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Abstract: In order to further increase the efficiency of electrified vehicle drives, various predictive en-
ergy management strategies (driving strategies) have been developed. Therefore, a generic prediction
approach is worked out in this paper, which enables a robust prediction of all traction torque-relevant
variables for such strategies. It is intended to be useful for various types of electrification; however,
the focus of this work is to the application in hybrid electric vehicles. In contrast to other approaches,
no additional information (e.g., telemetry data) is required and thus a reliable prediction is guaranteed
at all times. In particular, approaches from the fields of stochastics and artificial intelligence have
proven to be effective for such purposes. Within the scope of this work, both so-called Markov Chains
and Neural Networks are applied to predict real driving profiles within a required time horizon.
Therefore, at first, a detailed analysis of the driver-specific ride characteristics is performed to ensure
that real-world operation is represented appropriately. Next, the two models are implemented and
the calibration is further discussed. The subsequent direct comparison of the two approaches is
performed based on the described methodology, which includes both quantitative and qualitative
analyses. Hereby, the quality of the predictions is evaluated using Root Mean Squared Error (RMSE)
calculations as well as analyses in time domain. Based on the presented results, an appropriate
approach is finally recommended.

Keywords: artificial neural networks; Markov chains; electrified powertrains; model predictive
control; real driving cycles

1. Introduction

Increasingly stringent emission limits and the overall rise in environmental awareness
have led to the development of a wide range of alternative drive systems. This includes
purely electric vehicles as well as hybrid electric vehicles. Electrified drives are characterised
by component dimensioning, topology, and driving strategy [1]. The latter must ensure
the optimal use of the system functions in various driving scenarios, whereby [2–6] offer
a wide overview of the current state of research in this field. It is shown, that predictive
driving strategies are widely investigated in current research. Therefore, information
about the future torque and power requirements is taken into account in the control of the
propulsion through corresponding algorithms. In general, multiple sources exist, which can
be considered to predict future torque demand. This includes telemetry data from Global
Positioning System (GPS), Car-to-Car (C2C), and Car-to-X (C2X). Furthermore, information
from Radar, Lidar and cameras can also be considered for prediction purposes. However,
these communication units and sensors are not mandatory, as well as the continuous
availability of such data cannot be ensured for robust on road predictions.

Therefore, in this paper, two models are presented which guarantee a robust prediction
of future torque demand without needing any telemetry data. For both models, historical
driving profiles for training are sufficient. They also only need the past and present states
of the current drive for their predictions. Within the scope of this paper, the two approaches
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are compared through both quantitative and qualitative analyses. The aim hereby is to
evaluate the accuracy of predictions. This includes detailed investigations regarding all
power- and torque-relevant variables for various real driving profiles by different drivers.
Finally, the best suitable prediction approach is determined.

2. Related Work

An overview of five different approaches to predict power demand is presented in [7].
This includes frozen-time Model Predictive Control (MPC), where demand is kept constant
over prediction horizon, prescient MPC (future demand is a priori known perfectly), and
exponentially varying prediction (demand is exponentially decreasing over the prediction
horizon). As they show insufficient accuracy or assume unrealistic boundary conditions,
these approaches are not investigated in this work. Apart from that, there further exist
both stochastic MPC, which is based on Markov Chains (MC) and MPC based on artificial
intelligence (AI). A similar classifications can also be found in [8,9].

MC have a long popularity in generating synthetic driving cycles [10–16], but in recent
years have been also successfully applied in predictive control applications [17–27]. Some
works also compare MC with artificial neural networks (ANNs) [28–32]. Other publications
in which neural networks have been used in this context are [33–36]. Detailed analysis has
shown that many publications neglect road slope in their predictions. However, especially
the slope profile has a significant impact on the optimal control of electrified powertrains,
as it offers recuperation possibilities leading to significant reduction potentials, especially
in extra-urban areas [37]. In addition, there exist interactions between slope and the
driver-controlled quantities velocity and acceleration [13]. This leads to the conclusion
that road slope should be considered appropriately. Apart from that, the individual
control strategy applied in the investigated publications also limits the comparability of the
different approaches.

