see that R is a priori
small with respect to €. The other two terms of (5.33) can then be treated in the same way. This leads

to

F.(o0,2(0),J) — F.(0,2(tn),J) = §175(0') [G1(0,tn, 2, J) + Ga(0,tn, 2, J) + Gs(0, 10, 2, J)] (5.59)
+ gl’a(a) [Ri(o,tn, 2, J) + Ra(0,tn, 2, J) + R3(0,tn, 2,J)],

where we have (5.57) and
g1(a,tn,z,J)=T< el f Oz, (1) dp, Py, (0), Py, (0 )),
gg(o’,tn,Z,J) =T (Sj‘l 5( )szl(t )’§j2 a( )szz( )7 i3, e J atz.]s )d,u)

The terms R;(o,ty, z,J) for i = 1,3 are similar to Ra(0,tys, 2, J).
In the first lemma, we investigate the terms R;(o,t,, 2, J) for i = 1,2, 3, because they are easy to treat.
Using the a priori bounds (5.39) and (5.40), these terms already contain parts of O(e), which directly

leads to the required estimate of the form (5.56).
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Lemma 5.4.7. Under the assumptions of Proposition 5.4.5 we have for allm > 1

where the constant C' depend on Cr and C§, but not on €.

tnt1 N
f S1.(0)Ri(0,tn, 2, J) da” < er?C, fori=1,2,3 and #J =1,
t

n—1

Proof. We consider as an example R, cf. (5.58). The other two terms R; for i = 1,3 can then be treated
in the same way.
We observe that all terms 7 in (5.58) contain at least one term Plzj, or P1%;,. Hence, they can be

bounded in the following way. As an example, we bound the first term of (5.58) by

YA

n+1l
[ 87 (31,007 2100.82.000) [ 0P P00 ) a0

n+l
< J T <S]*1 5( )PLZjl (tn) ]2 6 f atPZJ?( )d/.t,P Uj?’ )> H[l do
tn—1

[ aPasatan], 1Pt (o)l o
t7l

tnt1
<Cr f [PL2, () o

tn—1
) n tn41
< Cre (7P 2, (tn) o) max | Pz, (o) o max |0t Pz, (1) o1 f lo —t,|do

tn—1

< 7%eC (Cr, CY),

where we apply (5.26), (5.43), (5.39) and (5.28). Applying this procedure to the remaining terms of
(5.58) yields the assertion. [ |

Using (5.59) and applying Lemma 5.4.7, so far we have shown

”ﬁ Fo(0,2(0), ) — F.(0, 2(t), J) do (5.60)

n—1

/1

n+l
M 81 (0)[G1(0,tn 2, T) + Ga(0, tn 2, T) + Ga(0, 1, 2,T)] daH 720 for #7 = 1.
tn—1
The remaining goal is to show that for every single term G; with ¢ = 1,2,3 we can estimate
tn+1 ~
HJ S1:(0)Gi(0,tn, 2,J) dUHZ1 < (T3 + 72+ 752) C for #J = 1.
tn

For the rest of the section we only investigate the term Gs. The other two terms G; and Gs can be
treated in the same way. The next idea is to apply the decomposition (5.42) to dsz;, in (5.57). This
yields

QQ(U, tn,Z, J) = QQP(O', tn,Z, J) + g2Pl(0—a t’nvza J)7

where for 0 € {P, P}

20

G (a,tn,z,J)—T(Sj"‘ls( )Pz, (t), 5% . f 0,0 25, (1) dp, P20, (0 )>. (5.61)
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Our goal is to prove that
tn+1 ~ tn+1 ~
HJ Sl,s(U)QQ(Uatnaz7J) daHfl < HJ 5175(0')g2]3(0,tn,2,<]) daHfl
tn—1 tn—1

|

tnsr
f S1,e(0)Gapr(o,ty, 2, J) darH[1
¢ )

n—1
< (T3 + 7%+ 752) C for #J = 1.
If we bound the terms
tnt1
H J S1 2(0)Gap (0, tn, 2,.J) da”el (5.62)
tn—l
and

tnt1
| f 81:(0)Gaps (0.t 2, J) do] . (5.63)
tn—1

with the same technique as in Lemma 5.2.4, we only obtain a bound of order O(72), since max [Pz41(0)|e
and ;I}é%)j [Orz+1 ()] er are both of order O(1) only. Therefore, we consider the terms (5.62) and (5.63) in
more detail in order to bound these terms in a suitable way. First, we investigate (5.63). We note that
in the second argument of the nonlinearity 7 in (5.61) with 0 = PL, we have the integral of 0, Pz, (1)
from p € [ty, o).

If z is a solution of the problem (5.18), we frequently use the estimate

|

In the previous procedure we directly took the norm under the integral and have used (5.28), cf. the proof

| artaan
tn

41:H > inFg(u,z,Jz)duHels 3 M Png(M,z,Jz)deﬁ. (5.64)
#J2=7j2 tn H#Jo=7jo tn

of Lemma 5.4.7. Instead, now we aim to gain powers of ¢ from the oscillatory behavior of P+ F.(u, z(p), J).

In the next lemma, we state a useful bound for the right-hand side of (5.64).

Lemma 5.4.8. Let be z the ezact solution of (5.18) with initial data z(0) € (1. Under the Assump-
tions 3.2.1, 4.1.1, 3.2.2 and 3.7.2, we have for alln =0 and o0 € T,

Z H PYE.(u,2,J) duH < C (elo —ta]) +&7),
#J=1 Yin ¢

where C' depends on Cr, C5, on the inverse of the nonzero eigenvalues of A1(0), and on the Lipschitz

constant in Assumption 3.7.2, but not on €.

Proof. The goal is to gain one power of ¢ from the oscillatory behavior of P F.(u, z,.J). We only consider
the multi-index J = (1,1, —1), because the other two permutations can be treated in the same way. For

the proof, we use the relation (5.20), where we have ¥4 in the nonlinearity, and obtain

| f PEF (2 ) g = | f P8, ()T (31, 01,0-1) (1) dpe

o

The proof is divided in two steps. First, we take advantage of the bound (5.40). In the second step, we
apply integration by parts to obtain the asserted bound.



112 Chapter 5. Numerical methods

Step 1. With the decomposition (5.41), we split the nonlinearity under the integral into eight parts
which we cluster into three terms, cf. (5.45). We bound every term in Nj-(u,9,.J) and Nit(u,0,J)

containing Pj"f)il in a straightforward way. Hence, using
|| P+ 0050« N .5.0) ], <<l =l (Or ).
we have established the estimate

M PYFo(p,z,J) duHel <‘
tW,

J A8y ()T (Poy, Py, Pt ) () ||+l = a]C (O, ).
t’n,

(5.65)

Step 2. The remaining term of (5.65)

has to be treated in a similar way as (4.24) in the proof of Proposition 4.1.4. With A;(ek) = Ay (ek) —
A1(0), we obtain by the definition (5.17) that

(5.66)

f PL8, ()T (P, Petr, P1) (1)
tTI,

PLS, (1, k) = exp (4A,(0)) PLexp (B A (ck)) UF(ek),
because P+ commutes with every diagonal matrix. Hence, the term (5.66) can be expressed as
[0 teon s,
where
fe(p, k) = exp (;—%Al(sk:)) U (ek)T (P01, P, Peo—1) (11, k).

However, the diagonal matrix A;(0) is not invertible because A11(0) = 0. This problem is compensated
by the projection PL. As in Step 2 of the proof of Proposition 4.1.4, we replace the eigenvalue A11(0) by
1 or any other nonzero number and consider a new diagonal matrix 7\1(0) = diag(1,A12(0), ..., A15(0))
instead of A1(0). This matrix is invertible because A1¢(0) # 0 for all £ = 2,...,s by Assumption 4.1.1.
Integrating by parts yields

<2 (R0) e (2K 0) )]

p=tn

2 (300) " [ e (BRi0) Pras G0 a],

/1

| f exp (%11(0)) P £ ()

(el + 1felta)ls) + 22 [ 100 ()l

tn
The goal is to show that these terms are uniformly bounded for all ¢ € I';;. For the first two terms this

follows immediately from (5.26), i.e
|fe(@)ler = IT (P01, Potr, Pe-1) (0)r < Or|Petn(0)[fn < C(Cr, Ca).

It remains to bound the integral term. Since A; is globally Lipschitz continuous by Assumption 3.7.2 it

follows that

| 2A1(ek)|2 = 5 |A1(ek) — A1(0)]2 < L[kl (5.67)
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with a constant which does not depend on ¢ and k. With

Ocfe(p, k) = A (k) f-(p, k) + exp (B Ay (ek)) UF (ek)oy T (Pedy, Pn, Pev—1) (u, k)

this yields

[ 10l dp < £l — | max [0S () o

n

<elo —tn|( max Y |kfy [T (Peby, Poby, Peba) (1, k)],
Heln kezd

+ £ max kEZZ]d |0/ T (P01, Petn, Pe-1) (1, k) ‘2>

< clo = ta|Cr max (3IP:5: )y + 3212010 | P51 () )

Since €||0y P01 (p)||er is uniformly bounded according to Lemma 5.4.2 a), it follows that (5.66) is bounded
by

| j PL81 (1) T (Pebr, Poton, Poi1) (1) dps
tn

o=l ft exp (%A2(0)) P £ (1) d,

< €|0' — tn|C(CT, Cl)

Combining this estimate with (5.65), we obtain for all multi-indices J with #.J = 1 the desired estimate

3 H fﬂ PLFE(u, 2, J) duH@ < (elo = ta] + %) C(Cr, C5) .
#J=1 Yin

With this result, we prove that the term (5.63) is 0(57'2 + 627'), which is better than (9(7'2) for large

time-steps € < 7.

Lemma 5.4.9. Under the assumptions of Lemma 5.4.8 we have for alln > 1

tr,L 1 ~
H f T 81 (0)Gapi (0,2, 2(t), ) daHZl < (e + &%) C, (5.68)
t

n—1

where C' depends on Cr, C5, on the inverse of the nonzero eigenvalues of A1(0), and on the Lipschitz

constant in Assumption 3.7.2, but not on €.

