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Abstract. Glioblastomas are the most aggressive fast-growing primary brain 

cancer which originate in the glial cells of the brain. Accurate identification of 

the malignant brain tumor and its sub-regions is still one of the most challenging 

problems in medical image segmentation. The Brain Tumor Segmentation Chal-

lenge (BraTS) has been a popular benchmark for automatic brain glioblastomas 

segmentation algorithms since its initiation. In this year, BraTS 2021 challenge 

provides the largest multi-parametric (mpMRI) dataset of 2,000 pre-operative pa-

tients. In this paper, we propose a new aggregation of two deep learning frame-

works namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in 

pre-operative mpMRI. Our ensemble method obtains Dice similarity scores of 

92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the 

enhancing tumor, tumor core, and whole tumor regions, respectively, on the 

BraTS 2021 validation set, ranking us among the top ten teams. These experi-

mental findings provide evidence that it can be readily applied clinically and 

thereby aiding in the brain cancer prognosis, therapy planning, and therapy re-

sponse monitoring. A docker image for reproducing our segmentation results is 

available online at (https://hub.docker.com/r/razeineldin/deepseg21). 
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1 Introduction 

Glioblastomas (GBM), the most common and aggressive malignant primary tumors of 

the brain in adults, occur with ultimate heterogeneous sub-regions including the en-

hancing tumor (ET), peritumoral edematous/invaded tissue (ED), and the necrotic com-

ponents of the core tumor (NCR) [1, 2]. Still, accurate GBM localization and its sub-

regions in magnetic resonance imaging (MRI) are considered one of the most challeng-

ing segmentation problems in the medical field. Manual segmentation is the gold stand-

ard for neurosurgical planning, interventional image-guided surgery, follow-up proce-

dures, and monitoring the tumor growth. However, identification of the GBM tumor 

https://hub.docker.com/r/razeineldin/deepseg21
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and its sub-regions by hand is time-consuming, subjective, and highly dependent on the 

experience of clinicians.  

The Medical Image Computing and Computer-Assisted Interventions Brain Tumor 

Segmentation Challenge (MICCAI BraTS) [3, 4] has been focusing on addressing this 

problem of finding the best automated tumor sub-region segmentation algorithm. The 

Radiological Society of North America (RSNA), the American Society of Neuroradi-

ology (ASNR), and MICCAI jointly organize this year’s BraTS challenge [2] celebrat-

ing its 10th anniversary. BraTS 2021 provides the largest annotated and publicly avail-

able multi-parametric (mpMRI) dataset [2, 5, 6] as a common benchmark for the de-

velopment and training of automatic brain tumor segmentation methods. 

Deep learning-based segmentation methods have gained popularity in the medical 

arena outperforming other traditional methods in brain cancer analysis [7-10], more 

specifically the convolutional neural network (CNN) [11] and the encoder-decoder ar-

chitecture with skip connections, which are first introduced by the U-Net [12, 13]. In 

the context of the BraTS challenge, the recent winning contributions of 2018 [14], 2019 

[15], and 2020 [16] extend the encoder-decoder pattern by adding variational autoen-

coder (VAE) in [14], two-stage cascaded U-Net [15], or using the baseline U-Net ar-

chitecture with making significant architecture changes [16]. 

In this paper, we propose a fully automated CNN method for GDM segmentation 

based on an ensemble of two encoder-decoder methods, namely, DeepSeg [10], our 

recent deep learning framework for automatic brain tumor segmentation using two-

dimensional T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) scans, and nnU-Net 

[16], a self-configuring method for automatic biomedical segmentation. The remainder 

of the paper is organized as follows: Section 2 describes the BraTS 2021 dataset and 

the architecture of our ensemble method. Experimental results are presented in Section 

3. This research work is concluded in Section 4. 

2 Materials and Methods 

2.1 Data 

The BraTS 2021 training database [2] includes 1251 mpMRI images acquired from 

multiple institutions using different MRI scanners and protocols. For each patient, there 

are four mpMRI volumes: pre-contrast T1-weighted (T1), post-contrast T1-weighted 

(T1Gd), T2-weighted (T2), and T2-FLAIR, as shown in Fig. 1. Ground truth labels are 

provided for the training dataset only indicating background (label 0), necrotic and non-

enhancing tumor core (NCR/NET) (label 1), peritumoral edema (ED) (label 2), and 

enhancing tumor (ET) (label 4). These labels are combined to generate the final evalu-

ation of three regions: the tumor core (TC) of labels 1 and 4, enhancing tumor (ET) of 

label 4, and the whole tumor (WT) of all labels. Also, the BraTS 2021 includes 219 

validation cases without any associated ground truth labels. 
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(a) (b) 

 
(c) (d) 

Fig. 1. A sample of the mpMRI BraTS 2021 training set. Shown are images slices in two different 

MRI modalities T2 (a), T1Gd (b), T2-FLAIR (c), and the ground truth segmentation (d). The 

color labels indicate Edema (blue), enhancing solid tumor (green), and non-enhancing tumor 

core, and necrotic core (magenta). Images were obtained by using the 3D Slicer software [17].  