An analysis of the state-of-the-art showed that a detailed analysis of the performance
of both MC and ANN in terms of all power- and torque-relevant variables depending on
different drivers has not been investigated so far. With the basic idea of a generic appli-
cability to any degree of automation and suitability for any kind of energy management
concept, this publication is intended to close this gap through a detailed investigation. This
further includes a recommendation which algorithm is the most suitable for the application
described. Although the extensibility of the basic strategy to vehicles with a higher degree
of automation is considered, the impact on prediction by use of information provided by
additional sensors (e.g., radar, lidar) is not further discussed in this publication.

3. Method
3.1. Vehicle Dynamics and Optimization

The optimal driving strategy determines the torque distribution between the different
drives. In the case of a hybrid electric vehicle this includes the optimal interaction between
the Electric Motor (EM) and the Internal Combustion Engine (ICE). In addition, there are
other control variables, such as the On/Off state of the ICE [38]. Besides the distribution
of torque to the various traction motors, the driving strategy can also determine the gear
selection and—depending on the degree of automation of the vehicle—the velocity to be
driven [39]. However, the focus of this paper will be on predicting driving profiles, which
have been specified by real drivers.

Generally, these optimization problems must be solved with regard to the torque
required for the traction of the vehicle as well as the electrical auxiliary consumers, whereby
the latter is neglected in the context of this work. The torque results from the longitudinal
dynamics of the vehicle, taking into account the wheel radius as well as the transmission
ratios of the vehicle. The correlations from vehicle dynamics are shown below. The different
parameters and their corresponding units are listed in Table 1.
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FWheel = Fair + Froll + Facc + Fslp (1)

Fair = cw · A · ρ
2 · v2 (2)

Froll = m · g · cosα · fR (3)

Facc = m · a · λ (4)

Fslp = m · g · sinα (5)

Table 1. Parameters and units of the driving resistances.

Drag Coefficient cw [−]
Projected Frontal Area A [m2]
Air Density ρ [kg/m3]
Vehicle Mass m [kg]
Gravitational Acceleration g [m/s2]
Rolling Resistance Coefficient fR [-]
Mass Factor λ [-]

It can be seen that the torque is influenced by the vehicle-specific parameters as well as
by the driving cycle-specific quantities velocity, acceleration, and road slope. Predicting the
latter offers the possibility to improve a non-predictive Equivalent Consumption Minimiza-
tion Strategy (ECMS) [38,40,41] or to implement other approaches like MPC [39,42,43].

The basic Generic Model Predictive Control Scheme considered in this work is visual-
ized in Figure 1, whereby the driver behaviour is predicted for the route ahead based on
the statistical model. Therefore, at first, all torque-relevant values like velocity, acceleration,
and slope are predicted for a given horizon. In the next step, the expected torque request
is calculated using a model of vehicle dynamics. Based on this information, finally, an
optimal control value can be determined by the chosen optimizer.

As already stated, two different approaches from the field of stochastics as well as
artificial intelligence for generating such predictions are considered in this work. Their
basic characteristics are briefly described below.

3.2. Discrete Markov Processes

In discrete Markov processes, the states of a system are discretized, whereby the
system state can be described at any time by one of these states. This allows the calcu-
lation of a transition probability which subsequent state occurs at a certain actual state.
These transition probabilities in turn are stored in a Transition Probability Matrix (TPM),
see Figure 2.
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Figure 1. Proposed generic model predictive control scheme.

