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Abstract

Time series forecasting is fundamental for various use cases in different

domains such as energy systems and economics. Creating a forecasting model

for a specific use case requires an iterative and complex design process. The

typical design process includes five sections (1) data preprocessing, (2) feature

engineering, (3) hyperparameter optimization, (4) forecasting method selec-

tion, and (5) forecast ensembling, which are commonly organized in a pipeline

structure. One promising approach to handle the ever-growing demand for

time series forecasts is automating this design process. The article, thus,

reviews existing literature on automated time series forecasting pipelines and

analyzes how the design process of forecasting models is currently automated.

Thereby, we consider both automated machine learning (AutoML) and
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automated statistical forecasting methods in a single forecasting pipeline. For

this purpose, we first present and compare the identified automation methods

for each pipeline section. Second, we analyze these automation methods

regarding their interaction, combination, and coverage of the five pipeline sec-

tions. For both, we discuss the reviewed literature that contributes toward

automating the design process, identify problems, give recommendations, and

suggest future research. This review reveals that the majority of the reviewed

literature only covers two or three of the five pipeline sections. We conclude

that future research has to holistically consider the automation of the forecast-

ing pipeline to enable the large-scale application of time series forecasting.

This article is categorized under:

Technologies > Machine Learning

Technologies > Prediction

Algorithmic Development > Spatial and Temporal Data Mining

KEYWORD S

automated machine learning, AutoML, hyperparameter optimization, pipeline, time series
forecasting

1 | INTRODUCTION

One of the most prominent forms of collected data is time series. In a time series, the data is arranged sequentially, and
each value is explicitly time-stamped, with information such as date and time (i.e., value and time stamp constitute an
observation). The progression of a time series over a certain period of time in the future, also known as the forecast
horizon, is the subject of time series forecasting. Time series forecasting is applied with various forecast horizons at dif-
ferent temporal scales and aggregation levels in various domains (Hyndman & Athanasopoulos, 2021). Exemplary use
cases from different domains are the following: sales forecasting for inventory optimization ( just-in-time supply chain:
Boone et al., 2019), forecasting the generation of renewable energy and the electricity demand in an area to balance
the power grid load (smart grids: Ahmad et al., 2020), and forecasting the spread of the novel coronavirus COVID-19
(pandemic control: Rahimi et al., 2021). As the number and importance of use cases grow, the demand for time series
forecasts is increasing steadily.

Designing a time series forecast for a particular use case typically incorporates five sections. The first section of the
design process is the data preprocessing to transform the raw data into a desirable form for the forecasting method
(Shaukat et al., 2021; Wang & Wang, 2020). The second section is feature engineering, which aims to extract hidden
characteristics of the considered time series or to identify useful exogenous information for the forecasting method
(Zebari et al., 2020). Each forecasting method contains hyperparameters that have to be set by the data scientist. There-
fore, the third section, the hyperparameter optimization (HPO), intends to improve the forecast accuracy over the
default hyperparameter configuration (Hutter et al., 2019). Given candidate forecasting methods with optimized hyper-
parameters, selecting the most suitable forecasting method is crucial for forecast accuracy and is addressed in the fourth
section (Zöller & Huber, 2021). The fifth section aims to increase the robustness of the forecast by forecast ensembling
(Hajirahimi & Khashei, 2019), that is, bundling multiple forecasts of different forecasting models to avoid occasional
poor forecasts (Shaub, 2020).

The above sections of the design process are commonly organized in a pipeline structure as shown in Figure 1. Cur-
rently, these forecasting pipelines are typically designed manually (Hyndman & Athanasopoulos, 2021; Petropoulos
et al., 2022). However, this is becoming increasingly difficult due to the large number of sophisticated methods
developed in recent years, as exhaustively summarized by Petropoulos et al. (2022). Considering all these available
methods and manually tailoring the forecasting pipeline to a specific use case is time-consuming and challenging
because selecting appropriate methods for the pipeline sections is an iterative process and requires expert knowl-
edge. This expert knowledge is particularly crucial, as the forecast accuracy is sensitive to various design decisions
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(Hutter et al., 2019). It is also foreseeable that the number of knowledgeable data scientists cannot handle the ever-
growing demand for time series forecasts in the future. Therefore, increasing the efficiency of the design process by
automation is required (Tuggener et al., 2019).

To automate design decisions and remove the data scientist from the iteratively performed parts of the design pro-
cess, a variety of automation methods are available for each section of the forecasting pipeline.1 The sequential organi-
zation of these automation methods and the management of the data flow can be realized by creating a pipeline
(Heidrich et al., 2021; Löning et al., 2019). Running the created forecasting pipeline executes all included automation
methods and trains the forecasting method—for example, a linear regression (LR)—with historical time series data,
resulting in a fitted forecasting model. Thereby, the pipeline automates the design process.

In this context, the long-term objective toward full automation has motivated numerous researchers and led to
promising research results in the fields related to this review study, as shown in Figure 2. Several surveys and review
studies analyze the automation of single forecasting pipeline sections such as preprocessing (Shaukat et al., 2021;
Wang & Wang, 2020), feature engineering (Zebari et al., 2020), HPO and forecasting method selection (Hutter
et al., 2019; Zöller & Huber, 2021), and forecast ensembling (Hajirahimi & Khashei, 2019). Moreover, rather than focus-
ing on the automated design of the entire forecasting pipeline, existing studies on time series forecasting only consider
the statistical or machine learning forecasting methods themselves (De Gooijer & Hyndman, 2006; Han et al., 2019;
Taieb et al., 2012). However, a comprehensive study is lacking that reviews how the design process of the entire time
series forecasting pipeline is currently automated, and that also considers the families of both statistical and machine
learning methods.

Therefore, the article reviews existing literature on automated time series forecasting pipelines and analyzes
how the design process of forecasting models is currently automated. For this, we consider literature from various
research directions, including statistical forecasting, machine learning, and deep learning.2 More specifically, we
focus on the interaction and combination of automation methods within the pipeline sections considering both
automated machine learning (AutoML) and automated statistical forecasting methods. For this purpose, we first
present and systematically compare existing automation methods from the identified literature used in each pipe-
line section. Second, we analyze the complete forecasting pipeline considering how many pipeline sections are
automated in the reviewed literature and highlighting the interaction and dependencies between pipeline sections.
For both, we discuss the reviewed literature, identify potential problems, give recommendations, and suggest future
research.

After describing the methodology in Section 2 and a brief introduction to time series forecasting in Section 3, this
article is organized by respective sections following the forecasting pipeline shown in Figure 1 and concludes in
Section 9.

FIGURE 1 The forecasting pipeline systematizes the design process for time series forecasting using five pipeline sections
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2 | METHODOLOGY

The methodology of this literature review applies the following fundamental steps suggested by Webster and Watson
(2002) for the identification of major contributions, their origin, and evolution.

Literature search: A search-term-based exploration of research articles considering title, abstract, and keywords is
conducted using Scopus,3 resulting in 359 hits.4 Potential predatory journals and publishers, and vanity press listed in
Beall's List5 are excluded.

Literature screening: We screen the abstracts for relevance with the following criteria: (1) the task type must be time
series forecasting, and (2) at least one iterative element in the forecasting pipeline that previously required human
intervention must be automated.

Backward –forward search: We identify additional articles that cite or are cited by the articles passing the screening.
The obtained candidates also undergo the screening procedure defined above. Backward–forward search yield a pool of
2152 additional papers, which the keyword filtering reduces to 242 articles.4

Review: We present automation methods for each section of the forecasting pipeline and review the articles
that pass the screening and full-text analysis. After the abstract screening, 144 of the 601 papers remain, and
71 after analyzing the full text. If there is similar work from a research group, we cite the article with the
greatest methodological scope and articles that propose improvements, which reduces the included articles from
71 to 63 articles.6

Discussion: We discuss the contributions towards design automation individually for each section of the forecasting
pipeline. Afterward, we identify gaps and highlight future research directions by analyzing the coverage of the forecast-
ing pipeline.

3 | TIME SERIES FORECASTING

A time series y k½ �;k¼ 1,2…,Kf g reflects a set of K �ℕ>0 observations typically measured at equidistant points in
time (Brockwell & Davis, 2016). A time series forecasting model f �ð Þ estimates future values by for one or more
time points—the forecast horizon H �ℕ>0—using current and past values (Gonz�alez Ordiano et al., 2018). It is
defined as

FIGURE 2 Related to this review are the fields of pipeline creation, data preprocessing, feature engineering, hyperparameter

optimization (HPO) and combined algorithm selection and hyperparameter optimization (CASH), and forecast ensembling
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by kþH½ � ¼ f y k½ �,…,y k�H1½ �ð
u > k½ �,…,u > k�H1½ �
bu > k½ �,…,bu > k�H1½ �
wÞ;k,H,H1 �ℕ>0;k>H1

ð1Þ

where H1 �ℕ>0 indicates the horizon for past values k�H1, the vector w contains the model's parameters, the vector
u > denotes values from exogenous time series, the vector by > indicates that the exogenous values originate from
another forecast, and y represents values of the target time series (Gonz�alez Ordiano et al., 2018).7

In time series forecasting, the following four families of methods exist naïve methods, statistical methods,
machine learning methods, and hybrid methods. The families and their main representatives are briefly introduced
in the following. Subsequently, we summarize common training methods for fitting the respective forecasting
model.

3.1 | Naïve forecasting methods

The simplest method family of forecasting are naïve methods. Common representatives are the averaging method,
where the forecasts of all future values are equal to the average of historical data, and the Random Walk (RW) method,
where the value of the last observation is used as forecast. For the RW, modifications are available for data with season-
ality (sRW) and drift (dRW). The sRW method is a modification of the RW, where the value of the last observation of
the same season is used as forecast (e.g., the same day of the previous week). In the dRW method, the drift is assumed
to be the average change observed in the historical data and is added to the RW (Hyndman & Athanasopoulos, 2021).

3.2 | Statistical forecasting methods

More sophisticated than naïve methods are statistical methods that use statistics based on historical data to forecast
future time series values. The first representatives are autoregression (AR) methods. The autoregressive moving average
(ARMA) method (Box et al., 2016) assumes a linear relationship between the lagged inputs and is applicable if the time
series is stationary. If trends and seasonal characteristics are present, the time series is nonstationary, and the require-
ments for applying ARMA are not fulfilled. To address this problem, the autoregressive integrated moving average
(ARIMA) method (Box et al., 2016) removes time series trends through differencing and the seasonal ARIMA
(sARIMA) method eliminates the seasonality by seasonal differencing (Cheng et al., 2015). The second representatives
are exponential smoothing (ES) methods, where the forecast is determined by a weighted average of past observations,
with the weights decaying exponentially with their age (Hyndman & Athanasopoulos, 2021). Simple exponential
smoothing (SES) is a valid forecasting method for time series data without a trend or seasonal pattern. For time series
with a trend, SES is adapted to double exponential smoothing (DES), and triple exponential smoothing (TES) is suitable
for time series with seasonality. An extensive discussion of statistical forecasting methods can be found in reference
(De Gooijer & Hyndman, 2006).

3.3 | Machine learning forecasting methods

While most statistical forecasting methods are based on assumptions about the distribution of the time series data,
machine learning methods have fewer restrictions in terms of linearity and stationarity (Cheng et al., 2015). In addition
to statistical forecasting methods, which are specifically developed for time series forecasting, one can use regression
methods based on machine learning to forecast multiple time points ahead using the following strategies, either solely
or in combination (Taieb et al., 2012):

Recursive strategy: One trains a single regression model f �ð Þ to forecast one-time point ahead. In the operation, one
recursively feedbacks the output value to the input for the next time point.

Direct strategy: One trains multiple independent regression models f h �ð Þ,h¼ 1,…H, each to forecast the value at
time kþh.
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Multiple output strategy: One trains a single regression model to forecast the whole horizon H at once. Conse-
quently, the output is not a single value but a vector.

Representative machine learning methods are the support vector regression (SVR), decision tree (DT)-based
methods like the gradient boosting machine (GBM) and the random forest (RF), fuzzy time series (FTS), and artificial
neural networks (ANNs). The capabilities of these forecasting methods strongly depend on the task and the characteris-
tics of the time series, respectively. Hence, data preprocessing and feature engineering are often essential, which in turn
makes manual tailoring of the forecasting method to the task time-consuming. Since this review study focuses on auto-
mating the design process of forecasting pipelines, we refer to Masini et al. (2021) for more details on machine learning
methods for time series forecasting and to Han et al. (2019) for an experimental comparison of different deep learning
techniques applied to time series forecasting.