 

2.2 Data Pre-processing 

The BraTS 2021 data were acquired using different clinical protocols, from different 

MRI scanners and multiple institutions, therefore, a pre-processing stage is essential. 

First, standard pre-processing routines have been applied by the BraTS challenge as 

stated in [2]. This includes conversion from DICOM into NIFTI file format, re-
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orientation to the same coordinate system, co-registration of the multiple MRI modali-

ties, resampling to 1×1×1 mm isotropic resolution, and brain extraction and skull-strip-

ping. 

Following these pre-processing steps, we applied the image cropping stage where all 

brain pixels were cropped, and the resultant image was resized to a spatial resolution of 

192×224×160. This method effectively results in a closer field of view (FOV) to the 

brain with fewer image voxels leading to a smaller resource consumption while training 

our deep learning models. Finally, z-score normalization was applied by subtracting the 

mean value and dividing by the standard deviation individually for each input MRI 

image.  

 

2.3 Neural Network Architectures 

We used two different CNN models, namely, DeepSeg [10] and nnU-Net [9] which 

follow the U-Net pattern [12, 13] and consist of encoder-decoder architecture intercon-

nected by skip connections. The final results were obtained by using the Simultaneous 

Truth and Performance Level Estimation (STAPLE) [18] based on the expectation-

maximization algorithm. 

 

DeepSeg. Figure 2 shows a 3D enhanced version of our first model, DeepSeg, which is 

a modular framework for fully automatic brain tumor detection and segmentation. The 

proposed network differs from the original network in the following: First, the original 

DeepSeg network was proposed for 2D tumor segmentation using only FLAIR MRI 

data, however, we apply here 3D convolutions over all slices for more robust and ac-

curate results. Second, we incorporate all the available MRI modalities (T1, T1Gd, T2, 

and T2-FLAIR) so that the GBM sub-regions could be detected in comparison with the 

whole tumor only in the original DeepSeg paper [10]. Third, we incorporate additional 

modifications such as region-based training, excessive data augmentation, a simple 

postprocessing technique, and a combination of cross-entropy (CE) and Dice similarity 

coefficient (DSC) loss functions. 

Following the structure of U-Net, DeepSeg consists of two main parts: a feature ex-

tractor part and an image upscaling part. Downsampling is performed with 2 × 2 × 2 

max-pooling and upsampling is performed with 2 × 2 × 2 up convolution. DeepSeg 

uses the recently proposed advances in CNNs including dropout, batch normalization 

(BN), and rectified linear unit (ReLU) [19, 20]. The feature extractor consists of five 

consecutive convolutional blocks, each containing two 3 × 3 × 3 convolutional layers, 

followed by ReLU. In the image upscaling part, the resultant feature map of the feature 

extractor is upsampled using deconvolutional layers. The final output segmentation is 

attained using a 1 × 1 × 1 convolutional layer with a softmax output.  
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Fig. 2. DeepSeg network consists of convolution neural blocks (blue boxes), downsampling using 

maximum pooling (orange arrows), and upsampling using up convolution (blue arrows), and 

softmax output layer (green block). The input patch size was set to 128 × 128 × 128. 

nnU-Net. The baseline nnU-Net is outlined in Fig. 3, which is a self-adaptive deep 

learning-based framework for 3D semantic biomedical segmentation [9]. Unlike 

DeepSeg, nnU-net does not use any of the recently proposed architectural advances in 

deep learning and only depends on plain convolutions for feature extraction. nnU-Net 

used strided convolutions for downsampling and convolution transposed for upsam-

pling. The initial filter size of convolutional kernels is set to 32 and doubled at the 

following layers with a maximum of 320 in the bottleneck layers. 

By modifying the baseline nnU-Net and making BraTS-specific processing, nnU-

Net won first place in the segmentation task of the BraTS challenge in 2020 [16]. The 

softmax output was replaced with a sigmoid layer to target the three evaluated tumor 

sub-regions: whole tumor (consisting of all 3 labels), tumor core (label 1 and label 4), 

and enhancing tumor (label 4). Further, the training loss was changed to a binary cross-

entropy instead of categorical cross-entropy that optimized each of the sub-regions in-

dependently. Also, the batch size was increased to 5 as opposed to 2 in the baseline 

nnU-Net and more aggressive data augmentations were incorporated. Similar to 

DeepSeg, nnU-Net utilized BN instead of instance normalization. After all, the sample 

dice loss function was changed to batch dice by computing over all samples in the batch. 