If this probability distribution is limited to the current state without taking into account
past values, this can be stated as a first-order MC. If we further denote the states as S, the
state at time t as qt, and the transition probability from state i to state j as aij, the following
applies [44]:

P[qt = Sj|qt−1 = Si, qt−2 = Sk, . . .] = P[qt = Sj|qt−1 = Si]. (6)

Since only time-invariant processes are considered, the following results:

aij = P[qt = Sj|qt−1 = Si]. (7)

Furthermore, the following properties for the transition probability aij apply:

aij ≥ 0 (8)

N

∑
j=1

aij = 1. (9)
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Figure 2. Visualisation of Transition Probability Matrix (TPM).

3.3. Feedforward Neural Networks

A Feedforward Neural Network (FNN) typically consists of an input layer, an output
layer, and several hidden layers. The basic calculations will be shown in the example of a
neural network with a single output neuron, the perceptron in Figure 3.

Input Nodes Output Node

x1

x2

ŷx3

x4

b

x5

w1

w2

w3

w4

w5

+1

Figure 3. Basic architecture of a perceptron based on [45].

The output value ŷ is a result of taking into account the input variables X̄ = [x1, . . . , xd]
corresponding to the d features, the bias b, the weights of the connections between the
input layer and the output neuron W̄ = [w1, . . . , wd], as well as the activation function θ,
according to the following relationship [45]:

ŷ = θ{W̄X̄ + b} = θ{
d

∑
j=1

wjxj + b}. (10)
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In this context, the activation function is applied to the weighted sum of the input
values and thus finally determines the output value of the neuron. A typical activation
function is, for example, the Rectified Linear Unit (ReLu), but other functions can also be
used depending on the application [45]. This basic principle can also be transferred to more
complex neural networks. Here, the output values of one layer result in the input values
for the neurons in the next layer. For a comprehensive overview of FNN including the
various calibration possibilities, the reader is referred to [45].

3.4. Procedure Overview

The basic procedure is shown in Figure 4. Here, the real driving cycles further de-
scribed in Section 4.1 are first divided into training, validation, and test data in the ratio
60:20:20. Subsequently, models for MC and FNN are trained. Through a subsequent anal-
ysis of the calculated RMSE values of velocity, acceleration, and road slope as well as by
analysing the predictions with corresponding plots of the whole driving cycle, the optimal
generic prediction approach for the purpose described will be finally selected.

FNN

MC

Real

Driving

Cycles

Train

Prediction

Model

Calculate

RMSE

Visualize

Test

Cycles

Best Generic

Prediction

Approach

Split

Data

Train

(Validation)

Test

Quantitative
Analysis

Qualitative
Analysis

Figure 4. Applied methodology to determine the best generic prediction approach.

4. Implementation
4.1. Available Data

For the application of the presented methodology, driving data from a total of four test
drivers are available. As shown in Table 2, the four test drivers differ in major characteristic
values. Basically, driver 1 has driven by far the most test kilometres and also has the longest
total test time. Maximum velocities as well as maximum accelerations and decelerations
achieved the highest values here. On average, however, relatively low accelerations occur
as the lowest RMSa (Root Mean Squared) value shows. This is also underlined by the v-a
plot in Figure 5.

Table 2. Available data for training driver models.

Driver 1 Driver 2 Driver 3 Driver 4

ttotal h 31.34 10.83 8.24 9.73
stotal km 2825.49 564.49 590.28 500.68
tstanding % 7.29 14.82 6.76 10.17
vmax km h−1 191.90 155.79 138.76 109.26
amax m s−2 1.83 1.57 1.54 1.45
amin m s−2 −2.11 −1.92 −1.75 −1.72
slpmax % 15.44 11.62 11.52 1.63
slpmin % −16.10 −12.47 −11.58 −1.52
RMSv km h−1 100.24 61.71 80.68 59.54
RMSa m s−2 0.32 0.39 0.36 0.37
RMSslp % 2.85 2.73 1.74 0.55
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It can be concluded that driver 1 drives mostly on the highway. Driver 2 is charac-
terised by the highest proportion of standstill times and the highest average accelerations.
As the v-a plot further shows, driver 2 primarily drives in urban areas and occasionally on
country roads. As also shown in Figure 5 the focus of driver 3 is on city driving or driving
on the highway at a constant speed of 120 km/h. The rides of driver 4 also have a high
proportion of low acceleration, especially on country roads in the 80–100 km/h velocity
range. Regarding the driven road slopes, driver 4 has hardly any road slopes in the range
of ±5% , while drivers 1–3 have a similar distribution.
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Figure 5. Distribution of the main driver parameters velocity, acceleration, and slope.