3.4 | Hybrid forecasting methods

The hybrid forecasting method family aims to combine different forecasting methods with their advantages
to obtain a forecast that improves over using a single method. These hybrid forecasting methods are based
on different hybridization approaches. The first often-used hybridization approach is ensembling, where
input data is simultaneously fed into different forecasting methods, and their outputs are combined into one
forecast. The second typical hybridization approach includes data preprocessing-based hybrid models. The
original time series is decomposed into multiple time series components to simplify the forecasting problem.
Then, each component can be addressed by an appropriate forecasting method before recomposing their out-
puts to a single forecast. In the third common approach for hybridization, several forecasting methods are
sequentially connected. For example, the hybrid forecasting method of Kourentzes and Crone (2010) uses
the MLP-based INF to identify periodicities in time series, and apply the result to automatically configure
the TES method. Recent sequential hybridization approaches combine statistical forecasting methods with
deep learning, for example, combining ES and a recurrent neural network (RNN). The ES-RNN captures the
seasonality and level as the main components of the time series with ES and learns additional effects with
the RNN to correct the ES forecast (Smyl, 2020). Since each hybridization approach involves several design
decisions that can be automated, we consider hybrid forecasting methods as forecasting pipelines and only
review literature that applies automation methods, according to our methodology defined in Section 2. More
details on hybridization approaches in time series forecasting can be found in Hajirahimi and
Khashei (2019).

3.5 | Training methods for model fitting

Training a forecasting method with historical time series data results in a fitted forecasting model. The appropriate
training method is essential and strongly depends on the respective forecasting method.

Fitting naïve forecasting methods either requires very simple training methods like computing the arithmetic
mean of the historical time series data for the naive averaging forecasting method or no training at all as in the
RW. Statistical forecasting methods like the ARIMA or ES methods commonly use the maximum likelihood esti-
mation to fit the model. This training method uses an optimization algorithm to find the model's weights that
maximize the probability of obtaining the observed historical time series data. In practice, the logarithm of this
likelihood is maximized, since the maximum is preserved after the log-transformation, but the optimization prob-
lem becomes simpler (Hyndman & Athanasopoulos, 2021).8 For machine learning-based forecasting methods,
the training methods are often very specific to the particular forecasting method. For example, the SVR
maps the time series data into a high-dimensional space using a linear or nonlinear kernel function, where
it searches for a linear hyperplane containing the maximum number of observations between the hyperplane
and a given error margin ε with tolerance C for observations outside of ε. This search can be formulated as
a constrained minimization problem in the form of quadratic programming and solved with appropriate
solvers.9 Training a DT, however, starts by sorting the time series data and taking the average as the initial
forecast. It is followed by an iterative search for points where splitting the sorted data and taking the aver-
age on the data partitions increases the forecast accuracy. Various training methods for creating the decision
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nodes exist, for example, the top-down greedy algorithm.10 The GBM forms an ensemble by commonly
starting with an initial DT and iteratively fitting new DTs to the residual between forecast by and realized
value y, which are added to the ensemble to minimize the residual (boosting). Instead of boosting, the RF uses the boot-
strap aggregating (bagging) ensemble learning method to create the DT-based ensemble. The bagging method repeat-
edly selects a random sub-set of the training data and fits a DT on this sub-set. For the RF forecast, the output of all
DTs is averaged. Instead of partitioning data into crisp intervals as in DTs, FTS methods partition the data into fuzzy
intervals, that is, an observation can belong to multiple intervals, quantifiable by the degree of membership. Training
an FTS involves the steps of defining the so-called universe of discourse, partitioning the data, fuzzification, learning
fuzzy logical relationships and building relationship groups, and finally, defining how to defuzzify the membership
degrees into a crisp forecast.11 Similar to the fuzzy logic, which is inspired by human reasoning, ANNs are also inspired
by biology. More specifically, ANNs are modeled after biological neural networks, that is, input signals feed-forward
through a network of artificial neurons connected in a series of layers, and, depending on the input signal, different
connections can be activated, similar to the synapses in a biological brain. The weights of these connections and neu-
rons are usually estimated iteratively based on gradient descent using backpropagation for efficient gradient computa-
tion or based on meta-heuristics.12

In addition to the training methods, the loss function, that is, the target function that is optimized
during training, is crucial for the model fitting. As described above, the training of most statistical forecasting
methods aims to maximize the log-likelihood, while machine learning methods often minimize an error mea-
sure, the so-called loss function. Common loss functions to be minimized during training are the mean average
error (MAE) and the mean squared error (MSE; both described in Section 6.1). While minimizing the MAE
results in a model that forecasts the median, minimizing the MSE results in forecasting the mean (Hyndman &
Athanasopoulos, 2021). Especially for ANNs, customizing the loss function is a possibility for manually tailoring
the forecast to a task, for example, wind speed forecasting (Chen et al., 2022). Regarding automation, we consider
the manual customization of the loss function as a possibility to further improve an automatically created fore-
casting model with expert knowledge. Therefore, we refer to Koutsandreas et al. (2021) for an overview of loss
functions in time series forecasting.

As outlined, the training method for fitting the forecasting model is often tied to the corresponding forecasting
method. Apart from the forecasting method, other methods in the pipeline also must be fitted, such as input scalers or
feature selectors. For this reason, we do not consider training methods as a separate pipeline section. Training a fore-
casting pipeline rather comprises the successive fitting of all involved methods using corresponding training methods.
Regarding automation, approaches exist to optimal configure these training methods by HPO. Examples include opti-
mizing the learning rate for training MLPs (Donate & Cortez, 2014) or even connecting pipeline sections, such as in the
SVR-based embedded feature selection (Valente & Maldonado, 2020). We detail each approach in the corresponding
section of this article.

4 | DATA PREPROCESSING

Since most forecasting methods rely on assumptions about data properties, data preprocessing is of crucial importance.
Data preprocessing includes anomaly detection and handling, transforming the time series to make it stationary, and
scaling the time series. In the following subsections, automated methods for data preprocessing are introduced, and
their utilization in forecasting pipelines is exemplified by the reviewed literature.

4.1 | Anomalies

An anomaly is a value that significantly deviates from the rest of the time series (Chandola et al., 2009). Anoma-
lies are induced by rare events or by errors in the data. Apart from anomalous existing values, which we call out-
liers, anomalies also comprise missing values in the time series. Both outliers and missing values can degrade the
forecast accuracy or cause the training to fail. Therefore, appropriate anomaly detection and handling are neces-
sary. Table 1 shows the summary of automated anomaly detection and handling methods used in the literature for
time series forecasting pipelines.
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4.1.1 | Outlier detection and handling

Automated outlier detection and handling aim to identify abnormal values and replace them with plausible values
without human intervention. Liu et al. (2017) define an interval based on the global mean and the variance of the time
series

mean yð Þ�αt �var yð Þ,mean yð Þþαt �var yð Þ½ �, ð2Þ

with the threshold αt and the anomaly detection method considers values outside the interval as outliers. Detected
abnormal values are automatically substituted with the arithmetical averages of the nearest previous and posterior
normal values. However, anomalous values themselves bias the estimation of the mean and the variance, and the
method is only valid for stationary time series. Other authors tackle this weakness by calculating the local median
instead of the global mean. Martínez, Charte, et al. (2019), Yan (2012), and Fan et al. (2019) consider an observa-
tion as an outlier if its absolute value is four times greater than the absolute medians of the three consecutive
points before and after the observation. However, only extreme values above the absolute medians are detected,
and extreme values below the absolute medians are not identified. Widodo et al. (2016) apply the Hampel method,
which automatically replaces any value that deviates from the median of its neighbors by more than three median
absolute deviations (MAD) with that median value. Unlike previous methods, which use statistical measures, the
anomaly detection and handling method of Maravall et al. (2015) is based on a forecasting model. The method fits
an ARIMA model, evaluates the MAD of the estimation residuals, and automatically replaces detected outliers
with the forecast of the ARIMA model.

4.1.2 | Missing value handling

Automated missing value handling aims to reconstruct absent observations without human assistance. The method of
Fan et al. (2019) automatically replaces missing values in the time series with the median of 12 consecutive points
before and after the observation. Yet, this method is prone to larger gaps of missing data. The method of Züfle and
Kounev (2020) automatically imputes missing values by multiplying the known value one season before or after the
missing value by the trend factor estimated between the day of the missing values and the day copied. Using this proce-
dure in chronological order allows the imputed values for the imputation of subsequent missing values. After the miss-
ing value imputation, the authors apply a similar outlier detection method like (2) with αt ¼ 3. Unlike Liu et al. (2017),
Züfle and Kounev (2020) use the robust standard deviation between the 1st and 99th percentile of the data and replace
the outliers by linearly interpolating between the two nearest nonanomalous values.13

4.2 | Stationarity

In a stationary time series y k½ �, the statistical properties do not depend on the time of observation k, that is, the distri-
bution of y k,…,kþ s½ � is independent of k for all s (Hyndman & Athanasopoulos, 2021). Therefore, a time series with

TABLE 1 Summary of automated anomaly detection and handling methods for data preprocessing in time series forecasting pipelines

References Outlier detection Outlier handling Missing value handling

Liu et al., 2017 glob. Mean-var. thresh. Average nearest

Martínez, Charte, et al., 2019; Yan, 2012 loc. Median thresh. Average nearest

Fan et al., 2019 loc. Median thresh. Average nearest Median imput.

Widodo et al., 2016 loc. Median-MAD thresh. Median nearest

Maravall et al., 2015 ARIMA-MAD thresh. ARIMA values

Züfle & Kounev, 2020 glob. Median-robust-var. thresh. Linear interpolation Copy-paste imput.

Abbreviations: glob., global; imput., imputation; loc., local; thresh., threshold; var., variance.
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trends or seasonal patterns is not stationary because either the mean of the time series, its variance, or both
change over time. Since some statistical forecasting methods assume a stationary time series, their application to
nonstationary time series requires an appropriate transformation. Stationarity tests help to identify the type of
nonstationarity and support the automated selection of the appropriate transformation. Table 2 shows the sum-
mary of automated stationarity testing and transformation methods used in the literature for time series forecast-
ing pipelines, introduced in the following.

4.2.1 | Autocorrelation and differencing transformations

A first approach to automatically identify nonstationarities in time series is proposed by Tran and Reed (2004) based on
the autocorrelation function (ACF) and the partial autocorrelation function (PACF). The ACF and the PACF visualize
the correlation of a time series with a delayed copy of itself. The authors automatically detect decay patterns by calculat-
ing the average rate of change in the magnitude of high frequencies in the ACF and PACF, and consider rates of less
than 10% as slow decay. The slow decay patterns indicate trends in the time series. To remove the trends, the time series
is differenced by subtracting successive observations d times. After differencing, the ACF and PACF show significant
peaks at regular intervals sif the time series is seasonal. To remove the seasonality, the time series is seasonally
differenced D times by subtracting observations separated by s. Note that the ARIMA forecasting method explicitly
includes differencing as hyperparameter d in the model structure and the sARIMA method additionally considers sea-
sonal differencing with D and s.

TABLE 2 Summary of stationarity testing and transformation methods for data preprocessing in automated time series forecasting

pipelines

References Forecasting method(s) Stationarity testing Stationarity transformation

Tran & Reed, 2004 sARIMA ACF, PACF pattern
analysis

diff., s. diff.

Bauer, Züfle, Herbst, et al., 2020 Telescope Periodogram Box–Cox, STL

Kourentzes & Crone, 2010 MLP, TES INF INF

Crone & Kourentzes, 2010 MLP ADF, INF diff., INF

Alzyout et al., 2019 ARIMA KPSS diff.

Sekma et al., 2016 AR, VAR KPSS diff.

Hyndman & Khandakar, 2008 autoARIMA KPSS, Canova–Hansen diff., s. diff.

E�grio�glu & Bas, 2022 SMNM ACF, ADF diff., s. diff

Lu & AbouRizk, 2009 sARIMA ACF, PACF t-test log, diff., s. diff.

Maravall et al., 2015 ARMA, sARIMA log-level, Kendall–Ord,
Pierce, Lytras, seasonal
frequency peaks

log, diff., s. diff.

Liu et al., 2017 ARIMA ADF, log-level diff., log

Anvari et al., 2016 sARIMA OCSB, KPSS, correlation,
t-test, ADF

diff., s. diff., log

Amin et al., 2012 ARIMA, SETARMA KS, KPSS log, Box–Cox

Martínez, Frías, et al., 2019 kNN diff., Box–Cox, STL

Fildes & Petropoulos, 2015 autoARIMA, Theta,
Damped, RW, sRW,
SES, DES, TES

Cox–Stuart classical decomposition

Widodo et al., 2016 MKL STL

Yan, 2012 GRNN Heuristic autocorrelation diff., s. diff.