Proof. Since the nonlinearity 7 in (5.61) with 0 = P contains one term P1d;z4;, we estimate the
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left-hand side of (5.68) in a straightforward way in order to apply Lemma 5.4.8. We obtain

N

tnt+1
J |Gapi(o,tn, 2, J)||a do
t

n—1

ntl
H Lnl S1.(0)GapL(0,ty, 2, J) dorHZ1

tnt1
<Cr [P (t)ln

tn_1

J PHove(n) dp| | [P53, (o) do
< Cr max szl(o—)uglj M PRayzg, () | do

n+1
< Cr max Hle VA J Z J PYF.(u, 2, J3) duH do
bn—1 $Jp=ja
trn+1
<C’(CT,C'f)f (elo —ta] +€°) do
tn—1
< (r’e+€%r) C (Cr, CF),
where we apply (5.26), (5.43) and Lemma 5.4.8. This yields the assertion and completes the proof. ®

Therefore, so far we have estimated
tnt1 tntr
M 816(0)2(0 tn, 2 ) do| | < M 81:(0)Gap (0, tn, 2, ) do| |+ (e +22) € for 4] = 1,
tnfl tnfl

which refines (5.60) for #J =1 to

|

(5.69)

L"“FE(U,Z(U),J) F(o,2(tn). J) do]

n—1

tnt1
< J S1,6(0)[Gip(0,tn, 2, J) + Gap(0,tn, 2,J) + Gsp(o, tn, 2, J)] daHe1 + (r?e + %) C.
¢

n—1

The elaborate part is to show

|

If (5.70) holds and therefore also for Gip and Gsp, then we have established the estimate

o
J S1.:(0)Gap (0, ty, 2, J) daHz1 < (7'3 + 72 + 7'52) C. (5.70)
th—1

n+1
HJ (0,2(0),J) — Fe(o, z(tn daH 34 7%+ T€2) C, for #J =1
and Proposition 5.4.5 follows directly. In order to prove (5.70), we first split
tn+1 ~ tn+1 ~
HJ S1,:(0)Gap(0,tn, 2, J) daHel < HJ PS1.:(0)Gap(0,tn, 2, J) dJHzl (5.71)
tn71 tnfl

tn+1 ~
+| f P*31,:(0)Gap (0t 2,.0) o],
t

n—1

because the two terms require different proof techniques. The main challenge is to show that
tn+1 ~
H f PS, (0)Gap(o,tn,2,J) daHZ1 <C (€T2 + 7'3) , for#J =1 (5.72)
tn—l

and

tnt1 -
M U PLE (0)Gap (0, 2, ) daHll <C(er?+e2r), for #£J = 1. (5.73)
tn—1



5.4. Proof of part b) of Theorem 5.3.2 115

The estimate (5.73) will be considered in Lemma 5.4.10, whereas (5.72) will be investigated in Lemma
5.4.11. Since we can proceed similarly for proving (5.73) as in the proof of Lemma 5.4.8, we state the

following result.

Lemma 5.4.10. Under the assumptions of Lemma 5.4.8, we have for alln > 1

where C' depends on Cr, C§, on the inverse of the nonzero eigenvalues of A1(0), and on the Lipschitz

tni1 -
f P81 (0)Gap(0,tn, 2, J) da”el <C(er?+e2r), for =1,
t

n—1

constant in Assumption 3.7.2, but not on €.

Proof. The proof is similar to Step 2 in the proof of Lemma 5.4.8. Because P+ commutes with every

diagonal matrix, we again rewrite

tnt1 - tnt1 )
J PLS) (0)Gap(0,tn, 2,J)do = ‘[ exp (15A41(0)) PLf.(o,k)do,
tn—1 tn—1
where with (5.61) and 0 = P
fe(o,k) = exp (15 A1(ek)) VT (ek)Gap (0, tn, 2, J) (k). (5.74)

The diagonal matrix A;(0) is not invertible, but this is compensated by the projection P*. Hence, we

consider the modified matrix A (0) instead of A1(0), which is invertible. Thus, we estimate

2 tn41
1

E (Kl(o)f1 [exp (250(0)) P 12(0)]

tni1 ~
i § o)Pl d H <
| f exp (58:(0)) PHfo(0)do| L

+l2 () f exp (£81(0)) PLifi(0) do

n—1

< C(Ifeltamlr + 1eltusn)ln) + O [ auf(o)ln dor

tn—1

el

tn

where C' depends on the inverse of the nonzero eigenvalues of A1(0). The goal is to show that these terms
are uniformly bounded. For the first two terms we obtain in a straightforward way for o € I';, with (5.28)
and (5.43) that

Ife(@)er < 1G2p (0 tn, 2, T)] 2
< Crmax [Pl | 1Paa ()l de
n t’Vl
< |0 — t,|Cr max | Pz (t)] 2 max | Pz ()]
tel, pHely
<o —t,|C (Cp, Cy). (5.75)
It remains to bound the integral term. Taking the time derivative of (5.74) yields
atfe(‘L k) = Rl,s(oa k) + RQ,E(Ua k)»

where

Rie(o,k) = SA(ek) fe(a, k),
Raoe(o, k) = exp (;%Al(ak)) U (ek)0:Gap (0, tn, 2, J).
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Since Ay is globally Lipschitz continuous, it follows with (5.67) and the product rule for R4 . that

tn+1 tn4+1
f [R1z(0) 1 do = f 1812 f(0) 1 do
t

n—1 tn—1

tn+1
< Ef 3|lo — tn|Cr max || Pz (t)|7: max | Péiz1 (1) o do
t tel',, 1 pely, 1

n—1

< 3Crer” max | Pz (1)[[3; max [Poiz (1) |
< 67’20 (CT, Cl) s (576)

since all |j;| = 1. For the term max |POtz1 (1) ]| we use Lemma 5.1.6 with r = 1. Next, we bound the
pels,

term Ro .. For o € T, we have with the product rule and the estimate (5.26)

IR2c (@)l = 10:G2p (0, tn, 2, J) o =

‘atT <§;<1,€(0)sz1 (tn), gj’z,s(o—) J Patzjé (1) dpe, Ps'b\js (U)> n

n

< Cr|103; Ps el [ 1Pozs (0l dnlPs o)l

tn

+ [ Pzjy (tn)er

o (3.0 [ Posan) |, 1Pzl
tn

+ P2, () s j
t

Next, we aim to bound every single term separately. With definition (5.17) and Aj, (ek) = A;, (0)+Aj, (¢k),

we obtain

1Povz ()| dya |05, (am].

n

atg;,s(a, k) = =505, (ck) |:Aji (0) + Ay, (Ek):| exp (—1%A;, (ck)) .

Together with the product rule this yields

o

Oo (g;i.,g(a, k)P | iz, (1) du) = -5V, (ck) |:Aji (0)P + Ay, (ak)P] exp (—1%Aj,(gk)) | 0uzj, (1) dp
tn
+ g;’6(07 k>PatZ.ji (0>7
because P commutes with every diagonal matrix. Furthermore, since A1+11(0) = 0 we have
[A+1(0)Pfl2 = [A+11(0) f1] = 0,
and with (5.49)
L|A41(ek)PF|, = H|At11(ek) — Ax11(0)| [Pf|, < 1CIK|L [P,
Hence, we bound
Hatg;z,e(o—)szi (tn)Hgl < si?“AJz (O)Pexp (_ig% Ji (5)) Zji (tn)Hh
+ E%HAL (') Pexp (7‘15%‘/\3'1' (5)) Z; (tn)”él
< [Pz (t) ey < €€, (5.77)
and

C
< —lo — tp|max | Pozj, (1) er + [Porzj, (o) e
€ pels, 1

o (322007 [ )
tn

/1

< (”Et" + 1) C(Cr,Ch), (5.78)
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where we use Lemma 5.1.6 with 7 = 0 and r = 1 for the last estimate.
For o € T',, we estimate with the bounds (5.77), (5.78) and Lemma 5.1.6 with r = 0

062 (@, by 2, )1 < CT[|at  (0)P2yy(ta)| |0 — 1alC (Cr, C)

CO ‘at ( J2, s )J Patz]é(:u) d;“') p
2%
+ |0' - tn|C (CT, Cl) ”atpg’l/}jS(U)Hél
—t,
< ('” - L, 1) C(Cr,Cy), (5.79)
since max,er, |0¢P:01(0)|n < Ce™t.
This yields with (5.76) and (5.79)
tn+1 t'n+1 tn+1
2ot do < | e @n o+ 2 | 10Gar (ot 2, )l do
tn—1 tn—1 tn—1
< 7%eC (Cr,C1) + (1% + 21%) C (Cr, Ch) . (5.80)

Thus, combining (5.75) and (5.80) it follows that
tn41

t"“exp M1(0) Pf(0)do| | < Ce (I felta i)l + et +
¢ 4

tn—1

|0cfe (o) ex dU)
< (57’2 + 527) C(Cr,Ch),

which proves Lemma 5.4.10. ]

Thus, so far we have refined (5.71) to
ntl tny1
H J S1,6(0)Gap (0, tn, 2, J) dcrHé1 < H f PS; (0)Gap(o,tn, z,J) da”zl 4 (7—25 + 527-) C.
tn—1 tn—1

The remaining term will be investigated in the last lemmata.
Lemma 5.4.11. Let be z the exact solution of (5.18) with initial data 2(0) € £3. Under the Assumptions
4.1.1, 3.2.2 and 3.7.2, we have for alln =1

tn41 -
Hf + PSl,a(a)ggp(U, tn, 2z, J) dO’H[1 <C (57-2 + 7-3) ,  for #J =1,
tn—l

where C' depends on Cr and C§ but not on ¢.

Proof. We remark that the assumptions allow us to apply Lemma 5.4.2 b) and 5.4.4. The proof is different

from the proofs of Lemma 5.4.9 and Lemma 5.4.10. In

tn+1 -
J PSi.c(0)Gap(0,tn, 2z, J)do (5.81)
tn—1
we have the projection P in front of the transformation glys(cr) and in every component of the term Gop.
Hence, the main idea of this proof is to use a Taylor expansion for the exponential terms and to apply

the estimate (5.53) in order to handle the factor 2. We divide the proof into several steps.
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Step 1. In this step we split the term Pgl,a(a) into two terms. For this purpose we expand the
transformation Sy (o) by exp (& Ay (ek)). Thus, we obtain

PS8y (0,k) = Pexp (1A (ck)) Uy (ck)* = exp (LA (ck)) PS1 (0 —t,), (5.82)

since P commutes with every diagonal matrix. Next, we use that

t

n

Substituting this expansion into the exponential part of §1’5(0' — ty,) yields
exp (2 Ay (ck)) PS1o(0 —t,) = exp (L3 Ay (ck)) P (k) (5.84)

+ exp (%Al(sk)) E%Al (gk)PJ- exp (i(“%")/\l(akr)) dp U5 (ek).

In the following step, we investigate the second term of (5.84) applied on Gop in (5.81). We aim to
bound the resulting integral term by (’)(73). The first term of (5.84) applied on Gap will again be split

into more terms. Again some of those new terms can be bounded by (’)(73).

Step 2. We note that with the estimate (5.53) the factor =2 cancels in the second term of (5.84). We
consider the summands in (5.84) separately. For the second term it follows with (5.53) and (5.50) applied

to the nonlinearity that

exp (i(ug_izt")AﬂE-)) du¥i(e)G2p (o, tn, 2, J)dUHel

tn

H Ltil exp (LA (e) AL ()P

tnt1 i i
<L ém@ﬂﬂ;mpﬁ%#Mﬂw)Wwﬁ”%”““%J%ﬂ”
n—1 n

tn41
<cf 0= tal [Gop (0.t 2, )] o

tn—1
71+1 ~ g
e ( 0P (038,000 [ POz . P (0)) | o
tn 2

tn41
<c(er) f P21, 0)dn] 1P, @)y [P, ()l

o tn+1
< C (Crp,Cy) max H(?tzl(p)ﬂgf (0 —t,)*do

HeEl tn—1
C (Cr, Cy), (5.85)

where we use Lemma 5.1.6 with » = 2 for max 10sz1 (1) ez -
pnely

The first term of (5.84) applied on Gop is
exp (L Ay (ek)) PO (ek)Gap(o,tn, 2, J)

— oxp (A, (ck)) PUS (k)T (sm( VP2, (), 8% (o) L " Pévzy, (1) dpis Pty (b f .oy, (1 )

n

— oxp (A, (ck)) P (k) [T (s;z (P35, (6.).35,.(0) | " Péyeyy (1) du, P23, <tn>) (5.56)

n

+T<§;,5<0>Pzﬁ (tn>,§;’;,€<a>j Poyzj, (1) dps, j P00 (1) du) ]
t tn

n
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where we use in the last component of the nonlinearity the fundamental theorem of calculus and the
linearity. We obtain for the second term in (5.86) with (5.26)

H Lt"+1 exp (T Ai(e)) PUT(e)T (Sj“le( )Pz, (tn), S5 ( f Poyzj, (1 duf P00, (1 )du> dUH

n—1

tnt1
< CTJ (0 —tn)” do | Pz, (tn) ]2 max |02, (1) | max 0, P-0j, (1)
t pel'y pnel'y,

n—1

7’30 (CT, 02) 5 (587)

where we use Lemma 5.1.6 with = 0 and Lemma 5.4.2 b) for the last inequality.