4.2. Model Architectures

As introduced in Section 3.2 discrete Markov processes states have to be defined. In
accordance with [13,15] each state is represented by a 3 × 1 tuple consisting of vehicle
velocity vi, acceleration ai, and road slope slpi:

Si = [vi ai slpi]. (11)

If the slope is not taken into account, the state is reduced to a 2 × 1 tuple. The
discretisation of the relevant quantities is worked out by extensive parameter studies,
further described in Section 4.3. In order to predict torque-relevant quantities using MC,
first the TPM must be calculated from training data. Afterwards, a MC object is created
using the dtmc-function of the MATLAB Econometrics Toolbox. Now, the predictions can
be computed by a random walk through the MC according to the prediction horizon.

When modelling the FNN described in Section 3.3 and shown in Figure 6, the inputs
and outputs are selected analogously to [31]. In this source, the inputs represent the
considered time horizon in the past, whereas the outputs represent the predicted time
horizon in the future. The numbers of inputs and outputs are always chosen equally in this
work, so a prediction horizon into the future of 20 s also requires a consideration of the
last 20 s. If the road slope is taken into account, the number of inputs and outputs doubles
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accordingly. In contrast to the MC, explicit modelling of the accelerations is not performed.
This is due to the fact that accelerations are already taken into account by the sequence of
velocities indirectly.

vt

vt−1

vt−i

slpt

slpt−1

slpt−i

vt+1

vt+2

vt+i

slpt+1

slpt+2

slpt+i

NHiddenLayers

NInputLayer NOutputLayer

NHiddenLayer1 NHiddenLayer2

Figure 6. Feedforward Neural Network used for predictions.

The FNN is implemented in Python using Keras. Keras is a neural network library
built on the TensorFlow platform. The number of hidden layers and their number of
neurons, the loss function, the activation function, and other parameters are checked by
extensive studies which are described in excerpts in the following section.

4.3. Parameter Studies

For the choice of a suitable discretisation, the discretisation is increased by a discreti-
sation factor on the basis of the values in the literature [13,15]. The studies are shown in
Figure 7. Due to the convergence of velocity and acceleration, the proposed parametrisa-
tion of Table 3 (discretisation factor of 1) can be confirmed as suitable. As can be seen, the
RMSEv converges to ≈5 km/h, and the RMSEa converges to ≈0.3 m/s2 for a prediction
horizon of 10 s for the chosen test dataset.

The same procedure is used to select the number of neurons for the hidden layers
of the neural network. For the choice of a suitable number of neurons, the number of
neurons in the hidden layers are reduced from values in the literature (Figure 8). Due
to the convergence of velocity and acceleration, the parametrisation proposed in Table 4
(no. neurons hidden layer of 10) can be confirmed as suitable. As can be seen, the RMSEv
converges to ≈2 km/h, and the RMSEa converges to ≈0.4 m/s2 for a prediction horizon of
10 s for the chosen test dataset.
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Further parameter analyses are not discussed at this point.
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4.4. Final Model Parameters

In Tables 3 and 4, the final parameters are shown for the MC and the FNN.

Table 3. Parameters for MC.