Bandara et al. 2020 LSTM diff., log, STL

Abbreviations: s., seasonal; diff., differencing.
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4.2.2 | Frequency filters

Apart from the ACF and PACF, methods based on frequency filters are used to identify seasonality. Bauer, Züfle, Her-
bst, et al. (2020) use the periodogram to automatically retrieve all frequencies within the time series, iterate over the
found frequencies, and match each frequency with reasonable frequencies (e.g., daily, hourly, and yearly) with toler-
ance to determine seasonal frequencies. Kourentzes and Crone (2010) propose the iterative neural filter (INF) to auto-
matically identify seasonal frequencies. The filter distinguishes between stochastic and deterministic components and
iteratively removes seasonalities, trends, and irregularities in the time series.

4.2.3 | Unit root tests

Statistical unit root tests are used to identify nonstationarities before applying transformation methods. The unit root
tests used in the literature include the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al., 1992) or
the Cox–Stuart test (Cox & Stuart, 1955) for testing if the time series is stationary around a deterministic trend, the aug-
mented Dickey–Fuller (ADF) test (Cheung & Lai, 1995) for the existence of stochastic trends in the time series, and the
Canova–Hansen test (Canova & Hansen, 1995) or Osborn–Chui–Smith–Birchenhall (OCSB) test (Osborn et al., 1988)
for the existence of seasonal patterns over time. According to the trends and seasonalities detected in the unit root tests,
the time series is automatically differenced or seasonally differenced, respectively.

4.2.4 | Logarithm and normality transformations

Apart from unit root testing, Maravall et al. (2015) and Liu et al. (2017) propose log-level tests to automatically evaluate
if a log-transformation of the time series is beneficial. Amin et al. (2012) use the Kolmogorov–Smirnov (KS) test
(Lilliefors, 1967) to determine whether a time series is normally distributed—if not, the log-transformation is applied.
Other authors apply the log-transformation without testing to reduce the variance (Anvari et al., 2016; Bandara
et al., 2020) or apply various transformations until critical values are satisfied in t-tests of ACF and PACF (Lu &
AbouRizk, 2009). For achieving normality and stabilizing the variance, the Box–Cox transformation (Box & Cox, 1964)
is often applied without preceding testing, like in references (Amin et al., 2012; Bauer, Züfle, Grohmann, et al., 2020;
Martínez, Charte, et al., 2019; Züfle & Kounev, 2020).

4.2.5 | Time series decomposition

In addition to transformation operations to achieve stationarity, time series can be decomposed into the compo-
nents trend-cycle T k½ �, season S k½ �, and irregular R k½ � (i.e., the residual), as shown in Figure 3. Two decomposition
approaches are possible—the additive decomposition y k½ � ¼T k½ �þS k½ �þR k½ � and the multiplicative decomposition
y k½ � ¼T k½ � �S k½ � �R k½ � (Hyndman & Athanasopoulos, 2021). Afterward, each component can be handled by an individual
forecasting model (i.e., preprocessing-based hybrid modeling), recombining their outputs according to the respective
decomposition approach. Popular decomposition methods are the so-called classical decomposition, the seasonal and
trend decomposition using loess (STL), the X-11 method, and the SEATS method, detailed in Hyndman and
Athanasopoulos (2021), as well as the Fourier transformation, the wavelet transformation, and the empirical mode
decomposition (EMD), surveyed in Rios and de Mello (2012). In automated forecasting pipelines, the most common
decomposition method is STL which is used in the references (Bandara et al., 2020; Bauer, Züfle, Herbst, et al., 2020;
Martínez, Charte, et al., 2019; Widodo et al., 2016) and can handle any type of seasonality automatically.

4.3 | Scaling

The scale of time series can have an adverse effect on forecasting methods based on machine learning. If the range of
values is large, learning methods based on gradient descent may converge much slower or fail due to instability.
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Additionally, in the case of multiple inputs with different scales, the inputs with larger variance dominate the others in
the calculation of many distance measures (Pedregosa et al., 2011).

The general formalization for time series scaling is

y0 ¼ y�a
b

: ð3Þ

Table 3 shows the scaling methods used in the literature on automated forecasting pipelines compared to the family
of the forecasting method. A common approach is min–max scaling, where the time series are scaled in the range 0,1½ �
with a¼ min yð Þ,b¼ max yð Þ�min yð Þ. While min–max scaling guarantees that all-time series are scaled to the same
range 0,1½ �, the Z-score normalization scales the time series to zero-mean and unit-variance with
a¼mean yð Þ,b¼ var yð Þ. Both scaling methods are sensitive to outliers and thus require a preceding anomaly detection
and handling. Alternatively, robust scaling methods like scikit-learn's RobustScaler14 can be used, which removes the
median and scales the data according to the inter-quartile range (IQR).

4.4 | Discussion

We discuss data preprocessing as the first section of the automated forecasting pipeline, show possible problems, give
recommendations, and suggest future research.

As shown in Table 2, automated stationarity testing and transformation methods are predominantly applied to pipe-
lines using methods of the statistical forecasting family. In contrast, Table 3 shows that time series scaling is mainly
used in pipelines with methods of the machine learning family. Both forecasting families require methods for auto-
mated anomaly detection and handling, shown in Table 1.

original
trend-cycle

season
residual

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month

13000

14000
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16000
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−200
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50
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FIGURE 3 Decomposition of a time series into the trend-cycle, season, and irregular components with the additive seasonal and trend

decomposition using loess (STL; Hyndman & Athanasopoulos, 2021)
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Regardless of their predominant use for automation, both transformation methods—for achieving stationarity and
scaling—can be adversely affected by anomalies. Therefore, it is essential that automated anomaly detection and han-
dling is performed before time series transformations. In automated outlier detection and handling, the main concern
is that methods applied in the literature on automated forecasting pipelines focus on single outliers, although methods
for consecutive outliers are widely available (Bl�azquez-Garcıá et al., 2021). Due to this focus, these methods may have a
limited detection and handling performance if several consecutive outliers or abnormal patterns are present. For auto-
mated forecasting pipelines, we thus recommend the first step of preprocessing to be detecting and removing isolated
outliers, followed by detecting consecutive anomalous values—outliers or missing values—and handling them with an
appropriate method. Ideally, the handling also considers domain-specific knowledge (e.g., Weber et al., 2021).

The second step of preprocessing, automated testing for stationarity and time series transformation, is only
crucial if the pipeline uses a forecasting method that assumes a stationary time series. For each condition—
deterministic and stochastic trends, seasonalities, and normality—only one test must be applied because the use
of multiple tests may lead to conflicting answers (Hyndman & Athanasopoulos, 2021). Time series decomposition
methods are also suitable to simplify the forecasting problem. After applying the decomposition, each component
can be treated with an appropriate forecasting method. In the reviewed literature, the STL decomposition
method is predominantly used.15 Automated methods like STL provide robust default hyperparameters, but these
may need to be adapted to the forecasting problem (Hyndman & Athanasopoulos, 2021). Consequently, tailoring
the hyperparameters or even choosing the most suitable decomposition method and its hyperparameters
(i.e., CASH) can be approached as a hyperparameter optimization problem. However, this approach is not con-
sidered in the reviewed literature.

In the third step of preprocessing, we recommend using an appropriate time series scaling method to facilitate the
training process of the respective forecasting method.

Given these recommendations, future work on automated forecasting pipelines should also consider domain knowl-
edge to identify anomalies, for example, if only positive values are valid or domain-adapted imputation to improve the
reconstruction. Additionally, it should be systematically evaluated whether stationarity transformations improve the
forecast accuracy of machine learning methods if applied in the forecasting pipeline.

5 | FEATURE ENGINEERING

A time series feature reflects the observations of an explanatory variable in the process being forecast (i.e., the target
variable). Table 4 shows feature engineering as a subsection of the time series forecasting pipeline, consisting of extrac-
tion and selection of features.

5.1 | Feature extraction

The feature space of the training data set contains for each explanatory variable a time series of the same resolution
and length as the target variable.16 Feature extraction aims at automatically enriching the feature space with additional

TABLE 3 Summary of scaling methods for data preprocessing applied in time series forecasting pipelines

Forecasting method family Min–max Zero-mean Z-score

Statistical Sekma et al., 2016 Liu et al., 2017 Dellino et al., 2018a

Machine learning Bauer, Züfle, Grohmann, et al., 2020;
Züfle et al., 2019; Kourentzes &
Crone, 2010; Kourentzes &
Crone, 2010; Crone &
Kourentzes, 2010; Martínez, Charte,
et al., 2019; Violos et al., 2020;
Maldonado et al., 2019; Yan, 2012;
Panigrahi & Behera, 2020; Widodo &
Budi, 2013; Sergio et al., 2016; Donate
et al., 2013; Donate & Cortez, 2014

Rätz et al., 2019; Ma & Fildes, 2021;
Widodo & Budi, 2013; Widodo
et al., 2016; Sagaert et al., 2018
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explanatory variables. In the following, time series features are introduced, and their usage in automated forecasting
pipelines is explored with literature references.

5.1.1 | Lag features

In autocorrelated time series, past observations can be valuable explanatory variables to forecast the target variable. Lag
features provide values from prior time points for the forecasting method, that is, at time point k, the model also pro-
cesses values that date back a certain time horizon H1. Lag features are useful if the target variable has inertia that is
significantly reflected in the resolution of the time series or if exogenous influences affect the target variable in periodic
patterns (Rätz et al., 2019).

Table 4 reveals that lag features are the most applied type of features.

5.1.2 | Cyclic features

In the training data, the time stamps (e.g., [YYYY-MM-DD hh:mm:ss]) of the target variable are unique and specify the
sequence of the observations. Cyclical patterns that humans can detect in this format, like the hour of the day, the
day of the week, weekday and weekend, or month and year, cannot be processed by machine learning methods with-
out encoding. Cyclic features provide this cyclic relationship by ordinal, interval, or categorical encoding. In the fol-
lowing, we exemplify these encodings for the day of the week (Table 5). Ordinal encoding assigns an integer
numerical value to individual days. For an interval encoding, one may utilize a periodical sine-cosine encoding to
establish similarities between related observations, for example, for encoding the day of the week, one adds two-time
series features that encode each weekday.17 A categorical encoding is achieved through so-called one-hot encoding.
In this example, we create a time series feature for each day of the week, being one on that day and zero otherwise.
Since the last category—the Sunday—is already implicitly represented if each other categorical feature is zero, one
may omit an explicit feature.

5.1.3 | Transformation features

Time series transformations are widely used to make time series stationary, and can also be applied to extract explana-
tory variables that we term transformation features. These features include calculating time derivatives, the decomposi-
tion into trend, seasonality and residual, moving averages (Cerqueira et al., 2021), as well as applying mathematical
operations on existing features, for example, multiplication of exogenous features (Rätz et al., 2019).

In the literature reviewed, cyclic features are not widely applied. Züfle and Kounev (2020) apply RF and GBM
methods, using lag features and the cyclic features hour of the day, day of the week, and the exogenous feature holiday.
However, the encoding of the cyclic features is not described. Sin–cos encoded cyclic features are used by Kourentzes
and Crone (2010) as input for a multilayer perceptron (MLP) forecasting method.

TABLE 5 Exemplification of cyclical encoding methods for the day of the week of a time series

Day of week
Ordinal

Sin–cos interval One-hot categorical

xdow xsin xcos xmon xtue xwed xthu xfri xsat

Monday 0 1.000 0.000 1 0 0 0 0 0

Tuesday 1 0.623 0.782 0 1 0 0 0 0

Wednesday 2 �0.223 0.975 0 0 1 0 0 0

Thursday 3 �0.901 0.434 0 0 0 1 0 0

Friday 4 �0.901 �0.434 0 0 0 0 1 0

Saturday 5 �0.223 �0.975 0 0 0 0 0 1

Sunday 6 0.623 �0.782 0 0 0 0 0 0
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5.1.4 | Exogenous features

In addition to features that are endogenously derived from the target variable, the forecast can be improved by using
exogenous features if the target variable is subject to exogenous influences. In addition, lag, cyclical, and transformation
features can also be extracted from exogenous features. Whether and which exogenous influences exist depends on the
data domain.18

For example, energy data often depends on exogenous weather measures (Maldonado et al., 2019; Rätz et al., 2019;
Son & Kim, 2015; Valente & Maldonado, 2020), human access data underlies the influences of public holidays and
weather (Lowther et al., 2020; Züfle & Kounev, 2020), and sales data often correlates with economic indicators (Dellino
et al., 2018a, 2018b; Sagaert et al., 2018).19

5.2 | Feature selection

After automatically extracting several features, they typically undergo a selection to remove features that provide no
additional information value, for example, because of redundancy. In the following, methods for automated feature
selection are presented, and their application in forecasting pipelines is explored based on the reviewed literature.