Thus, so far we estimate

g1
H ftnl PS1.(0)Gap(0,tn, 2, J) do’HZl

N

/1

[ e (i) PURT (31,0125, 0. 32000 [ PR 0 P 1)) o

‘n—1

+ C73.

In the next two steps we investigate the remaining term.

Step 3. For the first term of (5.86), we now proceed in the same way as in Step 1, but this time
we make the expansion (5.82) of the transformation §;78(O') for i = 1,2 by exp (—ZA,, (ek®)) in the
nonlinearity. Next, we substitute the expansion (5.83) for the exponential function into the exponential

part of §J’-"i7€(0 —t,) in every component of the nonlinearity. In total, we obtain

exp (%Al(ek)) P\IJT(gk')T <§;<175(0')sz1( )’ Sj*z E( )jg P(?thQ (:u') d,u'v ,Pﬁﬁjs (tn))

n

— exp (% A1 (k) PUT(ER)| Ra (0t ) + Ra(,t, 2,0) + B (0,60, 2,7) |,
where

ﬁ“l (Uv ln, 2, J) = (Ij1 (tnv Z(tn))’ Ijz (Uv ln, Z)7 7351/)\]'3 (tn)) )

-
RBa(0,tn, 2, 0) = T (32 (0, b, 2(t0)), T (0,0, 2), Pty (1))

T (T, (s 2(60)), 232 (0 b 2), Pebia () )
) =T (Zi (0 tn, 2(tn)

(

+
ég((’)’, tn, 2, J ( ), f ,(0,tn, 2), Pe vjs(tn)) ,
Aji () 2, (tn),

A J atz]z ) dpe,

Lj, (tn, 2(tn)) = ¥y, (e) Pexp (— L

Ij2(avtmz) :\I/ ( )Pexp(

o

~

T (00t 2(tn)) = — A, ()P f

tn

exp (—lt—f’”m )) dprexp (25, (2) 2 (k).

~

Zi,(0.tn,2) = ~ S (=) |

tn

exp (—i(‘%”)/\p( )) dpexp (— J Opzj, (1

The index m of }NBm indicates how many integrals every nonlinear term contains. The goal of this step is

to show for m = 2,3

H J " exp (’t Ai(er)) P\Iff(a)ém(a, tn, 2, J)dcrHl1 <73C.
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Similarly to Step 2, the factor e=2 in the terms fjl and sz is canceled by means of the estimate (5.53).

Hence, we have the bounds

HIjl (tns Hzl = ‘ZJI( n)|en

1220t s < o = bl mave 1223 ) o

AJl (€ )) Zj1 (tn)

||fjl (Uv tn, Z(t"))Hel S H f: exp (_iws—iztn)Ajl( )) du exp (

<‘O’—t ‘szl l

5
n)Heé7

” J2 O' tn, 2 Hfl HJ exp I(M‘g_i?tn)A]z(E)> duexp (_%Ah(‘g))ﬁ atzh(u)
< (

< (0 —tn)’ max 02, (1) ey
where for the estimates of the terms I and I we use (5.53) and (5.50).
The terms }NBQ and 1723 which contain two and three integrals, respectively, can be bounded straight-

forwardly at least by O(73). As an example we only consider one term of R». We obtain with (5.26) and

the previously calculated bounds

H Ltml exp (i;%/h(e)) PYU¥(e)T (Ijl (tn,z(tn)),i'j (0,tn, 2), Pe0j,(t )) do

el
tr41 -
<Cr | 1ttt s [0t s [P )] o
trt1
< Or|Pzj, (tn) e max [ 0r 25, (1) 03 | Pejs ()| 2 f (0 —t)*do
pel’y, tno1
3C (Cr, Cy), (5.88)

where we use Lemma 5.1.6 with » = 2 and Lemma 5.4.2 b) for the last inequality. The other term of R,

and the term R3 can be treated similarly.

Step 4. The remaining term is
Ri(0,tn, 2, J) = T(Zj, (tn, 2(tn)), Zjs (0, tn, 2), P, (tn)) (5.89)

and the goal is to show
tn41 -
HJ exp (LA (e)) PUF(e)Ri(0,ty, 2, J)dJHel <C(r?+er?). (5.90)
tn

The term Z;, is the only term of (5.89) which depends on o. All the other expressions are independent

of 0. Next, we rewrite

Or2js (1) = Orzjy (tn) + (Oezj (1) — Oe2, ().

If we substitute this expression into Z;, we have

~

Ry (U» tn, 2, J) = T(Ijl (tm Z(tn))’ \Iljz (€~)Pexp (_%AJ—Q (5)) J a75'Zj2 (tn) d:u» Pﬁ’ﬁjs (tn)>
tn

T (Tt 20, s )00 (205 (69) [ POz ) = 82 (0) A P20 1)),

n

(5.91)



5.4. Proof of part b) of Theorem 5.3.2 121

where P commutes with the diagonal matrix and the time derivative. We consider the first term of (5.91).
We observe that the term under the inner integral is now independent of . Therefore, we obtain a factor
(o0 —t,). Furthermore, all expressions are now independent of o, except (o —t,). Thus, it follows for the

integral over [t,_1,tn41] that

Jth (0 —t,)do exp (%Al(ak)) PW’f(sk)T(Ijl (tn, 2(tn)), (5.92)

n—1

U, (e-)Pexp ( A, (e )) 0t2j, (tn), Pe0j, (tn)> (k) = 0.

Here, we take advantage of the symmetry of the integral around the midpoint ¢, i.e.

tn41
J (0 —tp)do =0.
t

n—1

Next, we substitute (5.91) into the left-hand side of (5.90) and use the fact that (5.92) vanishes. With
(5.26) and Lemma 5.4.4 we obtain

H fttwl oxp (g A (e-)) P (e)Ry(0, 1y, 2, J)dJHel

n—1

L v exp (%Al(&?)) P\I/T(e')T<Ij1 (tm Z(t"))’

n—1

lod

/1

W, () exp (— it Ay () j

tn

POz = 0532(0) 4 P03 () ) do
n+1
< [ [P @500 - izt o P )

n+1
<C(CT,C§)J J (lp—tn] +€) dudo
t tn

< C(Cr,C5) (1 +e77). (5.93)

Combining all the different bounds (5.85), (5.87), (5.88) and (5.93) yields

tn 1 ~
M P81 (0)Gap (0, 2, ) do| | < C(Cr,C5) (7 +er).
tn—1

With the estimates from Lemma 5.4.7, Lemma 5.4.9, Lemma 5.4.10 and Lemma 5.4.11, we prove Propo-

sition 5.4.5.

Proof of Proposition 5.4.5.

For the local error we have for n > 1

A" < #Z |F (2, tn, J) — )ity )| 0 = #Z L 0),J) — F.(0,2(t,),J)do
J=1 J=1

o
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From (5.69) together with the splitting (5.71), but now for every G;p, we know that we can estimate

L"“ Fo(0,2(0), J) — Fo(0, 2(ty), J) do

n—1

1
#J=1 ¢

i1
< Z HJ PS1.(0)|Gip(0,tn, 2, ) + Gap(0,tn, 2, J) + Gap(0, by, 2, J)] daHé1
#Jj=1 Yt

n—1

tnt1 ~
+ Z HJ- PLSLE(O')[QUD(U,tn,Z,J) + Gop(0,tn,2,J) + Gsp(o,tn, 2, J)] dUHel + (72€+82T)C
#J=1 Jin-1

< ) ZJ PS.(c gzPUtn,ZJdUH

#J=1i=1 Yin

+ Z ZHJ Pt Sle (0)Gip(o,tn, 2, J) dcrH + (r?e + ) C.

#J=11i=1

Now, by combining Lemma 5.4.10 and Lemma 5.4.11, but now for every G;p, we obtain

tn41
f ! F.(0,2(0),J) — F.(0, 2(t,) daH C(Cr,C5) (77 +em® + 7£%) .
¢

n—1

#J=1
For the first step we obtain with Proposition 5.3.3

o < Y] [Flzito. )~ Flalto) to, D = Y |

#J=1 #J=1

< 72C.

J:l F.(0,2(0),J) — Fe(0,2(to), J daH

Now by means of the Proposition 5.3.4 and 5.3.5, we are in a position to show the global error result by

combining the stability result and the local error bound with the classical telescoping sum argument of
Lady Windermere’s fan.

Proof of Theorem 5.3.2 b). Similarly to the proof of Theorem 5.3.2 a), we estimate

n—1

2
|27 = 2(t) o < |27 — 2(t)|r < eleraCrC: ( S 1@, (2(tm)) — 2(tmss) o + dW)

m=1

< elenaOTC] ((n—1) (21 + % + %) C + 72C)

< elenaCrC (1, (2 + 7 + 72) C + 720)
(

<e tenaCTCE (-2

7%+ &) ol

because of the Proposition 5.4.5 and 7¢ < max{r?,£%}.

Conclusion

For different ranges of the step-size 7, one of the two parameters 7 or ¢ is the dominant one.
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e For step-sizes 7 = ¢ the global error bound (see Theorem 5.3.2 b)) becomes smaller as the step-size

decreases because we have

[2" — z(tn)]er < 2C.

o For step-sizes €2 < 7 < ¢ the global error is dominated by the parameter £ because

[2" = 2(tn)]ler < e2C.

e Now we consider the case T < €2. For those step-sizes the ratio between ¢ and 7 is so small that we
can apply standard theory and observe second-order accuracy again. In other words, we proceed
for the proof of the local error bound as in the classical way and apply Taylor expansion, similarly

to the proof of Lemma 5.4.11. We note that in general we can estimate

L|As1 (k)] < Z(|Ax1(ek) — A1 (0)]2 + [A+1(0)]2)
and  [zs1(p) = dezea(tn)or < (1 —tn) max 107261 (0) |2 = O((1 = tn)e™?) .

Adapting the proof of Lemma 5.4.11 results in a local error estimate of O(g) and, thus, for the

global error bound we obtain
72
[2" = 2(tn)|e < 5C for 7 < €.
€

We omit the details because for 7 < 2 the total error of the analytical and numerical approximations

is dominated by the analytical error, which is (9(52).

Hence, we conclude that it does not make sense to use a step-size 7 which is smaller than O(g).
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5.5 Cherry Picking

The drawback of reformulating the system (3.16) in terms of the transformed system (5.18) is the multiple
sums hidden in the term F. (¢, z,J), cf. (5.19) combined with the definition (5.12) of 7. From a numerical
point of view the nested sum structure makes the evaluations of the nonlinearity more costly. For this
reason, we investigate the nonlinear term in more detail with the aim to hopefully reduce the numerical
work for the one- and two-step method. In the following, we only consider the two-step method as an

example.