Delta Velocity 1 km/h
Delta Acceleration 0.1 m/s2

Delta Slope 0.5%

Using a Rectified Linear Unit (ReLu) Activation Function as well as the Mean Squared
Error (MSE) as a Loss function leads to the best results. The amount of hidden layers and
their amount of neurons as well as the other parameters listed were developed through
corresponding parameter studies. Parameters not listed in Table 4 were left at default
settings of Keras.

Table 4. Parameters for FNN (w/o slp and w/ slp) for 10 s prediction.

NNeuronsInputLayer 10/20
NNeuronsOutputLayer 10/20
NHiddenLayers 2
NNeuronsHiddenLayer1 20/40
NNeuronsHiddenLayer2 20/40
Loss Function Mean Squared Error (MSE)
Activation Function Rectified Linear Unit (ReLU)
Loss Function Mean Squared Error (MSE)
Learning Rate 0.001
Batch Size 1400
Epochs 3000

5. Results
5.1. Evaluation of the Root Mean Squared Error (RMSE)

Table 5 shows that prediction accuracies using MC are similar for all drivers. As an
example, for a prediction horizon of 10 s, the RMSEv is about 4 km/h. Only RMSEv of
driver 2 with a high standstill percentage and the highest accelerations is slightly higher
with an RMSEv of 4.62 km/h. Taking the road slope into account cannot increase the
prediction accuracy any further. However apart from driver 4, where the value remains
almost constant, all drivers even show a deterioration of a few percent when considering
road slope. In addition, an overproportional increase in the RMSE values can be seen when
the prediction horizon is increased to 20 s or 30 s. This suggests that MC are particularly
unsuitable for large prediction horizons.

As shown in Table 6 for all four drivers, the application of the FNN leads to a higher
prediction accuracy in total. The RMSE of the calculated velocities is 30% less compared to
the results of MC. Especially the avoidance of an overproportional increase for a prediction
horizon of 20 s or 30 s should be mentioned at this point. Apart from that, in contrast to
MC, the FNN seems to best match the driving style of driver 4. Also, for FNN, the RMSE
values for the accelerations are higher than for the MC. The authors justify this by the fact
that, in contrast to the MC, the accelerations were only indirectly taken into account in the
FNN and therefore merely RMSEv is minimized during training. Furthermore, there is a
clear improvement in the prediction accuracy of the slope. Besides, a significantly lower
deterioration in velocity and acceleration accuracy can be seen when using road slope
overall. However, an improvement by taking into account road slope (e.g., slope leads to
velocity increase) is not detected here either.
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Table 5. RMSE using MC for different prediction horizons.

Horizon 10 s Horizon 20 s Horizon 30 s

w/o slp w/slp w/o slp w/slp w/o slp w/slp

Driver 1
RMSEv km h−1 3.95 4.17 11.25 12.29 18.06 20.05
RMSEa m s−2 0.34 0.36 0.44 0.49 0.48 0.53

RMSEslp % - 1.14 - 2.02 - 2.63

Driver 2
RMSEv km h−1 4.62 4.94 12.86 13.34 20.54 21.05
RMSEa m s−2 0.43 0.45 0.55 0.57 0.60 0.62

RMSEslp % - 0.78 - 1.41 - 1.91

Driver 3
RMSEv km h−1 3.78 4.03 11.08 11.57 18.78 18.97
RMSEa m s−2 0.33 0.35 0.45 0.48 0.50 0.53

RMSEslp % - 0.62 - 1.12 - 1.49

Driver 4
RMSEv km h−1 4.08 4.05 10.46 10.52 16.14 16.35
RMSEa m s−2 0.38 0.39 0.47 0.49 0.52 0.55

RMSEslp % - 0.20 - 0.31 - 0.41

Table 6. RMSE using FNN for different prediction horizons.