In our experiments, we incorporated the top-performing nnU-Net configuration on the 

validation set of BraTS 2020.  
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Fig. 3. nnU-Net network consists of strided convolution blocks (grey boxes), and upsampling as 

convolution transposed (blue arrows). The input patch size was set to 128 × 128 × 128 and the 

maximum filter size is 320 [16]. 

2.4 Post-processing 

Determining the small blood vessels in the tumor core (necrosis or edema) is one of the 

most challenging segmentation tasks in the BraTS Challenge. In particular, this is clear 

in low-grade glioma (LGG) patients where they may not have enhancing tumors and, 

therefore, the BraTS challenge evaluates the segmentation as binary values of 0 or 1. 

Although if there are only small false positives in the predicted segmentation map of a 

patient with no enhancing tumor will result in a dice value of 0. To overcome this prob-

lem, all enhancing tumor output were re-labeled with necrotic (label 1) if the total pre-

dicted ET regions are less than a threshold. This threshold value was selected based on 

our analysis of the validation set results so that our model performs better. This strategy 

has a possible side effect of removing some correct predictions.  

3 Experiments and Results 

3.1 Cross-validation Training  

We train each model as five-fold cross-validation on the 1251 training cases of BraTS 

2021 for a maximum of 1000 epochs. Adam optimizer [21] has been applied with an 

initial learning rate of 1e-4 and a default value of 1e-7 for epsilon. Each configuration 

was trained on a single Nvidia GPU (RTX 2080 Ti or RTX 3060). The input to our 

networks is randomly sampled patches of 128 × 128 × 128 voxels with varying batch 

sizes from 2 to 5 and the post-processing threshold is set to 200 voxels. This tiling 

strategy allows the model to be trained on multi-modal high-resolution MRI images 

with low GPU memory requirements. The DeepSeg model was implemented using 

Tensorflow [22] while nnU-Net was implemented using PyTorch [23]. 

For training DeepSeg, the loss function is a combination of CE and DSC loss func-

tions, which can be calculated as follows: 
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 𝐿𝐷𝑒𝑒𝑝𝑆𝑒𝑔  = 𝐷𝑆𝐶 + 𝐶𝐸 =  
2∗ ∑ 𝑦𝑝+ 𝜀

∑ 𝑦+ ∑ 𝑝+ 𝜀
− ∑ 𝑦. log (𝑝)  (1) 

where p denotes the network softmax predictions and y ∈ {0, 1} representing the 

ground truth binary value for each class. Note that ε is the smooth parameter to make 

the dice function differentiable.  

To overcome the effect of class imbalance between tumor labels and the brain 

healthy tissue, we apply on-the-fly spatial data augmentations during training (random 

rotation between 0 and 30°, random 3D flipping, power-law gamma intensity transfor-

mation, or a combination of them). 

3.2 Online Validation Dataset 

The results of our models on the BraTS 2021 validation set are summarized in Table 1, 

where the five models for each cross-validation training configuration are averaged as 

an ensemble. Two evaluation metrics are used for the BraTS 2021 benchmark, com-

puted by the online evaluation platform of Sage Bionetworks Synapse (Synapse), which 

are the DSC and the Hausdorff distance (95%) (HD95). We compute the averages of 

DSC scores and HD95 values across the three evaluated tumor sub-regions and then 

use them to rank our methods in the final column. 

DeepSeg A refers to the baseline DeepSeg model, which has large input patches of 

the full pre-processed image, smaller batch size of 2. With DSC values of 81.64, 84.00, 

and 89.98 for the ET, TC, and WT regions, respectively, DeepSeg A model yields good 

results, especially when compared to the inter-rater agreement range for manual MRI 

segmentation of GDM [24, 25]. By using a region-based version of DeepSeg with an 

input patch size of 128 × 128 × 128 voxels, batch size of 5, applied post-processing 

stage, and on-the-fly data augmentation, the DeepSeg B model achieved better results 

of DSC values of 82.50, 84.73, and 90.05 for the ET, TC, and WT regions, respectively. 

Additionally, we used two different configurations of the BraTS 2020 winning ap-

proach nnU-Net [16]. The first model, nnU-Net A, is a region-based version of the 

standard nnU-Net, large batch size of 5, more aggressive data augmentation as de-

scribed in [16], trained using batch Dice loss, and including the postprocessing stage. 

nnU-Net B model is very similar to nnU-Net A model with applied brightness augmen-

tation probability of 0.5 for each input modality compared with 0.3 for model A. nnU-

Net models ranks second and third in our ranking (see Table 1) achieving an average 

DSC and HD95 results of 87.78, 87.87 and 9.6013, 10.1363 for each model, corre-

spondingly. 

For the RSNA-ASNR-MICCAI BraTS 2021 challenge, we selected the three top-

performing models to build our final ensemble: DeepSeg B + nnU-Net A + nnU-Net B. 