5.5.1 Observations

We recall that the two-step method is given by

tn+1
k) = 2R+ D) J F.(o, 2", J)(k)do,
#J=171

n—1

cf. (5.37). For the numerical calculation we have to evaluate each integral exactly. In order to do this,
we take a closer look at the individual entries of the integral. With the notation (3.52) the m-th entry of

the integral term is
trni1 n41
J Feom(o, kydo =>7 . f exp (19 [Aim(ek) — A (eK)]) do
tn—1 M #K=k

x Zn (K) T, (ek)T (am(eK)) .

Let j, J, m, M, k, K be fixed and define
3
AN = Njm (k) = Ani (€K) = Ajm (k) = > Ajym, (k)
i=1

Then, we have

tny1

L " o (2 [\ (ek) — Asar(eK)]) do = J exp (1$AN) do (5.94)

tn—1
52

- AN (exp (‘t"“ A)\) — exp (%Az\))

= Texp (AN (o1 (FAN) + o1 (-FAN),

n—1

where we use the definition of the y;-function from [20].

However, this is computationally expensive. While the ;-functions have to be calculated only once at
the beginning and then saved, it has to be done for every possible combination of j, J, m, M, k, K. The
total number of operations is proportional to the number of different indices j, J, m, M, k, K. We know

that there are three different multi-indices J with #J = 1 in the case j,., = 1. Since m € {1,...,s} and

M € {1,...,s}3, there are s different choices for m and s* different choices for M. We define the set
k k
G:={—-2% ... %1 5.95
{ 2 ’ ) 2 }7 ( )

where kpq. € 2N is a fixed number. After a space discretization by Fourier collocation (see Subsection
5.6.1) the total number of K = (kM k2 £®) e G¢ x G? x G4 is d°k?

> ax- LThe total number of
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combinations K = (kM k?) k() e G¢ x G x G* under the constraint #K = k € G? is only a subset

and, hence, the total number of operations is smaller than

3-5-5° k3

max

=3s-(5-d-kmaa)®. (5.96)

Consequently, our methods are only useful if (5.96) is sufficiently small, and furthermore, are of interest
only for small e. For (5.96) to be small, we need few space discretization points. The parameters d and
s are typically not so large. For a Klein—Gordon equation in d = 1, we have s = d + 1 = 2. However, for
the Maxwell-Lorentz system in d = 3, it follows that s = 12. Thus, we expect that our methods are only
applicable for d = 1.

It is not surprising that the workload depends on s - d - k;nqz, but the cubic scaling is a severe problem.
Moreover, the diagonalisation has to be computed and stored for j = 1 and every k € G¢.

The multiple sum structure in the numeric schemes (one-step method and two-step method) is the key
limiting factor for the competitiveness of these methods in comparison with the Schrédinger approxima-
tion. Compared to standard methods like splitting methods, the advantage is not having a restriction on
the step-size 7.

In order to reduce the numerical work, we introduce a strategy which we call cherry picking. This ansatz

does not change the cubic scaling but is used to reduce the computational work considerably.

Idea. The idea of cherry picking is to reduce the numerical workload by omitting terms which are a
priori “small enough” compared to the accuracy. For this purpose we break the right-hand side of (5.37)

down to the level of single entries. The m-th entry of the term under the integral is given by

Fon(t, 2, )(K) = >3 Y exp ([N (ek) = Ayt ()] ) Zoaa (b K)o (R)T (101 (K),
M #K=Fk
where J € J2 with #J = 1. If the m-th term of the following integral satisfies
tnt1
f Fem(0,2, J)(k) do = O(re?),
t

n—1
then the corresponding term can be omitted, because the total accuracy of our approach cannot be better

than O(t,,462), anyway. For the exact solution we know by Assumption 5.4.1 (ii) that
z11(8, k) = O(1), z1m(t, k) =0O(e) if m# 1.
Therefore, we only include terms Z ), for which at least two entries of M are 1. This means for example
the multi-index M = (1,1,1) or M = (mq,1,1) for m; =2,...,s and its permutations.
5.5.2 Construction of the cherry picking method

The first goal is to state the cherry picking method in a rigorous way. We start with the exact two-step
equation (5.36)

Atntsb) = At k) + Y [ Fulor(o), )W) do
#J=1"tn—1

With the decomposition (5.41) we have

F.(t, 2(t),J) = F.(t, Pz(t), J) + Ni-(t, 2(t), J) + N3-(t, 2(t), J),
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cf. (5.45). We observe that N3- includes the pairs of multi-indices J and M where

ftn# Frem(0,2(0), J) (k) do = O(7€?)

n—1
is fulfilled for the exact solution. An approximation for the exact solution at time ¢,,41 can be obtained
by omitting the term A~ and freezing z(o) in the remaining terms of the nonlinearity at o = t,. We
define

Eeher(t, 2(t), J) = F.(t, Pz(t), J) + Ni-(t, 2(t), J) (5.97)
and, thus, an approximation is given by

tni1
2(tny1, k) ~ 2(tn—1, k) + Z J Feher (0, 2(t,), J) (k) do.

#J=1"tn-1

This yields the cherry picking two-step method for n > 1

tnt1
Zn+1,cher(k) _ Zn—l,cher(k) + Z J Fscher(o_7 Zn,cher7J>(k) do_7 (5.98)
#J=1"t

n—1

where for the starting step, i.e n = 0, we use the one-step method

t1
Zl,cher(k) _ ZO,cher(k) + Z J F;her(a', zO’CheT,J)(k) do.
#J=1"%0

Equivalent one-step method of the cherry picking method. In the following we introduce the
abbreviation
tn+1

cher n,cher
Z ]_;u:he'r‘(zn,z:he'r7 tn7 J) (k) _ tnSfl #JZ=1 FE (0’ z ’ J)(k) do

#JI=1 0
Thus, we obtain for the cherry picking method the one-step formulation

Zn+1,cher(k) — Mzn,cher(k) + Z FCheT(zn’Cher,tn,J)(k)-
#J=1

5.5.3 Error analysis for the cherry picking two-step method

Inserting the exact solution z(t,, k) into the numerical scheme and subtracting from the exact solution
at time t,, 1 yields
Z(tni1, k) — 2" (k) = N (F(2,tn, J) (k) — F (2(t,), tn, J) (k)
#J=1
¥ (SE:T Fe(0,2(0), J)(k) = " (0. 2(ta). J) (k) do>
- #J=1 0 .
Therefore, we define the local error for n > 1
dmtheher (k) = 3 (F(zotn, J)(k) = B (2(tn), tn, J)(K)) -
#J=1
The global error of the cherry picking two-step method applied to the system (5.18) satisfies the

following bound.
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Theorem 5.5.1. Let z € C%([0,t..4];01) 0 CH([0,t..4]; 63) 0 C([0,t..4];3) be the solution of (5.18). If
Assumptions 3.2.1, 4.1.1, 3.2.2, 8.2.6, 3.7.2, and /.53.1 hold, then for sufficiently small step-sizes T the
global error of the scheme (5.98) is bounded by

Hz"":h” —2(tn) e < (72 + 62) C,

where C depends on t..., Cr, |2(0)|s, on the inverse of the nonzero eigenvalues of A1(0), and on the

Lipschitz constant in Assumption 3.7.2, but not on €.
We state the following local error result for the cherry picking method.

Proposition 5.5.2 (Local error cherry). If z(0) € 3 and the Assumptions 3.2.1, 4.1.1, 3.2.2 and 3.7.2
hold, then the local error of the equivalent one-step method applied to (5.18) satisfies

|amtheher| n < (27 + 7% + 7%) C, (n+ 1)7 < topas ne N,

where C' depends on Cr, | 2(0) ley, on the inverse of the nonzero eigenvalues of A1(0), and on the Lipschitz
constant in Assumption 3.7.2, but not on €.

Forn =0 we have
||d1’CheTHgl < (7_2 +T52) 617
where C' depends on Cr, 12(0)[lgy, but not on e.

Proof. First, we observe that (5.97) is equivalently to
FEMer(t, 2(1), J) = Fe(t,2(t), J) = Ny (t, 2(1), J).
Hence, the difference in the local error can be written as
Z (FE(U,Z(O'), J) — F;h”(a,z(tn), J)) = Z (FE(O',Z(O'), J)— F.(0,2(tn),J) +./\/‘2l(a,z(tn), J)) )

#J=1 #J=1
Together with the definition (5.38) we obtain

dn+1,cher(k) — dn+1(k) + dnJrl,new(k)’

where

dn+1,new(k_)7 Z (St:Jri g, (tn)vj)(k)d0'>

#J=1 0
With the estimate (5.47), we directly obtain

tnt1
2 f INE (o, 2(tn), J)| e do < 762C (Cr, CF) .

#J=1"tn-1
Together with Proposition 5.4.5 the assertion follows.
For n = 0 the claimed estimate follows with the same reasoning, whereby now we apply Proposition 5.2.4.
|

The stability and the boundedness of the solution of the cherry picking two-step method can be proved
in the same way as for the full two-step method in Section 5.3. This allows us to prove Theorem 5.5.1
via the telescoping sum argument of Lady Windermere’s fan. We omit the details at this point because

this argument has already be presented in detail in the proofs of Theorem 5.3.2 a) and b).



128 Chapter 5. Numerical methods

5.5.4 Further reducing of the workload

If we are only interested in step-sizes 7 > &, we make another observation. If |A)A| = ¢ > 0, then we have
for (5.94)

L o exp (12 [Ajm(ck) — Aym(eK)]) do = O(?).

n—1

Furthermore, in this case

tn+1 )
J exp (12 [Ajm(ek) — Aym(eK)]) doZ%y,(K) = O(e®), whenever m; > 1 for at least one i € {1,2,3}.
¢

n—1
Thus, we can omit terms in the cases with M = (mq,1,1) for m; = 2,...,s and its permutations, if

|AX| = ¢ > 0. This could be done in a query during implementation.

5.6 Numerical experiments

In this section we illustrate the behavior of the one-step and the two-step method by numerical examples.
In the classical method of lines the PDE is first discretized in space. This leads to the approximation of
the PDE by a system of ODEs. This system of ODEs is then solved by a time-integrator as constructed

in the previous sections.

5.6.1 Space discretization by Fourier collocation

Discretizing the PDE in space means that we approximate the derivatives in space. In this thesis, the
implementation of the spectral method is accomplished with a collocation approach. The explanations
are based on [31, Chapter III]. The idea of spectral methods is to write the solution of the differential
equation as a sum of certain basis functions with coefficients, where these coefficients are time-dependent
if we apply spectral methods to time-dependent PDEs. In our case the exact solution is represented
(formally) by the semidiscrete Fourier transform (5.6), i.e.
vit,x) = > 0i(t,k)e .
kezd
Substituting this ansatz into the PDE yields a system of ODEs for the coefficients, cf. (5.13).
As mentioned before, for the discretization in space, we assume periodic boundary conditions and choose
a fixed number k., € 2N which denotes the number of grid points. We define the set G as in (5.95).
We aim for an approximation of the exact solution in terms of
vi(t,z) ~ Z 5j(t, k)elr e
keGd
In other words, in this approach we approximate the infinite Fourier series in (5.6) by a finite sum which

corresponds to the truncation
;(t,k) =0 for k¢ G?
or after transforming into the variables Z;

Zi(t,k) =0 for k¢ G
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The condition of collocation methods is that the differential equation is satisfied at all collocation points.
After all, we obtain for the coefficients 5j (t,k) and k € G the (finite) system of ODEs

o105 (t, k) + - ,c j(EeR)0;(t k) = ) T(vl,va,vg) (t, k).
#J=j

Analogously, we obtain after transformation a (finite) system of ODEs for the coefficients Z; (¢, k)

0zt k) = Y, F(t,2,1)(k).
#J=j
Remark 5.6.1. For any numerical method presented in this thesis, we focus solely on the error analysis of
the semi-discretization in time. Nevertheless, in all subsequent numerical examples the (pseudo-)spectral

collocation method introduced in this section is employed.