Horizon 10 s Horizon 20 s Horizon 30 s

w/o slp w/slp w/o slp w/slp w/o slp w/slp

Driver 1
RMSEv km h−1 2.21 2.24 6.34 6.47 10.13 9.98
RMSEa m s−2 0.41 0.41 0.78 0.78 0.89 0.86

RMSEslp % - 0.26 - 0.77 - 1.06

Driver 2
RMSEv km h−1 2.33 2.33 6.71 7.13 10.87 9.63
RMSEa m s−2 0.43 0.43 0.83 0.84 0.94 0.83

RMSEslp % - 0.13 - 0.36 - 0.53

Driver 3
RMSEv km h−1 2.49 2.54 7.41 7.53 11.41 10.61
RMSEa m s−2 0.46 0.47 0.89 0.89 0.97 0.89

RMSEslp % - 0.11 - 0.34 - 0.59

Driver 4
RMSEv km h−1 1.95 2.04 8.05 4.96 9.72 5.02
RMSEa m s−2 0.36 0.38 0.90 0.56 0.88 0.44

RMSEslp % - 0.02 - 0.03 - 0.05

5.2. Evaluation of Predictions in Time Domain

As shown in Figure 9, MC allow both a velocity and acceleration curve to be predicted,
whereby the resulting velocity curve from the integrated acceleration has a slightly lower
RMSE. Therefore, only velocities from the integrated acceleration signal are compared with
actual velocity values in Table 5. The decisive factor here is how individual states in the
real driving cycle, that are not included in the training cycles, are treated. In this work,
the assumption of remaining in the current state is chosen. Thus, the constant acceleration
provides better values than the assumption of a constant velocity due to the fact that
the resulting velocity of constant acceleration is more realistic. This behaviour can be
seen at t = 280 s and t = 380 s. Generally, the MC show best prediction accuracy in areas
of low dynamics. In the case of an acceleration manoeuvre, however, such as occurs at
t = 80 s, the transition to relatively constant velocity is only predicted correctly when the
maximum velocity has almost been reached. Similar results can be seen during deceleration
at t = 260 s, which is only correctly recognised after the braking process has started. Also,
the starting process could only be predicted after the rise of speed (t = 290 s). Until this
happens, a velocity of zero is predicted. However, constant velocity phases are always
predicted from the MC properly. The MC deliver plausible results overall and prove to be
suitable for the prediction of the velocity and acceleration.
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Figure 9. Predictions using MC without slope [Driver 1/10 s prediction horizon].

The performance of MC when taking the slope into account can be well illustrated
by the example shown below (Figure 10). In principle, the performance is similar to that
of MC which are only velocity—and acceleration-based (Figure 9). However, since an
individual state is now additionally characterised by the road slope, there tend to be more
driving states that cannot be directly assigned to a Markov state (see t = 140 s). In these
cases, the current state is kept constant as described previously. Also, in individual cases,
unrealistic predictions can be recognised. This can be seen at t = 170 s, where even a constant
velocity section cannot be adequately predicted. Although an assignment is possible here,
the statistical features from the velocity, acceleration, and geographical profile are not
sufficiently stored in the MC. A coarser discretisation can lead to better results in these
individual cases, since more states can be assigned to the same state. However, this results
in poorer predictions overall, as is also clearly evident from Figure 7.

Furthermore, it can be seen in the last plot of Figure 10 that both the actual and
subsequent state are often assigned to the same state for the road slope. This means that
apart from the assignment to a state in the first timestep of the prediction, the probability of
a change of state is very low in the slope profile. If a state change nevertheless occurs, the
choice of the next state of the slope appears arbitrary and does not follow the current trend
of the slope. The information obtained from the combination with current velocity and
acceleration thus seems to be insufficient for an adequate prediction of the slope profile.

An improvement of the prediction quality with regard to velocity and acceleration by
taking into account the interactions with the road slopes that occurred in the MC cannot be
determined neither in the plot nor in the calculated RMSE values. Lastly, the derivative
of the slope is introduced as an additional feature of a state, analogous to velocity and
acceleration in order to better identify trends in the road slope. However, since a state of
the MC is defined by a total of four parameters in this case, an additional challenge arises
from the increased computational effort in order to sufficiently train all states of the MC.
Accordingly this approach is not further discussed.
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Figure 10. Predictions using MC including slope [Driver 1 /10 s prediction horizon].

