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Solvers often exhibit complementarity in benchmarks, e.g., in Main Track of SAT Competitions:
2020: 316 instances solved; 2021: 325 instances solved
On how many instances did the best individual solvers win?

Instances won

Solver # 2020 2021

1 46 25
2 38 22
3 26 20

SAT Competition: 2021: Special Innovation Price for CaDiCaL_PriPro
Place 10 in Main Track, but part of best two-solver portfolio ...
... together with lstech_maple (Place 13 in Main Track)

Basics Experiments Summary

2/12 2022-08-02 Jakob Bach, Markus Iser, and Klemens Böhm: A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Motivation



Solvers often exhibit complementarity in benchmarks, e.g., in Main Track of SAT Competitions:
2020: 316 instances solved; 2021: 325 instances solved

On how many instances did the best individual solvers win?

Instances won

Solver # 2020 2021

1 46 25
2 38 22
3 26 20

SAT Competition: 2021: Special Innovation Price for CaDiCaL_PriPro
Place 10 in Main Track, but part of best two-solver portfolio ...
... together with lstech_maple (Place 13 in Main Track)

Basics Experiments Summary

2/12 2022-08-02 Jakob Bach, Markus Iser, and Klemens Böhm: A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Motivation



Solvers often exhibit complementarity in benchmarks, e.g., in Main Track of SAT Competitions:
2020: 316 instances solved; 2021: 325 instances solved
On how many instances did the best individual solvers win?

Instances won

Solver # 2020 2021

1 46 25
2 38 22
3 26 20

SAT Competition: 2021: Special Innovation Price for CaDiCaL_PriPro
Place 10 in Main Track, but part of best two-solver portfolio ...
... together with lstech_maple (Place 13 in Main Track)

Basics Experiments Summary

2/12 2022-08-02 Jakob Bach, Markus Iser, and Klemens Böhm: A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Motivation



Solvers often exhibit complementarity in benchmarks, e.g., in Main Track of SAT Competitions:
2020: 316 instances solved; 2021: 325 instances solved
On how many instances did the best individual solvers win?

Instances won

Solver # 2020 2021

1 46 25
2 38 22
3 26 20

SAT Competition: 2021: Special Innovation Price for CaDiCaL_PriPro
Place 10 in Main Track, but part of best two-solver portfolio ...

... together with lstech_maple (Place 13 in Main Track)

Basics Experiments Summary

2/12 2022-08-02 Jakob Bach, Markus Iser, and Klemens Böhm: A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Motivation



Solvers often exhibit complementarity in benchmarks, e.g., in Main Track of SAT Competitions:
2020: 316 instances solved; 2021: 325 instances solved
On how many instances did the best individual solvers win?

Instances won

Solver # 2020 2021

1 46 25
2 38 22
3 26 20

SAT Competition: 2021: Special Innovation Price for CaDiCaL_PriPro
Place 10 in Main Track, but part of best two-solver portfolio ...
... together with lstech_maple (Place 13 in Main Track)

Basics Experiments Summary

2/12 2022-08-02 Jakob Bach, Markus Iser, and Klemens Böhm: A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Motivation



Definition (K-Portfolio Problem)

Given

a set of solvers S = {s1, . . . , sn},
a set of SAT instances I = {i1, . . . , il},
a scoring function c : I × S → R (here: PAR-2 score),
an instance-specific solver selector m : I → S, and
a portfolio size k ∈ N,

find a solver subset P of size k with minimum average cost: argmin
P⊆S,|P|=k

1
|I| ·

∑
i∈I

c(i,m(i))

We analyze two methods for instance-specific solver selection m:
Virtual Best Solver (VBS): Oracle always selects best solver
Model-based: Prediction model selects solver based on instance features
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Analyzing solver complementarity: Xu et al. [21], Fréchette et al. [10]

Instance-specific solver selection: SATzilla [23, 24], ISAC [13], SNNAP [8], etc.

Analyzing k -portfolios for CSPs: Amadini et al. [1, 2], Dang [9], Ulrich-Oltean et al. [20]

Analyzing k -portfolios for anytime algorithms: Nof and Strichman [17]
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K-Portfolio Problem with VBS selector is NP-complete, but also monotone and submodular [17]

Examples for exact (i.e., optimal) solutions:
Exhaustive search: evaluates

(|S|
k

)
portfolios

Encoding with Satisfiability Module Theories (SMT) by Nof and Strichman [17]
Encoding as integer linear program developed by us

Examples for heuristic solutions:
Beam search with beam width w : evaluates O(|S| · w · k) portfolios

Submodularity bounds quality of greedy search (w = 1) relative to optimal solution [16, 17]

K-best [17]: evaluates O(|S|) portfolios

Basics Experiments Summary
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min
x,y

1
|I|

·
∑
i∈I

∑
s∈S

c(i, s) · xi,s

s.t.
∑
s∈S

ys ≤ k (portfolio size)

∀i ∈ I :
∑
s∈S

xi,s = 1 (one solver per instance)

∀s ∈ S :
∑
i∈I

xi,s ≤ |I| · ys (only use solvers from portfolio)

∀i ∈ I, ∀s ∈ S : xi,s ∈ {0, 1} (solver selected for instance or not)

∀s ∈ S : ys ∈ {0, 1} (solver selected or not)
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Two datasets (from Main Tracks of recent SAT Competitions):
1) SC2020 (316 instances, 48 solvers) [4]
2) SC2021 (325 instances, 46 solvers) [5]

138 features from feature extractor of SATzilla 2012 [22, 24]
Instance features and solver runtimes retrieved from Global Benchmark Database (GBD) [12]

Four solution approaches:
Optimal solution via integer programming [19]
Beam search with beam width w ∈ {1, 2, 3, . . . , 10, 20, 30, . . . , 100}
K-best
Random sampling with 1000 repetitions

Two multi-class prediction models: Random forests [6, 18] and XGBoost [7] with 100 trees each
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Evaluated solver portfolios on data from SAT Competitions 2020 and 2021

Small portfolios already show potential of high runtime improvement compared to individual solvers

Greedy portfolio search close to optimal portfolio

K-best (only considering individual solver performance) worse than greedy and optimal portfolio

Our prediction approach does not benefit from increased portfolio size

Directions for future work:
Improve prediction performance, e.g., by using new features like community-based ones [3, 14]
Analyze special-purpose solvers and solver configurations
Tune solvers within portfolios [13]
Compare to sophisticated portfolio approaches like SATzilla [23, 24]
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