5.6.2 Model problem

We consider the one-dimensional Klein—-Gordon system (1.3) with k = 1.2, v = 0.7, M = E, w =
max{wy (k),w2(k)}, where wy, is the m-th eigenvalue of £(0, k), and with initial data

p(x) = 1¥11(0) exp (—(:c — 0.5)2). We set t..4 = 1 and consider 2 equidistant grid points in the interval
[—2,2]. The reference solution is computed by the Strang splitting method with a small step-size 7 &
10~°, where we note that the step-size is chosen small enough in comparison to the choice of € which we
consider. For the Strang splitting method we split the PDE (5.5) with j,.. = 1 into the linear and the

nonlinear part. This results in the linear subproblem
Oy (t) = —Byvi(t) with given v7(0), (5.99)
where By := % L(w,x) + £B(0), and the nonlinear subproblem

opvy® Z T(v3?,v55, 053 )(t) with given v7°(0). (5.100)
#J=1

The operator B; generates a strongly continuous group on W (T?). Thus, for ¢ > 0 we obtain a solution

of the linear subproblem via
v3(t) = e tBrug(0) (5.101)

and, hence, (5.99) can be solved exactly in Fourier space. Since we cannot solve the nonlinear subproblem
(5.100) exactly, we approximate the solution with Heun’s method which is a Runge-Kutta method of order
two.

In total we obtain an approximation v} & v (¢,) recursively, meaning by solving the subproblems (5.99)

n+1

and (5.100) in alternating fashion. In order to calculate v we first approximate the solution of (5.100)

via Heun’s method with one half time-step Z and initial data v} which yields vPhT . Next, we compute

+1,—

1“ "+ by taking a full time-step 7 of the exact solution (5.101), where now v} is the initial data.

Finally, we approximate the solution of (5.100) via Heun’s method again with one half time-step and

n+1,+

initial data v} ntd

which yields the approximation v
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Figure 5.1: Accuracy of the one-step method for ¢ = 0.01 (top left), e = 10~¢ (top right) and ¢ = 0.1
(bottom left). Additionally, the accuracy of the Strang splitting is shown. The dashed magenta line is a

reference line for order one. The black vertical line is at 7 = 2.

Figure 5.1 and Figure 5.2 show the accuracy of the one-step method (5.30) and the two-step method
(5.37), respectively, together with the corresponding cherry picking method. For comparison, the accuracy
of the Strang splitting method is shown. The dashed line in Figure 5.1 is a reference line for order one
and the vertical line highlights the value 7 = €2, whereas in Figure 5.2 the dashed line is of order two and
the value 7 = ¢ is highlighted. We observe the familiar erratic behavior of the Strang splitting method

2 2

for 7 > e¢%. Figure 5.1 illustrates the first-order convergence of the one-step method for 7 > ¢ and

Figure 5.2 illustrates the second-order convergence of the two-step method for 7 > ¢, in accordance with

Theorem 5.2.1 and to Theorem 5.3.2, respectively. We note that in the regime £2

< 7 < ¢ the plot in
Figure 5.1 turns into a plateau, which roughly speaking marks the difference between the oscillatory and
the non-oscillatory situation. This is a typical phenomenon. In the regime €2 < 7 < ¢ the global error is
dominated by the parameter € in each panel of Figure 5.2. The code to reproduce the plots is available

on https://www.doi.org/10.5445/IR/1000149721.
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Figure 5.2: Accuracy of the two-step method for e = 0.01 (top left), ¢ = 1076 (top right) and ¢ = 0.1
(bottom left). Additionally, the accuracy of the Strang splitting is shown. The dashed magenta line is a

reference line for order two. The black vertical line is at 7 = .
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CHAPTER O

Modulated Fourier expansion

In this chapter, we investigate a complementary approach of constructing an approximation to the solution
u of (1.4a). In Chapter 3 the ansatz (3.15) was plugged into (1.4a) which led to the system of PDEs
(3.16). We recall that the main advantage of (3.16) over (1.4a) was that the solutions of (3.16) did
not oscillate in space if the initial data had the form (1.4b). However, the solutions still oscillated in
time which caused difficulties for standard methods. Therefore, in Chapter 5 we constructed tailor-made
time integrators which handled these oscillations appropriately. Moreover, we presented a special and
elaborate error estimate. We emphasize that compared to Chapter 5 we again consider R? and not T¢,
and an arbitrary positive odd integer j.... and not j,.. = 1.

Compared to the previous chapters, the question arises whether there is a possibility to construct
analytical approximations which additionally avoid the oscillations in time. The hope is that the resulting
smooth functions of this approximation will be easier to treat numerically because we have e-induced
oscillations neither in space nor in time. It will turn out that such an analytical approximation is
possible, but not for arbitrary initial data. This is the motivation to search approximations to u of the
form (3.15), where now the coefficients u; are smooth and the initial data is specially constructed for this
purpose. More precisely, the coefficients satisfy the constraint supsefo ., . /e] [u;(t)|w = O(Ejfl), and the
same conditions for space and time derivatives.

Analogous to Subsection 5.1.1, we transform the system (1.4a) in space and time, and we refer to
Remark 5.1.1 that after transforming the system the variables ¢t and x are different variables than in the
previous Chapters 1-4. The chapter is structured as follows. In Section 6.1, we introduce the modulated
Fourier expansion (MFE). The idea of the modulated Fourier expansion is to combine the ansatz (5.4)
with a formal asymptotic expansion in powers of €. More precisely, the coefficient functions v; in (5.4)

admit an expansion of the form

vitx) ~ Y it ),  jedy, (6.1)
4

where £ is a power on € and a superscript on v;. This expansion leads to a set of equations for the corre-
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sponding coefficient functions vf which are now independent of e. The majority of Section 6.1 is devoted
to the construction of the coefficients of the MFE. In Section 6.2, we show the boundedness of these
constructed coefficient functions, which is crucial for the main result in this chapter. In Theorem 6.2.3
we make a statement about the accuracy of the MFE. For more details on the MFE we refer to [10, 18]
and [19, Chapter XIIL.5].

Note. The results of this chapter have been published with Prof. Dr. Tobias Jahnke and Prof. Dr.
Christian Lubich in the preprint [5], whereby the presentation is slightly different.

6.1 Construction of the modulated Fourier expansion

We start this section by introducing the general problem setting.

6.1.1 Problem setting and approach for the MFE

Co-moving coordinate system and rescaling of time. Analogously to Chapter 5, for the analysis

it is convenient to change to the new variables
t = et, =z —teg, v(t',2') = v(et,x —tey) = u(t, z),

where ¢, is the group velocity, cf. (3.5). We recall that the change of variables leads to the system (5.1)
and the approximation (5.4), where we quote Remark 5.1.1 which states that we omit in the following
the prime and write again ¢ and x instead of ¢’ and z’/, respectively. Furthermore, the variables ¢ and x

are different variables for the rest of this chapter than in the Chapters 1-4.

Assumptions and definitions. For the construction of approximations, we make similar definitions
and assumptions as in Section 3.2. More precisely, the pair (w, ) fulfills the dispersion relation (3.4)
and we choose w = wi(k) # 0, where w;(k) is one of the eigenvalues of A(k) —iE. We assume a
smooth eigendecomposition of the matrix £(0, 8) which corresponds to Assumption 3.2.2. In contrast to
Chapter 3, we define the fixed eigenprojector P € C*(R?\{0}, C***) associated to w, which in comparison
to (3.65) does not depend on the spatial variable. By definition it is the orthogonal projection onto the

nontrivial kernel of £ = L(w, ), i.e.
PL =LyP=0. (6.2)
In the following we set P+ =1 — P.

Remark 6.1.1. Because of the dispersion relation (3.4), L1 is not invertible, but the restricted mapping
Li|pics : PLC* — PLC* has an inverse. For the sake of simplicity, we denote this inverse by L' =

(Ly|prcs)”", but we emphasize that LY can only be applied to vectors in P+C*.

Using these introduced projections, we cite [29, Lemma 2.9 and Lemma 2.12] without proofs, and

state them together in one lemma.
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Lemma 6.1.2. If the pair (w, k) is smooth and satisfies the dispersion relation (3.4), then we have for

every v(z) € C*
PA@)Pu(z) = Pleg - V)v(z), (6.3)

d d
PA@) LT PLA(O)Pu(x) = (v HV)Pov(z Z 2 Hu0040, Po(z), (6.4)

l\D\»—l

where ¢, = Vwi(k), and H = (Hgy)k,, = VZwi(k) is the Hessian of wy in k.
We define for an odd number j, > 0 the sets

j+(j*) = j(]*) ~ N.

In addition, we adopt Assumption 3.2.6.

Aim. We aim to construct a solution of (5.1) of the form

v(t,z) = Z eij“'z/seij(“'cg_‘“)t/szvj (t,z) + O(e ), v_; =T; (6.6)
JET (4x)

with Pv1(0,2) = p(x), where p(x) is a given smooth function which satisfies
Pp(z) = p(x) for all z € R%

We call the solution of the form (6.6) a polarized solution. Polarized in the sense that the solution only
depends on the frequency w, where the pair (w, k) satisfies the dispersion relation. The other eigenvalues
wm (k) with m # 1 of £(0,x) do not appear in the highly oscillatory exponentials eid%-@/2¢ii(r-co—w)t/e® of
(6.6). We remark that it is not a priori clear that this can be achieved for the semilinear system (5.1).
Furthermore, the constructed coefficient functions v; of (6.6) are smooth with the properties that for
t € [0, tend]

Pui(t) = O(1), (6.7a)
Plui(t) = O(e), (6.7b)
vj(t) =07 for 3<jeTi(h). (6.7c)

The same properties are true for the space and time derivatives of the coefficient functions v; up to some
fixed order.

We will show in Section 6.2 that the approximations of the coefficient functions constructed below do
indeed satisfy (6.7) for all ¢ € [0,¢..]. Next, in order to construct the coefficients v; for j € Jy(j.) of

(6.6) with the above mentioned properties, we derive the corresponding PDEs for v;,.