Our final ensemble was implemented by first predicting the validation cases individu-

ally with each model configuration, followed by averaging the softmax outputs to ob-

tain the final cross-validation predictions. After that, the STAPLE [18] was applied to 

aggregate the segmentation produced by each of the individual methods using the prob-

abilistic estimate of the true segmentation. Our ensemble method is ranked among the 

top 10 teams for the BraTS 2021 segmentation challenge. 
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Table 1.  Results of our five-fold cross-validation models on BraTS 2021 validation cases. All 

reported values were computed by the online evaluation platform Synapse. The average of DSC 

and HD95 scores are computed and used for ranking our methods. 

Model DSC HD95 Rank 

 ET  TC WT Avg ET  TC WT Avg  

DeepSeg A 81.64 84.00 89.98 85.21 19.77 10.25 5.11 11.71 5 

DeepSeg B* 82.50 84.73 90.05 85.76 21.36 12.96 8.04 14.12 4 

nnU-Net A** 84.02 87.18 92.13 87.78 16.03 8.95 3.82 9.60 2 

nnU-Net B*** 83.72 87.84 92.05 87.87 17.73 8.81 3.87 10.14 3 

Ensemble (*, **, ***) 84.10 87.33 92.00 87.81 16.02 8.91 3.81 9.58 1 

3.3 Qualitative Output 

Figure 3 shows the qualitative segmentation predictions on the BraTS 2021 validation 

dataset. These outcomes were generated by applying our ensemble model. The rows 

show the best, median, and worse segmentations based on their DSC scores, respec-

tively. From this figure, it can be seen that our model achieves very good results with 

the overall high quality. Although the worst case, BraTS2021_Validation_01739, has 

a TC of zero, this finding was not quite surprising as illustrated in Section 2.4 as a side 

effect of applying our postprocessing strategy. Notably, the WT region was detected 

with a good quality (DSC of 95.72) which could be already valuable for clinical use. 
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Best: BraTS2021_Validation_00153, EC (97.32), TC (98.77), WT (98.13) 

 
Median: BraTS2021_Validation_00001, EC (82.82), TC (91.04), WT (94.59) 

 
Worst: BraTS2021_Validation_01739, EC (0), TC (85.34), WT (95.72) 

Fig. 4. Sample qualitative validation set results of our ensemble model. The best, median, and 

worse cases are shown in the rows. Columns display the T2, T1Gd, and the overlay of our pre-

dicted segmentation on the T1Gd image. Images were obtained by using the 3D Slicer software 

[17]. 

3.4 BraTS Test Dataset 

Table 2 summarizes the final results of the ensemble method on the BraTS 2021 test 

dataset. Superior results were obtained for the DSC of ET, while all other obtained DSC 

results were broadly consistent with the validation dataset. In contrast, a substantial 

discrepancy between validation and test datasets for the HD95 is visible. Although our 

results were not state-of-the-art for the BraTS 2021 challenge, the proposed method 

showed better or equal segmentation performance to the manual inter-rater agreement 

for tumor segmentation [3]. The results confirm that our method can be used to guide 

clinical experts in the diagnosis of brain cancer, treatment planning, and follow-up pro-

cedures. 
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Table 2.  Results of our final ensemble models on the BraTS 2021 test dataset. All reported 

values were provided by the challenge organizers. 

 DSC HD95 

ET TC WT ET TC WT 

Mean 87.63 87.49 91.87 12.13 6.27 14.89 

StdDev 18.22 24.31 10.97 59.61 27.79 63.32 

Median 93.70 96.04 95.11 1.00 2.00 1.41 

25quantile 85.77 91.33 91.09 1.00 1.00 1.00 

75quantile 96.62 98.20 97.22 1.73 4.12 3.00 

4 Conclusion 

In this paper, we described our contribution to the segmentation task of the RSNA-

ASNR-MICCAI BraTS 2021 challenge. We used an ensemble model of two encoder-

decoder-based CNN networks namely, DeepSeg [10] and nnU-Net [16]. Table 1 and 

Table 2 list the results of our methods on the validation set and test set, respectively. 

Remarkably, our method achieved DSC of 92.00, 87.33, and 84.10 as well as HD95 of 

3.81, 8.91, and 16.02 for, ET, TC, and WT regions on the validation dataset, respec-

tively. For the testing dataset, our final ensemble yielded DSC of 87.63, 87.49, and 

91.87 in addition to HD95 of 12.1343, 14.8915, and  6.2716 for ET, TC, and WT re-

gions, correspondingly. These results ranked us among the top 10 methods for the 

BraTS 2021 segmentation challenge. Furthermore, qualitative evaluation supports the 

numerical evaluation showing a high-quality segmentation. Our clinical partner sug-

gested that this approach can be applied for guiding brain tumor surgery. 
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