5.2.1 | Filter methods

Filter methods use metrics to rank single features or feature combinations and automatically select a promising feature
set based on a threshold (Jovi�c et al., 2015). Hence, the filters rely on the general characteristics of the training data and
are independent of the forecasting method and other subsequent sections in the forecasting pipeline.

The characteristics used for filtering are manifold. Chakrabarti and Faloutsos (2002) propose an automated filtering
method to determine the optimal lag features based on a threshold of the time series' fractal dimension. Martínez, Charte,
et al. (2019) automatically select features by identifying significant lags in the PACF. Kourentzes and Crone (2010) pro-
pose the INF method to identify seasonal frequencies in time series, which automatically selects lag and sin–cos encoded
cyclic features. The method of Bauer, Züfle, Herbst, et al. (2020) automatically filters frequencies of the time series using
the periodogram with the threshold of a spectral value greater than 50% of the most dominant frequency. Additionally,
cyclic features are extracted by calculating Fourier terms of the dominant frequencies. The most dominant frequency is
used to decompose the time series into trend, season, and residual components by STL. Finally, the cyclic features and the
seasonal component as a transformation feature are used to forecast the de-trended time series.

5.2.2 | Wrapper methods

In contrast to filter methods, the wrapper methods assess candidate features based on an evaluation criterion on a vali-
dation data set. The best-performing feature set is selected by a search method, which tailors the feature set to the fore-
casting method or the entire forecasting pipeline, respectively. The search methods and forecast accuracy metrics used
in the literature are diverse. Independent from the chosen search method and metric, wrapper methods commonly take
more computing time than filter methods, as training and validation require considerably more computing effort than
calculating statistical measures. However, empirical studies show that the computing effort pays off in a higher achiev-
able forecast accuracy when using the wrapper approach compared to filter methods (Jovi�c et al., 2015).

In the literature reviewed, automated feature selection based on the forecast accuracy of the pipeline is addressed by
different methods. The method of Yan (2012) and Fan et al. (2019) automatically determines the optimal lag features
based on the forecast error by searching over candidate lags. The candidate lags are either predefined individually (grid
search) or drawn randomly between specified boundaries (random search). Balkin and Ord (2000) and Martínez, Frías,
et al. (2019) apply forward selection (FS) to automatically identify the optimal lag features. First, several forecasting
pipelines are trained for each individual lag feature. Second, the FS selects the best-performing lag feature and repeats
the first procedure by adding another lag feature. It retains the combination with the highest improvement and repeats
the procedure until the forecast accuracy stops increasing. Besides search heuristics, optimization can be applied for
feature selection. For automatically selecting exogenous features, Lowther et al. (2020) adopt a mixed integer quadratic
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programming (MIQP) problem (Bertsimas et al., 2016), and Son and Kim (2015) apply the evolutionary particle swarm
optimization (PSO). Evolutionary optimization for selecting features is also applied by Aladag et al. (2014). The authors
use a genetic algorithm (GA) for automated lag feature selection of an FTS method and simultaneously determine the
optimal FTS order. Besides the GA, Donate et al. (2013) and Donate and Cortez (2014) evaluate two other evolutionary
optimization approaches for automated lag feature selection of MLPs, where the estimation distribution algorithm
(EDA) yields the best convergence speed and the lowest forecast error.

5.2.3 | Embedded methods

Embedded methods integrate the feature selection into the training process of the forecasting method (Jovi�c
et al., 2015).20 During the training, the embedded feature selection commonly estimates the feature importance and
weights the features accordingly. Embedded methods require less computing effort than wrapper methods but more
than filter methods (Rätz et al., 2019).

The embedded methods in the literature are specific to the forecasting method. The approach of Panigrahi and
Behera (2020) automatically determines the optimal lag features by a differential evolution algorithm (DEA). Instead of
using gradient-based methods for training an MLP, the authors integrate the weight estimation into the DEA, aiming
to increase the convergence speed. Valente and Maldonado (2020) consider the automated selection of lag and exoge-
nous features by an FS embedded into the SVR training process. The FS is based on a contribution metric that takes
into account lags whose inclusion minimizes the metric. An automated backward elimination (BE) for SVR using
embedded kernel penalization is described by Maldonado et al. (2019). Lag and exogenous features that are irrelevant
for the forecast accuracy are successively removed during training. Another BE is proposed by E�grio�glu and Bas (2022)
that successively discards insignificant lag features of the single multiplicative neuron model (SMNM) forecasting
method. The input significance test (Mohammadi, 2018) first calculates the outputs for each input, having the other
inputs fixed in their arithmetic means, second, applies an LR with the outputs as independent variables and the target
values as the dependent variables, and third, tests the LR parameters for significance. Insignificant inputs are excluded
and the SMNM is trained again, testing inputs until they all are significant and simultaneously optimizing the number
of the SMNM inputs. A lag feature selection, also based on testing the inputs for significance, is proposed for the
bootstrapped hybrid ANN (E�grio�glu & Fildes, 2022), which is an improvement of the method proposed by Yolcu et al.
(2021). The values of the input weights vector are tested if they are significantly different from zero using the t-test or
the sign-rank-test if the normality assumption is violated.

5.2.4 | Hybrid methods

Hybrid methods aim to combine the advantages of the above methods. Rätz et al. (2019) evaluate several filter, wrap-
per, embedded, and hybrid feature selection methods. Based on their experiments, they propose to use a filter method
to automatically remove all features with low variance in the first step. Afterward, they apply Bayesian optimization
(BO) to assess the remaining feature candidate combinations, consisting of lag, transformation, and exogenous fea-
tures based on the forecast accuracy. The approach of Widodo et al. (2016) filters significant lags using ACF, associ-
ates the remaining lag features with a kernel, and automatically assigns appropriate weights to the kernels during
training of the multiple kernel learning (MKL) method. Sagaert et al. (2018) first filter candidate lag features using
automated FS, similar to the stepwise search for the automated ARIMA design of Hyndman and Khandakar (2008).
Then, the identified set of lag features together with exogenous features are used as inputs of the embedded least
absolute shrinkage and selection operator (LASSO) method that automatically selects features by shrinking the coef-
ficients of irrelevant ones

5.3 | Feature aggregation

Feature aggregation aims to transform the feature space into a low-dimensional representation while retaining the
primary properties of the time series. The transformation is advantageous in high-dimensional feature spaces to
reduce processing time and avoid the curse of dimensionality.21 The principal component analysis (PCA), for
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example, maps the data to a lower-dimensional space, maximizing the variance in the lower-dimensional
representation.22

Dellino et al. (2018a) prewhiten the time series data with a PCA, that is, the PCA aggregates exogenous features and
discards the principal components with a low variance that are assumed as noise. Instead of aggregating exogenous fea-
tures, Gao et al. (2021) apply the PCA to aggregate lag features for an FTS. They aggregate the lag features into one
feature—the first principle component—aiming to maximize the dependence between the target variable and lag fea-
tures, allowing a large number of feature candidates to be considered without explicit selection.

5.4 | Discussion

We discuss feature engineering as the second section of the automated forecasting pipeline, highlight a potential issue,
provide recommendations, and suggest future work.

As shown in Table 4, most automated pipelines that apply forecasting methods based on machine learning rely on
lag features because—unlike statistical forecasting methods—they do not consider time lags implicitly.23 The sparse use
of cyclic and transformation features can be explained because most of the analyzed forecasting pipelines already con-
sider this information by automatically selecting appropriate lags.

In terms of automation, the majority of the literature combines the extraction of predefined features with an auto-
mated selection. Regarding feature extraction, the primary concerns remain in the human-defined feature extraction
since it requires experience and may be biased. For this reason, extracting a large set of default features—including lag,
cyclical, and transformation features—for the automated forecasting pipeline can be valuable since the subsequent
automated feature selection removes irrelevant ones. Additionally, exogenous features are a powerful opportunity to
integrate domain-specific knowledge into the forecasts.24

In the automated feature selection, all four methods—filter, wrapper, embedded, and hybrid—are useful for
removing irrelevant features. While an embedded method is computationally beneficial by integrating the feature
selection in the training process, it is specifically designed for a forecasting method. Because of its independence
from the forecasting method, we recommend combining a filter with a wrapper method (hybrid) to initially reduce
the candidate features through filtering and then tailoring the feature selection to the forecasting method or pipe-
line, respectively.

Since aggregated features often correlate with other features and the number of features can be reduced by an auto-
mated feature selection method, we do not consider automated feature aggregation necessary to reach a high forecast
accuracy. Moreover, the aggregation of features limits their interpretability regarding their information value for the
forecast.

Based on these challenges, future work toward automated forecasting pipelines should consider the automated
extraction of default endogenous features,25 extended by a domain-specific extraction to include exogenous
features.

6 | HYPERPARAMETER OPTIMIZATION

Forecasting methods incorporate a wide range of hyperparameters about the forecasting model's structure, training
regularization, and algorithm setup; parameters whose values are not directly derived from the data and must be
selected by the data scientist. The hyperparameter configuration λ includes all considered hyperparameters and their
selected values (Feurer & Hutter, 2019). By tailoring λ to the specific problem using HPO, one may improve the forecast
accuracy over the default setting of common forecasting libraries (Rätz et al., 2019). Besides HPO, the selection of
the best forecasting method can improve the forecast accuracy. Since we want to generate a pool of candidates for the
selection whose hyperparameters are, in turn, optimally configured, we first address the HPO.

6.1 | Evaluation criteria and validation sample

Most HPO methods assume that the performance of the model is quantifiable. Typically, the hyperparameters are opti-
mized to improve the model's forecast accuracy and measures from information theory and error measures are used as
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evaluation criteria.26 Information criteria (IC) measure the amount of information lost by a statistical model, taking
into account the goodness-of-fit (GOF) and the model complexity. The less information a model loses, the higher the
expected forecast accuracy. One IC is the Akaike information criterion (AIC)

AIC¼ 2w�2ln bL� �
ð4Þ

with the number of estimated parameters w and the model's maximum value of the likelihood function bL. It rewards
GOF but penalizes high numbers of model parameters. The penalty is required since adding more parameters may
increase the likelihood without being justified by the data (overfitting). Another popular IC is the Bayesian information
criterion (BIC)

BIC¼w ln Kð Þ�2ln bL� �
ð5Þ

that additionally considers the number of data points K . Popular error measures are the MSE

MSE¼ 1
N

XN
n¼1

y n½ ��by n½ �ð Þ2, ð6Þ

and the MAE

MAE¼ 1
N

XN
n¼1

y n½ ��by n½ �ð Þ, ð7Þ

where byi is the forecast and yi the realized value. The smaller the error of the model, the higher the forecast accuracy.
There are further error measures that are derived from the MSE and the MAE, such as the root MSE (RMSE), the mean
absolute scaled error (MASE), the mean absolute percentage error (MAPE), and the symmetric MAPE (sMAPE). For
their definitions, we refer to Hyndman and Athanasopoulos (2021). A detailed comparison of error measures is given
by Hyndman and Koehler (2006), recommending the MASE for comparing the forecast accuracy across multiple time
series. For evaluating time series with similar characteristics, empirical evaluations indicate that the choice of the error
measure does not significantly influence the evaluated candidates' rank (Koutsandreas et al., 2021).

Error measures can be calculated in-sample or out-of-sample. In-sample means that the forecast error is determined
on data points that are part of the training data sample, while out-of-sample uses unseen points from the validation
data sample. The out-of-sample error validation is generally considered to be a more trustworthy empirical evidence, as
in-sample error validation is prone to overfitting.27

To increase the robustness, cross-validation can be performed by partitioning the data several times into different
training and validation subsets and averaging the validation error across the folds (Figure 4). The random sample cross-
validation is a valid choice if the forecasting method does not assume a sequential dependency of the data. Sequential
dependency is maintained by the blocked sample cross-validation, which partially uses data for training that is in
the future of the test data. Using future data for training is avoided with the fixed and rolling origin cross-validation. In
contrast to the fixed origin cross-validation, the rolling origin update cross-validation uses past values as inputs for the
forecasting model as they become available but does not retrain the model as with the rolling origin retrain validation
and rolling window cross-validation variants. Table 6 shows which cross-validation variants are used in the reviewed
literature to evaluate hyperparameter configurations.