PDEs for v;. We proceed similarly to Section 3.3. Substituting (5.4) with j € J4(j.) into (5.1) and

discarding higher harmonics, i.e. terms with prefactor

6ijn-x/aeij(n~cgfw)t)/62’ |]| > i,
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yields the system (5.3) with j € J4 (j.). According to Assumption 3.2.6, we know that £; is invertible
for 3 < j € J.(j«). Hence, we reformulate (5.3) to

— el (satvj—&-B v—e Y Tv]) 3<jedi(). (6.8)
#J=j

As in the previous chapters, the case j = 1 is special. We distinguish

Y1 = Py, Y1 =ﬁ=§—17 (6.9)
2 =P, z.1 =71 = Pltu_y,
due to the partition in (6.7). In order to derive equations for y; and z;, we use the relations (6.2) and
(6.3). Together with definitions (5.2), (6.9), P? = P and PP+ = 0, it follows that
PB(0)y1 = PA(0)Pv1 — P(cy - V)Pv1 =0,
PB(0)z = PA(O)Pv1 — Pcy - V)PHu1 = PA(O)

Hence, multiplying (5.3) for j = 1 by P and P+ yields

Oy + PA = > PT(vy), (6.10)
#J=1
i 1
drz1 + 8%5121 + EPLB(a)(yl +21) = Z PT(vy), (6.11)
#J=1

respectively. With Remark 6.1.1 the equation (6.11) is equivalent to

— el Pt (68tz1 + B +21)—¢ > T(UJ)). (6.12)

#JI=1
We note that the equations (6.8), (6.10) and (6.12) still depend on . The idea is to introduce a formal
expansion as in (6.1) with respect to € for the coefficients v; with j € J, (j.), truncate the expansion and

then collect the terms of the same powers of e.

6.1.2 Asymptotic expansion

The next goal is to approximate the solution of the PDE system (5.3) with coefficient functions ¥; which
fulfill the required properties (6.7) and which satisfy the initial condition Pv1(0) = p for a given smooth
function p. Because of the conditions (6.7), we specify (6.1) and suggest an approximation of the form
Jx
vi(t,z) ~ Dt x) == Y i), je i) (6.13)
t=j—1

Here, j, is the same number as in the definition (6.5) of J(j.). As a notational remark we point out that
¢ is a power on € and a superscript on v;.

If we substitute (6.13) into (5.4), we obtain a modulated Fourier expansion

\Nl(j’)(t,l') — Z elin x/e 1](5 cg—w)t/s ~ (t .’17) (614)
JET (4+)
j*
_ Z eijmr/seij(/@-cg—w)t/g? Z eevf(t,x) (615)

J€T (Gx) (=j—-1
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with vt ;= v?. In the following we construct the coefficients vf such that the MFE is an approximation
to the solution of (5.1).

As an example for the reader we consider the asymptotic expansion (6.13) for j, = 5. In this case we
have J4 (j.) = {1,3,5} and (6.13) reads

1 2,2 4,4
vlkv?—l—evl + e +53v:13+5 (5 +€5v?,

v3 A 527)32, + 537);’ + £4v§ + 551)27
(R 54v§ + 5511?.
As before, negative subscripts mean complex conjugation for j € J, (j.). Hence, in accordance with (6.9)

we set

y{ = PU{? ye—l = y{7 Zf = ,PL’U{? zfl = Z{ (616)

and obtain by multiplying v; with P and P+

Py = o + eyt + €22 + ..+ Pyl (6.17)
PLoy = 0 +ezl +e222 4+ ... 4+ &2, (6.18)
respectively. Moreover, we set
;=10 +...+0+6j_1v§71 +€jvg +...+5j*v§* for j > 1, (6.19)
2%, =0, v, =0 fort<|j|—1, (6.20)
which implies, in particular, that v%l = ygl. Furthermore, in accordance with the initial condition

Pv1(0) = p and (6.17), there is also an expansion
j*
p(x) = ), e ().
(=0

For multi-indices J = (j1, j2, j3) € J>(j«) and L = ({1, lo,¢3) € N} we introduce the abbreviated notation

L _ by by L3
vy = (’Ujl ’ vjz’vjs)'

For the rest of the section we derive equations for the coefficient functions vf for j € J+(jx) and

Le{j—1,...,5.}. The strategy is divided into two parts. First, we plug the expansions (6.13), (6.17),
(6.18), and (6.19) into (6.10), (6.12) and (6.8). Then, we collect the terms of the same order in €.

Equations for ) and 2{. For the first two coefficients y{ and 2] we obtain

o) + PAD)z = Y, PT(v)), (6.21)
#J=1
|L[1=0

21 =1L PEB(0)yY. (6.22)

Here, we compare for (6.21) powers of €’ = 1 in (6.10) and for (6.22) powers of £ in (6.12). Substituting
the algebraic equation (6.22) into (6.21) yields

duf) +PAQLTPEBO) = > PT(H). (6.23)

#J=1
[L|1=0
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By definition (5.2) of B(d) and because Py = 0 according to (6.16), it follows that
PEB(O)yl = PrA@w — (¢ - V)Py = PHA)Y). (6.24)

Next, substituting (6.24) and (6.4) from Lemma 6.1.2 into (6.23) leads to the nonlinear Schrodinger

equation

0ty?—%V~HVy?= ST PTWh). (6.25)
#J=1

|L]1=0
We note that in comparison to the classical nonlinear Schrédinger equation there is no imaginary unit in
front of the nonlinearity. Since |L|; = 0 is only true for the multi-index L = (0,0, 0), we observe that the

nonlinearity on the right-hand side of (6.25)

> TH) =Tl v% ) + T y2 0, 09) + T2 1,0, 49)
#J=1
[L]1=0
depends only on y{ and y°; = yT). Consequently, (6.25) is independent of z{ and, thus, we first solve
(6.25) with initial value y?(0,z) = p°(z) to determine ?. Then, we compute zi from (6.22) because the

algebraic equation only depends on 3.

Equations for y{ and 2?. Comparing in (6.10) powers of ¢! and in (6.12) powers of 2 yield for the

next coefficients

oyl +PA0)ZF = >, PT()), (6.26)
#J=1
|[L|1=1
=i PH(BOW + ) - Y TOD)). (6.27)
#J=1
|L|1=0

Plugging the algebraic equation (6.27) into (6.26) and proceeding as before leads to

aty}—%VHVy}+i73,4(a)£1—17>i(3(a)z§— 3 T(vg)): 3 PTWh). (6.28)
#J=1 #J=1
|L]|1=0 |L|1=1

Next, we consider the sum on the right-hand side of (6.28) without the projection P in more detail. We

observe that

2 T(UL%) = T(’U%,U?,Ugl) + T(ULUQI,’U?) + T<v91av%7v?) + T(’U?,U%,’Ugl) + T(v?,vgl,v%)
#J=1

[Lli=1 + T, 0%, 01) + T2,0%, 01 ) + T, vl ,09) + T (v, 09, 0)
depends only on 49 and v{ = y} + 1. Since v{ appears exactly once in each evaluation of the trilinearity
and since 2z{ does not depend on yi, cf. (6.22), the PDE (6.28) is a linear inhomogeneous Schrodinger
equation for yi. Again we note that there is no imaginary unit on the right-hand side. Thus, first we
solve (6.28) with initial value yi(0,z) = p!(z) to obtain yi and, then we compute 2% from the algebraic

equation for (6.27). The procedure to date is summarized in Figure 6.1.
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Step 1, (6.22) Step 2a, (6.28) Step 2b, (6.27)
0 0 1 0 1
Y1 Yi— U Y1 Y1
l1 1/ 1\ l2
21 21 1 %1

Figure 6.1: Illustration for the first two steps, showing which coeflicients are needed for the construction

and in which order.

Equations for v, 27, and v3. Similarly to the first two steps, we obtain

Qi +PAW0) = ) PT(h), (6.29)
#J=1
|L|y =2
z§=i£;173l(atzi+B(a)(yf+z‘f)— 3 T(vg)), (6.30)
#J=1
|L|1=1

where we compare in (6.10) powers of 2 and in (6.12) powers of €. We emphasize that there appears
a structural change for the first time because there is now a contribution from the time-derivative 0;z;
on the right-hand side of (6.12). With the same reasoning as before, substituting the algebraic equation
(6.30) into (6.29) leads to

(%y%—%V~HVyf+iPA(8)£f1Pl(8tz%+B(8)sz > T(vg)): > PT@)). (6.31)
#J=1 #J=1
|Lj1=1 |L|1=2

Since v§ appears exactly once in each evaluation of the trilinearity and since z? does not depend on y7,
cf. (6.27), the PDE (6.31) is again a linear inhomogeneous Schrédinger equation for y?. However, in

contrast to the first two steps the sum

> PT(])
#J=1
|L|1=2
on the right-hand side of (6.31) involves not only terms v, with subscript +1. For |L|; = 2 the multi-
index L = (2,0,0) occurs and combined with J = (3,—1,—1) there are PT(v}) = PT(v3,0v°,0°,) and
two other terms with permuted arguments. Hence, now v5 has to be computed from (6.8) before we are
able to solve (6.31). Since by construction some terms are assumed to be zero, cf. (6.20), it follows that

0;v§ = 0 and vi = 0. Hence, we obtain from (6.8)

v3 = —iLgt ) T(h). (6.32)
#J=3
|L|1=0

The sum

Z T(Ug) = T(”?? v(l)v ’U(l)) = T(y(lJv y(lJv y(l))
#J=3
|L]1=0
on the right-hand side of (6.32) depends only on ¥, which is already available, by solving the nonlinear
Schrédinger equation (6.25). Thus, after computing v3, we solve (6.31) with initial value 3% (0, ) = p?(x)
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Step 3a, (6.32) Step 3b, (6.31) Step 3c, (6.30)
Yy yi i Yi T _ R
A2 2 A2 lef

Figure 6.2: Illustration for the third step, showing which coefficients are needed for the construction and

in which order. The gray shading means that all containing coefficients are required.
to determine 32, and then, we compute 23 from (6.30), cf. Figure 6.2.

From this point on, it becomes clear how we iteratively construct the remaining coefficients for £ =

Equations for y{, z{*!, and vf. For £ =3,...,j, and j € J,(j.) with 3 < j < £+ 1 we set
ol =L (6tv§_2 Gy T(vg)). (6.33)
#J=3
L]y =(—2

All the required coefficients in the sum of (6.33) are already constructed because |L|; = £ —2 and, hence,

we compute vf with (6.33) for j # +1. Further, we obtain y{ for £ = 3,..., j, by solving the PDE

owh — 5V - HVY + PAQ) (LT PH (01 + B = Y] TH)) = Y PTG (631)
#J=1 #J=1
Lli=e-1 [Lh=¢

with initial value y%(0,2) = p‘(z). This is possible because y! appears not more than once in each

evaluation of the trilinearity on the right-hand side of (6.34), and since z{ is independent of y! and

already computed in the previous step. Thus, y¢ is available and we set

AP =i P (2T BOWE ) - Y TEh), (6.35)
#I=1
|L[1=¢-1
Step (¢ + 1)a, (6.33) Step (¢ + 1)b, (6.34) Step (¢ + 1)c, (6.35)
W oyl v ! I  T Woul vk out o
!
B O SO 2 22 2B ... I A S B S e
7 S vg_ljgvg v3 ... vEt o v ... vt b
vf_lgivjé ,Uf—l ’U§ | v]lf—l 'U]e

Figure 6.3: Illustration for the three main steps and arbitrary ¢ > 3, showing which coefficients are
needed for the construction and in which order. The gray shading means that all containing coefficients

are required.
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+

If £ = j., we point out that (6.35) does not have to be computed, because zll* ! appears neither in

the ansatz (6.13) nor in the construction of the other quantities, see also Figure 6.3.

Remark 6.1.3. We observe the crucial advantage of this approach. In comparison to the equations (6.8),
(6.10) and (6.12), the equations (6.22), (6.25), (6.27), (6.28), (6.30)—(6.35) do not depend on . Thus,

there are no e-induced oscillations in time for yf, z¥ and vf for3<jeJi(jx) and £=0,. .., js.