The FNN basically shows a similar performance in the analysis of the predictions
in the time domain as the MC (Figure 11). Similarly, acceleration or deceleration phases
are predicted only when they are already initiated (t = 530 s), whereby the individual
predictions can differ: While the MC tends to expect a higher velocity increase in Figure 9
at t = 310 s than occurs actually, the FNN in Figure 11 assumes a lower velocity increase
in a comparable driving phase at t = 1050 s. Similarly, in Figure 9 at t = 290 s, as al-
ready mentioned, a further standstill is expected, while the FNN in a similar situation in
Figure 11 at t = 120 s always wants to accelerate. The latter example shows very clearly the
fundamentally different mode of operation. In the case of standstill, the most probable
subsequent state is a further standstill (the start-up process only occurs at a single timestep)
and the TPM of the MC is trained accordingly. However, in the FNN, no bins were filled
with transitions that actually occurred, but the network was merely trained for the lowest
MSE overall.

As shown in Figure 12, the performance of predicting velocity and acceleration is
almost similar to the predictions shown in Figure 11. However, slopes can be predicted
much better here than with the use of MC. Also, in contrast to the MC, the introduction
of the slope leads to hardly any deterioration of the predictions. This results from the fact
that in contrast to MC, also unknown conditions can be dealt with properly. The small
differences between the predicted and real velocity profiles result in the already presented
low RMSE values from Table 6.
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Figure 11. Predictions using FNN without slope [Driver 1/10 s prediction horizon].
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Figure 12. Predictions using FNN including slope [Driver 1/10 s prediction horizon].

6. Conclusions

In order to apply predictive driving strategies, a robust prediction approach is neces-
sary. However, most prediction approaches need additional data to provide predictions,
whereby a continuous availability of these data cannot be ensured any time. Within the
scope of this work, therefore, two intelligent methods were identified. Here, for the predic-
tions, only the current and past driving conditions are required. To train the model, only
historical driving data are needed.

First of all, it could be shown that the driving style and also the driven slopes of
the real drivers’ rides differ significantly from each other. This allowed a wide range of
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potential driving characteristics to be investigated. Subsequently, two approaches from
the field of stochastics and artificial intelligence were applied to the driving profiles and
evaluated with regard to their predictive quality. After calibrating the models appropriately,
both quantitative analyses regarding RMSE values and qualitative analyses in the time
domain were performed for each approach.

Regarding the qualitative analysis, the predictions of MC and FNN seem to perform
relatively similarly at first glance for a prediction horizon of 10 s. However, there are indi-
vidual advantages and disadvantages in the respective prediction which can be explained
by fundamental differences in the model architectures. Further analysis in time domain
showed that MC as well as FNN can predict trends only to a limited extent. Thus, it can be
generally stated that dynamic changes in the driven profile can only be recognised when
they have already been initiated.

From the quantitative analyses, it could be shown that FNN can actually achieve
≈30% more accurate velocity predictions and lead to higher accuracy in total compared
to MC, especially when road slope is taken into account. Furthermore, MC show an
overproportional increase at larger prediction horizons in contrast to FNN. However, an
improvement in the prediction quality by considering road slope cannot be determined
neither for MC nor for FNN.

To summarize, FNN should be preferred to MC. Further work should deal with how a
FNN can be enriched with additional information to make the predictions more precise. If
available, the simple extensibility of the FNN enables the use of Radar, Lidar, and camera
or environment data from C2C, C2X, as well as navigation systems to predict dynamics
before they occur. In this way, the individual driving strategy can get closer to the global
optimum. Furthermore, this enables the opportunity to perform long-term predictions in
order to provide additional information to the driving strategy.
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