Note, if the forecasting method to be evaluated contains a horizon of past values H1 (e.g., lag features), these values
must be provided during testing, either by using the initial values of the test data set and omitting them for the evalua-
tion or by taking them from the training data set. For the latter, empirical evidence exists that the resulting
intersection of training and test data has no impact on the evaluation quality (Bergmeir et al., 2018; Bergmeir &
Benítez, 2012).
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6.2 | Optimization methods

Given validation data and metrics, the hyperparameter configuration of forecasting methods can be optimized using
different optimization methods. Table 6 shows the summary of HPO methods for time series forecasting. In the
following subsections, different automated HPO methods are introduced, and their application in forecasting pipelines
is exemplified using literature references.

6.2.1 | Grid search and the random search

The most elementary method for HPO is the exhaustive grid search, where the data scientist defines a finite set of
π¼ 1,…,Π hyperparameter values to be evaluated, resulting in a full factorial configuration space Λ�ℝΠ . As the grid
search evaluates the Cartesian product of these sets, the number of computations B grows exponentially with the
dimensionality of ℝΠ . Hence, increasing the discretization resolution increases the computing effort substantially
(Feurer & Hutter, 2019). The random search (Bergstra & Bengio, 2012) is an alternative to the grid search. It irregularly
samples the hyperparameter set until a certain number of computations B is exhausted. The random search may
perform better than the grid search if some hyperparameters are much more important than others.28

Figure 5 shows a comparison of both methods with two hyperparameters and an equal number of computations B.
Hyndman et al. (2002) generalize the formulation of ES forecasting methods with the error trend seasonality (ETS)

method and suggest a grid search that automatically selects the hyperparameter configuration with the lowest in-
sample AIC. Utilizing grid search for HPO is also applied to statistical forecasting methods based on AR and moving
averages (MAs). Sekma et al. (2016) optimize the hyperparameters of an AR p,sð Þ and a vector autoregression (VAR)
p,sð Þ method, respectively, using grid search. The hyperparameter configuration resulting in the minimal BIC, calcu-
lated in-sample, is automatically selected. A similar HPO method for MA qð Þ methods is proposed by Svetunkov and
Petropoulos (2018), where the data scientist needs to define the in-sample optimization criterion. An advanced method,
combining preprocessing and HPO of ARIMA p,d,qð Þ methods is proposed by Alzyout et al. (2019). First, a stationarity
test determines the differencing order d. Second, the maximal AR-lag order pmax and the maximal MA-lag order qmax

are determined by automatically evaluating the PACF and the ACF, respectively. Finally, a grid search from 0 to pmax

and 0 to qmax selects the optimal hyperparameter configuration based on in-sample AIC or BIC. Combining
preprocessing and HPO is also proposed by Hyndman and Khandakar (2008). First, the authors propose to automati-
cally determine the differencing and seasonal differencing order d and D and the seasonal period s with a stationarity test.
Second, instead of an exhaustive grid search over the hyperparameters p,q,P, and Q of the sARIMA p,d,qð Þ P,D,Qð Þs,
they propose a two-stage grid search, reducing the number of evaluations. In the first stage, four candidate hyper-
parameter configurations are evaluated, whose hyperparameters depend on the previously determined s. The

FIGURE 4 Common cross-validation variants for time series forecasting based on Bergmeir (2013)
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hyperparameter configuration with the smallest in-sample AIC value proceeds to the second stage, where p,q,P, and Q
are varied �1. If a configuration with a lower AIC value is found, it becomes the active configuration of stage two and
the variation is repeated until the AIC stops improving. Pedregal (2019) adopt this method except for the preprocessing
step. Instead of stationarity tests, the variance of the time series is minimized to identify the differencing orders d
and D.

Grid search is also applied for HPO of forecasting methods based on machine learning. Sagaert et al. (2018) deter-
mine the optimal shrinkage factor λ of the LASSO method for embedded feature selection in terms of the mean MAPE
of a 10-fold cross-validation. Several authors apply a grid search to determine the optimal hyperparameter configuration
of an SVR. Son and Kim (2015) optimize the hyperparameters C and γ based on the RMSE without cross-validation,
Maldonado et al. (2019) and Valente and Maldonado (2020) based on the MAPE using the rolling origin retrain cross-
validation. The grid search used by Widodo & Budi, 2013, Widodo et al., 2016 is based on a 5-fold cross-validation, using
the mean sMAPE value across folds as the forecast error measure. They optimize the hyperparameters C and ε of the
SVRs used in a MKL approach with embedded feature selection. Combining automated feature selection and HPO is
also suggested by Fan et al. (2019). The authors identify the optimal lag features using random search and link the
number of hidden neurons Nh to the number of input neurons N i. Grid search is also applied to forecasting methods
that are inspired by biology. Gao et al. (2021) optimize the FTS order l, the number of fuzzy sets for the input n and tar-
get m, and the Gaussian kernel radius. As evaluation criterion, they use the MASE combined with a penalty measure
for high FTS complexities. E�grio�glu and Fildes (2022) determine the best architecture of a hybrid ANN, incorporating
linear and nonlinear components, in terms of the input and hidden neurons N i and Nh.

6.2.2 | Bayesian optimization

Rather than evaluating a finite search grid, BO explores and exploits the configuration space Λ¼Λ1�Λ2,…,ΛH of H
hyperparameters Λ. BO uses a probabilistic surrogate model to approximate the objective function Q that maps the fore-
cast accuracy Q on Λ. More specifically, an observation Q λð Þ of the objective function reflects the forecast accuracy with
a particular hyperparameter configuration λ�Λ of the forecasting methods used. In each iteration, the optimization
updates the surrogate model with the new observation and uses an acquisition function to decide on the next hyper-
parameter configuration λ�Λ to be explored (Figure 6). The acquisition function trades off the exploration against the
exploitation of Λ by determining the expected benefit of different hyperparameter configurations using the probabilistic
distribution of the surrogate model (Feurer & Hutter, 2019).

For surrogate modeling, various approaches exist, ranging from Gaussian Processes (GPs) and their modifications to
machine learning approaches, for example, RFs or tree-structured Parzen estimators (TPEs). Feurer and Hutter et al.
(2019) recommend using a GP-based BO for configuration spaces with real-valued hyperparameters and computation-
ally expensive training, and an RF or TPE-based BO for configuration spaces with categorical hyperparameters and con-
ditions, for example, the choice of a forecasting method and its conditional (sub-)configuration space.

Dellino et al. (2018a) apply a BO based on GP surrogate modeling to optimize the hyperparameters of the sARIMA
p,d,qð Þ P,D,Qð Þ using the rolling window cross-validation and the MAE. They compare the BO to an exhaustive grid

(a) (b)

FIGURE 5 Comparison of a grid search and a random search for minimizing a function with one important and one unimportant

parameter (Bergstra & Bengio, 2012; Feurer & Hutter, 2019)
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search, where the BO achieves lower forecast errors but requires more computing time. In their experiment, however,
the comparison is unequal as the configuration space of the BO is larger, and the best-performing model of the BO
results in a hyperparameter configuration that the grid search does not evaluate.

Bandara et al. (2020) use a BO with a GP surrogate model to optimize the recurrent neural architecture of a long
short-term memory (LSTM) and the hyperparameters of the training method. The forecast accuracy of each hyper-
parameter configuration is evaluated out-of-sample based on the MASE. Rätz et al. (2019) optimize multiple forecasting
methods, combining feature selection, HPO, and forecasting method selection using a BO based on a TPE surrogate
model. The forecast accuracy of hyperparameter configurations is estimated using the mean MAE of a 5-fold blocked
sample cross-validation.

6.2.3 | Nonlinear programming

Mathematical programming can be applied for HPO if calculating the evaluation criterion is solvable in closed form.
Nonlinear programming (NLP) solves an optimization problem, where at least one of the objective functions or con-
straints is a nonlinear function of the decision variables. The objective function may be convex or nonconvex, where
nonconvex NLP incorporates multiple feasible regions and multiple locally optimal solutions within them (Bazaraa
et al., 2006). Depending on the formulation of the objective function and its constraints, different solving methods are
appropriate.

Bermúdez et al. (2012) apply the generalized reduced gradient method to solve a multi-objective NLP. They jointly
minimize the in-sample RMSE, MAPE, and MAD to determine the smoothing parameters α,β,γ,φ and the number of
periods of the seasonal cycle p of the TES method. Lowther et al. (2020) use MIQP to select suitable exogenous features
for ARIMA. They combine this selection with a grid search over the sparsity parameter k of the MIQP formulation and
the sARIMA hyperparameters p,d,q,P,D,Q.

FIGURE 6 Two exemplary iterations of a Bayesian optimization (BO) on a 1D function. The BO minimizes the predicted objective

function (blue line) by maximizing the acquisition function (green surface). The acquisition value is high where the value of the predicted

objective function is low, and its predictive uncertainty (light blue interval) is high (Feurer & Hutter, 2019). The true objective function

(dashed line) might lie outside of the predicted uncertainty interval
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6.2.4 | Heuristics

A heuristic is an informed search technique that systematically explores a configuration space Λ subject to a constant
search rule (Pearl, 1984).

Tran and Reed (2004) propose heuristics based on the ACF and PACF to determine the AR and MA lag order p and
q. A similar approach is published by Amin et al. (2012). To determine the transformation parameter θ of the Theta
forecasting method, Spiliotis et al. (2020) apply the Brent–Dekker method—a root-finding method. They determine the
optimal θ for eight different trend T and season S configurations, and select the configuration that minimizes the in-
sample MAE.

Chakrabarti and Faloutsos (2002) propose a heuristic to specify the number of nearest neighbors k of the k-nearest
neighbors (kNN) forecasting method after selecting the optimal lag features. A training sample-related heuristic for
determining the spread factor of the general regression neural network (GRNN) is introduced by Yan (2012).

6.2.5 | Metaheuristics

Metaheuristics are strategies for guiding a search according to feedback from the objective function, previous decisions,
and prior performance (Stützle, 1999), that is, the searching behavior changes while exploring the configuration space
Λ. Metaheuristics do not require assumptions about the objective function and can solve optimization problems where
gradient-based methods fail.

Evolutionary optimization
Evolutionary algorithms (EAs) comprise a wide range of population-based metaheuristics inspired by biological evolu-
tion (Bäck, 1996). A population of candidate hyperparameter configurations is evaluated using a fitness function to
determine the performance of solutions. Weak solutions drop out, while well-performing solutions evolve. The mecha-
nisms of selection and evolution differ between algorithms.

GAs evolve a population of candidate hyperparameter configurations to explore and exploit the configuration space
Λ. The hyperparameters of a candidate solution are encoded as genes in a chromosome. In each generation, the fitness
of the population is evaluated, and the chromosomes of individual candidates are modified to create a new
generation—the offspring. The modification includes recombination and mutation and depends on an individual candi-
date's fitness. A part of the population is retained and forms with the offspring the next generation. DEAs differ from
GAs in the mechanism of generating the offspring. While in GAs an individual acts as parent to generate an offspring,
the DEA adds the weighted difference between two chromosomes to create a new individual. In this way, no separate
probability distribution is required, making the algorithm self-organizing. In EDAs, the population is replaced by a
probability distribution over the choices available at each position in the chromosome of the individuals. A new genera-
tion is obtained by sampling this distribution, avoiding premature convergence and making the representation of the
population more compact.

Donate et al. (2013) evaluate a GA, a DEA, and an EDA for optimizing the hyperparameter configuration of an
MLP, including the number of input and hidden neurons N i and Nh, as well as the training method's hyperparameters
learning rate α and the weight initialization seed s. The results of the experiments show that the DEA and the EDA
require more than 100 generations to improve significantly over GA. After 200 generations, the EDA achieves the low-
est forecast error, followed by the DEA and the GA. In a later publication (Donate & Cortez, 2014), the authors adapt
the chromosome encoding and replace s with the parameter Δmax of the used training algorithm. In both publications,
the fitness of each individual is evaluated by calculating the MSE on an out-of-sample validation data set. Panigrahi
and Behera (2020) apply a DEA to optimize N i and Nh of an MLP, combining in-sample and out-of-sample validations.
The fitness of each individual (RMSE) is calculated in-sample, and the DEA is terminated when the RMSE on the vali-
dation data set increases,29 indicating the beginning of overfitting. Instead of optimizing a single fitness function using
GA, Silva et al. (2020) optimize two fitness functions with the rolling window cross-validation. They simultaneously
minimize the forecast error and model complexity of the FTS forecasting method to find the trade-off between these
conflicting criteria. Thereby, the authors use the parallelizability of the GA to evaluate the number of partitions k, the
partitioning method α, and the selection of the membership function μ on multiple computing cluster nodes.
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Particle swarm optimization
In PSO, a population of hyperparameter candidate configurations—the swarm—is evaluated. The candidates move
through the configuration space Λ, where the movement of the swarm is guided by the best-performing candidates
so far.