On the initial condition. We emphasize that the part of the constructed solution which satisfies the
initial condition Pv(0) = p, i.e. Pvi(0) = y{(0), £ = 0,..., 4., can be choosen arbitrarily because we
choose the smooth function p. For this reason, we could also simply set y?(0) = p. This would lead to the
fact that all the linear inhomogeneous Schrédinger equations for 3%, £ > 1 in the above construction need
only be solved with zero initial value, i.e. y{(0) = 0 for £ > 1. However, by construction this choice has
a crucial impact on the other coefficients. It determines the initial data for 2{(0) as well as for all vf (0)
with 3 < j € J4(j.) due the algebraic equations (6.22), (6.27), (6.30), (6.32), (6.35) and (6.33). This
relation between the different parts of the initial data can be seen as a nonlinear polarization condition.
We remark that the parts of the initial data which are determined by p are only of size (’)(64) with £ > 1
and that the initial data

v(0,z) = Z EIETIET (0, 2) = PU1(0,2)e* 7 + ce. + O(e) = p(x)e™ /e + c.c. + O(e)
JET (4x)

is determined by p up to (’)(Ej*H). We call this special initial data v(0) a polarized initial data since
for those initial data the other eigenvalues w,(x) with m # 1 of £(0,x) do not enter the oscillatory
exponentials of the MFE. Hence, we indeed achieve polarized solutions of the form (6.6) for the semilinear

system (5.1).

6.2 Accuracy of the modulated Fourier expansion

In this section, we analyze the accuracy of the modulated Fourier expansion (6.15) in the Wiener algebra,
cf. Section 3.4.

6.2.1 Boundedness of the coeflicient functions

The MFE (6.15) can only provide a reasonable approximation if all coefficient functions yf, 2%, vf with
3<jeJi(Js) and for £ = 1,...,J,, remain bounded on [0,%..4]. We recall that the first step in the
construction from Section 6.1.2 is to compute 37 by solving the nonlinear Schrédinger equation (6.25).
Via classical arguments such as the variation of constants formula and Banach’s fixed point theorem the
existence of a mild solution of (6.25) can be shown. With the standard argument that we can glue and
shift solutions, the mild solution can then be extended to a maximal time interval. We note that this
maximal time interval could, in principle, be smaller than the interval [0,¢,,q] where the exact solution
of (5.1) exists. However, in the following we assume that the mild solution exists on [0,¢.4]. Under

stronger regularity assumptions on the initial data the mild solution is in fact a classical solution with a
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certain degree of regularity. Therefore, we further assume for the solution of (6.25) that

[r/2]
e X =[] €0, tena], W)
i=0
for a sufficiently large number r € N, which will be specified at the end of this subsection. With |r/2]| we
denote the largest integer which is not larger than r/2.

We recall that the construction of the coefficient functions is done iteratively with increasing ¢ and
hence, all coefficient functions can be traced back to y?. This implies that their regularity also depends
on r in the sense that the larger ¢ becomes, the more regularity is required which is seen next. We start
with 2} which is given by the algebraic equation (6.22). Because of the operator B(d) on the right-hand
side of (6.22) it follows that 2] € X"~ if 4 € X". Following the construction, the next step was to
compute y; by solving the linear inhomogeneous Schrédinger equation (6.28). In order to investigate the

regularity of yi the following classical result from semigroup theory is helpful; cf. Section 4.2 in [36].

Lemma 6.2.1. Let A be the generator of a strongly continuous semigroup on a Banach space X. Let
D(A) c X denote the domain of A and suppose that uo € D(A). If

fFeCl(0,tna, X)  or  feC([0,t.], D(A)),
then the inhomogeneous abstract Cauchy problem
u'(t) = Au(t) + f(t)

has a unique classical solution

ue CH[0, L], X) 0 C([0, 2], D(A)).

Taking a closer look at (6.28), we note that the inhomogeneity contains the crucial term
—iPA(O)LT ' PEB(0)2) € X3

and other terms such as

—IPAQ)LT PHT (Y, 1, y2) € X7

with higher regularity. If we assume yi(0) € W"=3 = D(A) and set X = X"~ with » > 5, then applying
Lemma 6.2.1 yields y; € X"~3. This in turn has an impact on z? defined by the algebraic equation (6.27).
The right-hand side of (6.27) involves B(d)yl plus other terms of higher regularity, such that we have
e X4

The same reasoning can be used to treat the coefficient function 3?. In contrast to the first two steps of
the construction, now the coefficient function v3 comes into play. However, since the function v3 defined
by (6.32) depends only on 3 € X", we directly have v3 € X". Similarly as before, the crucial term in the

inhomogeneity of the linear Schrodinger equation (6.31) has the form
—iPAO)LT'PLB(0)27 e X" 6.

If we assume y#(0) € W6 = D(A) and set X = X"8 with » > 8, we obtain y? € X" =% by means of
Lemma 6.2.1. Because of the operator B(d) an immediate consequence of the algebraic equation (6.30)

is that 23 € X"~7.
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By continuing this procedure iteratively, we know how to treat the remaining coefficient functions for
£ =3,...,j« Consequently, all coefficient functions involved in the approximation (6.15) are bounded
if r is sufficiently large and all initial data y{(0) for £ = 0,..., 7, are sufficiently smooth. Comparing
y) e X" withyl € X"73 = X"31and y? € X"~¢ = X"~32 implies, roughly speaking, that three orders of
regularity are required if the upper index of y{ is increased by one. In consequence we obtain y{ € X" ~3¢,
such that we have y7* € X0, if 40 € X3+, However, since we need a classical solution and boundedness
of atvj* the number r has to be r = 3j, + 2.

6.2.2 Error analysis for the MFE

In this section, we state the main result of this chapter in Theorem 6.2.3. In order to prove that the
modulated Fourier expansion (6.15) with j. = j,.., approximates a solution of (5.1) up to (’)(Ejma"“), we
require the following assumption. We note that the assumption includes coefficients of the MFE (6.15)
with j, = juax + 2. In the proof for the error bound it becomes clear why we need this assumption and

not just for the coefficients with j € Jy (Juax) and € =0, ..., Jiax-
Assumption 6.2.2. The initial conditions satisfy p* = y%(0) € W3Umat2=0+2 for¢ =0 ... j, .. +2 and
there exist constants C' independent of € such that

sup i)|w <O, £=0,.0 e + 2,
tE[O,tm,d]

for all j € T (Jw +2) with vf constructed as in Subsection 6.1.2. The same bounds are true for the mized

spatio-temporal partial derivatives of these coefficient functions up to a fixed order depending on j,....

Because of the previous subsection and Lemma 6.2.1, we know that this assumption on the bound-
edness of the coeflicients is reasonable and can be shown with high technical effort since the initial data

y{(0) for £ =0, ..., jm + 2 are sufficiently smooth in space.

Theorem 6.2.3. Let V\net2) pe the constructed MFE (6.15) with jx = Juu+ 2 and with polarized initial
data ¥Umet2)(0). Assume that a unique solution v of (5.1) with initial data v(0) = ¥Ume)(0) exists on

the time interval [0,t,,.], and that

swp Iv(O)lw < Cu (6.36)
tG[O,tend]

uniformly in € € (0,1]. Under Assumptions 3.2.2, 3.2.6 and 6.2.2, there exists a constant such that

sup [ v(t) — YU (1) |w < Ot (6.37)
tE[OvtSnd]

sup | v(t) — (Fmas) ()| < Celmastl) (6.38)
tE[O,tmd]

where the constant C' is independent of €.

Proof. The second bound (6.38) is an immediate consequence of the embedding W < L* and, thus, we

only have to show (6.37). First, under Assumption 6.2.2 we estimate

sup [¥Um 2 (1) |y < O, (6.39)
tE[O,tend]
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in addition to (6.36), possibly with a larger constant C\,.
By the triangle inequality we obtain

sup [v(t) = VU (@)|w < sup [v(t) = VU (@) + sup [FUme (1) — Flma) (1)
te[0,tenal t€[0,tendal t€[0,tend]

A detailed justification of why this decomposition is necessary is stated after the proof in Remark 6.2.4.

The goal is now to show

sup  [v(t) — ¥UmexF2 (1) < Celmext! (6.40)
t€[0,tend]

and

sup Hv(jmax+2) (t) _ v(.jrnax)(t)HW < Clgimax+1 (6.41)
tG[O,tend]

Since the proof of Theorem 6.2.3 is rather lengthy, we subdivide it into several steps.

Step 1. We denote the error between the exact solution v and the approximation (6.15) with j, =

Jmax + 2 by
§ = v — yUmaxt2) (6.42)

The first goal is to derive an evolution equation for 6. The approximation (6.15) with j. = J,... + 2 solves
(5.1) up to the residual

: 1 ) 1 .
R(t,z) = 0,V imax+2) (t, ) + gB(a);,(ymxw) (t, ) + ?EQ,(JMXH) (t, )

_ T(‘N/(jmax+2)7 v(jnxax+2)’ "",(jmax+2))(t7 Z')
Substituting (6.14) into the left-hand side of (5.1) yields
. 1 . 1 ;
0, vUmF (¢, 2) + = B(O)WUmT (¢, 2) + — EVU=>T2 (¢, z)
€ €
iy g i 1
= i/ i (recg—w)t/e? (aﬁj (t,z) + E%cﬁ;j (t,z) + EB(a)ﬁj(t,x)> . (6.43)
JET (Jmax+2)
Comparing (6.43) with

T(\Nl(j"’aerQ), ‘~,(jn,ax+2)7 ‘~,(jmax+2))(t’ :U) _ Z ei#J(nw)/Eei#J(n-cgfw)t/mT(ﬁjl ’ ﬁjg 7 5j3)(t7 x)
Jej3(jxnax+2)
= > emaleditee e N B, 0, ) (¢ )

~jodd #J=j
|71<8jmax+6

shows that the residual R has the representation
R(t,x) = Z eij(”'”’)/eeij(“'cg_‘”)t/€2Rj(t,:v) (6.44)
7 odd

|71<3jmax+6

with R_; = R;. The defects R; have two different origins depending on j. For j < j.. +2 the defects R;
are caused by solving the PDEs (5.3), (6.10), (6.11) only approximately. The defects R; with j > j,...+2
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originate from the fact that only the terms with index j € J = {£1,£3,..., £jn.. = 2} are used in the

ansatz (5.4). Hence, we obtain

~ i 1 ~ ~ o~ o~ . .
atvj(th) + [;Q‘CJ + 63(6)] vj(t’ (E) - Z T(vj17/l)jzvvj3)(tvx) if 1 < J < Jmax + 27
Rj(t,{L‘) = L #J=j
_Z T('Uj17vj27'l)j3)(t,$) 1f jmax + 2 < j < 3jmax + 6
#J=j

By definition (6.44) of the residual R, the error § = v — ¥Umax*2) solves the evolution equation

1 1 . . )
08 = ——B(0)0 — 5 B6 + [T(v, v, V) — T(FUmaxt2) 3 (Tmaxt2) %Umax“))] - R. (6.45)

Step 2. In this step, we aim to bound § via Gronwall’s lemma. We observe that for every € > 0 the

operator

1 1
A = _EB@ — E—QE with domain D(A.) = W!

generates a strongly continuous group (exp(t.As)) g O W. The group operators are explicitly given by