Sergio et al. (2016) apply PSO to optimize the hyperparameter configuration of multiple forecasting methods, com-
bining the best hyperparameter configurations afterward to an ensemble.

6.3 | Diagnostic checking

Diagnostic checking evaluates the fitted forecasting model against criteria that indicate an adequate forecasting method con-
figuration. An adequate forecasting method configuration yields residuals r k½ � ¼ y k½ ��by k½ � with properties of white noise,
that is, the residuals are not autocorrelated having zero mean and finite variance (Hyndman & Athanasopoulos, 2021).
For statistical forecasting methods, the relationship between dependent and independent variables should be statisti-
cally significant. That is, the parameters estimated in the fitting process describing this relationship are significantly dif-
ferent from zero. If the forecasting method makes assumptions about the time series characteristics (e.g., stationarity),
it is advisable to check whether the assumptions hold (Hyndman & Athanasopoulos, 2021).

Regarding statistical forecasting methods, Amin et al. (2012) check the randomness of the residuals with a
Box–Pierce test and the significance of the parameters of the ARIMA or self-exciting threshold autoregressive moving
average (SETARMA) models with a t-test. Furthermore, they test the invertibility and the stationarity, that is, both the
sum of the AR parameters and the sum of the MA parameters have to be smaller than one. Analogously, Hwang et al.
(2012) verify stationarity and invertibility. For residual diagnostics, they additionally check the residual's correlations
with the Ljung–Box test. Similar to the above authors, Sekma et al. (2016) test the parameters' significance and check if
the residuals are white noise with the Ljung–Box test (Ljung & Box, 1978).

In terms of machine learning-based forecasting methods, E�grio�glu and Bas (2022) use the F-test to check if the
SMNM is adequate. The null hypothesis to be discarded is that each parameter of the LR applied during input signifi-
cance testing (described in Section 5.2) equals zero.

6.4 | Discussion

We discuss HPO as the third section of the automated forecasting pipeline, identify a possible problem, give recommen-
dations, and suggest future research.

For HPO, most automated forecasting pipelines apply grid search as shown in Table 6. Directed search
methods, for example, evolutionary optimization and BO, are, however, used for HPO of forecasting methods
with high computational training complexity, primarily including machine learning methods. For evaluating the
forecast accuracy during HPO, only 10 of the 31 references apply cross-validation to increase the robustness of
the HPO, and often, the applied cross-validation procedure is insufficiently described. Also, diagnostic checking
of the forecasting method configuration after the HPO is only applied sporadically and mostly for statistical fore-
casting methods.

With regard to automation, several authors link HPO and the preceding automated steps of preprocessing
(Section 4) and feature engineering (Section 5). One potential problem is the optimization of the differencing orders d
and D of the ARIMA p,d,qð Þ and sARIMA p,d,qð Þ P,D,Qð Þs methods using IC metrics. The differencing transformation
affects the likelihood in IC metrics, making the metrics between different values of d and D not comparable (Hyndman
& Athanasopoulos, 2021). Therefore, d and D should be determined in the preprocessing section. For the subsequent
HPO, we assume a straightforward grid search to be sufficient since the computational training complexity of ARIMA
and sARIMA methods is rather low, and the configuration space is small. In contrast, for HPO of forecasting methods
with high computational training complexity, for example, ANNs, and large categorical and conditional configuration
spaces, we recommend a BO based on TPE.

Given these recommendations, for automated forecasting pipelines in future work, we suggest that the automated
analysis of residuals is also integrated into the pipeline using machine learning-based forecasting methods.
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TABLE 7 Summary of method selection and ensembling methods in automated time series forecasting pipelines

Reference Forecasting method(s)

Forecasting
method
selection

Selection basis Forecast Ensembling

Evaluation
criteria

Meta-
features Pool Ensemble

Martínez, Charte,
et al., 2019

kNN – – Use all avg.

Tak et al., 2021 DES, TES, FTS-N, TS-FIS,
MLP

Empirical X – Use all wgt.

Shcherbakov et al., 2013 ANN, MA, sRW Heuristic – –

Pawlikowski &
Chorowska, 2020

autoARIMA, ETS, LR,
RW, sRW, Theta

Heuristic – – Use all wgt.

Balkin & Ord, 2000 MLP, AR, RW Empirical X –

Amin et al., 2012 ARIMA, SETARMA Empirical X –

Sekma et al., 2016 AR, VAR Empirical X –

Pereira et al., 2018 ARIMA DES, LR, dRW,
SES, TES

Empirical X –

Züfle & Kounev, 2020 GBM, RF, Telescope Empirical X –

Rätz et al., 2019 GBM, LASSO, MLP, RF,
SVR

Empirical X –

Fildes &
Petropoulos, 2015

autoARIMA, Damped,
RW, sRW, SES, DES,
TES, Theta

Empirical X –

Crone &
Kourentzes, 2010

MLP Empirical X – k-best avg.

Kourentzes et al., 2019 ETS Heuristic,
empirical

X – k-best avg.

Shetty & Shobha, 2016 autoARIMA, ETS,
NNetAR, TBATS

Empirical X – k-best wgt.

Wu et al., 2020 ELM, ENN, FNN, GRNN,
MLP, RBFNN

Empirical X – k-best wgt.

Sergio et al., 2016 DBN, MLP, SVR Heuristic,
empirical

X – dyn. Best avg., wgt.

Taghiyeh et al., 2020 autoARIMA, MA, SES,
DES, TES, Theta

Decision model X -

Kück et al., 2016 SES, DES, TES Decision model X X

Widodo & Budi, 2013 autoARIMA, MKL, PR,
SVR

Decision model – X

Scholz-Reiter et al., 2014 MLP, autoARIMA, ETS,
LC, LL, RW

Decision model – X

Shahoud et al., 2020 DT, GBM, LR, RF Decision model – X

Cui et al., 2016 MLP, GP, MARS, PR,
RBFNN, SVR

Decision model – X

Baddour et al., 2018 autoARIMA, BSTS, ETS,
GBM, Prophet, TBATS,
Theta

Decision model – X

Bauer, Züfle,
Grohmann,
et al., 2020

Telescope: Cubist, Evtree,
GBM, NNetAR, RPaRT,
SVR

Decision model – X

Bandara et al., 2020 LSTM Decision model – X
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7 | FORECASTING METHOD SELECTION AND ENSEMBLING

Not only optimizing hyperparameters of a forecasting method but also selecting the appropriate method is crucial
for the forecast accuracy. Consequently, the forecasting method selection is often combined with an individual
HPO, that is, selecting the best forecasting method from a pool of candidates whose hyperparameters, in turn, are
already optimized.30 Forecast ensembling aims to bundle the forecasts of several methods, thereby reducing the
impact of occasional poor forecasts—which can even occur with the best-selected and optimally configured fore-
casting method.

7.1 | Forecasting method selection

For automatically selecting the best-performing forecasting method, there are several approaches that we divide into
heuristic, empirical, and decision model-based selection. The selection is based on experience, a determined evaluation
criteria, or meta-features. The determined evaluation criteria reflect ICs or error measures. Meta-features describe prop-
erties of the time series to be forecast and provide meta-information, including statistical characteristics of the target
time series, such as the skewness, kurtosis, and self-similarity; and domain information, such as physical properties of
the system and environmental characteristics. In the following, methods for automated forecasting method selection
are presented, and their application in forecasting pipelines is examined based on the reviewed literature, guided by the
summary in Table 7.

7.1.1 | Heuristic forecasting method selection

The heuristic selection of the forecasting method relies on fixed rules. The basis of these rules is experience and statisti-
cal tests that examine the time series for certain characteristics. Therefore, heuristic selection requires neither determin-
ing evaluation criteria nor meta-features.

Shcherbakov et al. (2013) propose decision rules that consider the amount of available training data. For small
amounts of training data (i.e., less than 672 observations), a naïve method is selected that uses the previous day's value
as the forecast. For moderate amounts of training data (i.e., 672–2688 observations), a MA method is applied, whereas
an ANN is selected for greater amounts of training data (i.e., more than 2688 observations). Besides the amount of train-
ing data, the availability of calendar information and exogenous time series also determines the chosen forecasting
method.

TABLE 7 (Continued)

Reference Forecasting method(s)

Forecasting
method
selection

Selection basis Forecast Ensembling

Evaluation
criteria

Meta-
features Pool Ensemble

Montero-Manso
et al., 2020

AR, autoARIMA, ETS,
NNetAR, RW, dRW,
sRW, TBATS, Theta

Decision model – X Use all wgt.

Li et al., 2020 autoARIMA, ETS,
NNetAR, RW, dRW,
sRW, STL-AR, TBATS,
Theta

Decision model – X Use all wgt.

Ma & Fildes, 2021 autoARIMA, ELM, ETS,
GBM, LR, RF, SVR

Decision model – X Use all wgt.

Züfle et al., 2019 autoARIMA, ETS,
NNetAR, RW

Decision model – X k-best wgt.

Villegas et al., 2018 MA, IMA, White Noise Decision model X X

Abbreviations: avg., averaging; dyn., dynamic; wgt., weighting.
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7.1.2 | Empirical forecasting method selection

The empirical forecasting method selection determines the performance of several forecasting methods during training
(in-sample) or on a validation data set (out-of-sample) given an evaluation criterion and automatically selects the best-
performing forecasting method.31 The determined performance scores, however, may be subject to statistical fluctuations,
for example, in the case of cross-validation with random sampling. To address this problem, statistical significance tests
can be applied, for example, the one proposed by Harvey et al. (1997). The test assumes that the performance scores origi-
nate from the same distribution and quantifies the likelihood that the scores are equal (null hypothesis). If the null
hypothesis is rejected, the test suggests that the difference in the performance scores is statistically significant.

Balkin and Ord (2000) train an AR, an MLP, and a naïve RW method, and select the forecasting method with the
smallest in-sample BIC. Similarly, Sekma et al. (2016) decide between AR and VAR forecasting methods based on the
smallest in-sample BIC; Amin et al. (2012) use the AIC to choose between ARIMA and SETARMA. An out-of-sample
validation is used by Pereira et al. (2018). They calculate the MAE of six forecasting methods on a validation data set
and select the method with the lowest MAE. A similar selection strategy is used by Züfle and Kounev (2020). They
select the best-performing candidate forecasting method in terms of the R2 score on validation data. Robustness can be
increased by cross-validation. Rätz et al. (2019) combine feature selection, HPO, and the selection of the optimal fore-
casting method using BO with the mean MAE over five folds.

The effectiveness of in-sample and out-of-sample empirical forecasting method selection is evaluated by Fildes and
Petropoulos (2015). They assess the following four empirical selection methods: (1) minimal one-point-ahead in-sample
MSE, (2) minimal one-point-ahead out-of-sample MAPE, (3) minimal h-point-ahead out-of-sample MAPE, and (4) min-
imal 1–18 points-ahead out-of-sample MAPE. The latter method proves to be better than the 1-point-ahead validation
and even than adjusting the validation to the corresponding forecast horizon H.

7.1.3 | Decision model-based forecasting method selection

Instead of a heuristic or empirical forecasting method selection, one may train a decision model to automatically select
the optimal forecasting method. As decision models, regression, classification, and clustering methods can be used to
establish a relationship between evaluation criteria or meta-features and the optimal forecasting method.

In a decision model, the selection and aggregation of meta-features can improve decision accuracy. The principle of
feature selection and aggregation methods corresponds to the descriptions in Section 5.2. Similar to the optimization of
forecasts, the decision model can also be improved by HPO. Table 8 gives an overview of meta-feature engineering and
decision models applied in the literature.

Taghiyeh et al. (2020) propose a decision model-based selection method that relies on a classification method. It
selects the optimal forecasting method from a pool of candidates based on their in-sample and out-of-sample MSE.
None of the three classification methods, including Logistic Regression (LogR), DT, and Support Vector Machine
(SVM), outperforms the others. Kück et al. (2016) propose a decision model-based selection based on the out-of-sample
sMAPE and meta-features. They apply an MLP classifier as decision model and select its inputs using a grid search over
127 feature sets that include error measures and meta-features.

The approaches above have the disadvantage that all candidate forecasting methods must be trained on the target
data set to determine the applied error measures. Computing meta-features, in contrast, does not require training.
Hence, relying only on meta-features for decision model-based selection saves computing time. Widodo and Budi
(2013) propose a kNN classifier to select the forecasting method for a target time series based on the meta-features
introduced in reference (Wang et al., 2009). In the design of the classifier, the authors apply FS for meta-feature selec-
tion. Another approach based on the same meta-features is introduced by Scholz-Reiter et al. (2014). They use a meta-
feature aggregation instead of meta-feature selection, and a linear discriminant analysis (LDA) as a classification
method to select the optimal forecasting method. Shahoud et al. (2020) introduce statistical meta-features for different
aggregation levels of the time series to extract characteristics at different time scales. They select suitable meta-features
by a BE and aggregate them using an autoencoder. RF and MLP classifiers are compared for decision-making, both
optimized with a grid search, where the MLP classifier achieves better performance in terms of selecting the best fore-
casting method. In addition to statistical and time series meta-features, Cui et al. (2016) include domain information.
The domain-based meta-features describe the physical properties of buildings for which energy consumption is to be
forecast. Bauer, Züfle, Herbst, et al. (2020) evaluate three types of decision models, that is, classification, regression, and
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hybrid. In the classification decision model, an RF is trained to map meta-features to the forecasting method with the
lowest forecast error. In the regression decision model, an RF learns how much worse each forecasting method is com-
pared to the best method (i.e., forecast accuracy degradation). The hybrid decision model combines this RF regression
with an RF classifier that maps the RF regression output to the best method. In the evaluation, the hybrid approach
achieves the best performance in terms of forecast accuracy degradation. Instead of training an individual model for
each new time series, Bandara et al. (2020) suggest clustering time series using meta-features and training only one
model for each cluster, which is applied to all-time series in the cluster.

7.2 | Forecast ensembling

Forecast ensembling aims to improve the forecast robustness by bundling multiple forecasts of different models. We dif-
ferentiate forecast ensembling from ensemble learning methods that build an ensemble of weak models,32 such as RF
and GBM. Ensembling the forecasts from a pool of different forecasting models aims to avoid occasional poor forecasts,
rather than outperforming the best individual forecasting model (Shaub, 2020). In the following, methods for

TABLE 8 Summary of meta-feature selection and aggregation methods for decision models to select forecasting methods

Reference Forecasting method(s)

Meta-feature Decision model

Selection Aggregation Method Type HPO

Taghiyeh et al., 2020 autoARIMA, MA, SES,
DES, TES, Theta

LogR, SVM, DT class.

Kück et al., 2016 SES, DES, TES Grid search MLP class. Grid search

Widodo & Budi, 2013 autoARIMA, MKL, PR,
SVR

FS kNN class.

Scholz-Reiter et al., 2014 MLP, autoARIMA, ETS,
LC, LL, RW

PCA LDA class.

Shahoud et al., 2020 DT, GBM, LR, RF BE Autoencoder MLP, RF class. Grid search

Cui et al., 2016 MLP, GP, MARS, PR,
RBFNN, SVR

PCA, Pearson SVD MLP class. Grid search

Baddour et al., 2018 autoARIMA, BSTS, ETS,
GBM, Prophet, TBATS,
Theta

Use all RF class. Grid search

Bauer, Züfle,
Grohmann,
et al., 2020

Telescope: Cubist, Evtree,
GBM, NNetAR, RPaRT,
SVR

Use all RF reg., class.

Bandara et al., 2020 LSTM Use all k-means,
DBSCAN,
Snob

clust. Embedded

Montero-Manso
et al., 2020

AR, autoARIMA, ETS,
NNetAR, RW, dRW,
sRW, TBATS, Theta

Use all GBM class. Bo

Li et al., 2020 autoARIMA, ETS,
NNetAR, RW, dRW,
sRW, STL-AR, TBATS,
Theta

Learning GBM class. Not described

Ma & Fildes, 2021 autoARIMA, ELM, ETS,
GBM, LR, RF, SVR

Learning CNN, FCNN class. Grid search

Züfle et al., 2019 autoARIMA, ETS,
NNetAR, RW

Use all LR reg.

Villegas et al., 2018 MA, IMA, White Noise Grid search SVM class. Grid search

Abbreviations: class., classification; clust., clustering; reg., regression.
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ensembling in automated forecasting pipelines are introduced and exemplified using the reviewed literature, guided by
the summary in Table 7.

The benefit of forecast ensembling is empirically demonstrated in many cases. For example, in the analysis of the
M3 forecasting competition (Makridakis & Hibon, 2000), averaging the model output of all submitted forecasting
methods performs better than each individual method itself. To improve averaging (also called voting ensembling), one
may weigh the forecasting models' outputs according to the expected individual forecast accuracy based on the forecast-
ing models' errors, either calculated in-sample (training data) or out-of-sample (validation data). One weighting method
is to use the multiplicative inverse of the forecasting models' errors. Another weighting method is to rank the forecast-
ing models in descending order of their errors and use their rank as weight. A more sophisticated ensembling method
is to train a meta-model to combine the forecasting models' outputs (also called stacking), for example, using the output
of the different forecasting models as inputs of a regression meta-model and training it to estimate the target variable.
Another sophisticated ensembling method is to find the weights using an optimization method, that is, considering the
weights as decision variables and varying them to minimize the error of the ensemble.

An ensemble can also be improved by only considering the k-best candidate methods, ranked by a forecasting
method selection beforehand (i.e., heuristic, empirical, and decision model-based methods). The number of considered
candidates k is either specified manually by the data scientist or determined automatically. For this, one can use statisti-
cal tests to drop out candidates that significantly perform worse than the best method (McDonald & Thompson, 1967),
as well as use FS or BE, similar to their application in feature selection, described in Section 5.2.

Simple forecast ensembling through averaging is used by Martínez, Charte, et al. (2019). After the identification of
optimal lag features with FS, they average the output of three kNN models with k� 3,5,7f g. Improving the ensemble
by weighted averaging is applied by Tak et al. (2021). The authors use fuzzy c-means clustering to determine the
optimal weights of six different forecasting models. First, the outputs of these six models are clustered into six clusters.
Second, the membership degrees of each model in each cluster are determined and are considered as their weights, so
each cluster becomes a potential ensemble. Third, the ensemble that achieves the best forecast accuracy (RMSE or
MAPE) is empirically selected.

Selecting the candidate methods based on a heuristic forecasting method selection is proposed by Pawlikowski and
Chorowska (2020). They categorize the time series data of the M4 forecasting competition (Makridakis et al., 2020) in
terms of their frequency, the existence of a trend and seasonality. Depending on the category, they select a distinct pool
of candidate forecasting methods. The hyperparameters of the candidate methods are optimized and the weight for each
candidate is determined based on the sMAPE error, validated out-of-sample with a rolling origin cross-validation.

The following authors use empirical forecasting method selection to consider only the k-best candidate methods in
the ensemble. After automatically selecting the input features with the INF, Crone and Kourentzes (2010) empirically
determine the forecast accuracy of candidate MLP architectures in a grid search (Nh, activation) with a rolling origin
cross-validation and average the outputs of the 10 best candidates to reduce the impact of overfitting. Kourentzes et al.
(2019) propose an FS heuristic to decide on the number of ranked candidates to be considered for averaging. They
calculate the forecast accuracy metric's rate of increase C0 assigned to each forecast and include all candidates until the
first steep increase C0 >T. To detect the increase, they use the same approach used for detecting outliers in boxplots,
that is, T¼Q3þ1:51QR, where Q3 is the third quartile.

Instead of averaging the k-best candidates, Shetty and Shobha (2016) assign weights to the filtered candidates before
averaging. Candidates with low forecast errors Q receive more weight, that is,

wi ¼ viPk
j¼1vj

, vi ¼
Qk

j¼1Qj

Qi
Pk

j¼1Qj

: ð8Þ

Wu et al. (2020) propose a multi-objective optimization to determine the optimal weights for averaging candidates.
They apply the flower pollination metaheuristic to minimize

min
X4
i¼1

wiQi, subject to
X4
i¼1

wi ¼ 1, ð9Þ

with the error measures Qi including the MAE, RMSE, and their relative formulations.
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In the decision model-based method selection, one can also include weighted averaging directly in the decision
model. Montero-Manso et al. (2020) and Li et al. (2020) train a GBM classifier with softmax-transformed outputs
corresponding to the weights of the candidates for averaging. Similarly, Ma and Fildes (2021) compare a convolutional
neural network (CNN) and a fully connected neural network (FCNN) classifier using output neurons with softmax acti-
vation to predict the weights for averaging. Instead of softmax outputs, Züfle et al. (2019) use an LR as a decision model.
Its output reflects the probability of how well the forecasting method fits the time series and determines the weight for
averaging. For filtering the k-best candidate methods, they postprocess the LR output.

Above-mentioned forecast ensemblingmethodswithweighted average determine theweights statically, that is, theweights
do not change as the time series evolves. Sergio et al. (2016) propose a dynamic weighting method for the ensembling of fore-
casts. For every single forecast, the method searches for the k-nearest patterns in the training data similar to the given input
data. Three ensemble functions—average, median, and softmax—are evaluated on the found similar patterns, and themethod
with the best forecast accuracy is chosen for the forecast. A dynamic decision model-based approach is also introduced by
Villegas et al. (2018). In their work, a binary SVM classifier is trained on forecast accuracy metrics and meta-features to predict
the best forecasting method from a pool of candidates for each forecast origin. In their experiment, the dynamic selection
achieves the best forecast accuracy compared to themean and themedian ensembling of all candidate forecastingmethods.

7.3 | Discussion

We discuss the automated selection of the optimal forecasting methods as the fourth and forecast ensembling as
the fifth section of the automated forecasting pipeline. For both pipeline sections, we highlight potential problems, give
recommendations, and suggest future work.

The automated selection includes heuristic, empirical, and decision model-based methods. As shown in Table 7,
most empirical selection methods for the forecasting method are based on evaluation criteria whereas decision models
base their selection mainly on meta-features. None of the reviewed papers using empirical selection methods applies
statistical tests to check whether the differences in the empirically determined performance scores are significant.33

Considering automation, the selection of the forecasting method is often combined with an individual HPO of the can-
didate forecasting methods. If multiple forecasting methods are evaluated in the selection, about half of the reviewed lit-
erature combines the selection with forecast ensembling.

In the automated selection, we notice different potential problems. The heuristic forecasting method selection is
based on straightforward decision rules. To strengthen the evidence of the selection, however, our impression is that
evaluation criteria or meta-features are needed. The empirical selection based on evaluation criteria requires a high
computing effort as every candidate forecasting method needs to be fitted to the data, and the determined performance
scores might be subject to statistical fluctuations. The selection with a decision model based on meta-features reduces
the computing effort but requires a sufficiently large and diverse data set for training the decision model. Based on our
analysis, a comprehensive benchmark comparing the computing effort and the forecast accuracy of heuristic, empirical,
and decision model-based forecasting method selection is missing, and therefore no recommendation can be made.
Empirical evidence, however, exists for the forecast ensembling. We recommend combining forecast ensembling with
the forecasting method selection by determining the pool of candidate methods and ensemble weights. In the reviewed
literature that applies ensembling, we recognize untapped potential for automation that can be leveraged by applying
more sophisticated methods, for example, automatically reducing the candidate pool using statistical tests to drop out
candidates significantly underperforming or by using FS or BE.

Based on the challenges of automated forecasting method selection, future work could tailor decision models for
specific domains using HPO. Furthermore, the research could analyze if the selection of pretrained forecasting methods
is beneficial—either for application to the new time series without adaptation or after re-training on the new data.