}"(exp(tAE)f)(k) = exp (—;(isB(k:) + E)) f(k:)

for every f € W and all ¢ € R. We note that the matrix ieB(k) + E is skew-Hermitian for every k,
because E € R**? is skew-symmetric and iB(k) is skew-Hermitian. Hence, it follows that for every ¢t € R

the group operator exp(tA.) : W — W is an isometry, because

~

lexp(tAD) flw = |7 (exp(tAI )]s = [ fosp (= & (=B + B)) F)], db = [ 170z dk = |l
R4 Rd
With the variation-of-constants formula applied to (6.45) and with the trilinear estimate (3.31), we obtain
t ¢
50w < 180w +3CxC3e [ 15w do + [ 1)l do.
0 0

where Cy is the constant from the assumptions (6.36) and (6.39). By assumption we have for the initial
data v(0) = ¥Umax)(0) such that 6(0) = ¥Umax)(0) — ¥Umax+2)(0). Thus, with (6.14) and (6.15) at ¢t = 0
it follows

Jmax+2
5(()) _ Z elira/e Z Eévf(()’x) + (ei(jmax+2)n~x/a1~}jmax+2(07x) + C.C.) .
JE€JT (fmax) £=jmax+1

By Assumption 6.2.2 all coefficients are uniformly bounded and we obtain with the condition (6.7) for

J = Jmax 2
[8(0)[lyy < Celmaxtl,
It remains to show that

sup  |R(t)|w < Celmatl (6.46)

te[0,tena)
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with a constant C' which does not depend on . If (6.46) holds, then we obtain
t
16(t)|w < Cedmaxtt 4 3035[“6(@ lw do + Ctpgeimest1
0

such that Gronwall’s lemma and (6.42) yields

sup [ v(t) — FUmaF2 (1) |y, < Celmaxtl,
tE[O,tend]

Step 3. In this step, the goal is to show (6.46) by estimating the single contributions in (6.44) with

sup | R;(t)|w < Celmaxtl (6.47)
te[O,tend]
for all odd j = 1,...,3].x + 6 for some constant C. First, we consider the case j > j... + 2. Assump-

tion 6.2.2 and the expansion (6.13) imply that v (¢)|lw = O(e771) for all t € [0, t.,q]. Together with the

trilinear estimate (3.30), we obtain
1T (@50, 05, ) ()l < et Tl lelo™t = ce#I72 (6.48)

for some constant ¢ which depends on Cy from (3.30). Since j and j,.. + 2 are both odd numbers and

we consider j > j.. + 2, we have j = j.... + 4 and we obtain with (6.48)
IR; (O lw < Y} 1T @5, 05, 05) () Jw < Ce973 < CePmax™ for j > jou + 2.
#J=j
The constant C' depends on ¢ from (6.48) and on the number of multi-indices J € J2(jnax + 2) with
#J=3].
Next, we consider the case j < j... + 2. Here, compared to (6.13) with j, = ju.. + 2, the defect R;

is also given by the expansion

Jmax+2
Rj(t,x) = ) £'Ri(t,x) (6.49)

e=j—1
with
Rﬁ(t,x) = é’tvf(t,x) + iﬁjvf“(t,x) + B(@)vf“(t,x) — Z TW5)(t, ).
#J=]
|L|1=¢

By construction of the coefficients yf{, 2%, vf with 3 < j < Jmax + 2, cf. Subsection 6.1.2, it follows that
RS =0 for 0 < £ < jfuux and 1 < j < Jonue + 2. Hence, all RS vanish except for

Rpm Ut x) = ot x) + B P (ta) = ), T(vf)(ta),
#JI=j
|L‘1:jmax+1
R;:mxﬂ(t, z) = atvjmax”(t, z) — Z T(v5)(t, z).
#J=j
|L|1=jmax+2

||R§““""H(t)||w and HR;"‘“"”(t)HW remain uniformly bounded under Assumption 6.2.2 for all ¢ € [0, t.,q]-
Hence, together with (6.49) the estimate (6.47) follows for all j < j.. + 2.
Combining the estimates from the two cases j > juax + 2 and j < ju.. + 2 proves (6.46), and thus (6.40).
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Step 4. It remains to show (6.41). By construction of the coefficient functions vf for j € T (Jmax + 2)
and £ =0,..., juax + 2, the definitions (6.15) and (6.13), and by Assumption 6.2.2, we obtain

sup Hg,(jmax+2) (t) — Q,(jmax)@)HW

te[0,tendal
Jmax+2
< sup Z plire/e ij(hcg —w)t/e? Z €€U§(t, CL')
te0:tena] ¥ je 7 (jmax) 0=jmax+1

+ (ei(jmx+2)m/eei(jmaxﬁ)(K-Cg*“)t/szﬁjmaﬁ?(tvx) + C'C'> HW

< Osjmax+1'
This estimate shows (6.41) and yields together with (6.40) the assertion. |

We end this section with a remark.

Remark 6.2.4. Consequently, all terms yﬁ zf, vf With £ = j,..+1 and j > j,... are actually not required in
‘
J
with £ < jne + 1 because for the construction of the coefficients we use in general (6.33)—(6.35). All

the approzimation VUm=) . We emphasize that omitting these terms does not change the terms yi, 25 v

these equations depend only on the previously constructed coefficients or, as in (6.34), additionally on
coefficients with the same superscript £. However, these terms cannot be omitted in (6.13) from the very
beginning, meaning that j,.. + 2 cannot be replaced by j,... in the construction and the Assumption 6.2.2,
since they are crucial for the defects in Step 3 of the proof of Theorem 6.2.3. We recall that by construction
of the coefficient functions y{, 2§, vf with 3 < j < Jou + 2 the defects Rf are zero for 0 < £ < j,.. and
1 < J < Jow + 2. If we replace in (6.40) ¥Umat2) by 7Uma) and proceed as in Step 3 of the proof, the
right-hand side of the estimates (6.47) and (6.46) change from O(eim=t1) to O(edm==1) . Without the
coefficient functions 11;’"'”“ and U?"’”’Lz, only the defects Rf for0 <l < jnw—2and 1 < j < j.. vanish.

The remaining defects Rgmfl and Rg’"'” are given by

Rg"““"_l(t,x) = 8,:115’"”_1(15, x) + B(a)vg"m(t,x) — Z T (t, ),

#I=j
|L|1:]maz_l

Rgmaz(t,l,) _ atv;—mam(t, z) — Z T(Ug)(t,x)
#J=j
‘L|1:jmam

and are nonzero.
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CHAPTER [

Summary and Outlook

In this thesis we provided analytical and numerical approximations to the specific semilinear hyperbolic
system (1.4). We introduced in Chapter 3 a natural extension of the SVEA. The main advantage of
this ansatz was that the solutions of the corresponding PDEs did not oscillate in space anymore. In
previous works in the literature the SVEA offered a possibility to approximate the solution of (1.4) up
to O(e) which means that the accuracy of the SVEA is fixed a priori by the parameter . In some
instances, however, a more accurate approximation is required. We were able to significantly improve
the error bound of the SVEA under slightly stronger assumptions in our first main result in Chapter 4
up to (9(52) (Theorem 4.3.4), which made the SVEA attractive for numerical computations. These
assumptions included non-resonance conditions that were important in order to apply integration by
parts. However, the non-resonance conditions represented a limitation of the technique of proof for
extensions to approximations with higher accuracy in d > 1, depending on the structure of the underlying
problem. An interesting question would be whether it is possible to get rid of the limiting non-resonance
conditions in order to achieve higher accuracy after all.

In Chapter 5 we constructed numerical methods for the SVEA. We first introduced a one-step method
and then refined the time-integration method to obtain a two-step method. For both methods we provided
a rigorous error analysis for the semi-discretization in time. One of our main results was Theorem 5.3.2,
where we showed that approximating solutions of the SVEA by the two-step method with step-sizes
T > ¢ yields approximations of O(72). An increase in computational cost due to nested multiple sums
was the price to pay, which we reduced by our cherry picking strategy. Here, the question of constructing
better schemes without the nested multiple sums can be pursued, which are also applicable to problems
with dimension d > 1, as e.g. the Maxwell-Lorentz system. Furthermore, we considered the torus T¢
only for simplification. The incorporation of non-reflecting or absorbing boundary conditions and their
investigation would be an extension for future work.

In Chapter 6 we complemented this thesis by constructing polarized solutions to the system (1.4).

Their construction and analysis was done by means of modulated Fourier expansions and we also provided
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an error bound in Theorem 6.2.3. The goal was to construct smooth coefficients that did not oscillate
in space or time. The numerical approximation of these constructed coefficient functions by suitable

methods remain an interesting problem for future research.
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APPENDIX A

Gronwall lemma and function spaces

A.1 Gronwall lemma

For the convenience of the reader, we state a standard integral version of Gronwall’s lemma without

proof. The result and its proof is given in more general form in [32, Chapter 1, Theorem 8.1].

Lemma A.1.1 (Gronwall). Let T, > 0, ¢1,co = 0 and let u be a continuous, nonnegative function on
[0, T%]. If

t

u(t) < e + CQJ u(o)do  for allt e [0,T4],
0

then

u(t) < cre?t for all t € [0,T].

A.2 Function spaces

We give a short introduction to the functional analytical background used in this thesis. We define
important spaces and state only those properties which are important for the thesis. All these results
and proofs can be found in [6, 21, 34, 40].

The spaces L' and L. Let (R% F,u) denote a o-finite measure space with F being the o-algebra
of measurable sets and p equals the Lebesgue measure.

First, we define the space which consists of all (real-valued) absolutely Lebesgue integrable functions
by

L'(R%) :={f: R? > R : f measurable, J |f(z)|dz < o0}
R4
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with norm

flureey = [ 1)l
Rd
Moreover, we define
LPR?) :={f: R" > R: f measurable, 1 £ e ey < 0}
with the essential supremum norm
If 2 (ra) :=inf {¢=0 : |f(x)| < c almost everywhere}.

For p € {1,0}, || - |L» describes a norm on LP(R?) and the spaces (LP(R?),| - | p»(re)) are Banach

spaces for p € {1, o0}.

Sequence space ('. If we take Z? instead of R? and . equal to the counting measure, then we obtain a
“discrete” version of the L' space which is denoted by ¢!. The space ¢' will be useful when we introduce

spaces on the torus instead of the full space. We define
NZ) ={x = (zn)nez : TpeClorallneZ and [z|n < o}

with norm

We remark that (1, - |,) is a Banach space.

Fourier transform on L'(R?) and the space S(RY). Recall that L'(R%) denotes the Banach space

of functions that are absolutely integrable. For a function f € L!(R?) its Fourier transform is defined by

~

(F(K) = f(k) = (2m)~%? f f(z)e F@dx, ke RY. (A1)
Rd

This and all following (in)equalities are to be understood for almost all k € R,

The inverse Fourier transform is given by

(F 1) (@) = f(a) = (21)4 J FRedr,  zeRe (A.2)
Rd
For further investigations the Schwartz space
SRY) ={feC®RY) : sup |z|5'[0°f(z)| < oo for all m € Ng,a € N }
zeR4

turns out to be very useful. The Schwartz space contains all functions f which decay rapidly since all

derivatives of f decay faster than |z|5™ for any m € N, as |z]; — 0.

The dual of S(RY). The dual of S(R?) is denoted by S'(R%) and consists all continuous linear maps
f: S(RY) — C. The elements of S’(R?) are called tempered distributions. The main advantage of
tempered distributions is that they have a Fourier transform which is itself a tempered distribution. The
Fourier transform of a distribution f € S’(R%) is denoted either by Ff or f as before.
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