8 | AUTOMATED FORECASTING PIPELINE

The forecasting pipeline consists of the sections preprocessing, feature engineering, HPO, and forecasting method
selection and ensembling (Table 9).
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TABLE 9 Overview of the forecasting pipeline sections automated in the reviewed literature

Reference Preprocessing
Feature
engineering

Hyper-
parameter
optimization

Forecasting
method
selection

Forecast
Ensembling

Covered
sections Cluster

Liu et al., 2017; Lu &
AbouRizk, 2009; Anvari
et al., 2016; Cerqueira
et al., 2021

X – – – – ⚫ A

Hyndman et al., 2002;
Svetunkov &
Petropoulos, 2018;
Pedregal, 2019; Bermúdez
et al., 2012; Hwang
et al., 2012; Villegas &
Pedregal, 2019; Arlt &
Trcka, 2021; Silva
et al., 2020

– – X – – ⚫ B

Pereira et al., 2018;
Shcherbakov et al., 2013;
Shahoud et al., 2020;
Taghiyeh et al., 2020;
Villegas et al., 2018; Kück
et al., 2016;
Cui et al., 2016; Scholz-
Reiter et al., 2014;
Baddour et al., 2018

– – – X – ⚫ C

Kourentzes & Crone, 2010;
Martínez, Charte,
et al., 2019; Bauer, Züfle,
Grohmann, et al., 2020

X X – – – ⚫⚫ D

Hyndman &
Khandakar, 2008;
Maravall et al., 2015;
Dellino et al., 2018a;
Alzyout et al., 2019; Tran
& Reed, 2004

X – X – – ⚫⚫ E

Fildes & Petropoulos, 2015;
Violos et al., 2020

X – – X – ⚫⚫ F

Lowther et al., 2020;
Chakrabarti &
Faloutsos, 2002; Valente
& Maldonado, 2020; Son
& Kim, 2015; Aladag
et al. (2014); E�grio�glu &
Fildes, 2022

– X X – – ⚫⚫ G

Balkin & Ord, 2000 – X – X – ⚫⚫ H

Spiliotis et al., 2020;
Bandara et al., 2020

– – X X – ⚫⚫ I

Li et al., 2020; Montero-
Manso et al., 2020; Shetty
& Shobha, 2016;
Kourentzes et al., 2019;
Wu et al., 2020;
Pawlikowski &
Chorowska, 2020; Tak
et al., 2021

– – – X X ⚫⚫ J
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8.1 | Status quo

Table 9 shows that the analyzed literature covers different sections of the forecasting pipeline.34 Clustering the analyzed
papers that cover the same sections of the forecasting pipeline yields 17 clusters. Most of the 69 papers reviewed cover
only two or three sections of the forecasting pipeline. Only two papers cover four sections, and none of the papers
reviewed covers all five sections of the forecasting pipeline.

Twenty-seven papers consider only statistical forecasting methods, 24 papers only machine learning methods, and
16 papers both. A majority of the papers that include both families of forecasting methods consider forecasting method
selection in their pipeline (13 of 16 papers).

Of all the papers analyzed, most papers focus on preprocessing (36) and HPO (35), followed by the forecasting
method selection (30). Since statistical methods consider lag features implicitly in the model structure, only 23 papers
explicitly deal with feature engineering. The least attention is paid to the ensembling of forecasting methods, that is, in
only 13 papers.

8.2 | Discussion

Based on the analysis of the status quo, we give the following recommendations to holistically automate the complete
forecasting pipeline. The optimization of the hyperparameters should be combined with the automated feature selection
(clusters G, K, and P in Table 9) because it is expected that each feature set candidate requires an individual hyper-
parameter configuration. Moreover, combining an HPO and the automated selection of forecasting methods
(i.e., CASH) is advantageous as the best method is selected from a pool of candidates whose hyperparameters, in turn,
are already optimized by an HPO (clusters I, L, P, and Q in Table 9). Also, the forecast ensembling should be combined
with the automated selection of appropriate forecasting methods to eliminate poor candidates (clusters J, M, and Q in
Table 9). Hereby, both statistical and machine learning-based forecasting methods should be considered, as the diversity
of forecasting methods has the potential to increase the robustness of the results.

TABLE 9 (Continued)

Reference Preprocessing
Feature
engineering

Hyper-
parameter
optimization

Forecasting
method
selection

Forecast
Ensembling

Covered
sections Cluster

Maldonado et al., 2019;
Yan, 2012; Panigrahi &
Behera, 2020; Sagaert
et al., 2018; Widodo
et al., 2016; Donate &
Cortez, 2014; Donate
et al., 2013;
Fan et al., 2019; Dellino
et al., 2018b; Gao
et al., 2021; E�grio�glu &
Bas, 2022

X X X – – ⚫⚫⚫ K

Amin et al., 2012; Sekma
et al., 2016; Widodo &
Budi, 2013

X – X X – ⚫⚫⚫ L

Ma & Fildes, 2021; Crone &
Kourentzes, 2010; Züfle
et al., 2019

X – – X X ⚫⚫⚫ M

Martínez, Frías, et al., 2019 X X – – X ⚫⚫⚫ N

Züfle & Kounev, 2020;
Bauer et al., 2020

X X – X – ⚫⚫⚫ O

Rätz et al., 2019 X X X X – ⚫⚫⚫⚫ P

Sergio et al., 2016 X – X X X ⚫⚫⚫⚫ Q
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Regarding hybrid forecasting methods, that is, combining the advantages of multiple forecasting methods, we
already see methods to automate the design process of the forecasting pipeline with respect to the hybridization
approaches. Most references use the ensembling hybridization approach (Li et al., 2020; Ma & Fildes, 2021; Montero-
Manso et al., 2020; Pawlikowski & Chorowska, 2020; Shetty & Shobha, 2016; Züfle et al., 2019), followed by the data
preprocessing-based hybridization approach (Bauer, Züfle, Grohmann, et al., 2020), and the sequential hybridization
approach (Kourentzes & Crone, 2010). However, recent hybrid forecasting methods that use deep neural networks to
improve the forecast of well-studied statistical methods (Lim & Zohren, 2021) are still insufficiently automated and
require expert knowledge for the pipeline design, which limits the large-scale application of these hybrid methods. In
addition, it is worth considering the related research direction is end-to-end (E2E) learning. While deep learning-based
hybrid modeling only considers specific sections of the design process using deep neural networks, E2E learning uses
one deep neural network to address several sections with appropriate layers. More specifically, E2E learning aims to
include all five sections of the forecasting model's design process into the training using gradient-based learning,
for example, embedded feature learning in a deep neural network (Ma & Fildes, 2021). As in automated forecasting
pipelines, both deep learning-based hybrid modeling and E2E learning need to consider all five sections of the design
process to obtain high-performing and robust forecasts.

Regarding automating the design process, emerging approaches such as neural architecture search and meta-
learning (Hutter et al., 2019) are promising for both hybrid forecasting methods and E2E learning in the future.

Finally, we note that manual tailoring of forecasting models is still a common practice in time series forecasting
competitions despite the first successful applications of automated forecasting pipelines. For example, in the most
recent M5 forecasting competition (Makridakis et al., 2021), Liang and Lu (2020) provide evidence that their AutoML
pipeline achieves competitive forecast accuracy with moderate computing effort. Therefore, we assume that the poten-
tial of the automated design is not fully utilized yet in time series competitions.

9 | CONCLUSION

Time series are collected in many domains, and forecasting their progression over a certain future period is becoming
increasingly important for many use cases. This rapidly growing demand requires making the design process of time
series forecasts more efficient by automation; that is, automating design decisions within each section of the forecasting
pipeline or automatically combining methods across pipeline sections. Although the manual design process of forecast-
ing models and the first aspect of design automation has already been considered by various researchers, understanding
how various automation methods interact within the pipeline and how they can be combined is a critical open ques-
tion. Therefore, the article reviews existing literature on automated time series forecasting pipelines and analyzes how
each of the five sections in these pipelines are automated. It also investigates the reviewed literature in terms of the
interaction and combination of automation methods within the five pipeline sections, incorporating both AutoML and
automated statistical forecasting methods.

Besides various specific insights on automation related to each pipeline section that we discuss throughout the
corresponding sections, we find on a general level that the majority of the 69 reviewed papers only cover two or three
of the five sections of the forecasting pipeline. Therefore, we conclude that there is a research gap regarding approaches
that holistically consider the automation of the forecasting pipeline, enabling the large-scale application to use cases
without manual and time-consuming tailoring.

Besides the holistic automation, future work should research the adaption of the identified automation methods for
probabilistic time series forecasts. Concurrently, the automated forecasting pipelines should be validated and tailored to
particular use cases before generalizing them to universal automated forecasting pipelines. The resulting forecasting
models can either be applied directly or serve as a starting point for advanced manual tailoring with expert knowledge.
In any case, future work should examine their performance in terms of forecast accuracy and computing effort, for
example, in forecasting competitions. This performance evaluation would benefit if future work on automated forecast-
ing pipelines would be open source—both the implementation of the evaluated methods and the data sets used for the
evaluation. Moreover, open-source publishing should promote the adoption of automated pipelines for time series fore-
casting, thus leveraging the great potential of improving the design efficiency through automation, achieving a high
forecast accuracy and a robust operation.

Overall, the article focuses on the automated design of forecasting pipelines. Therefore, to fully automate the entire
forecasting process, future work should also consider the automated application of the resulting forecasting models,
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including performance monitoring (e.g., forecast accuracy and computing effort) during operation and model
adaption.35
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ENDNOTES
1 In addition to automating the design process, automating the operation of forecasts is proposed by Meisenbacher
et al. (2021), which includes self-monitoring and automatic model adaption as forecast accuracy decreases.

2 In the following, we consider deep learning methods as part of the broader family of machine learning.
3 https://www.scopus.com/.
4 The applied search strings and keywords are documented in the Supporting Information.
5 https://beallslist.net/.
6 After publishing the preprint of this article, we have reviewed further literature suggestions from the community and
later published publications accordingly to keep the paper up to date for publication, resulting in six additional
reviewed articles.

7 The vectors that include past values can be sparse, that is, only certain time points from k to H1 are included.
8 Brockwell and Davis (2016) provide mathematical details on the maximum likelihood estimation.
9 More details on training algorithms for the SVR are given in reference (Smola & Schölkopf, 2004).
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10 Natekin and Knoll (2013) provide further details on GBMs, and Lee et al. (2020) detail the concept of bagging
and RFs.

11 Bose and Mali (2019) review methods for automated partitioning and learning fuzzy logical relationships in FTS
forecasting.

12 Further details on the theory behind the backpropagation algorithm can be found in reference (Wythoff, 1993).
13 The authors disaggregate the time series into the seasonal, trend, and residual components and apply anomaly detec-
tion and handling on the stationary residual.

14 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html.
15 More recent methods like the Multiple Seasonal-Trend decomposition using Loess (MSTL) are not yet applied in the
reviewed literature.

16 If the features are originally in a different resolution or length, they must be transformed accordingly.
17 Two time series are necessary because, otherwise, the encoding would be ambiguous for several days.
18 We classify the data domain according to the following categories: economics and finance, energy, nature and demo-
graphics, human access, and other or unknown. The categories are adapted from the references (Bauer et al., 2021;
Makridakis & Hibon, 2000) and extended to cover the literature reviewed.

19 Authors that apply forecasting methods to data from several domains mainly use univariate time series from forecast-
ing competitions, where no exogenous time series are provided.

20 Since the embedded feature selection is specifically designed for the training algorithm of the respective forecasting
method, the transfer to other forecasting methods is not straightforward.

21 As the dimensionality of the feature space increases, the available training data becomes sparse.
22 Since the PCA assumes a normal distribution, anomalies must be identified and handled beforehand, and appropriate
transformations need to be performed to obtain a stationary time series (Yang & Shahabi, 2005).

23 A well-known exception is RNNs that feedback input values within the neural structure to capture sequential
relationships.

24 For multiple-point-ahead forecasts, future values of the exogenous time series are required if lag, cyclical, and trans-
formation features are extracted from them; either through simultaneous forecasting or the integration of exogenous
forecast results.

25 Initial work on the automated extraction of endogenous features exists (Barandas et al., 2020; Cerqueira et al., 2021).
26 Also, the computing effort for training or executing the forecasting method, which is often a contrarian evaluation
criterion to the forecasting accuracy, can be taken into account, for example, if one faces limited computing resources
in applying it to a use case.

27 Since ICs try to prevent overfitting implicitly with the penalty term, they are computed in-sample.
28 The greater importance of a few hyperparameters over others applies in many cases (Bergstra & Bengio, 2012; Rätz
et al., 2019).

29 This regularization is also called early stopping.
30 Selecting the optimal forecasting method and finding the optimal hyperparameter configuration is also called the
combined algorithm selection and hyperparameter optimization (CASH) problem.

31 For a detailed description of evaluation criteria, as well as in-sample and out-of-sample validation, refer to Sec-
tion 6.1.

32 The forecast of a weak model, for example, a DT, is only slightly superior to a random estimate. Ensemble learning
aims to combine many weak models to achieve a good estimate.

33 Using statistical tests to automatically select the most suitable forecasting method can lead to ambiguous results if
there is no significant difference in performance scores. Therefore, we rather consider them for ensembling to reduce
the candidate pool.

34 The scope and complexity with which the analyzed literature addresses the sections of the forecasting pipeline are
analyzed in the previous Sections 4–7 of this article.

35 For the fusion of automated design and automated application, automation levels are defined by Meisenbacher
et al. (2021).
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